mm: memcontrol: rewrite uncharge API
[cascardo/linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89         pgoff_t start;          /* start of range currently being fallocated */
90         pgoff_t next;           /* the next page offset to be fallocated */
91         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
92         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97         SGP_READ,       /* don't exceed i_size, don't allocate page */
98         SGP_CACHE,      /* don't exceed i_size, may allocate page */
99         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
100         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
101         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107         return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118                                 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125         return shmem_getpage_gfp(inode, index, pagep, sgp,
126                         mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131         return sb->s_fs_info;
132 }
133
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142         return (flags & VM_NORESERVE) ?
143                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148         if (!(flags & VM_NORESERVE))
149                 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 static inline int shmem_reacct_size(unsigned long flags,
153                 loff_t oldsize, loff_t newsize)
154 {
155         if (!(flags & VM_NORESERVE)) {
156                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
157                         return security_vm_enough_memory_mm(current->mm,
158                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
159                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
160                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
161         }
162         return 0;
163 }
164
165 /*
166  * ... whereas tmpfs objects are accounted incrementally as
167  * pages are allocated, in order to allow huge sparse files.
168  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
169  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170  */
171 static inline int shmem_acct_block(unsigned long flags)
172 {
173         return (flags & VM_NORESERVE) ?
174                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
175 }
176
177 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
178 {
179         if (flags & VM_NORESERVE)
180                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
181 }
182
183 static const struct super_operations shmem_ops;
184 static const struct address_space_operations shmem_aops;
185 static const struct file_operations shmem_file_operations;
186 static const struct inode_operations shmem_inode_operations;
187 static const struct inode_operations shmem_dir_inode_operations;
188 static const struct inode_operations shmem_special_inode_operations;
189 static const struct vm_operations_struct shmem_vm_ops;
190
191 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
192         .ra_pages       = 0,    /* No readahead */
193         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
194 };
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202         if (sbinfo->max_inodes) {
203                 spin_lock(&sbinfo->stat_lock);
204                 if (!sbinfo->free_inodes) {
205                         spin_unlock(&sbinfo->stat_lock);
206                         return -ENOSPC;
207                 }
208                 sbinfo->free_inodes--;
209                 spin_unlock(&sbinfo->stat_lock);
210         }
211         return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217         if (sbinfo->max_inodes) {
218                 spin_lock(&sbinfo->stat_lock);
219                 sbinfo->free_inodes++;
220                 spin_unlock(&sbinfo->stat_lock);
221         }
222 }
223
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238         struct shmem_inode_info *info = SHMEM_I(inode);
239         long freed;
240
241         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242         if (freed > 0) {
243                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244                 if (sbinfo->max_blocks)
245                         percpu_counter_add(&sbinfo->used_blocks, -freed);
246                 info->alloced -= freed;
247                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248                 shmem_unacct_blocks(info->flags, freed);
249         }
250 }
251
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256                         pgoff_t index, void *expected, void *replacement)
257 {
258         void **pslot;
259         void *item;
260
261         VM_BUG_ON(!expected);
262         VM_BUG_ON(!replacement);
263         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264         if (!pslot)
265                 return -ENOENT;
266         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267         if (item != expected)
268                 return -ENOENT;
269         radix_tree_replace_slot(pslot, replacement);
270         return 0;
271 }
272
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281                                pgoff_t index, swp_entry_t swap)
282 {
283         void *item;
284
285         rcu_read_lock();
286         item = radix_tree_lookup(&mapping->page_tree, index);
287         rcu_read_unlock();
288         return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295                                    struct address_space *mapping,
296                                    pgoff_t index, void *expected)
297 {
298         int error;
299
300         VM_BUG_ON_PAGE(!PageLocked(page), page);
301         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303         page_cache_get(page);
304         page->mapping = mapping;
305         page->index = index;
306
307         spin_lock_irq(&mapping->tree_lock);
308         if (!expected)
309                 error = radix_tree_insert(&mapping->page_tree, index, page);
310         else
311                 error = shmem_radix_tree_replace(mapping, index, expected,
312                                                                  page);
313         if (!error) {
314                 mapping->nrpages++;
315                 __inc_zone_page_state(page, NR_FILE_PAGES);
316                 __inc_zone_page_state(page, NR_SHMEM);
317                 spin_unlock_irq(&mapping->tree_lock);
318         } else {
319                 page->mapping = NULL;
320                 spin_unlock_irq(&mapping->tree_lock);
321                 page_cache_release(page);
322         }
323         return error;
324 }
325
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331         struct address_space *mapping = page->mapping;
332         int error;
333
334         spin_lock_irq(&mapping->tree_lock);
335         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336         page->mapping = NULL;
337         mapping->nrpages--;
338         __dec_zone_page_state(page, NR_FILE_PAGES);
339         __dec_zone_page_state(page, NR_SHMEM);
340         spin_unlock_irq(&mapping->tree_lock);
341         page_cache_release(page);
342         BUG_ON(error);
343 }
344
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349                            pgoff_t index, void *radswap)
350 {
351         void *old;
352
353         spin_lock_irq(&mapping->tree_lock);
354         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355         spin_unlock_irq(&mapping->tree_lock);
356         if (old != radswap)
357                 return -ENOENT;
358         free_swap_and_cache(radix_to_swp_entry(radswap));
359         return 0;
360 }
361
362 /*
363  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364  */
365 void shmem_unlock_mapping(struct address_space *mapping)
366 {
367         struct pagevec pvec;
368         pgoff_t indices[PAGEVEC_SIZE];
369         pgoff_t index = 0;
370
371         pagevec_init(&pvec, 0);
372         /*
373          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374          */
375         while (!mapping_unevictable(mapping)) {
376                 /*
377                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379                  */
380                 pvec.nr = find_get_entries(mapping, index,
381                                            PAGEVEC_SIZE, pvec.pages, indices);
382                 if (!pvec.nr)
383                         break;
384                 index = indices[pvec.nr - 1] + 1;
385                 pagevec_remove_exceptionals(&pvec);
386                 check_move_unevictable_pages(pvec.pages, pvec.nr);
387                 pagevec_release(&pvec);
388                 cond_resched();
389         }
390 }
391
392 /*
393  * Remove range of pages and swap entries from radix tree, and free them.
394  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
395  */
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397                                                                  bool unfalloc)
398 {
399         struct address_space *mapping = inode->i_mapping;
400         struct shmem_inode_info *info = SHMEM_I(inode);
401         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405         struct pagevec pvec;
406         pgoff_t indices[PAGEVEC_SIZE];
407         long nr_swaps_freed = 0;
408         pgoff_t index;
409         int i;
410
411         if (lend == -1)
412                 end = -1;       /* unsigned, so actually very big */
413
414         pagevec_init(&pvec, 0);
415         index = start;
416         while (index < end) {
417                 pvec.nr = find_get_entries(mapping, index,
418                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
419                         pvec.pages, indices);
420                 if (!pvec.nr)
421                         break;
422                 for (i = 0; i < pagevec_count(&pvec); i++) {
423                         struct page *page = pvec.pages[i];
424
425                         index = indices[i];
426                         if (index >= end)
427                                 break;
428
429                         if (radix_tree_exceptional_entry(page)) {
430                                 if (unfalloc)
431                                         continue;
432                                 nr_swaps_freed += !shmem_free_swap(mapping,
433                                                                 index, page);
434                                 continue;
435                         }
436
437                         if (!trylock_page(page))
438                                 continue;
439                         if (!unfalloc || !PageUptodate(page)) {
440                                 if (page->mapping == mapping) {
441                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
442                                         truncate_inode_page(mapping, page);
443                                 }
444                         }
445                         unlock_page(page);
446                 }
447                 pagevec_remove_exceptionals(&pvec);
448                 pagevec_release(&pvec);
449                 cond_resched();
450                 index++;
451         }
452
453         if (partial_start) {
454                 struct page *page = NULL;
455                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
456                 if (page) {
457                         unsigned int top = PAGE_CACHE_SIZE;
458                         if (start > end) {
459                                 top = partial_end;
460                                 partial_end = 0;
461                         }
462                         zero_user_segment(page, partial_start, top);
463                         set_page_dirty(page);
464                         unlock_page(page);
465                         page_cache_release(page);
466                 }
467         }
468         if (partial_end) {
469                 struct page *page = NULL;
470                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
471                 if (page) {
472                         zero_user_segment(page, 0, partial_end);
473                         set_page_dirty(page);
474                         unlock_page(page);
475                         page_cache_release(page);
476                 }
477         }
478         if (start >= end)
479                 return;
480
481         index = start;
482         while (index < end) {
483                 cond_resched();
484
485                 pvec.nr = find_get_entries(mapping, index,
486                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
487                                 pvec.pages, indices);
488                 if (!pvec.nr) {
489                         /* If all gone or hole-punch or unfalloc, we're done */
490                         if (index == start || end != -1)
491                                 break;
492                         /* But if truncating, restart to make sure all gone */
493                         index = start;
494                         continue;
495                 }
496                 for (i = 0; i < pagevec_count(&pvec); i++) {
497                         struct page *page = pvec.pages[i];
498
499                         index = indices[i];
500                         if (index >= end)
501                                 break;
502
503                         if (radix_tree_exceptional_entry(page)) {
504                                 if (unfalloc)
505                                         continue;
506                                 if (shmem_free_swap(mapping, index, page)) {
507                                         /* Swap was replaced by page: retry */
508                                         index--;
509                                         break;
510                                 }
511                                 nr_swaps_freed++;
512                                 continue;
513                         }
514
515                         lock_page(page);
516                         if (!unfalloc || !PageUptodate(page)) {
517                                 if (page->mapping == mapping) {
518                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
519                                         truncate_inode_page(mapping, page);
520                                 } else {
521                                         /* Page was replaced by swap: retry */
522                                         unlock_page(page);
523                                         index--;
524                                         break;
525                                 }
526                         }
527                         unlock_page(page);
528                 }
529                 pagevec_remove_exceptionals(&pvec);
530                 pagevec_release(&pvec);
531                 index++;
532         }
533
534         spin_lock(&info->lock);
535         info->swapped -= nr_swaps_freed;
536         shmem_recalc_inode(inode);
537         spin_unlock(&info->lock);
538 }
539
540 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
541 {
542         shmem_undo_range(inode, lstart, lend, false);
543         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
544 }
545 EXPORT_SYMBOL_GPL(shmem_truncate_range);
546
547 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
548 {
549         struct inode *inode = dentry->d_inode;
550         int error;
551
552         error = inode_change_ok(inode, attr);
553         if (error)
554                 return error;
555
556         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
557                 loff_t oldsize = inode->i_size;
558                 loff_t newsize = attr->ia_size;
559
560                 if (newsize != oldsize) {
561                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
562                                         oldsize, newsize);
563                         if (error)
564                                 return error;
565                         i_size_write(inode, newsize);
566                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
567                 }
568                 if (newsize < oldsize) {
569                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
570                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
571                         shmem_truncate_range(inode, newsize, (loff_t)-1);
572                         /* unmap again to remove racily COWed private pages */
573                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
574                 }
575         }
576
577         setattr_copy(inode, attr);
578         if (attr->ia_valid & ATTR_MODE)
579                 error = posix_acl_chmod(inode, inode->i_mode);
580         return error;
581 }
582
583 static void shmem_evict_inode(struct inode *inode)
584 {
585         struct shmem_inode_info *info = SHMEM_I(inode);
586
587         if (inode->i_mapping->a_ops == &shmem_aops) {
588                 shmem_unacct_size(info->flags, inode->i_size);
589                 inode->i_size = 0;
590                 shmem_truncate_range(inode, 0, (loff_t)-1);
591                 if (!list_empty(&info->swaplist)) {
592                         mutex_lock(&shmem_swaplist_mutex);
593                         list_del_init(&info->swaplist);
594                         mutex_unlock(&shmem_swaplist_mutex);
595                 }
596         } else
597                 kfree(info->symlink);
598
599         simple_xattrs_free(&info->xattrs);
600         WARN_ON(inode->i_blocks);
601         shmem_free_inode(inode->i_sb);
602         clear_inode(inode);
603 }
604
605 /*
606  * If swap found in inode, free it and move page from swapcache to filecache.
607  */
608 static int shmem_unuse_inode(struct shmem_inode_info *info,
609                              swp_entry_t swap, struct page **pagep)
610 {
611         struct address_space *mapping = info->vfs_inode.i_mapping;
612         void *radswap;
613         pgoff_t index;
614         gfp_t gfp;
615         int error = 0;
616
617         radswap = swp_to_radix_entry(swap);
618         index = radix_tree_locate_item(&mapping->page_tree, radswap);
619         if (index == -1)
620                 return -EAGAIN; /* tell shmem_unuse we found nothing */
621
622         /*
623          * Move _head_ to start search for next from here.
624          * But be careful: shmem_evict_inode checks list_empty without taking
625          * mutex, and there's an instant in list_move_tail when info->swaplist
626          * would appear empty, if it were the only one on shmem_swaplist.
627          */
628         if (shmem_swaplist.next != &info->swaplist)
629                 list_move_tail(&shmem_swaplist, &info->swaplist);
630
631         gfp = mapping_gfp_mask(mapping);
632         if (shmem_should_replace_page(*pagep, gfp)) {
633                 mutex_unlock(&shmem_swaplist_mutex);
634                 error = shmem_replace_page(pagep, gfp, info, index);
635                 mutex_lock(&shmem_swaplist_mutex);
636                 /*
637                  * We needed to drop mutex to make that restrictive page
638                  * allocation, but the inode might have been freed while we
639                  * dropped it: although a racing shmem_evict_inode() cannot
640                  * complete without emptying the radix_tree, our page lock
641                  * on this swapcache page is not enough to prevent that -
642                  * free_swap_and_cache() of our swap entry will only
643                  * trylock_page(), removing swap from radix_tree whatever.
644                  *
645                  * We must not proceed to shmem_add_to_page_cache() if the
646                  * inode has been freed, but of course we cannot rely on
647                  * inode or mapping or info to check that.  However, we can
648                  * safely check if our swap entry is still in use (and here
649                  * it can't have got reused for another page): if it's still
650                  * in use, then the inode cannot have been freed yet, and we
651                  * can safely proceed (if it's no longer in use, that tells
652                  * nothing about the inode, but we don't need to unuse swap).
653                  */
654                 if (!page_swapcount(*pagep))
655                         error = -ENOENT;
656         }
657
658         /*
659          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
660          * but also to hold up shmem_evict_inode(): so inode cannot be freed
661          * beneath us (pagelock doesn't help until the page is in pagecache).
662          */
663         if (!error)
664                 error = shmem_add_to_page_cache(*pagep, mapping, index,
665                                                 radswap);
666         if (error != -ENOMEM) {
667                 /*
668                  * Truncation and eviction use free_swap_and_cache(), which
669                  * only does trylock page: if we raced, best clean up here.
670                  */
671                 delete_from_swap_cache(*pagep);
672                 set_page_dirty(*pagep);
673                 if (!error) {
674                         spin_lock(&info->lock);
675                         info->swapped--;
676                         spin_unlock(&info->lock);
677                         swap_free(swap);
678                 }
679         }
680         return error;
681 }
682
683 /*
684  * Search through swapped inodes to find and replace swap by page.
685  */
686 int shmem_unuse(swp_entry_t swap, struct page *page)
687 {
688         struct list_head *this, *next;
689         struct shmem_inode_info *info;
690         struct mem_cgroup *memcg;
691         int error = 0;
692
693         /*
694          * There's a faint possibility that swap page was replaced before
695          * caller locked it: caller will come back later with the right page.
696          */
697         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
698                 goto out;
699
700         /*
701          * Charge page using GFP_KERNEL while we can wait, before taking
702          * the shmem_swaplist_mutex which might hold up shmem_writepage().
703          * Charged back to the user (not to caller) when swap account is used.
704          */
705         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
706         if (error)
707                 goto out;
708         /* No radix_tree_preload: swap entry keeps a place for page in tree */
709         error = -EAGAIN;
710
711         mutex_lock(&shmem_swaplist_mutex);
712         list_for_each_safe(this, next, &shmem_swaplist) {
713                 info = list_entry(this, struct shmem_inode_info, swaplist);
714                 if (info->swapped)
715                         error = shmem_unuse_inode(info, swap, &page);
716                 else
717                         list_del_init(&info->swaplist);
718                 cond_resched();
719                 if (error != -EAGAIN)
720                         break;
721                 /* found nothing in this: move on to search the next */
722         }
723         mutex_unlock(&shmem_swaplist_mutex);
724
725         if (error) {
726                 if (error != -ENOMEM)
727                         error = 0;
728                 mem_cgroup_cancel_charge(page, memcg);
729         } else
730                 mem_cgroup_commit_charge(page, memcg, true);
731 out:
732         unlock_page(page);
733         page_cache_release(page);
734         return error;
735 }
736
737 /*
738  * Move the page from the page cache to the swap cache.
739  */
740 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
741 {
742         struct shmem_inode_info *info;
743         struct address_space *mapping;
744         struct inode *inode;
745         swp_entry_t swap;
746         pgoff_t index;
747
748         BUG_ON(!PageLocked(page));
749         mapping = page->mapping;
750         index = page->index;
751         inode = mapping->host;
752         info = SHMEM_I(inode);
753         if (info->flags & VM_LOCKED)
754                 goto redirty;
755         if (!total_swap_pages)
756                 goto redirty;
757
758         /*
759          * shmem_backing_dev_info's capabilities prevent regular writeback or
760          * sync from ever calling shmem_writepage; but a stacking filesystem
761          * might use ->writepage of its underlying filesystem, in which case
762          * tmpfs should write out to swap only in response to memory pressure,
763          * and not for the writeback threads or sync.
764          */
765         if (!wbc->for_reclaim) {
766                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
767                 goto redirty;
768         }
769
770         /*
771          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
772          * value into swapfile.c, the only way we can correctly account for a
773          * fallocated page arriving here is now to initialize it and write it.
774          *
775          * That's okay for a page already fallocated earlier, but if we have
776          * not yet completed the fallocation, then (a) we want to keep track
777          * of this page in case we have to undo it, and (b) it may not be a
778          * good idea to continue anyway, once we're pushing into swap.  So
779          * reactivate the page, and let shmem_fallocate() quit when too many.
780          */
781         if (!PageUptodate(page)) {
782                 if (inode->i_private) {
783                         struct shmem_falloc *shmem_falloc;
784                         spin_lock(&inode->i_lock);
785                         shmem_falloc = inode->i_private;
786                         if (shmem_falloc &&
787                             !shmem_falloc->waitq &&
788                             index >= shmem_falloc->start &&
789                             index < shmem_falloc->next)
790                                 shmem_falloc->nr_unswapped++;
791                         else
792                                 shmem_falloc = NULL;
793                         spin_unlock(&inode->i_lock);
794                         if (shmem_falloc)
795                                 goto redirty;
796                 }
797                 clear_highpage(page);
798                 flush_dcache_page(page);
799                 SetPageUptodate(page);
800         }
801
802         swap = get_swap_page();
803         if (!swap.val)
804                 goto redirty;
805
806         /*
807          * Add inode to shmem_unuse()'s list of swapped-out inodes,
808          * if it's not already there.  Do it now before the page is
809          * moved to swap cache, when its pagelock no longer protects
810          * the inode from eviction.  But don't unlock the mutex until
811          * we've incremented swapped, because shmem_unuse_inode() will
812          * prune a !swapped inode from the swaplist under this mutex.
813          */
814         mutex_lock(&shmem_swaplist_mutex);
815         if (list_empty(&info->swaplist))
816                 list_add_tail(&info->swaplist, &shmem_swaplist);
817
818         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
819                 swap_shmem_alloc(swap);
820                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
821
822                 spin_lock(&info->lock);
823                 info->swapped++;
824                 shmem_recalc_inode(inode);
825                 spin_unlock(&info->lock);
826
827                 mutex_unlock(&shmem_swaplist_mutex);
828                 BUG_ON(page_mapped(page));
829                 swap_writepage(page, wbc);
830                 return 0;
831         }
832
833         mutex_unlock(&shmem_swaplist_mutex);
834         swapcache_free(swap);
835 redirty:
836         set_page_dirty(page);
837         if (wbc->for_reclaim)
838                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
839         unlock_page(page);
840         return 0;
841 }
842
843 #ifdef CONFIG_NUMA
844 #ifdef CONFIG_TMPFS
845 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
846 {
847         char buffer[64];
848
849         if (!mpol || mpol->mode == MPOL_DEFAULT)
850                 return;         /* show nothing */
851
852         mpol_to_str(buffer, sizeof(buffer), mpol);
853
854         seq_printf(seq, ",mpol=%s", buffer);
855 }
856
857 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
858 {
859         struct mempolicy *mpol = NULL;
860         if (sbinfo->mpol) {
861                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
862                 mpol = sbinfo->mpol;
863                 mpol_get(mpol);
864                 spin_unlock(&sbinfo->stat_lock);
865         }
866         return mpol;
867 }
868 #endif /* CONFIG_TMPFS */
869
870 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
871                         struct shmem_inode_info *info, pgoff_t index)
872 {
873         struct vm_area_struct pvma;
874         struct page *page;
875
876         /* Create a pseudo vma that just contains the policy */
877         pvma.vm_start = 0;
878         /* Bias interleave by inode number to distribute better across nodes */
879         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
880         pvma.vm_ops = NULL;
881         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
882
883         page = swapin_readahead(swap, gfp, &pvma, 0);
884
885         /* Drop reference taken by mpol_shared_policy_lookup() */
886         mpol_cond_put(pvma.vm_policy);
887
888         return page;
889 }
890
891 static struct page *shmem_alloc_page(gfp_t gfp,
892                         struct shmem_inode_info *info, pgoff_t index)
893 {
894         struct vm_area_struct pvma;
895         struct page *page;
896
897         /* Create a pseudo vma that just contains the policy */
898         pvma.vm_start = 0;
899         /* Bias interleave by inode number to distribute better across nodes */
900         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
901         pvma.vm_ops = NULL;
902         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
903
904         page = alloc_page_vma(gfp, &pvma, 0);
905
906         /* Drop reference taken by mpol_shared_policy_lookup() */
907         mpol_cond_put(pvma.vm_policy);
908
909         return page;
910 }
911 #else /* !CONFIG_NUMA */
912 #ifdef CONFIG_TMPFS
913 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
914 {
915 }
916 #endif /* CONFIG_TMPFS */
917
918 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
919                         struct shmem_inode_info *info, pgoff_t index)
920 {
921         return swapin_readahead(swap, gfp, NULL, 0);
922 }
923
924 static inline struct page *shmem_alloc_page(gfp_t gfp,
925                         struct shmem_inode_info *info, pgoff_t index)
926 {
927         return alloc_page(gfp);
928 }
929 #endif /* CONFIG_NUMA */
930
931 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
932 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
933 {
934         return NULL;
935 }
936 #endif
937
938 /*
939  * When a page is moved from swapcache to shmem filecache (either by the
940  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
941  * shmem_unuse_inode()), it may have been read in earlier from swap, in
942  * ignorance of the mapping it belongs to.  If that mapping has special
943  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
944  * we may need to copy to a suitable page before moving to filecache.
945  *
946  * In a future release, this may well be extended to respect cpuset and
947  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
948  * but for now it is a simple matter of zone.
949  */
950 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
951 {
952         return page_zonenum(page) > gfp_zone(gfp);
953 }
954
955 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
956                                 struct shmem_inode_info *info, pgoff_t index)
957 {
958         struct page *oldpage, *newpage;
959         struct address_space *swap_mapping;
960         pgoff_t swap_index;
961         int error;
962
963         oldpage = *pagep;
964         swap_index = page_private(oldpage);
965         swap_mapping = page_mapping(oldpage);
966
967         /*
968          * We have arrived here because our zones are constrained, so don't
969          * limit chance of success by further cpuset and node constraints.
970          */
971         gfp &= ~GFP_CONSTRAINT_MASK;
972         newpage = shmem_alloc_page(gfp, info, index);
973         if (!newpage)
974                 return -ENOMEM;
975
976         page_cache_get(newpage);
977         copy_highpage(newpage, oldpage);
978         flush_dcache_page(newpage);
979
980         __set_page_locked(newpage);
981         SetPageUptodate(newpage);
982         SetPageSwapBacked(newpage);
983         set_page_private(newpage, swap_index);
984         SetPageSwapCache(newpage);
985
986         /*
987          * Our caller will very soon move newpage out of swapcache, but it's
988          * a nice clean interface for us to replace oldpage by newpage there.
989          */
990         spin_lock_irq(&swap_mapping->tree_lock);
991         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
992                                                                    newpage);
993         if (!error) {
994                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
995                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
996         }
997         spin_unlock_irq(&swap_mapping->tree_lock);
998
999         if (unlikely(error)) {
1000                 /*
1001                  * Is this possible?  I think not, now that our callers check
1002                  * both PageSwapCache and page_private after getting page lock;
1003                  * but be defensive.  Reverse old to newpage for clear and free.
1004                  */
1005                 oldpage = newpage;
1006         } else {
1007                 mem_cgroup_migrate(oldpage, newpage, false);
1008                 lru_cache_add_anon(newpage);
1009                 *pagep = newpage;
1010         }
1011
1012         ClearPageSwapCache(oldpage);
1013         set_page_private(oldpage, 0);
1014
1015         unlock_page(oldpage);
1016         page_cache_release(oldpage);
1017         page_cache_release(oldpage);
1018         return error;
1019 }
1020
1021 /*
1022  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1023  *
1024  * If we allocate a new one we do not mark it dirty. That's up to the
1025  * vm. If we swap it in we mark it dirty since we also free the swap
1026  * entry since a page cannot live in both the swap and page cache
1027  */
1028 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1029         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1030 {
1031         struct address_space *mapping = inode->i_mapping;
1032         struct shmem_inode_info *info;
1033         struct shmem_sb_info *sbinfo;
1034         struct mem_cgroup *memcg;
1035         struct page *page;
1036         swp_entry_t swap;
1037         int error;
1038         int once = 0;
1039         int alloced = 0;
1040
1041         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1042                 return -EFBIG;
1043 repeat:
1044         swap.val = 0;
1045         page = find_lock_entry(mapping, index);
1046         if (radix_tree_exceptional_entry(page)) {
1047                 swap = radix_to_swp_entry(page);
1048                 page = NULL;
1049         }
1050
1051         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1052             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1053                 error = -EINVAL;
1054                 goto failed;
1055         }
1056
1057         if (page && sgp == SGP_WRITE)
1058                 mark_page_accessed(page);
1059
1060         /* fallocated page? */
1061         if (page && !PageUptodate(page)) {
1062                 if (sgp != SGP_READ)
1063                         goto clear;
1064                 unlock_page(page);
1065                 page_cache_release(page);
1066                 page = NULL;
1067         }
1068         if (page || (sgp == SGP_READ && !swap.val)) {
1069                 *pagep = page;
1070                 return 0;
1071         }
1072
1073         /*
1074          * Fast cache lookup did not find it:
1075          * bring it back from swap or allocate.
1076          */
1077         info = SHMEM_I(inode);
1078         sbinfo = SHMEM_SB(inode->i_sb);
1079
1080         if (swap.val) {
1081                 /* Look it up and read it in.. */
1082                 page = lookup_swap_cache(swap);
1083                 if (!page) {
1084                         /* here we actually do the io */
1085                         if (fault_type)
1086                                 *fault_type |= VM_FAULT_MAJOR;
1087                         page = shmem_swapin(swap, gfp, info, index);
1088                         if (!page) {
1089                                 error = -ENOMEM;
1090                                 goto failed;
1091                         }
1092                 }
1093
1094                 /* We have to do this with page locked to prevent races */
1095                 lock_page(page);
1096                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1097                     !shmem_confirm_swap(mapping, index, swap)) {
1098                         error = -EEXIST;        /* try again */
1099                         goto unlock;
1100                 }
1101                 if (!PageUptodate(page)) {
1102                         error = -EIO;
1103                         goto failed;
1104                 }
1105                 wait_on_page_writeback(page);
1106
1107                 if (shmem_should_replace_page(page, gfp)) {
1108                         error = shmem_replace_page(&page, gfp, info, index);
1109                         if (error)
1110                                 goto failed;
1111                 }
1112
1113                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1114                 if (!error) {
1115                         error = shmem_add_to_page_cache(page, mapping, index,
1116                                                 swp_to_radix_entry(swap));
1117                         /*
1118                          * We already confirmed swap under page lock, and make
1119                          * no memory allocation here, so usually no possibility
1120                          * of error; but free_swap_and_cache() only trylocks a
1121                          * page, so it is just possible that the entry has been
1122                          * truncated or holepunched since swap was confirmed.
1123                          * shmem_undo_range() will have done some of the
1124                          * unaccounting, now delete_from_swap_cache() will do
1125                          * the rest (including mem_cgroup_uncharge_swapcache).
1126                          * Reset swap.val? No, leave it so "failed" goes back to
1127                          * "repeat": reading a hole and writing should succeed.
1128                          */
1129                         if (error) {
1130                                 mem_cgroup_cancel_charge(page, memcg);
1131                                 delete_from_swap_cache(page);
1132                         }
1133                 }
1134                 if (error)
1135                         goto failed;
1136
1137                 mem_cgroup_commit_charge(page, memcg, true);
1138
1139                 spin_lock(&info->lock);
1140                 info->swapped--;
1141                 shmem_recalc_inode(inode);
1142                 spin_unlock(&info->lock);
1143
1144                 if (sgp == SGP_WRITE)
1145                         mark_page_accessed(page);
1146
1147                 delete_from_swap_cache(page);
1148                 set_page_dirty(page);
1149                 swap_free(swap);
1150
1151         } else {
1152                 if (shmem_acct_block(info->flags)) {
1153                         error = -ENOSPC;
1154                         goto failed;
1155                 }
1156                 if (sbinfo->max_blocks) {
1157                         if (percpu_counter_compare(&sbinfo->used_blocks,
1158                                                 sbinfo->max_blocks) >= 0) {
1159                                 error = -ENOSPC;
1160                                 goto unacct;
1161                         }
1162                         percpu_counter_inc(&sbinfo->used_blocks);
1163                 }
1164
1165                 page = shmem_alloc_page(gfp, info, index);
1166                 if (!page) {
1167                         error = -ENOMEM;
1168                         goto decused;
1169                 }
1170
1171                 __SetPageSwapBacked(page);
1172                 __set_page_locked(page);
1173                 if (sgp == SGP_WRITE)
1174                         __SetPageReferenced(page);
1175
1176                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1177                 if (error)
1178                         goto decused;
1179                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1180                 if (!error) {
1181                         error = shmem_add_to_page_cache(page, mapping, index,
1182                                                         NULL);
1183                         radix_tree_preload_end();
1184                 }
1185                 if (error) {
1186                         mem_cgroup_cancel_charge(page, memcg);
1187                         goto decused;
1188                 }
1189                 mem_cgroup_commit_charge(page, memcg, false);
1190                 lru_cache_add_anon(page);
1191
1192                 spin_lock(&info->lock);
1193                 info->alloced++;
1194                 inode->i_blocks += BLOCKS_PER_PAGE;
1195                 shmem_recalc_inode(inode);
1196                 spin_unlock(&info->lock);
1197                 alloced = true;
1198
1199                 /*
1200                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1201                  */
1202                 if (sgp == SGP_FALLOC)
1203                         sgp = SGP_WRITE;
1204 clear:
1205                 /*
1206                  * Let SGP_WRITE caller clear ends if write does not fill page;
1207                  * but SGP_FALLOC on a page fallocated earlier must initialize
1208                  * it now, lest undo on failure cancel our earlier guarantee.
1209                  */
1210                 if (sgp != SGP_WRITE) {
1211                         clear_highpage(page);
1212                         flush_dcache_page(page);
1213                         SetPageUptodate(page);
1214                 }
1215                 if (sgp == SGP_DIRTY)
1216                         set_page_dirty(page);
1217         }
1218
1219         /* Perhaps the file has been truncated since we checked */
1220         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1221             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1222                 error = -EINVAL;
1223                 if (alloced)
1224                         goto trunc;
1225                 else
1226                         goto failed;
1227         }
1228         *pagep = page;
1229         return 0;
1230
1231         /*
1232          * Error recovery.
1233          */
1234 trunc:
1235         info = SHMEM_I(inode);
1236         ClearPageDirty(page);
1237         delete_from_page_cache(page);
1238         spin_lock(&info->lock);
1239         info->alloced--;
1240         inode->i_blocks -= BLOCKS_PER_PAGE;
1241         spin_unlock(&info->lock);
1242 decused:
1243         sbinfo = SHMEM_SB(inode->i_sb);
1244         if (sbinfo->max_blocks)
1245                 percpu_counter_add(&sbinfo->used_blocks, -1);
1246 unacct:
1247         shmem_unacct_blocks(info->flags, 1);
1248 failed:
1249         if (swap.val && error != -EINVAL &&
1250             !shmem_confirm_swap(mapping, index, swap))
1251                 error = -EEXIST;
1252 unlock:
1253         if (page) {
1254                 unlock_page(page);
1255                 page_cache_release(page);
1256         }
1257         if (error == -ENOSPC && !once++) {
1258                 info = SHMEM_I(inode);
1259                 spin_lock(&info->lock);
1260                 shmem_recalc_inode(inode);
1261                 spin_unlock(&info->lock);
1262                 goto repeat;
1263         }
1264         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1265                 goto repeat;
1266         return error;
1267 }
1268
1269 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1270 {
1271         struct inode *inode = file_inode(vma->vm_file);
1272         int error;
1273         int ret = VM_FAULT_LOCKED;
1274
1275         /*
1276          * Trinity finds that probing a hole which tmpfs is punching can
1277          * prevent the hole-punch from ever completing: which in turn
1278          * locks writers out with its hold on i_mutex.  So refrain from
1279          * faulting pages into the hole while it's being punched.  Although
1280          * shmem_undo_range() does remove the additions, it may be unable to
1281          * keep up, as each new page needs its own unmap_mapping_range() call,
1282          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1283          *
1284          * It does not matter if we sometimes reach this check just before the
1285          * hole-punch begins, so that one fault then races with the punch:
1286          * we just need to make racing faults a rare case.
1287          *
1288          * The implementation below would be much simpler if we just used a
1289          * standard mutex or completion: but we cannot take i_mutex in fault,
1290          * and bloating every shmem inode for this unlikely case would be sad.
1291          */
1292         if (unlikely(inode->i_private)) {
1293                 struct shmem_falloc *shmem_falloc;
1294
1295                 spin_lock(&inode->i_lock);
1296                 shmem_falloc = inode->i_private;
1297                 if (shmem_falloc &&
1298                     shmem_falloc->waitq &&
1299                     vmf->pgoff >= shmem_falloc->start &&
1300                     vmf->pgoff < shmem_falloc->next) {
1301                         wait_queue_head_t *shmem_falloc_waitq;
1302                         DEFINE_WAIT(shmem_fault_wait);
1303
1304                         ret = VM_FAULT_NOPAGE;
1305                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1306                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1307                                 /* It's polite to up mmap_sem if we can */
1308                                 up_read(&vma->vm_mm->mmap_sem);
1309                                 ret = VM_FAULT_RETRY;
1310                         }
1311
1312                         shmem_falloc_waitq = shmem_falloc->waitq;
1313                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1314                                         TASK_UNINTERRUPTIBLE);
1315                         spin_unlock(&inode->i_lock);
1316                         schedule();
1317
1318                         /*
1319                          * shmem_falloc_waitq points into the shmem_fallocate()
1320                          * stack of the hole-punching task: shmem_falloc_waitq
1321                          * is usually invalid by the time we reach here, but
1322                          * finish_wait() does not dereference it in that case;
1323                          * though i_lock needed lest racing with wake_up_all().
1324                          */
1325                         spin_lock(&inode->i_lock);
1326                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1327                         spin_unlock(&inode->i_lock);
1328                         return ret;
1329                 }
1330                 spin_unlock(&inode->i_lock);
1331         }
1332
1333         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1334         if (error)
1335                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1336
1337         if (ret & VM_FAULT_MAJOR) {
1338                 count_vm_event(PGMAJFAULT);
1339                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1340         }
1341         return ret;
1342 }
1343
1344 #ifdef CONFIG_NUMA
1345 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1346 {
1347         struct inode *inode = file_inode(vma->vm_file);
1348         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1349 }
1350
1351 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1352                                           unsigned long addr)
1353 {
1354         struct inode *inode = file_inode(vma->vm_file);
1355         pgoff_t index;
1356
1357         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1358         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1359 }
1360 #endif
1361
1362 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1363 {
1364         struct inode *inode = file_inode(file);
1365         struct shmem_inode_info *info = SHMEM_I(inode);
1366         int retval = -ENOMEM;
1367
1368         spin_lock(&info->lock);
1369         if (lock && !(info->flags & VM_LOCKED)) {
1370                 if (!user_shm_lock(inode->i_size, user))
1371                         goto out_nomem;
1372                 info->flags |= VM_LOCKED;
1373                 mapping_set_unevictable(file->f_mapping);
1374         }
1375         if (!lock && (info->flags & VM_LOCKED) && user) {
1376                 user_shm_unlock(inode->i_size, user);
1377                 info->flags &= ~VM_LOCKED;
1378                 mapping_clear_unevictable(file->f_mapping);
1379         }
1380         retval = 0;
1381
1382 out_nomem:
1383         spin_unlock(&info->lock);
1384         return retval;
1385 }
1386
1387 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1388 {
1389         file_accessed(file);
1390         vma->vm_ops = &shmem_vm_ops;
1391         return 0;
1392 }
1393
1394 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1395                                      umode_t mode, dev_t dev, unsigned long flags)
1396 {
1397         struct inode *inode;
1398         struct shmem_inode_info *info;
1399         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1400
1401         if (shmem_reserve_inode(sb))
1402                 return NULL;
1403
1404         inode = new_inode(sb);
1405         if (inode) {
1406                 inode->i_ino = get_next_ino();
1407                 inode_init_owner(inode, dir, mode);
1408                 inode->i_blocks = 0;
1409                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1410                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1411                 inode->i_generation = get_seconds();
1412                 info = SHMEM_I(inode);
1413                 memset(info, 0, (char *)inode - (char *)info);
1414                 spin_lock_init(&info->lock);
1415                 info->flags = flags & VM_NORESERVE;
1416                 INIT_LIST_HEAD(&info->swaplist);
1417                 simple_xattrs_init(&info->xattrs);
1418                 cache_no_acl(inode);
1419
1420                 switch (mode & S_IFMT) {
1421                 default:
1422                         inode->i_op = &shmem_special_inode_operations;
1423                         init_special_inode(inode, mode, dev);
1424                         break;
1425                 case S_IFREG:
1426                         inode->i_mapping->a_ops = &shmem_aops;
1427                         inode->i_op = &shmem_inode_operations;
1428                         inode->i_fop = &shmem_file_operations;
1429                         mpol_shared_policy_init(&info->policy,
1430                                                  shmem_get_sbmpol(sbinfo));
1431                         break;
1432                 case S_IFDIR:
1433                         inc_nlink(inode);
1434                         /* Some things misbehave if size == 0 on a directory */
1435                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1436                         inode->i_op = &shmem_dir_inode_operations;
1437                         inode->i_fop = &simple_dir_operations;
1438                         break;
1439                 case S_IFLNK:
1440                         /*
1441                          * Must not load anything in the rbtree,
1442                          * mpol_free_shared_policy will not be called.
1443                          */
1444                         mpol_shared_policy_init(&info->policy, NULL);
1445                         break;
1446                 }
1447         } else
1448                 shmem_free_inode(sb);
1449         return inode;
1450 }
1451
1452 bool shmem_mapping(struct address_space *mapping)
1453 {
1454         return mapping->backing_dev_info == &shmem_backing_dev_info;
1455 }
1456
1457 #ifdef CONFIG_TMPFS
1458 static const struct inode_operations shmem_symlink_inode_operations;
1459 static const struct inode_operations shmem_short_symlink_operations;
1460
1461 #ifdef CONFIG_TMPFS_XATTR
1462 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1463 #else
1464 #define shmem_initxattrs NULL
1465 #endif
1466
1467 static int
1468 shmem_write_begin(struct file *file, struct address_space *mapping,
1469                         loff_t pos, unsigned len, unsigned flags,
1470                         struct page **pagep, void **fsdata)
1471 {
1472         struct inode *inode = mapping->host;
1473         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1474         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1475 }
1476
1477 static int
1478 shmem_write_end(struct file *file, struct address_space *mapping,
1479                         loff_t pos, unsigned len, unsigned copied,
1480                         struct page *page, void *fsdata)
1481 {
1482         struct inode *inode = mapping->host;
1483
1484         if (pos + copied > inode->i_size)
1485                 i_size_write(inode, pos + copied);
1486
1487         if (!PageUptodate(page)) {
1488                 if (copied < PAGE_CACHE_SIZE) {
1489                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1490                         zero_user_segments(page, 0, from,
1491                                         from + copied, PAGE_CACHE_SIZE);
1492                 }
1493                 SetPageUptodate(page);
1494         }
1495         set_page_dirty(page);
1496         unlock_page(page);
1497         page_cache_release(page);
1498
1499         return copied;
1500 }
1501
1502 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1503 {
1504         struct file *file = iocb->ki_filp;
1505         struct inode *inode = file_inode(file);
1506         struct address_space *mapping = inode->i_mapping;
1507         pgoff_t index;
1508         unsigned long offset;
1509         enum sgp_type sgp = SGP_READ;
1510         int error = 0;
1511         ssize_t retval = 0;
1512         loff_t *ppos = &iocb->ki_pos;
1513
1514         /*
1515          * Might this read be for a stacking filesystem?  Then when reading
1516          * holes of a sparse file, we actually need to allocate those pages,
1517          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1518          */
1519         if (segment_eq(get_fs(), KERNEL_DS))
1520                 sgp = SGP_DIRTY;
1521
1522         index = *ppos >> PAGE_CACHE_SHIFT;
1523         offset = *ppos & ~PAGE_CACHE_MASK;
1524
1525         for (;;) {
1526                 struct page *page = NULL;
1527                 pgoff_t end_index;
1528                 unsigned long nr, ret;
1529                 loff_t i_size = i_size_read(inode);
1530
1531                 end_index = i_size >> PAGE_CACHE_SHIFT;
1532                 if (index > end_index)
1533                         break;
1534                 if (index == end_index) {
1535                         nr = i_size & ~PAGE_CACHE_MASK;
1536                         if (nr <= offset)
1537                                 break;
1538                 }
1539
1540                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1541                 if (error) {
1542                         if (error == -EINVAL)
1543                                 error = 0;
1544                         break;
1545                 }
1546                 if (page)
1547                         unlock_page(page);
1548
1549                 /*
1550                  * We must evaluate after, since reads (unlike writes)
1551                  * are called without i_mutex protection against truncate
1552                  */
1553                 nr = PAGE_CACHE_SIZE;
1554                 i_size = i_size_read(inode);
1555                 end_index = i_size >> PAGE_CACHE_SHIFT;
1556                 if (index == end_index) {
1557                         nr = i_size & ~PAGE_CACHE_MASK;
1558                         if (nr <= offset) {
1559                                 if (page)
1560                                         page_cache_release(page);
1561                                 break;
1562                         }
1563                 }
1564                 nr -= offset;
1565
1566                 if (page) {
1567                         /*
1568                          * If users can be writing to this page using arbitrary
1569                          * virtual addresses, take care about potential aliasing
1570                          * before reading the page on the kernel side.
1571                          */
1572                         if (mapping_writably_mapped(mapping))
1573                                 flush_dcache_page(page);
1574                         /*
1575                          * Mark the page accessed if we read the beginning.
1576                          */
1577                         if (!offset)
1578                                 mark_page_accessed(page);
1579                 } else {
1580                         page = ZERO_PAGE(0);
1581                         page_cache_get(page);
1582                 }
1583
1584                 /*
1585                  * Ok, we have the page, and it's up-to-date, so
1586                  * now we can copy it to user space...
1587                  */
1588                 ret = copy_page_to_iter(page, offset, nr, to);
1589                 retval += ret;
1590                 offset += ret;
1591                 index += offset >> PAGE_CACHE_SHIFT;
1592                 offset &= ~PAGE_CACHE_MASK;
1593
1594                 page_cache_release(page);
1595                 if (!iov_iter_count(to))
1596                         break;
1597                 if (ret < nr) {
1598                         error = -EFAULT;
1599                         break;
1600                 }
1601                 cond_resched();
1602         }
1603
1604         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1605         file_accessed(file);
1606         return retval ? retval : error;
1607 }
1608
1609 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1610                                 struct pipe_inode_info *pipe, size_t len,
1611                                 unsigned int flags)
1612 {
1613         struct address_space *mapping = in->f_mapping;
1614         struct inode *inode = mapping->host;
1615         unsigned int loff, nr_pages, req_pages;
1616         struct page *pages[PIPE_DEF_BUFFERS];
1617         struct partial_page partial[PIPE_DEF_BUFFERS];
1618         struct page *page;
1619         pgoff_t index, end_index;
1620         loff_t isize, left;
1621         int error, page_nr;
1622         struct splice_pipe_desc spd = {
1623                 .pages = pages,
1624                 .partial = partial,
1625                 .nr_pages_max = PIPE_DEF_BUFFERS,
1626                 .flags = flags,
1627                 .ops = &page_cache_pipe_buf_ops,
1628                 .spd_release = spd_release_page,
1629         };
1630
1631         isize = i_size_read(inode);
1632         if (unlikely(*ppos >= isize))
1633                 return 0;
1634
1635         left = isize - *ppos;
1636         if (unlikely(left < len))
1637                 len = left;
1638
1639         if (splice_grow_spd(pipe, &spd))
1640                 return -ENOMEM;
1641
1642         index = *ppos >> PAGE_CACHE_SHIFT;
1643         loff = *ppos & ~PAGE_CACHE_MASK;
1644         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1645         nr_pages = min(req_pages, spd.nr_pages_max);
1646
1647         spd.nr_pages = find_get_pages_contig(mapping, index,
1648                                                 nr_pages, spd.pages);
1649         index += spd.nr_pages;
1650         error = 0;
1651
1652         while (spd.nr_pages < nr_pages) {
1653                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1654                 if (error)
1655                         break;
1656                 unlock_page(page);
1657                 spd.pages[spd.nr_pages++] = page;
1658                 index++;
1659         }
1660
1661         index = *ppos >> PAGE_CACHE_SHIFT;
1662         nr_pages = spd.nr_pages;
1663         spd.nr_pages = 0;
1664
1665         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1666                 unsigned int this_len;
1667
1668                 if (!len)
1669                         break;
1670
1671                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1672                 page = spd.pages[page_nr];
1673
1674                 if (!PageUptodate(page) || page->mapping != mapping) {
1675                         error = shmem_getpage(inode, index, &page,
1676                                                         SGP_CACHE, NULL);
1677                         if (error)
1678                                 break;
1679                         unlock_page(page);
1680                         page_cache_release(spd.pages[page_nr]);
1681                         spd.pages[page_nr] = page;
1682                 }
1683
1684                 isize = i_size_read(inode);
1685                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1686                 if (unlikely(!isize || index > end_index))
1687                         break;
1688
1689                 if (end_index == index) {
1690                         unsigned int plen;
1691
1692                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1693                         if (plen <= loff)
1694                                 break;
1695
1696                         this_len = min(this_len, plen - loff);
1697                         len = this_len;
1698                 }
1699
1700                 spd.partial[page_nr].offset = loff;
1701                 spd.partial[page_nr].len = this_len;
1702                 len -= this_len;
1703                 loff = 0;
1704                 spd.nr_pages++;
1705                 index++;
1706         }
1707
1708         while (page_nr < nr_pages)
1709                 page_cache_release(spd.pages[page_nr++]);
1710
1711         if (spd.nr_pages)
1712                 error = splice_to_pipe(pipe, &spd);
1713
1714         splice_shrink_spd(&spd);
1715
1716         if (error > 0) {
1717                 *ppos += error;
1718                 file_accessed(in);
1719         }
1720         return error;
1721 }
1722
1723 /*
1724  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1725  */
1726 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1727                                     pgoff_t index, pgoff_t end, int whence)
1728 {
1729         struct page *page;
1730         struct pagevec pvec;
1731         pgoff_t indices[PAGEVEC_SIZE];
1732         bool done = false;
1733         int i;
1734
1735         pagevec_init(&pvec, 0);
1736         pvec.nr = 1;            /* start small: we may be there already */
1737         while (!done) {
1738                 pvec.nr = find_get_entries(mapping, index,
1739                                         pvec.nr, pvec.pages, indices);
1740                 if (!pvec.nr) {
1741                         if (whence == SEEK_DATA)
1742                                 index = end;
1743                         break;
1744                 }
1745                 for (i = 0; i < pvec.nr; i++, index++) {
1746                         if (index < indices[i]) {
1747                                 if (whence == SEEK_HOLE) {
1748                                         done = true;
1749                                         break;
1750                                 }
1751                                 index = indices[i];
1752                         }
1753                         page = pvec.pages[i];
1754                         if (page && !radix_tree_exceptional_entry(page)) {
1755                                 if (!PageUptodate(page))
1756                                         page = NULL;
1757                         }
1758                         if (index >= end ||
1759                             (page && whence == SEEK_DATA) ||
1760                             (!page && whence == SEEK_HOLE)) {
1761                                 done = true;
1762                                 break;
1763                         }
1764                 }
1765                 pagevec_remove_exceptionals(&pvec);
1766                 pagevec_release(&pvec);
1767                 pvec.nr = PAGEVEC_SIZE;
1768                 cond_resched();
1769         }
1770         return index;
1771 }
1772
1773 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1774 {
1775         struct address_space *mapping = file->f_mapping;
1776         struct inode *inode = mapping->host;
1777         pgoff_t start, end;
1778         loff_t new_offset;
1779
1780         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1781                 return generic_file_llseek_size(file, offset, whence,
1782                                         MAX_LFS_FILESIZE, i_size_read(inode));
1783         mutex_lock(&inode->i_mutex);
1784         /* We're holding i_mutex so we can access i_size directly */
1785
1786         if (offset < 0)
1787                 offset = -EINVAL;
1788         else if (offset >= inode->i_size)
1789                 offset = -ENXIO;
1790         else {
1791                 start = offset >> PAGE_CACHE_SHIFT;
1792                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1793                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1794                 new_offset <<= PAGE_CACHE_SHIFT;
1795                 if (new_offset > offset) {
1796                         if (new_offset < inode->i_size)
1797                                 offset = new_offset;
1798                         else if (whence == SEEK_DATA)
1799                                 offset = -ENXIO;
1800                         else
1801                                 offset = inode->i_size;
1802                 }
1803         }
1804
1805         if (offset >= 0)
1806                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1807         mutex_unlock(&inode->i_mutex);
1808         return offset;
1809 }
1810
1811 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1812                                                          loff_t len)
1813 {
1814         struct inode *inode = file_inode(file);
1815         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1816         struct shmem_falloc shmem_falloc;
1817         pgoff_t start, index, end;
1818         int error;
1819
1820         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1821                 return -EOPNOTSUPP;
1822
1823         mutex_lock(&inode->i_mutex);
1824
1825         if (mode & FALLOC_FL_PUNCH_HOLE) {
1826                 struct address_space *mapping = file->f_mapping;
1827                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1828                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1829                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1830
1831                 shmem_falloc.waitq = &shmem_falloc_waitq;
1832                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1833                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1834                 spin_lock(&inode->i_lock);
1835                 inode->i_private = &shmem_falloc;
1836                 spin_unlock(&inode->i_lock);
1837
1838                 if ((u64)unmap_end > (u64)unmap_start)
1839                         unmap_mapping_range(mapping, unmap_start,
1840                                             1 + unmap_end - unmap_start, 0);
1841                 shmem_truncate_range(inode, offset, offset + len - 1);
1842                 /* No need to unmap again: hole-punching leaves COWed pages */
1843
1844                 spin_lock(&inode->i_lock);
1845                 inode->i_private = NULL;
1846                 wake_up_all(&shmem_falloc_waitq);
1847                 spin_unlock(&inode->i_lock);
1848                 error = 0;
1849                 goto out;
1850         }
1851
1852         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1853         error = inode_newsize_ok(inode, offset + len);
1854         if (error)
1855                 goto out;
1856
1857         start = offset >> PAGE_CACHE_SHIFT;
1858         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1859         /* Try to avoid a swapstorm if len is impossible to satisfy */
1860         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1861                 error = -ENOSPC;
1862                 goto out;
1863         }
1864
1865         shmem_falloc.waitq = NULL;
1866         shmem_falloc.start = start;
1867         shmem_falloc.next  = start;
1868         shmem_falloc.nr_falloced = 0;
1869         shmem_falloc.nr_unswapped = 0;
1870         spin_lock(&inode->i_lock);
1871         inode->i_private = &shmem_falloc;
1872         spin_unlock(&inode->i_lock);
1873
1874         for (index = start; index < end; index++) {
1875                 struct page *page;
1876
1877                 /*
1878                  * Good, the fallocate(2) manpage permits EINTR: we may have
1879                  * been interrupted because we are using up too much memory.
1880                  */
1881                 if (signal_pending(current))
1882                         error = -EINTR;
1883                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1884                         error = -ENOMEM;
1885                 else
1886                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1887                                                                         NULL);
1888                 if (error) {
1889                         /* Remove the !PageUptodate pages we added */
1890                         shmem_undo_range(inode,
1891                                 (loff_t)start << PAGE_CACHE_SHIFT,
1892                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1893                         goto undone;
1894                 }
1895
1896                 /*
1897                  * Inform shmem_writepage() how far we have reached.
1898                  * No need for lock or barrier: we have the page lock.
1899                  */
1900                 shmem_falloc.next++;
1901                 if (!PageUptodate(page))
1902                         shmem_falloc.nr_falloced++;
1903
1904                 /*
1905                  * If !PageUptodate, leave it that way so that freeable pages
1906                  * can be recognized if we need to rollback on error later.
1907                  * But set_page_dirty so that memory pressure will swap rather
1908                  * than free the pages we are allocating (and SGP_CACHE pages
1909                  * might still be clean: we now need to mark those dirty too).
1910                  */
1911                 set_page_dirty(page);
1912                 unlock_page(page);
1913                 page_cache_release(page);
1914                 cond_resched();
1915         }
1916
1917         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1918                 i_size_write(inode, offset + len);
1919         inode->i_ctime = CURRENT_TIME;
1920 undone:
1921         spin_lock(&inode->i_lock);
1922         inode->i_private = NULL;
1923         spin_unlock(&inode->i_lock);
1924 out:
1925         mutex_unlock(&inode->i_mutex);
1926         return error;
1927 }
1928
1929 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1930 {
1931         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1932
1933         buf->f_type = TMPFS_MAGIC;
1934         buf->f_bsize = PAGE_CACHE_SIZE;
1935         buf->f_namelen = NAME_MAX;
1936         if (sbinfo->max_blocks) {
1937                 buf->f_blocks = sbinfo->max_blocks;
1938                 buf->f_bavail =
1939                 buf->f_bfree  = sbinfo->max_blocks -
1940                                 percpu_counter_sum(&sbinfo->used_blocks);
1941         }
1942         if (sbinfo->max_inodes) {
1943                 buf->f_files = sbinfo->max_inodes;
1944                 buf->f_ffree = sbinfo->free_inodes;
1945         }
1946         /* else leave those fields 0 like simple_statfs */
1947         return 0;
1948 }
1949
1950 /*
1951  * File creation. Allocate an inode, and we're done..
1952  */
1953 static int
1954 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1955 {
1956         struct inode *inode;
1957         int error = -ENOSPC;
1958
1959         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1960         if (inode) {
1961                 error = simple_acl_create(dir, inode);
1962                 if (error)
1963                         goto out_iput;
1964                 error = security_inode_init_security(inode, dir,
1965                                                      &dentry->d_name,
1966                                                      shmem_initxattrs, NULL);
1967                 if (error && error != -EOPNOTSUPP)
1968                         goto out_iput;
1969
1970                 error = 0;
1971                 dir->i_size += BOGO_DIRENT_SIZE;
1972                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1973                 d_instantiate(dentry, inode);
1974                 dget(dentry); /* Extra count - pin the dentry in core */
1975         }
1976         return error;
1977 out_iput:
1978         iput(inode);
1979         return error;
1980 }
1981
1982 static int
1983 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1984 {
1985         struct inode *inode;
1986         int error = -ENOSPC;
1987
1988         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1989         if (inode) {
1990                 error = security_inode_init_security(inode, dir,
1991                                                      NULL,
1992                                                      shmem_initxattrs, NULL);
1993                 if (error && error != -EOPNOTSUPP)
1994                         goto out_iput;
1995                 error = simple_acl_create(dir, inode);
1996                 if (error)
1997                         goto out_iput;
1998                 d_tmpfile(dentry, inode);
1999         }
2000         return error;
2001 out_iput:
2002         iput(inode);
2003         return error;
2004 }
2005
2006 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2007 {
2008         int error;
2009
2010         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2011                 return error;
2012         inc_nlink(dir);
2013         return 0;
2014 }
2015
2016 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2017                 bool excl)
2018 {
2019         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2020 }
2021
2022 /*
2023  * Link a file..
2024  */
2025 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2026 {
2027         struct inode *inode = old_dentry->d_inode;
2028         int ret;
2029
2030         /*
2031          * No ordinary (disk based) filesystem counts links as inodes;
2032          * but each new link needs a new dentry, pinning lowmem, and
2033          * tmpfs dentries cannot be pruned until they are unlinked.
2034          */
2035         ret = shmem_reserve_inode(inode->i_sb);
2036         if (ret)
2037                 goto out;
2038
2039         dir->i_size += BOGO_DIRENT_SIZE;
2040         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2041         inc_nlink(inode);
2042         ihold(inode);   /* New dentry reference */
2043         dget(dentry);           /* Extra pinning count for the created dentry */
2044         d_instantiate(dentry, inode);
2045 out:
2046         return ret;
2047 }
2048
2049 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2050 {
2051         struct inode *inode = dentry->d_inode;
2052
2053         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2054                 shmem_free_inode(inode->i_sb);
2055
2056         dir->i_size -= BOGO_DIRENT_SIZE;
2057         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2058         drop_nlink(inode);
2059         dput(dentry);   /* Undo the count from "create" - this does all the work */
2060         return 0;
2061 }
2062
2063 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2064 {
2065         if (!simple_empty(dentry))
2066                 return -ENOTEMPTY;
2067
2068         drop_nlink(dentry->d_inode);
2069         drop_nlink(dir);
2070         return shmem_unlink(dir, dentry);
2071 }
2072
2073 /*
2074  * The VFS layer already does all the dentry stuff for rename,
2075  * we just have to decrement the usage count for the target if
2076  * it exists so that the VFS layer correctly free's it when it
2077  * gets overwritten.
2078  */
2079 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2080 {
2081         struct inode *inode = old_dentry->d_inode;
2082         int they_are_dirs = S_ISDIR(inode->i_mode);
2083
2084         if (!simple_empty(new_dentry))
2085                 return -ENOTEMPTY;
2086
2087         if (new_dentry->d_inode) {
2088                 (void) shmem_unlink(new_dir, new_dentry);
2089                 if (they_are_dirs)
2090                         drop_nlink(old_dir);
2091         } else if (they_are_dirs) {
2092                 drop_nlink(old_dir);
2093                 inc_nlink(new_dir);
2094         }
2095
2096         old_dir->i_size -= BOGO_DIRENT_SIZE;
2097         new_dir->i_size += BOGO_DIRENT_SIZE;
2098         old_dir->i_ctime = old_dir->i_mtime =
2099         new_dir->i_ctime = new_dir->i_mtime =
2100         inode->i_ctime = CURRENT_TIME;
2101         return 0;
2102 }
2103
2104 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2105 {
2106         int error;
2107         int len;
2108         struct inode *inode;
2109         struct page *page;
2110         char *kaddr;
2111         struct shmem_inode_info *info;
2112
2113         len = strlen(symname) + 1;
2114         if (len > PAGE_CACHE_SIZE)
2115                 return -ENAMETOOLONG;
2116
2117         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2118         if (!inode)
2119                 return -ENOSPC;
2120
2121         error = security_inode_init_security(inode, dir, &dentry->d_name,
2122                                              shmem_initxattrs, NULL);
2123         if (error) {
2124                 if (error != -EOPNOTSUPP) {
2125                         iput(inode);
2126                         return error;
2127                 }
2128                 error = 0;
2129         }
2130
2131         info = SHMEM_I(inode);
2132         inode->i_size = len-1;
2133         if (len <= SHORT_SYMLINK_LEN) {
2134                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2135                 if (!info->symlink) {
2136                         iput(inode);
2137                         return -ENOMEM;
2138                 }
2139                 inode->i_op = &shmem_short_symlink_operations;
2140         } else {
2141                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2142                 if (error) {
2143                         iput(inode);
2144                         return error;
2145                 }
2146                 inode->i_mapping->a_ops = &shmem_aops;
2147                 inode->i_op = &shmem_symlink_inode_operations;
2148                 kaddr = kmap_atomic(page);
2149                 memcpy(kaddr, symname, len);
2150                 kunmap_atomic(kaddr);
2151                 SetPageUptodate(page);
2152                 set_page_dirty(page);
2153                 unlock_page(page);
2154                 page_cache_release(page);
2155         }
2156         dir->i_size += BOGO_DIRENT_SIZE;
2157         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2158         d_instantiate(dentry, inode);
2159         dget(dentry);
2160         return 0;
2161 }
2162
2163 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2164 {
2165         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2166         return NULL;
2167 }
2168
2169 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2170 {
2171         struct page *page = NULL;
2172         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2173         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2174         if (page)
2175                 unlock_page(page);
2176         return page;
2177 }
2178
2179 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2180 {
2181         if (!IS_ERR(nd_get_link(nd))) {
2182                 struct page *page = cookie;
2183                 kunmap(page);
2184                 mark_page_accessed(page);
2185                 page_cache_release(page);
2186         }
2187 }
2188
2189 #ifdef CONFIG_TMPFS_XATTR
2190 /*
2191  * Superblocks without xattr inode operations may get some security.* xattr
2192  * support from the LSM "for free". As soon as we have any other xattrs
2193  * like ACLs, we also need to implement the security.* handlers at
2194  * filesystem level, though.
2195  */
2196
2197 /*
2198  * Callback for security_inode_init_security() for acquiring xattrs.
2199  */
2200 static int shmem_initxattrs(struct inode *inode,
2201                             const struct xattr *xattr_array,
2202                             void *fs_info)
2203 {
2204         struct shmem_inode_info *info = SHMEM_I(inode);
2205         const struct xattr *xattr;
2206         struct simple_xattr *new_xattr;
2207         size_t len;
2208
2209         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2210                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2211                 if (!new_xattr)
2212                         return -ENOMEM;
2213
2214                 len = strlen(xattr->name) + 1;
2215                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2216                                           GFP_KERNEL);
2217                 if (!new_xattr->name) {
2218                         kfree(new_xattr);
2219                         return -ENOMEM;
2220                 }
2221
2222                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2223                        XATTR_SECURITY_PREFIX_LEN);
2224                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2225                        xattr->name, len);
2226
2227                 simple_xattr_list_add(&info->xattrs, new_xattr);
2228         }
2229
2230         return 0;
2231 }
2232
2233 static const struct xattr_handler *shmem_xattr_handlers[] = {
2234 #ifdef CONFIG_TMPFS_POSIX_ACL
2235         &posix_acl_access_xattr_handler,
2236         &posix_acl_default_xattr_handler,
2237 #endif
2238         NULL
2239 };
2240
2241 static int shmem_xattr_validate(const char *name)
2242 {
2243         struct { const char *prefix; size_t len; } arr[] = {
2244                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2245                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2246         };
2247         int i;
2248
2249         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2250                 size_t preflen = arr[i].len;
2251                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2252                         if (!name[preflen])
2253                                 return -EINVAL;
2254                         return 0;
2255                 }
2256         }
2257         return -EOPNOTSUPP;
2258 }
2259
2260 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2261                               void *buffer, size_t size)
2262 {
2263         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2264         int err;
2265
2266         /*
2267          * If this is a request for a synthetic attribute in the system.*
2268          * namespace use the generic infrastructure to resolve a handler
2269          * for it via sb->s_xattr.
2270          */
2271         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2272                 return generic_getxattr(dentry, name, buffer, size);
2273
2274         err = shmem_xattr_validate(name);
2275         if (err)
2276                 return err;
2277
2278         return simple_xattr_get(&info->xattrs, name, buffer, size);
2279 }
2280
2281 static int shmem_setxattr(struct dentry *dentry, const char *name,
2282                           const void *value, size_t size, int flags)
2283 {
2284         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2285         int err;
2286
2287         /*
2288          * If this is a request for a synthetic attribute in the system.*
2289          * namespace use the generic infrastructure to resolve a handler
2290          * for it via sb->s_xattr.
2291          */
2292         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2293                 return generic_setxattr(dentry, name, value, size, flags);
2294
2295         err = shmem_xattr_validate(name);
2296         if (err)
2297                 return err;
2298
2299         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2300 }
2301
2302 static int shmem_removexattr(struct dentry *dentry, const char *name)
2303 {
2304         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2305         int err;
2306
2307         /*
2308          * If this is a request for a synthetic attribute in the system.*
2309          * namespace use the generic infrastructure to resolve a handler
2310          * for it via sb->s_xattr.
2311          */
2312         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2313                 return generic_removexattr(dentry, name);
2314
2315         err = shmem_xattr_validate(name);
2316         if (err)
2317                 return err;
2318
2319         return simple_xattr_remove(&info->xattrs, name);
2320 }
2321
2322 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2323 {
2324         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2325         return simple_xattr_list(&info->xattrs, buffer, size);
2326 }
2327 #endif /* CONFIG_TMPFS_XATTR */
2328
2329 static const struct inode_operations shmem_short_symlink_operations = {
2330         .readlink       = generic_readlink,
2331         .follow_link    = shmem_follow_short_symlink,
2332 #ifdef CONFIG_TMPFS_XATTR
2333         .setxattr       = shmem_setxattr,
2334         .getxattr       = shmem_getxattr,
2335         .listxattr      = shmem_listxattr,
2336         .removexattr    = shmem_removexattr,
2337 #endif
2338 };
2339
2340 static const struct inode_operations shmem_symlink_inode_operations = {
2341         .readlink       = generic_readlink,
2342         .follow_link    = shmem_follow_link,
2343         .put_link       = shmem_put_link,
2344 #ifdef CONFIG_TMPFS_XATTR
2345         .setxattr       = shmem_setxattr,
2346         .getxattr       = shmem_getxattr,
2347         .listxattr      = shmem_listxattr,
2348         .removexattr    = shmem_removexattr,
2349 #endif
2350 };
2351
2352 static struct dentry *shmem_get_parent(struct dentry *child)
2353 {
2354         return ERR_PTR(-ESTALE);
2355 }
2356
2357 static int shmem_match(struct inode *ino, void *vfh)
2358 {
2359         __u32 *fh = vfh;
2360         __u64 inum = fh[2];
2361         inum = (inum << 32) | fh[1];
2362         return ino->i_ino == inum && fh[0] == ino->i_generation;
2363 }
2364
2365 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2366                 struct fid *fid, int fh_len, int fh_type)
2367 {
2368         struct inode *inode;
2369         struct dentry *dentry = NULL;
2370         u64 inum;
2371
2372         if (fh_len < 3)
2373                 return NULL;
2374
2375         inum = fid->raw[2];
2376         inum = (inum << 32) | fid->raw[1];
2377
2378         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2379                         shmem_match, fid->raw);
2380         if (inode) {
2381                 dentry = d_find_alias(inode);
2382                 iput(inode);
2383         }
2384
2385         return dentry;
2386 }
2387
2388 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2389                                 struct inode *parent)
2390 {
2391         if (*len < 3) {
2392                 *len = 3;
2393                 return FILEID_INVALID;
2394         }
2395
2396         if (inode_unhashed(inode)) {
2397                 /* Unfortunately insert_inode_hash is not idempotent,
2398                  * so as we hash inodes here rather than at creation
2399                  * time, we need a lock to ensure we only try
2400                  * to do it once
2401                  */
2402                 static DEFINE_SPINLOCK(lock);
2403                 spin_lock(&lock);
2404                 if (inode_unhashed(inode))
2405                         __insert_inode_hash(inode,
2406                                             inode->i_ino + inode->i_generation);
2407                 spin_unlock(&lock);
2408         }
2409
2410         fh[0] = inode->i_generation;
2411         fh[1] = inode->i_ino;
2412         fh[2] = ((__u64)inode->i_ino) >> 32;
2413
2414         *len = 3;
2415         return 1;
2416 }
2417
2418 static const struct export_operations shmem_export_ops = {
2419         .get_parent     = shmem_get_parent,
2420         .encode_fh      = shmem_encode_fh,
2421         .fh_to_dentry   = shmem_fh_to_dentry,
2422 };
2423
2424 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2425                                bool remount)
2426 {
2427         char *this_char, *value, *rest;
2428         struct mempolicy *mpol = NULL;
2429         uid_t uid;
2430         gid_t gid;
2431
2432         while (options != NULL) {
2433                 this_char = options;
2434                 for (;;) {
2435                         /*
2436                          * NUL-terminate this option: unfortunately,
2437                          * mount options form a comma-separated list,
2438                          * but mpol's nodelist may also contain commas.
2439                          */
2440                         options = strchr(options, ',');
2441                         if (options == NULL)
2442                                 break;
2443                         options++;
2444                         if (!isdigit(*options)) {
2445                                 options[-1] = '\0';
2446                                 break;
2447                         }
2448                 }
2449                 if (!*this_char)
2450                         continue;
2451                 if ((value = strchr(this_char,'=')) != NULL) {
2452                         *value++ = 0;
2453                 } else {
2454                         printk(KERN_ERR
2455                             "tmpfs: No value for mount option '%s'\n",
2456                             this_char);
2457                         goto error;
2458                 }
2459
2460                 if (!strcmp(this_char,"size")) {
2461                         unsigned long long size;
2462                         size = memparse(value,&rest);
2463                         if (*rest == '%') {
2464                                 size <<= PAGE_SHIFT;
2465                                 size *= totalram_pages;
2466                                 do_div(size, 100);
2467                                 rest++;
2468                         }
2469                         if (*rest)
2470                                 goto bad_val;
2471                         sbinfo->max_blocks =
2472                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2473                 } else if (!strcmp(this_char,"nr_blocks")) {
2474                         sbinfo->max_blocks = memparse(value, &rest);
2475                         if (*rest)
2476                                 goto bad_val;
2477                 } else if (!strcmp(this_char,"nr_inodes")) {
2478                         sbinfo->max_inodes = memparse(value, &rest);
2479                         if (*rest)
2480                                 goto bad_val;
2481                 } else if (!strcmp(this_char,"mode")) {
2482                         if (remount)
2483                                 continue;
2484                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2485                         if (*rest)
2486                                 goto bad_val;
2487                 } else if (!strcmp(this_char,"uid")) {
2488                         if (remount)
2489                                 continue;
2490                         uid = simple_strtoul(value, &rest, 0);
2491                         if (*rest)
2492                                 goto bad_val;
2493                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2494                         if (!uid_valid(sbinfo->uid))
2495                                 goto bad_val;
2496                 } else if (!strcmp(this_char,"gid")) {
2497                         if (remount)
2498                                 continue;
2499                         gid = simple_strtoul(value, &rest, 0);
2500                         if (*rest)
2501                                 goto bad_val;
2502                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2503                         if (!gid_valid(sbinfo->gid))
2504                                 goto bad_val;
2505                 } else if (!strcmp(this_char,"mpol")) {
2506                         mpol_put(mpol);
2507                         mpol = NULL;
2508                         if (mpol_parse_str(value, &mpol))
2509                                 goto bad_val;
2510                 } else {
2511                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2512                                this_char);
2513                         goto error;
2514                 }
2515         }
2516         sbinfo->mpol = mpol;
2517         return 0;
2518
2519 bad_val:
2520         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2521                value, this_char);
2522 error:
2523         mpol_put(mpol);
2524         return 1;
2525
2526 }
2527
2528 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2529 {
2530         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2531         struct shmem_sb_info config = *sbinfo;
2532         unsigned long inodes;
2533         int error = -EINVAL;
2534
2535         config.mpol = NULL;
2536         if (shmem_parse_options(data, &config, true))
2537                 return error;
2538
2539         spin_lock(&sbinfo->stat_lock);
2540         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2541         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2542                 goto out;
2543         if (config.max_inodes < inodes)
2544                 goto out;
2545         /*
2546          * Those tests disallow limited->unlimited while any are in use;
2547          * but we must separately disallow unlimited->limited, because
2548          * in that case we have no record of how much is already in use.
2549          */
2550         if (config.max_blocks && !sbinfo->max_blocks)
2551                 goto out;
2552         if (config.max_inodes && !sbinfo->max_inodes)
2553                 goto out;
2554
2555         error = 0;
2556         sbinfo->max_blocks  = config.max_blocks;
2557         sbinfo->max_inodes  = config.max_inodes;
2558         sbinfo->free_inodes = config.max_inodes - inodes;
2559
2560         /*
2561          * Preserve previous mempolicy unless mpol remount option was specified.
2562          */
2563         if (config.mpol) {
2564                 mpol_put(sbinfo->mpol);
2565                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2566         }
2567 out:
2568         spin_unlock(&sbinfo->stat_lock);
2569         return error;
2570 }
2571
2572 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2573 {
2574         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2575
2576         if (sbinfo->max_blocks != shmem_default_max_blocks())
2577                 seq_printf(seq, ",size=%luk",
2578                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2579         if (sbinfo->max_inodes != shmem_default_max_inodes())
2580                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2581         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2582                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2583         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2584                 seq_printf(seq, ",uid=%u",
2585                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2586         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2587                 seq_printf(seq, ",gid=%u",
2588                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2589         shmem_show_mpol(seq, sbinfo->mpol);
2590         return 0;
2591 }
2592 #endif /* CONFIG_TMPFS */
2593
2594 static void shmem_put_super(struct super_block *sb)
2595 {
2596         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2597
2598         percpu_counter_destroy(&sbinfo->used_blocks);
2599         mpol_put(sbinfo->mpol);
2600         kfree(sbinfo);
2601         sb->s_fs_info = NULL;
2602 }
2603
2604 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2605 {
2606         struct inode *inode;
2607         struct shmem_sb_info *sbinfo;
2608         int err = -ENOMEM;
2609
2610         /* Round up to L1_CACHE_BYTES to resist false sharing */
2611         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2612                                 L1_CACHE_BYTES), GFP_KERNEL);
2613         if (!sbinfo)
2614                 return -ENOMEM;
2615
2616         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2617         sbinfo->uid = current_fsuid();
2618         sbinfo->gid = current_fsgid();
2619         sb->s_fs_info = sbinfo;
2620
2621 #ifdef CONFIG_TMPFS
2622         /*
2623          * Per default we only allow half of the physical ram per
2624          * tmpfs instance, limiting inodes to one per page of lowmem;
2625          * but the internal instance is left unlimited.
2626          */
2627         if (!(sb->s_flags & MS_KERNMOUNT)) {
2628                 sbinfo->max_blocks = shmem_default_max_blocks();
2629                 sbinfo->max_inodes = shmem_default_max_inodes();
2630                 if (shmem_parse_options(data, sbinfo, false)) {
2631                         err = -EINVAL;
2632                         goto failed;
2633                 }
2634         } else {
2635                 sb->s_flags |= MS_NOUSER;
2636         }
2637         sb->s_export_op = &shmem_export_ops;
2638         sb->s_flags |= MS_NOSEC;
2639 #else
2640         sb->s_flags |= MS_NOUSER;
2641 #endif
2642
2643         spin_lock_init(&sbinfo->stat_lock);
2644         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2645                 goto failed;
2646         sbinfo->free_inodes = sbinfo->max_inodes;
2647
2648         sb->s_maxbytes = MAX_LFS_FILESIZE;
2649         sb->s_blocksize = PAGE_CACHE_SIZE;
2650         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2651         sb->s_magic = TMPFS_MAGIC;
2652         sb->s_op = &shmem_ops;
2653         sb->s_time_gran = 1;
2654 #ifdef CONFIG_TMPFS_XATTR
2655         sb->s_xattr = shmem_xattr_handlers;
2656 #endif
2657 #ifdef CONFIG_TMPFS_POSIX_ACL
2658         sb->s_flags |= MS_POSIXACL;
2659 #endif
2660
2661         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2662         if (!inode)
2663                 goto failed;
2664         inode->i_uid = sbinfo->uid;
2665         inode->i_gid = sbinfo->gid;
2666         sb->s_root = d_make_root(inode);
2667         if (!sb->s_root)
2668                 goto failed;
2669         return 0;
2670
2671 failed:
2672         shmem_put_super(sb);
2673         return err;
2674 }
2675
2676 static struct kmem_cache *shmem_inode_cachep;
2677
2678 static struct inode *shmem_alloc_inode(struct super_block *sb)
2679 {
2680         struct shmem_inode_info *info;
2681         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2682         if (!info)
2683                 return NULL;
2684         return &info->vfs_inode;
2685 }
2686
2687 static void shmem_destroy_callback(struct rcu_head *head)
2688 {
2689         struct inode *inode = container_of(head, struct inode, i_rcu);
2690         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2691 }
2692
2693 static void shmem_destroy_inode(struct inode *inode)
2694 {
2695         if (S_ISREG(inode->i_mode))
2696                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2697         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2698 }
2699
2700 static void shmem_init_inode(void *foo)
2701 {
2702         struct shmem_inode_info *info = foo;
2703         inode_init_once(&info->vfs_inode);
2704 }
2705
2706 static int shmem_init_inodecache(void)
2707 {
2708         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2709                                 sizeof(struct shmem_inode_info),
2710                                 0, SLAB_PANIC, shmem_init_inode);
2711         return 0;
2712 }
2713
2714 static void shmem_destroy_inodecache(void)
2715 {
2716         kmem_cache_destroy(shmem_inode_cachep);
2717 }
2718
2719 static const struct address_space_operations shmem_aops = {
2720         .writepage      = shmem_writepage,
2721         .set_page_dirty = __set_page_dirty_no_writeback,
2722 #ifdef CONFIG_TMPFS
2723         .write_begin    = shmem_write_begin,
2724         .write_end      = shmem_write_end,
2725 #endif
2726         .migratepage    = migrate_page,
2727         .error_remove_page = generic_error_remove_page,
2728 };
2729
2730 static const struct file_operations shmem_file_operations = {
2731         .mmap           = shmem_mmap,
2732 #ifdef CONFIG_TMPFS
2733         .llseek         = shmem_file_llseek,
2734         .read           = new_sync_read,
2735         .write          = new_sync_write,
2736         .read_iter      = shmem_file_read_iter,
2737         .write_iter     = generic_file_write_iter,
2738         .fsync          = noop_fsync,
2739         .splice_read    = shmem_file_splice_read,
2740         .splice_write   = iter_file_splice_write,
2741         .fallocate      = shmem_fallocate,
2742 #endif
2743 };
2744
2745 static const struct inode_operations shmem_inode_operations = {
2746         .setattr        = shmem_setattr,
2747 #ifdef CONFIG_TMPFS_XATTR
2748         .setxattr       = shmem_setxattr,
2749         .getxattr       = shmem_getxattr,
2750         .listxattr      = shmem_listxattr,
2751         .removexattr    = shmem_removexattr,
2752         .set_acl        = simple_set_acl,
2753 #endif
2754 };
2755
2756 static const struct inode_operations shmem_dir_inode_operations = {
2757 #ifdef CONFIG_TMPFS
2758         .create         = shmem_create,
2759         .lookup         = simple_lookup,
2760         .link           = shmem_link,
2761         .unlink         = shmem_unlink,
2762         .symlink        = shmem_symlink,
2763         .mkdir          = shmem_mkdir,
2764         .rmdir          = shmem_rmdir,
2765         .mknod          = shmem_mknod,
2766         .rename         = shmem_rename,
2767         .tmpfile        = shmem_tmpfile,
2768 #endif
2769 #ifdef CONFIG_TMPFS_XATTR
2770         .setxattr       = shmem_setxattr,
2771         .getxattr       = shmem_getxattr,
2772         .listxattr      = shmem_listxattr,
2773         .removexattr    = shmem_removexattr,
2774 #endif
2775 #ifdef CONFIG_TMPFS_POSIX_ACL
2776         .setattr        = shmem_setattr,
2777         .set_acl        = simple_set_acl,
2778 #endif
2779 };
2780
2781 static const struct inode_operations shmem_special_inode_operations = {
2782 #ifdef CONFIG_TMPFS_XATTR
2783         .setxattr       = shmem_setxattr,
2784         .getxattr       = shmem_getxattr,
2785         .listxattr      = shmem_listxattr,
2786         .removexattr    = shmem_removexattr,
2787 #endif
2788 #ifdef CONFIG_TMPFS_POSIX_ACL
2789         .setattr        = shmem_setattr,
2790         .set_acl        = simple_set_acl,
2791 #endif
2792 };
2793
2794 static const struct super_operations shmem_ops = {
2795         .alloc_inode    = shmem_alloc_inode,
2796         .destroy_inode  = shmem_destroy_inode,
2797 #ifdef CONFIG_TMPFS
2798         .statfs         = shmem_statfs,
2799         .remount_fs     = shmem_remount_fs,
2800         .show_options   = shmem_show_options,
2801 #endif
2802         .evict_inode    = shmem_evict_inode,
2803         .drop_inode     = generic_delete_inode,
2804         .put_super      = shmem_put_super,
2805 };
2806
2807 static const struct vm_operations_struct shmem_vm_ops = {
2808         .fault          = shmem_fault,
2809         .map_pages      = filemap_map_pages,
2810 #ifdef CONFIG_NUMA
2811         .set_policy     = shmem_set_policy,
2812         .get_policy     = shmem_get_policy,
2813 #endif
2814         .remap_pages    = generic_file_remap_pages,
2815 };
2816
2817 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2818         int flags, const char *dev_name, void *data)
2819 {
2820         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2821 }
2822
2823 static struct file_system_type shmem_fs_type = {
2824         .owner          = THIS_MODULE,
2825         .name           = "tmpfs",
2826         .mount          = shmem_mount,
2827         .kill_sb        = kill_litter_super,
2828         .fs_flags       = FS_USERNS_MOUNT,
2829 };
2830
2831 int __init shmem_init(void)
2832 {
2833         int error;
2834
2835         /* If rootfs called this, don't re-init */
2836         if (shmem_inode_cachep)
2837                 return 0;
2838
2839         error = bdi_init(&shmem_backing_dev_info);
2840         if (error)
2841                 goto out4;
2842
2843         error = shmem_init_inodecache();
2844         if (error)
2845                 goto out3;
2846
2847         error = register_filesystem(&shmem_fs_type);
2848         if (error) {
2849                 printk(KERN_ERR "Could not register tmpfs\n");
2850                 goto out2;
2851         }
2852
2853         shm_mnt = kern_mount(&shmem_fs_type);
2854         if (IS_ERR(shm_mnt)) {
2855                 error = PTR_ERR(shm_mnt);
2856                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2857                 goto out1;
2858         }
2859         return 0;
2860
2861 out1:
2862         unregister_filesystem(&shmem_fs_type);
2863 out2:
2864         shmem_destroy_inodecache();
2865 out3:
2866         bdi_destroy(&shmem_backing_dev_info);
2867 out4:
2868         shm_mnt = ERR_PTR(error);
2869         return error;
2870 }
2871
2872 #else /* !CONFIG_SHMEM */
2873
2874 /*
2875  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2876  *
2877  * This is intended for small system where the benefits of the full
2878  * shmem code (swap-backed and resource-limited) are outweighed by
2879  * their complexity. On systems without swap this code should be
2880  * effectively equivalent, but much lighter weight.
2881  */
2882
2883 static struct file_system_type shmem_fs_type = {
2884         .name           = "tmpfs",
2885         .mount          = ramfs_mount,
2886         .kill_sb        = kill_litter_super,
2887         .fs_flags       = FS_USERNS_MOUNT,
2888 };
2889
2890 int __init shmem_init(void)
2891 {
2892         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2893
2894         shm_mnt = kern_mount(&shmem_fs_type);
2895         BUG_ON(IS_ERR(shm_mnt));
2896
2897         return 0;
2898 }
2899
2900 int shmem_unuse(swp_entry_t swap, struct page *page)
2901 {
2902         return 0;
2903 }
2904
2905 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2906 {
2907         return 0;
2908 }
2909
2910 void shmem_unlock_mapping(struct address_space *mapping)
2911 {
2912 }
2913
2914 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2915 {
2916         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2917 }
2918 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2919
2920 #define shmem_vm_ops                            generic_file_vm_ops
2921 #define shmem_file_operations                   ramfs_file_operations
2922 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2923 #define shmem_acct_size(flags, size)            0
2924 #define shmem_unacct_size(flags, size)          do {} while (0)
2925
2926 #endif /* CONFIG_SHMEM */
2927
2928 /* common code */
2929
2930 static struct dentry_operations anon_ops = {
2931         .d_dname = simple_dname
2932 };
2933
2934 static struct file *__shmem_file_setup(const char *name, loff_t size,
2935                                        unsigned long flags, unsigned int i_flags)
2936 {
2937         struct file *res;
2938         struct inode *inode;
2939         struct path path;
2940         struct super_block *sb;
2941         struct qstr this;
2942
2943         if (IS_ERR(shm_mnt))
2944                 return ERR_CAST(shm_mnt);
2945
2946         if (size < 0 || size > MAX_LFS_FILESIZE)
2947                 return ERR_PTR(-EINVAL);
2948
2949         if (shmem_acct_size(flags, size))
2950                 return ERR_PTR(-ENOMEM);
2951
2952         res = ERR_PTR(-ENOMEM);
2953         this.name = name;
2954         this.len = strlen(name);
2955         this.hash = 0; /* will go */
2956         sb = shm_mnt->mnt_sb;
2957         path.mnt = mntget(shm_mnt);
2958         path.dentry = d_alloc_pseudo(sb, &this);
2959         if (!path.dentry)
2960                 goto put_memory;
2961         d_set_d_op(path.dentry, &anon_ops);
2962
2963         res = ERR_PTR(-ENOSPC);
2964         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2965         if (!inode)
2966                 goto put_memory;
2967
2968         inode->i_flags |= i_flags;
2969         d_instantiate(path.dentry, inode);
2970         inode->i_size = size;
2971         clear_nlink(inode);     /* It is unlinked */
2972         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2973         if (IS_ERR(res))
2974                 goto put_path;
2975
2976         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2977                   &shmem_file_operations);
2978         if (IS_ERR(res))
2979                 goto put_path;
2980
2981         return res;
2982
2983 put_memory:
2984         shmem_unacct_size(flags, size);
2985 put_path:
2986         path_put(&path);
2987         return res;
2988 }
2989
2990 /**
2991  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2992  *      kernel internal.  There will be NO LSM permission checks against the
2993  *      underlying inode.  So users of this interface must do LSM checks at a
2994  *      higher layer.  The one user is the big_key implementation.  LSM checks
2995  *      are provided at the key level rather than the inode level.
2996  * @name: name for dentry (to be seen in /proc/<pid>/maps
2997  * @size: size to be set for the file
2998  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2999  */
3000 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3001 {
3002         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3003 }
3004
3005 /**
3006  * shmem_file_setup - get an unlinked file living in tmpfs
3007  * @name: name for dentry (to be seen in /proc/<pid>/maps
3008  * @size: size to be set for the file
3009  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3010  */
3011 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3012 {
3013         return __shmem_file_setup(name, size, flags, 0);
3014 }
3015 EXPORT_SYMBOL_GPL(shmem_file_setup);
3016
3017 /**
3018  * shmem_zero_setup - setup a shared anonymous mapping
3019  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3020  */
3021 int shmem_zero_setup(struct vm_area_struct *vma)
3022 {
3023         struct file *file;
3024         loff_t size = vma->vm_end - vma->vm_start;
3025
3026         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3027         if (IS_ERR(file))
3028                 return PTR_ERR(file);
3029
3030         if (vma->vm_file)
3031                 fput(vma->vm_file);
3032         vma->vm_file = file;
3033         vma->vm_ops = &shmem_vm_ops;
3034         return 0;
3035 }
3036
3037 /**
3038  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3039  * @mapping:    the page's address_space
3040  * @index:      the page index
3041  * @gfp:        the page allocator flags to use if allocating
3042  *
3043  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3044  * with any new page allocations done using the specified allocation flags.
3045  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3046  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3047  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3048  *
3049  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3050  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3051  */
3052 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3053                                          pgoff_t index, gfp_t gfp)
3054 {
3055 #ifdef CONFIG_SHMEM
3056         struct inode *inode = mapping->host;
3057         struct page *page;
3058         int error;
3059
3060         BUG_ON(mapping->a_ops != &shmem_aops);
3061         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3062         if (error)
3063                 page = ERR_PTR(error);
3064         else
3065                 unlock_page(page);
3066         return page;
3067 #else
3068         /*
3069          * The tiny !SHMEM case uses ramfs without swap
3070          */
3071         return read_cache_page_gfp(mapping, index, gfp);
3072 #endif
3073 }
3074 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);