Merge tag 'mfd-for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[cascardo/linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
77 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78
79 /* Pretend that each entry is of this size in directory's i_size */
80 #define BOGO_DIRENT_SIZE 20
81
82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83 #define SHORT_SYMLINK_LEN 128
84
85 /*
86  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87  * inode->i_private (with i_mutex making sure that it has only one user at
88  * a time): we would prefer not to enlarge the shmem inode just for that.
89  */
90 struct shmem_falloc {
91         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92         pgoff_t start;          /* start of range currently being fallocated */
93         pgoff_t next;           /* the next page offset to be fallocated */
94         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
95         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
96 };
97
98 /* Flag allocation requirements to shmem_getpage */
99 enum sgp_type {
100         SGP_READ,       /* don't exceed i_size, don't allocate page */
101         SGP_CACHE,      /* don't exceed i_size, may allocate page */
102         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
103         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
104         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
105 };
106
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110         return totalram_pages / 2;
111 }
112
113 static unsigned long shmem_default_max_inodes(void)
114 {
115         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121                                 struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124
125 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126         struct page **pagep, enum sgp_type sgp, int *fault_type)
127 {
128         return shmem_getpage_gfp(inode, index, pagep, sgp,
129                         mapping_gfp_mask(inode->i_mapping), fault_type);
130 }
131
132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133 {
134         return sb->s_fs_info;
135 }
136
137 /*
138  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139  * for shared memory and for shared anonymous (/dev/zero) mappings
140  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141  * consistent with the pre-accounting of private mappings ...
142  */
143 static inline int shmem_acct_size(unsigned long flags, loff_t size)
144 {
145         return (flags & VM_NORESERVE) ?
146                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147 }
148
149 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150 {
151         if (!(flags & VM_NORESERVE))
152                 vm_unacct_memory(VM_ACCT(size));
153 }
154
155 static inline int shmem_reacct_size(unsigned long flags,
156                 loff_t oldsize, loff_t newsize)
157 {
158         if (!(flags & VM_NORESERVE)) {
159                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160                         return security_vm_enough_memory_mm(current->mm,
161                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
162                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164         }
165         return 0;
166 }
167
168 /*
169  * ... whereas tmpfs objects are accounted incrementally as
170  * pages are allocated, in order to allow huge sparse files.
171  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173  */
174 static inline int shmem_acct_block(unsigned long flags)
175 {
176         return (flags & VM_NORESERVE) ?
177                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178 }
179
180 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181 {
182         if (flags & VM_NORESERVE)
183                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184 }
185
186 static const struct super_operations shmem_ops;
187 static const struct address_space_operations shmem_aops;
188 static const struct file_operations shmem_file_operations;
189 static const struct inode_operations shmem_inode_operations;
190 static const struct inode_operations shmem_dir_inode_operations;
191 static const struct inode_operations shmem_special_inode_operations;
192 static const struct vm_operations_struct shmem_vm_ops;
193
194 static LIST_HEAD(shmem_swaplist);
195 static DEFINE_MUTEX(shmem_swaplist_mutex);
196
197 static int shmem_reserve_inode(struct super_block *sb)
198 {
199         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
200         if (sbinfo->max_inodes) {
201                 spin_lock(&sbinfo->stat_lock);
202                 if (!sbinfo->free_inodes) {
203                         spin_unlock(&sbinfo->stat_lock);
204                         return -ENOSPC;
205                 }
206                 sbinfo->free_inodes--;
207                 spin_unlock(&sbinfo->stat_lock);
208         }
209         return 0;
210 }
211
212 static void shmem_free_inode(struct super_block *sb)
213 {
214         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
215         if (sbinfo->max_inodes) {
216                 spin_lock(&sbinfo->stat_lock);
217                 sbinfo->free_inodes++;
218                 spin_unlock(&sbinfo->stat_lock);
219         }
220 }
221
222 /**
223  * shmem_recalc_inode - recalculate the block usage of an inode
224  * @inode: inode to recalc
225  *
226  * We have to calculate the free blocks since the mm can drop
227  * undirtied hole pages behind our back.
228  *
229  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
230  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231  *
232  * It has to be called with the spinlock held.
233  */
234 static void shmem_recalc_inode(struct inode *inode)
235 {
236         struct shmem_inode_info *info = SHMEM_I(inode);
237         long freed;
238
239         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
240         if (freed > 0) {
241                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242                 if (sbinfo->max_blocks)
243                         percpu_counter_add(&sbinfo->used_blocks, -freed);
244                 info->alloced -= freed;
245                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
246                 shmem_unacct_blocks(info->flags, freed);
247         }
248 }
249
250 /*
251  * Replace item expected in radix tree by a new item, while holding tree lock.
252  */
253 static int shmem_radix_tree_replace(struct address_space *mapping,
254                         pgoff_t index, void *expected, void *replacement)
255 {
256         void **pslot;
257         void *item;
258
259         VM_BUG_ON(!expected);
260         VM_BUG_ON(!replacement);
261         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
262         if (!pslot)
263                 return -ENOENT;
264         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
265         if (item != expected)
266                 return -ENOENT;
267         radix_tree_replace_slot(pslot, replacement);
268         return 0;
269 }
270
271 /*
272  * Sometimes, before we decide whether to proceed or to fail, we must check
273  * that an entry was not already brought back from swap by a racing thread.
274  *
275  * Checking page is not enough: by the time a SwapCache page is locked, it
276  * might be reused, and again be SwapCache, using the same swap as before.
277  */
278 static bool shmem_confirm_swap(struct address_space *mapping,
279                                pgoff_t index, swp_entry_t swap)
280 {
281         void *item;
282
283         rcu_read_lock();
284         item = radix_tree_lookup(&mapping->page_tree, index);
285         rcu_read_unlock();
286         return item == swp_to_radix_entry(swap);
287 }
288
289 /*
290  * Like add_to_page_cache_locked, but error if expected item has gone.
291  */
292 static int shmem_add_to_page_cache(struct page *page,
293                                    struct address_space *mapping,
294                                    pgoff_t index, void *expected)
295 {
296         int error;
297
298         VM_BUG_ON_PAGE(!PageLocked(page), page);
299         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
300
301         page_cache_get(page);
302         page->mapping = mapping;
303         page->index = index;
304
305         spin_lock_irq(&mapping->tree_lock);
306         if (!expected)
307                 error = radix_tree_insert(&mapping->page_tree, index, page);
308         else
309                 error = shmem_radix_tree_replace(mapping, index, expected,
310                                                                  page);
311         if (!error) {
312                 mapping->nrpages++;
313                 __inc_zone_page_state(page, NR_FILE_PAGES);
314                 __inc_zone_page_state(page, NR_SHMEM);
315                 spin_unlock_irq(&mapping->tree_lock);
316         } else {
317                 page->mapping = NULL;
318                 spin_unlock_irq(&mapping->tree_lock);
319                 page_cache_release(page);
320         }
321         return error;
322 }
323
324 /*
325  * Like delete_from_page_cache, but substitutes swap for page.
326  */
327 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
328 {
329         struct address_space *mapping = page->mapping;
330         int error;
331
332         spin_lock_irq(&mapping->tree_lock);
333         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
334         page->mapping = NULL;
335         mapping->nrpages--;
336         __dec_zone_page_state(page, NR_FILE_PAGES);
337         __dec_zone_page_state(page, NR_SHMEM);
338         spin_unlock_irq(&mapping->tree_lock);
339         page_cache_release(page);
340         BUG_ON(error);
341 }
342
343 /*
344  * Remove swap entry from radix tree, free the swap and its page cache.
345  */
346 static int shmem_free_swap(struct address_space *mapping,
347                            pgoff_t index, void *radswap)
348 {
349         void *old;
350
351         spin_lock_irq(&mapping->tree_lock);
352         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
353         spin_unlock_irq(&mapping->tree_lock);
354         if (old != radswap)
355                 return -ENOENT;
356         free_swap_and_cache(radix_to_swp_entry(radswap));
357         return 0;
358 }
359
360 /*
361  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
362  */
363 void shmem_unlock_mapping(struct address_space *mapping)
364 {
365         struct pagevec pvec;
366         pgoff_t indices[PAGEVEC_SIZE];
367         pgoff_t index = 0;
368
369         pagevec_init(&pvec, 0);
370         /*
371          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
372          */
373         while (!mapping_unevictable(mapping)) {
374                 /*
375                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
376                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
377                  */
378                 pvec.nr = find_get_entries(mapping, index,
379                                            PAGEVEC_SIZE, pvec.pages, indices);
380                 if (!pvec.nr)
381                         break;
382                 index = indices[pvec.nr - 1] + 1;
383                 pagevec_remove_exceptionals(&pvec);
384                 check_move_unevictable_pages(pvec.pages, pvec.nr);
385                 pagevec_release(&pvec);
386                 cond_resched();
387         }
388 }
389
390 /*
391  * Remove range of pages and swap entries from radix tree, and free them.
392  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
393  */
394 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
395                                                                  bool unfalloc)
396 {
397         struct address_space *mapping = inode->i_mapping;
398         struct shmem_inode_info *info = SHMEM_I(inode);
399         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
400         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
401         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
402         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
403         struct pagevec pvec;
404         pgoff_t indices[PAGEVEC_SIZE];
405         long nr_swaps_freed = 0;
406         pgoff_t index;
407         int i;
408
409         if (lend == -1)
410                 end = -1;       /* unsigned, so actually very big */
411
412         pagevec_init(&pvec, 0);
413         index = start;
414         while (index < end) {
415                 pvec.nr = find_get_entries(mapping, index,
416                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
417                         pvec.pages, indices);
418                 if (!pvec.nr)
419                         break;
420                 for (i = 0; i < pagevec_count(&pvec); i++) {
421                         struct page *page = pvec.pages[i];
422
423                         index = indices[i];
424                         if (index >= end)
425                                 break;
426
427                         if (radix_tree_exceptional_entry(page)) {
428                                 if (unfalloc)
429                                         continue;
430                                 nr_swaps_freed += !shmem_free_swap(mapping,
431                                                                 index, page);
432                                 continue;
433                         }
434
435                         if (!trylock_page(page))
436                                 continue;
437                         if (!unfalloc || !PageUptodate(page)) {
438                                 if (page->mapping == mapping) {
439                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
440                                         truncate_inode_page(mapping, page);
441                                 }
442                         }
443                         unlock_page(page);
444                 }
445                 pagevec_remove_exceptionals(&pvec);
446                 pagevec_release(&pvec);
447                 cond_resched();
448                 index++;
449         }
450
451         if (partial_start) {
452                 struct page *page = NULL;
453                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
454                 if (page) {
455                         unsigned int top = PAGE_CACHE_SIZE;
456                         if (start > end) {
457                                 top = partial_end;
458                                 partial_end = 0;
459                         }
460                         zero_user_segment(page, partial_start, top);
461                         set_page_dirty(page);
462                         unlock_page(page);
463                         page_cache_release(page);
464                 }
465         }
466         if (partial_end) {
467                 struct page *page = NULL;
468                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
469                 if (page) {
470                         zero_user_segment(page, 0, partial_end);
471                         set_page_dirty(page);
472                         unlock_page(page);
473                         page_cache_release(page);
474                 }
475         }
476         if (start >= end)
477                 return;
478
479         index = start;
480         while (index < end) {
481                 cond_resched();
482
483                 pvec.nr = find_get_entries(mapping, index,
484                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
485                                 pvec.pages, indices);
486                 if (!pvec.nr) {
487                         /* If all gone or hole-punch or unfalloc, we're done */
488                         if (index == start || end != -1)
489                                 break;
490                         /* But if truncating, restart to make sure all gone */
491                         index = start;
492                         continue;
493                 }
494                 for (i = 0; i < pagevec_count(&pvec); i++) {
495                         struct page *page = pvec.pages[i];
496
497                         index = indices[i];
498                         if (index >= end)
499                                 break;
500
501                         if (radix_tree_exceptional_entry(page)) {
502                                 if (unfalloc)
503                                         continue;
504                                 if (shmem_free_swap(mapping, index, page)) {
505                                         /* Swap was replaced by page: retry */
506                                         index--;
507                                         break;
508                                 }
509                                 nr_swaps_freed++;
510                                 continue;
511                         }
512
513                         lock_page(page);
514                         if (!unfalloc || !PageUptodate(page)) {
515                                 if (page->mapping == mapping) {
516                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
517                                         truncate_inode_page(mapping, page);
518                                 } else {
519                                         /* Page was replaced by swap: retry */
520                                         unlock_page(page);
521                                         index--;
522                                         break;
523                                 }
524                         }
525                         unlock_page(page);
526                 }
527                 pagevec_remove_exceptionals(&pvec);
528                 pagevec_release(&pvec);
529                 index++;
530         }
531
532         spin_lock(&info->lock);
533         info->swapped -= nr_swaps_freed;
534         shmem_recalc_inode(inode);
535         spin_unlock(&info->lock);
536 }
537
538 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
539 {
540         shmem_undo_range(inode, lstart, lend, false);
541         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
542 }
543 EXPORT_SYMBOL_GPL(shmem_truncate_range);
544
545 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
546                          struct kstat *stat)
547 {
548         struct inode *inode = dentry->d_inode;
549         struct shmem_inode_info *info = SHMEM_I(inode);
550
551         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
552                 spin_lock(&info->lock);
553                 shmem_recalc_inode(inode);
554                 spin_unlock(&info->lock);
555         }
556         generic_fillattr(inode, stat);
557         return 0;
558 }
559
560 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
561 {
562         struct inode *inode = d_inode(dentry);
563         struct shmem_inode_info *info = SHMEM_I(inode);
564         int error;
565
566         error = inode_change_ok(inode, attr);
567         if (error)
568                 return error;
569
570         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
571                 loff_t oldsize = inode->i_size;
572                 loff_t newsize = attr->ia_size;
573
574                 /* protected by i_mutex */
575                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
576                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
577                         return -EPERM;
578
579                 if (newsize != oldsize) {
580                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
581                                         oldsize, newsize);
582                         if (error)
583                                 return error;
584                         i_size_write(inode, newsize);
585                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
586                 }
587                 if (newsize <= oldsize) {
588                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
589                         if (oldsize > holebegin)
590                                 unmap_mapping_range(inode->i_mapping,
591                                                         holebegin, 0, 1);
592                         if (info->alloced)
593                                 shmem_truncate_range(inode,
594                                                         newsize, (loff_t)-1);
595                         /* unmap again to remove racily COWed private pages */
596                         if (oldsize > holebegin)
597                                 unmap_mapping_range(inode->i_mapping,
598                                                         holebegin, 0, 1);
599                 }
600         }
601
602         setattr_copy(inode, attr);
603         if (attr->ia_valid & ATTR_MODE)
604                 error = posix_acl_chmod(inode, inode->i_mode);
605         return error;
606 }
607
608 static void shmem_evict_inode(struct inode *inode)
609 {
610         struct shmem_inode_info *info = SHMEM_I(inode);
611
612         if (inode->i_mapping->a_ops == &shmem_aops) {
613                 shmem_unacct_size(info->flags, inode->i_size);
614                 inode->i_size = 0;
615                 shmem_truncate_range(inode, 0, (loff_t)-1);
616                 if (!list_empty(&info->swaplist)) {
617                         mutex_lock(&shmem_swaplist_mutex);
618                         list_del_init(&info->swaplist);
619                         mutex_unlock(&shmem_swaplist_mutex);
620                 }
621         } else
622                 kfree(info->symlink);
623
624         simple_xattrs_free(&info->xattrs);
625         WARN_ON(inode->i_blocks);
626         shmem_free_inode(inode->i_sb);
627         clear_inode(inode);
628 }
629
630 /*
631  * If swap found in inode, free it and move page from swapcache to filecache.
632  */
633 static int shmem_unuse_inode(struct shmem_inode_info *info,
634                              swp_entry_t swap, struct page **pagep)
635 {
636         struct address_space *mapping = info->vfs_inode.i_mapping;
637         void *radswap;
638         pgoff_t index;
639         gfp_t gfp;
640         int error = 0;
641
642         radswap = swp_to_radix_entry(swap);
643         index = radix_tree_locate_item(&mapping->page_tree, radswap);
644         if (index == -1)
645                 return -EAGAIN; /* tell shmem_unuse we found nothing */
646
647         /*
648          * Move _head_ to start search for next from here.
649          * But be careful: shmem_evict_inode checks list_empty without taking
650          * mutex, and there's an instant in list_move_tail when info->swaplist
651          * would appear empty, if it were the only one on shmem_swaplist.
652          */
653         if (shmem_swaplist.next != &info->swaplist)
654                 list_move_tail(&shmem_swaplist, &info->swaplist);
655
656         gfp = mapping_gfp_mask(mapping);
657         if (shmem_should_replace_page(*pagep, gfp)) {
658                 mutex_unlock(&shmem_swaplist_mutex);
659                 error = shmem_replace_page(pagep, gfp, info, index);
660                 mutex_lock(&shmem_swaplist_mutex);
661                 /*
662                  * We needed to drop mutex to make that restrictive page
663                  * allocation, but the inode might have been freed while we
664                  * dropped it: although a racing shmem_evict_inode() cannot
665                  * complete without emptying the radix_tree, our page lock
666                  * on this swapcache page is not enough to prevent that -
667                  * free_swap_and_cache() of our swap entry will only
668                  * trylock_page(), removing swap from radix_tree whatever.
669                  *
670                  * We must not proceed to shmem_add_to_page_cache() if the
671                  * inode has been freed, but of course we cannot rely on
672                  * inode or mapping or info to check that.  However, we can
673                  * safely check if our swap entry is still in use (and here
674                  * it can't have got reused for another page): if it's still
675                  * in use, then the inode cannot have been freed yet, and we
676                  * can safely proceed (if it's no longer in use, that tells
677                  * nothing about the inode, but we don't need to unuse swap).
678                  */
679                 if (!page_swapcount(*pagep))
680                         error = -ENOENT;
681         }
682
683         /*
684          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
685          * but also to hold up shmem_evict_inode(): so inode cannot be freed
686          * beneath us (pagelock doesn't help until the page is in pagecache).
687          */
688         if (!error)
689                 error = shmem_add_to_page_cache(*pagep, mapping, index,
690                                                 radswap);
691         if (error != -ENOMEM) {
692                 /*
693                  * Truncation and eviction use free_swap_and_cache(), which
694                  * only does trylock page: if we raced, best clean up here.
695                  */
696                 delete_from_swap_cache(*pagep);
697                 set_page_dirty(*pagep);
698                 if (!error) {
699                         spin_lock(&info->lock);
700                         info->swapped--;
701                         spin_unlock(&info->lock);
702                         swap_free(swap);
703                 }
704         }
705         return error;
706 }
707
708 /*
709  * Search through swapped inodes to find and replace swap by page.
710  */
711 int shmem_unuse(swp_entry_t swap, struct page *page)
712 {
713         struct list_head *this, *next;
714         struct shmem_inode_info *info;
715         struct mem_cgroup *memcg;
716         int error = 0;
717
718         /*
719          * There's a faint possibility that swap page was replaced before
720          * caller locked it: caller will come back later with the right page.
721          */
722         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
723                 goto out;
724
725         /*
726          * Charge page using GFP_KERNEL while we can wait, before taking
727          * the shmem_swaplist_mutex which might hold up shmem_writepage().
728          * Charged back to the user (not to caller) when swap account is used.
729          */
730         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
731         if (error)
732                 goto out;
733         /* No radix_tree_preload: swap entry keeps a place for page in tree */
734         error = -EAGAIN;
735
736         mutex_lock(&shmem_swaplist_mutex);
737         list_for_each_safe(this, next, &shmem_swaplist) {
738                 info = list_entry(this, struct shmem_inode_info, swaplist);
739                 if (info->swapped)
740                         error = shmem_unuse_inode(info, swap, &page);
741                 else
742                         list_del_init(&info->swaplist);
743                 cond_resched();
744                 if (error != -EAGAIN)
745                         break;
746                 /* found nothing in this: move on to search the next */
747         }
748         mutex_unlock(&shmem_swaplist_mutex);
749
750         if (error) {
751                 if (error != -ENOMEM)
752                         error = 0;
753                 mem_cgroup_cancel_charge(page, memcg);
754         } else
755                 mem_cgroup_commit_charge(page, memcg, true);
756 out:
757         unlock_page(page);
758         page_cache_release(page);
759         return error;
760 }
761
762 /*
763  * Move the page from the page cache to the swap cache.
764  */
765 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
766 {
767         struct shmem_inode_info *info;
768         struct address_space *mapping;
769         struct inode *inode;
770         swp_entry_t swap;
771         pgoff_t index;
772
773         BUG_ON(!PageLocked(page));
774         mapping = page->mapping;
775         index = page->index;
776         inode = mapping->host;
777         info = SHMEM_I(inode);
778         if (info->flags & VM_LOCKED)
779                 goto redirty;
780         if (!total_swap_pages)
781                 goto redirty;
782
783         /*
784          * Our capabilities prevent regular writeback or sync from ever calling
785          * shmem_writepage; but a stacking filesystem might use ->writepage of
786          * its underlying filesystem, in which case tmpfs should write out to
787          * swap only in response to memory pressure, and not for the writeback
788          * threads or sync.
789          */
790         if (!wbc->for_reclaim) {
791                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
792                 goto redirty;
793         }
794
795         /*
796          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
797          * value into swapfile.c, the only way we can correctly account for a
798          * fallocated page arriving here is now to initialize it and write it.
799          *
800          * That's okay for a page already fallocated earlier, but if we have
801          * not yet completed the fallocation, then (a) we want to keep track
802          * of this page in case we have to undo it, and (b) it may not be a
803          * good idea to continue anyway, once we're pushing into swap.  So
804          * reactivate the page, and let shmem_fallocate() quit when too many.
805          */
806         if (!PageUptodate(page)) {
807                 if (inode->i_private) {
808                         struct shmem_falloc *shmem_falloc;
809                         spin_lock(&inode->i_lock);
810                         shmem_falloc = inode->i_private;
811                         if (shmem_falloc &&
812                             !shmem_falloc->waitq &&
813                             index >= shmem_falloc->start &&
814                             index < shmem_falloc->next)
815                                 shmem_falloc->nr_unswapped++;
816                         else
817                                 shmem_falloc = NULL;
818                         spin_unlock(&inode->i_lock);
819                         if (shmem_falloc)
820                                 goto redirty;
821                 }
822                 clear_highpage(page);
823                 flush_dcache_page(page);
824                 SetPageUptodate(page);
825         }
826
827         swap = get_swap_page();
828         if (!swap.val)
829                 goto redirty;
830
831         /*
832          * Add inode to shmem_unuse()'s list of swapped-out inodes,
833          * if it's not already there.  Do it now before the page is
834          * moved to swap cache, when its pagelock no longer protects
835          * the inode from eviction.  But don't unlock the mutex until
836          * we've incremented swapped, because shmem_unuse_inode() will
837          * prune a !swapped inode from the swaplist under this mutex.
838          */
839         mutex_lock(&shmem_swaplist_mutex);
840         if (list_empty(&info->swaplist))
841                 list_add_tail(&info->swaplist, &shmem_swaplist);
842
843         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
844                 swap_shmem_alloc(swap);
845                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
846
847                 spin_lock(&info->lock);
848                 info->swapped++;
849                 shmem_recalc_inode(inode);
850                 spin_unlock(&info->lock);
851
852                 mutex_unlock(&shmem_swaplist_mutex);
853                 BUG_ON(page_mapped(page));
854                 swap_writepage(page, wbc);
855                 return 0;
856         }
857
858         mutex_unlock(&shmem_swaplist_mutex);
859         swapcache_free(swap);
860 redirty:
861         set_page_dirty(page);
862         if (wbc->for_reclaim)
863                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
864         unlock_page(page);
865         return 0;
866 }
867
868 #ifdef CONFIG_NUMA
869 #ifdef CONFIG_TMPFS
870 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
871 {
872         char buffer[64];
873
874         if (!mpol || mpol->mode == MPOL_DEFAULT)
875                 return;         /* show nothing */
876
877         mpol_to_str(buffer, sizeof(buffer), mpol);
878
879         seq_printf(seq, ",mpol=%s", buffer);
880 }
881
882 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
883 {
884         struct mempolicy *mpol = NULL;
885         if (sbinfo->mpol) {
886                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
887                 mpol = sbinfo->mpol;
888                 mpol_get(mpol);
889                 spin_unlock(&sbinfo->stat_lock);
890         }
891         return mpol;
892 }
893 #endif /* CONFIG_TMPFS */
894
895 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
896                         struct shmem_inode_info *info, pgoff_t index)
897 {
898         struct vm_area_struct pvma;
899         struct page *page;
900
901         /* Create a pseudo vma that just contains the policy */
902         pvma.vm_start = 0;
903         /* Bias interleave by inode number to distribute better across nodes */
904         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
905         pvma.vm_ops = NULL;
906         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
907
908         page = swapin_readahead(swap, gfp, &pvma, 0);
909
910         /* Drop reference taken by mpol_shared_policy_lookup() */
911         mpol_cond_put(pvma.vm_policy);
912
913         return page;
914 }
915
916 static struct page *shmem_alloc_page(gfp_t gfp,
917                         struct shmem_inode_info *info, pgoff_t index)
918 {
919         struct vm_area_struct pvma;
920         struct page *page;
921
922         /* Create a pseudo vma that just contains the policy */
923         pvma.vm_start = 0;
924         /* Bias interleave by inode number to distribute better across nodes */
925         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
926         pvma.vm_ops = NULL;
927         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
928
929         page = alloc_page_vma(gfp, &pvma, 0);
930
931         /* Drop reference taken by mpol_shared_policy_lookup() */
932         mpol_cond_put(pvma.vm_policy);
933
934         return page;
935 }
936 #else /* !CONFIG_NUMA */
937 #ifdef CONFIG_TMPFS
938 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
939 {
940 }
941 #endif /* CONFIG_TMPFS */
942
943 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
944                         struct shmem_inode_info *info, pgoff_t index)
945 {
946         return swapin_readahead(swap, gfp, NULL, 0);
947 }
948
949 static inline struct page *shmem_alloc_page(gfp_t gfp,
950                         struct shmem_inode_info *info, pgoff_t index)
951 {
952         return alloc_page(gfp);
953 }
954 #endif /* CONFIG_NUMA */
955
956 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
957 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
958 {
959         return NULL;
960 }
961 #endif
962
963 /*
964  * When a page is moved from swapcache to shmem filecache (either by the
965  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
966  * shmem_unuse_inode()), it may have been read in earlier from swap, in
967  * ignorance of the mapping it belongs to.  If that mapping has special
968  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
969  * we may need to copy to a suitable page before moving to filecache.
970  *
971  * In a future release, this may well be extended to respect cpuset and
972  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
973  * but for now it is a simple matter of zone.
974  */
975 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
976 {
977         return page_zonenum(page) > gfp_zone(gfp);
978 }
979
980 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
981                                 struct shmem_inode_info *info, pgoff_t index)
982 {
983         struct page *oldpage, *newpage;
984         struct address_space *swap_mapping;
985         pgoff_t swap_index;
986         int error;
987
988         oldpage = *pagep;
989         swap_index = page_private(oldpage);
990         swap_mapping = page_mapping(oldpage);
991
992         /*
993          * We have arrived here because our zones are constrained, so don't
994          * limit chance of success by further cpuset and node constraints.
995          */
996         gfp &= ~GFP_CONSTRAINT_MASK;
997         newpage = shmem_alloc_page(gfp, info, index);
998         if (!newpage)
999                 return -ENOMEM;
1000
1001         page_cache_get(newpage);
1002         copy_highpage(newpage, oldpage);
1003         flush_dcache_page(newpage);
1004
1005         __set_page_locked(newpage);
1006         SetPageUptodate(newpage);
1007         SetPageSwapBacked(newpage);
1008         set_page_private(newpage, swap_index);
1009         SetPageSwapCache(newpage);
1010
1011         /*
1012          * Our caller will very soon move newpage out of swapcache, but it's
1013          * a nice clean interface for us to replace oldpage by newpage there.
1014          */
1015         spin_lock_irq(&swap_mapping->tree_lock);
1016         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1017                                                                    newpage);
1018         if (!error) {
1019                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1020                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1021         }
1022         spin_unlock_irq(&swap_mapping->tree_lock);
1023
1024         if (unlikely(error)) {
1025                 /*
1026                  * Is this possible?  I think not, now that our callers check
1027                  * both PageSwapCache and page_private after getting page lock;
1028                  * but be defensive.  Reverse old to newpage for clear and free.
1029                  */
1030                 oldpage = newpage;
1031         } else {
1032                 mem_cgroup_replace_page(oldpage, newpage);
1033                 lru_cache_add_anon(newpage);
1034                 *pagep = newpage;
1035         }
1036
1037         ClearPageSwapCache(oldpage);
1038         set_page_private(oldpage, 0);
1039
1040         unlock_page(oldpage);
1041         page_cache_release(oldpage);
1042         page_cache_release(oldpage);
1043         return error;
1044 }
1045
1046 /*
1047  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1048  *
1049  * If we allocate a new one we do not mark it dirty. That's up to the
1050  * vm. If we swap it in we mark it dirty since we also free the swap
1051  * entry since a page cannot live in both the swap and page cache
1052  */
1053 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1054         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1055 {
1056         struct address_space *mapping = inode->i_mapping;
1057         struct shmem_inode_info *info;
1058         struct shmem_sb_info *sbinfo;
1059         struct mem_cgroup *memcg;
1060         struct page *page;
1061         swp_entry_t swap;
1062         int error;
1063         int once = 0;
1064         int alloced = 0;
1065
1066         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1067                 return -EFBIG;
1068 repeat:
1069         swap.val = 0;
1070         page = find_lock_entry(mapping, index);
1071         if (radix_tree_exceptional_entry(page)) {
1072                 swap = radix_to_swp_entry(page);
1073                 page = NULL;
1074         }
1075
1076         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1077             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1078                 error = -EINVAL;
1079                 goto failed;
1080         }
1081
1082         if (page && sgp == SGP_WRITE)
1083                 mark_page_accessed(page);
1084
1085         /* fallocated page? */
1086         if (page && !PageUptodate(page)) {
1087                 if (sgp != SGP_READ)
1088                         goto clear;
1089                 unlock_page(page);
1090                 page_cache_release(page);
1091                 page = NULL;
1092         }
1093         if (page || (sgp == SGP_READ && !swap.val)) {
1094                 *pagep = page;
1095                 return 0;
1096         }
1097
1098         /*
1099          * Fast cache lookup did not find it:
1100          * bring it back from swap or allocate.
1101          */
1102         info = SHMEM_I(inode);
1103         sbinfo = SHMEM_SB(inode->i_sb);
1104
1105         if (swap.val) {
1106                 /* Look it up and read it in.. */
1107                 page = lookup_swap_cache(swap);
1108                 if (!page) {
1109                         /* here we actually do the io */
1110                         if (fault_type)
1111                                 *fault_type |= VM_FAULT_MAJOR;
1112                         page = shmem_swapin(swap, gfp, info, index);
1113                         if (!page) {
1114                                 error = -ENOMEM;
1115                                 goto failed;
1116                         }
1117                 }
1118
1119                 /* We have to do this with page locked to prevent races */
1120                 lock_page(page);
1121                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1122                     !shmem_confirm_swap(mapping, index, swap)) {
1123                         error = -EEXIST;        /* try again */
1124                         goto unlock;
1125                 }
1126                 if (!PageUptodate(page)) {
1127                         error = -EIO;
1128                         goto failed;
1129                 }
1130                 wait_on_page_writeback(page);
1131
1132                 if (shmem_should_replace_page(page, gfp)) {
1133                         error = shmem_replace_page(&page, gfp, info, index);
1134                         if (error)
1135                                 goto failed;
1136                 }
1137
1138                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1139                 if (!error) {
1140                         error = shmem_add_to_page_cache(page, mapping, index,
1141                                                 swp_to_radix_entry(swap));
1142                         /*
1143                          * We already confirmed swap under page lock, and make
1144                          * no memory allocation here, so usually no possibility
1145                          * of error; but free_swap_and_cache() only trylocks a
1146                          * page, so it is just possible that the entry has been
1147                          * truncated or holepunched since swap was confirmed.
1148                          * shmem_undo_range() will have done some of the
1149                          * unaccounting, now delete_from_swap_cache() will do
1150                          * the rest.
1151                          * Reset swap.val? No, leave it so "failed" goes back to
1152                          * "repeat": reading a hole and writing should succeed.
1153                          */
1154                         if (error) {
1155                                 mem_cgroup_cancel_charge(page, memcg);
1156                                 delete_from_swap_cache(page);
1157                         }
1158                 }
1159                 if (error)
1160                         goto failed;
1161
1162                 mem_cgroup_commit_charge(page, memcg, true);
1163
1164                 spin_lock(&info->lock);
1165                 info->swapped--;
1166                 shmem_recalc_inode(inode);
1167                 spin_unlock(&info->lock);
1168
1169                 if (sgp == SGP_WRITE)
1170                         mark_page_accessed(page);
1171
1172                 delete_from_swap_cache(page);
1173                 set_page_dirty(page);
1174                 swap_free(swap);
1175
1176         } else {
1177                 if (shmem_acct_block(info->flags)) {
1178                         error = -ENOSPC;
1179                         goto failed;
1180                 }
1181                 if (sbinfo->max_blocks) {
1182                         if (percpu_counter_compare(&sbinfo->used_blocks,
1183                                                 sbinfo->max_blocks) >= 0) {
1184                                 error = -ENOSPC;
1185                                 goto unacct;
1186                         }
1187                         percpu_counter_inc(&sbinfo->used_blocks);
1188                 }
1189
1190                 page = shmem_alloc_page(gfp, info, index);
1191                 if (!page) {
1192                         error = -ENOMEM;
1193                         goto decused;
1194                 }
1195
1196                 __SetPageSwapBacked(page);
1197                 __set_page_locked(page);
1198                 if (sgp == SGP_WRITE)
1199                         __SetPageReferenced(page);
1200
1201                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1202                 if (error)
1203                         goto decused;
1204                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1205                 if (!error) {
1206                         error = shmem_add_to_page_cache(page, mapping, index,
1207                                                         NULL);
1208                         radix_tree_preload_end();
1209                 }
1210                 if (error) {
1211                         mem_cgroup_cancel_charge(page, memcg);
1212                         goto decused;
1213                 }
1214                 mem_cgroup_commit_charge(page, memcg, false);
1215                 lru_cache_add_anon(page);
1216
1217                 spin_lock(&info->lock);
1218                 info->alloced++;
1219                 inode->i_blocks += BLOCKS_PER_PAGE;
1220                 shmem_recalc_inode(inode);
1221                 spin_unlock(&info->lock);
1222                 alloced = true;
1223
1224                 /*
1225                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1226                  */
1227                 if (sgp == SGP_FALLOC)
1228                         sgp = SGP_WRITE;
1229 clear:
1230                 /*
1231                  * Let SGP_WRITE caller clear ends if write does not fill page;
1232                  * but SGP_FALLOC on a page fallocated earlier must initialize
1233                  * it now, lest undo on failure cancel our earlier guarantee.
1234                  */
1235                 if (sgp != SGP_WRITE) {
1236                         clear_highpage(page);
1237                         flush_dcache_page(page);
1238                         SetPageUptodate(page);
1239                 }
1240                 if (sgp == SGP_DIRTY)
1241                         set_page_dirty(page);
1242         }
1243
1244         /* Perhaps the file has been truncated since we checked */
1245         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1246             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1247                 error = -EINVAL;
1248                 if (alloced)
1249                         goto trunc;
1250                 else
1251                         goto failed;
1252         }
1253         *pagep = page;
1254         return 0;
1255
1256         /*
1257          * Error recovery.
1258          */
1259 trunc:
1260         info = SHMEM_I(inode);
1261         ClearPageDirty(page);
1262         delete_from_page_cache(page);
1263         spin_lock(&info->lock);
1264         info->alloced--;
1265         inode->i_blocks -= BLOCKS_PER_PAGE;
1266         spin_unlock(&info->lock);
1267 decused:
1268         sbinfo = SHMEM_SB(inode->i_sb);
1269         if (sbinfo->max_blocks)
1270                 percpu_counter_add(&sbinfo->used_blocks, -1);
1271 unacct:
1272         shmem_unacct_blocks(info->flags, 1);
1273 failed:
1274         if (swap.val && error != -EINVAL &&
1275             !shmem_confirm_swap(mapping, index, swap))
1276                 error = -EEXIST;
1277 unlock:
1278         if (page) {
1279                 unlock_page(page);
1280                 page_cache_release(page);
1281         }
1282         if (error == -ENOSPC && !once++) {
1283                 info = SHMEM_I(inode);
1284                 spin_lock(&info->lock);
1285                 shmem_recalc_inode(inode);
1286                 spin_unlock(&info->lock);
1287                 goto repeat;
1288         }
1289         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1290                 goto repeat;
1291         return error;
1292 }
1293
1294 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1295 {
1296         struct inode *inode = file_inode(vma->vm_file);
1297         int error;
1298         int ret = VM_FAULT_LOCKED;
1299
1300         /*
1301          * Trinity finds that probing a hole which tmpfs is punching can
1302          * prevent the hole-punch from ever completing: which in turn
1303          * locks writers out with its hold on i_mutex.  So refrain from
1304          * faulting pages into the hole while it's being punched.  Although
1305          * shmem_undo_range() does remove the additions, it may be unable to
1306          * keep up, as each new page needs its own unmap_mapping_range() call,
1307          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1308          *
1309          * It does not matter if we sometimes reach this check just before the
1310          * hole-punch begins, so that one fault then races with the punch:
1311          * we just need to make racing faults a rare case.
1312          *
1313          * The implementation below would be much simpler if we just used a
1314          * standard mutex or completion: but we cannot take i_mutex in fault,
1315          * and bloating every shmem inode for this unlikely case would be sad.
1316          */
1317         if (unlikely(inode->i_private)) {
1318                 struct shmem_falloc *shmem_falloc;
1319
1320                 spin_lock(&inode->i_lock);
1321                 shmem_falloc = inode->i_private;
1322                 if (shmem_falloc &&
1323                     shmem_falloc->waitq &&
1324                     vmf->pgoff >= shmem_falloc->start &&
1325                     vmf->pgoff < shmem_falloc->next) {
1326                         wait_queue_head_t *shmem_falloc_waitq;
1327                         DEFINE_WAIT(shmem_fault_wait);
1328
1329                         ret = VM_FAULT_NOPAGE;
1330                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1331                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1332                                 /* It's polite to up mmap_sem if we can */
1333                                 up_read(&vma->vm_mm->mmap_sem);
1334                                 ret = VM_FAULT_RETRY;
1335                         }
1336
1337                         shmem_falloc_waitq = shmem_falloc->waitq;
1338                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1339                                         TASK_UNINTERRUPTIBLE);
1340                         spin_unlock(&inode->i_lock);
1341                         schedule();
1342
1343                         /*
1344                          * shmem_falloc_waitq points into the shmem_fallocate()
1345                          * stack of the hole-punching task: shmem_falloc_waitq
1346                          * is usually invalid by the time we reach here, but
1347                          * finish_wait() does not dereference it in that case;
1348                          * though i_lock needed lest racing with wake_up_all().
1349                          */
1350                         spin_lock(&inode->i_lock);
1351                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1352                         spin_unlock(&inode->i_lock);
1353                         return ret;
1354                 }
1355                 spin_unlock(&inode->i_lock);
1356         }
1357
1358         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1359         if (error)
1360                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1361
1362         if (ret & VM_FAULT_MAJOR) {
1363                 count_vm_event(PGMAJFAULT);
1364                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1365         }
1366         return ret;
1367 }
1368
1369 #ifdef CONFIG_NUMA
1370 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1371 {
1372         struct inode *inode = file_inode(vma->vm_file);
1373         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1374 }
1375
1376 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1377                                           unsigned long addr)
1378 {
1379         struct inode *inode = file_inode(vma->vm_file);
1380         pgoff_t index;
1381
1382         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1383         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1384 }
1385 #endif
1386
1387 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1388 {
1389         struct inode *inode = file_inode(file);
1390         struct shmem_inode_info *info = SHMEM_I(inode);
1391         int retval = -ENOMEM;
1392
1393         spin_lock(&info->lock);
1394         if (lock && !(info->flags & VM_LOCKED)) {
1395                 if (!user_shm_lock(inode->i_size, user))
1396                         goto out_nomem;
1397                 info->flags |= VM_LOCKED;
1398                 mapping_set_unevictable(file->f_mapping);
1399         }
1400         if (!lock && (info->flags & VM_LOCKED) && user) {
1401                 user_shm_unlock(inode->i_size, user);
1402                 info->flags &= ~VM_LOCKED;
1403                 mapping_clear_unevictable(file->f_mapping);
1404         }
1405         retval = 0;
1406
1407 out_nomem:
1408         spin_unlock(&info->lock);
1409         return retval;
1410 }
1411
1412 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1413 {
1414         file_accessed(file);
1415         vma->vm_ops = &shmem_vm_ops;
1416         return 0;
1417 }
1418
1419 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1420                                      umode_t mode, dev_t dev, unsigned long flags)
1421 {
1422         struct inode *inode;
1423         struct shmem_inode_info *info;
1424         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1425
1426         if (shmem_reserve_inode(sb))
1427                 return NULL;
1428
1429         inode = new_inode(sb);
1430         if (inode) {
1431                 inode->i_ino = get_next_ino();
1432                 inode_init_owner(inode, dir, mode);
1433                 inode->i_blocks = 0;
1434                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1435                 inode->i_generation = get_seconds();
1436                 info = SHMEM_I(inode);
1437                 memset(info, 0, (char *)inode - (char *)info);
1438                 spin_lock_init(&info->lock);
1439                 info->seals = F_SEAL_SEAL;
1440                 info->flags = flags & VM_NORESERVE;
1441                 INIT_LIST_HEAD(&info->swaplist);
1442                 simple_xattrs_init(&info->xattrs);
1443                 cache_no_acl(inode);
1444
1445                 switch (mode & S_IFMT) {
1446                 default:
1447                         inode->i_op = &shmem_special_inode_operations;
1448                         init_special_inode(inode, mode, dev);
1449                         break;
1450                 case S_IFREG:
1451                         inode->i_mapping->a_ops = &shmem_aops;
1452                         inode->i_op = &shmem_inode_operations;
1453                         inode->i_fop = &shmem_file_operations;
1454                         mpol_shared_policy_init(&info->policy,
1455                                                  shmem_get_sbmpol(sbinfo));
1456                         break;
1457                 case S_IFDIR:
1458                         inc_nlink(inode);
1459                         /* Some things misbehave if size == 0 on a directory */
1460                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1461                         inode->i_op = &shmem_dir_inode_operations;
1462                         inode->i_fop = &simple_dir_operations;
1463                         break;
1464                 case S_IFLNK:
1465                         /*
1466                          * Must not load anything in the rbtree,
1467                          * mpol_free_shared_policy will not be called.
1468                          */
1469                         mpol_shared_policy_init(&info->policy, NULL);
1470                         break;
1471                 }
1472         } else
1473                 shmem_free_inode(sb);
1474         return inode;
1475 }
1476
1477 bool shmem_mapping(struct address_space *mapping)
1478 {
1479         if (!mapping->host)
1480                 return false;
1481
1482         return mapping->host->i_sb->s_op == &shmem_ops;
1483 }
1484
1485 #ifdef CONFIG_TMPFS
1486 static const struct inode_operations shmem_symlink_inode_operations;
1487 static const struct inode_operations shmem_short_symlink_operations;
1488
1489 #ifdef CONFIG_TMPFS_XATTR
1490 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1491 #else
1492 #define shmem_initxattrs NULL
1493 #endif
1494
1495 static int
1496 shmem_write_begin(struct file *file, struct address_space *mapping,
1497                         loff_t pos, unsigned len, unsigned flags,
1498                         struct page **pagep, void **fsdata)
1499 {
1500         struct inode *inode = mapping->host;
1501         struct shmem_inode_info *info = SHMEM_I(inode);
1502         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1503
1504         /* i_mutex is held by caller */
1505         if (unlikely(info->seals)) {
1506                 if (info->seals & F_SEAL_WRITE)
1507                         return -EPERM;
1508                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1509                         return -EPERM;
1510         }
1511
1512         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1513 }
1514
1515 static int
1516 shmem_write_end(struct file *file, struct address_space *mapping,
1517                         loff_t pos, unsigned len, unsigned copied,
1518                         struct page *page, void *fsdata)
1519 {
1520         struct inode *inode = mapping->host;
1521
1522         if (pos + copied > inode->i_size)
1523                 i_size_write(inode, pos + copied);
1524
1525         if (!PageUptodate(page)) {
1526                 if (copied < PAGE_CACHE_SIZE) {
1527                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1528                         zero_user_segments(page, 0, from,
1529                                         from + copied, PAGE_CACHE_SIZE);
1530                 }
1531                 SetPageUptodate(page);
1532         }
1533         set_page_dirty(page);
1534         unlock_page(page);
1535         page_cache_release(page);
1536
1537         return copied;
1538 }
1539
1540 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1541 {
1542         struct file *file = iocb->ki_filp;
1543         struct inode *inode = file_inode(file);
1544         struct address_space *mapping = inode->i_mapping;
1545         pgoff_t index;
1546         unsigned long offset;
1547         enum sgp_type sgp = SGP_READ;
1548         int error = 0;
1549         ssize_t retval = 0;
1550         loff_t *ppos = &iocb->ki_pos;
1551
1552         /*
1553          * Might this read be for a stacking filesystem?  Then when reading
1554          * holes of a sparse file, we actually need to allocate those pages,
1555          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1556          */
1557         if (!iter_is_iovec(to))
1558                 sgp = SGP_DIRTY;
1559
1560         index = *ppos >> PAGE_CACHE_SHIFT;
1561         offset = *ppos & ~PAGE_CACHE_MASK;
1562
1563         for (;;) {
1564                 struct page *page = NULL;
1565                 pgoff_t end_index;
1566                 unsigned long nr, ret;
1567                 loff_t i_size = i_size_read(inode);
1568
1569                 end_index = i_size >> PAGE_CACHE_SHIFT;
1570                 if (index > end_index)
1571                         break;
1572                 if (index == end_index) {
1573                         nr = i_size & ~PAGE_CACHE_MASK;
1574                         if (nr <= offset)
1575                                 break;
1576                 }
1577
1578                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1579                 if (error) {
1580                         if (error == -EINVAL)
1581                                 error = 0;
1582                         break;
1583                 }
1584                 if (page)
1585                         unlock_page(page);
1586
1587                 /*
1588                  * We must evaluate after, since reads (unlike writes)
1589                  * are called without i_mutex protection against truncate
1590                  */
1591                 nr = PAGE_CACHE_SIZE;
1592                 i_size = i_size_read(inode);
1593                 end_index = i_size >> PAGE_CACHE_SHIFT;
1594                 if (index == end_index) {
1595                         nr = i_size & ~PAGE_CACHE_MASK;
1596                         if (nr <= offset) {
1597                                 if (page)
1598                                         page_cache_release(page);
1599                                 break;
1600                         }
1601                 }
1602                 nr -= offset;
1603
1604                 if (page) {
1605                         /*
1606                          * If users can be writing to this page using arbitrary
1607                          * virtual addresses, take care about potential aliasing
1608                          * before reading the page on the kernel side.
1609                          */
1610                         if (mapping_writably_mapped(mapping))
1611                                 flush_dcache_page(page);
1612                         /*
1613                          * Mark the page accessed if we read the beginning.
1614                          */
1615                         if (!offset)
1616                                 mark_page_accessed(page);
1617                 } else {
1618                         page = ZERO_PAGE(0);
1619                         page_cache_get(page);
1620                 }
1621
1622                 /*
1623                  * Ok, we have the page, and it's up-to-date, so
1624                  * now we can copy it to user space...
1625                  */
1626                 ret = copy_page_to_iter(page, offset, nr, to);
1627                 retval += ret;
1628                 offset += ret;
1629                 index += offset >> PAGE_CACHE_SHIFT;
1630                 offset &= ~PAGE_CACHE_MASK;
1631
1632                 page_cache_release(page);
1633                 if (!iov_iter_count(to))
1634                         break;
1635                 if (ret < nr) {
1636                         error = -EFAULT;
1637                         break;
1638                 }
1639                 cond_resched();
1640         }
1641
1642         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1643         file_accessed(file);
1644         return retval ? retval : error;
1645 }
1646
1647 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1648                                 struct pipe_inode_info *pipe, size_t len,
1649                                 unsigned int flags)
1650 {
1651         struct address_space *mapping = in->f_mapping;
1652         struct inode *inode = mapping->host;
1653         unsigned int loff, nr_pages, req_pages;
1654         struct page *pages[PIPE_DEF_BUFFERS];
1655         struct partial_page partial[PIPE_DEF_BUFFERS];
1656         struct page *page;
1657         pgoff_t index, end_index;
1658         loff_t isize, left;
1659         int error, page_nr;
1660         struct splice_pipe_desc spd = {
1661                 .pages = pages,
1662                 .partial = partial,
1663                 .nr_pages_max = PIPE_DEF_BUFFERS,
1664                 .flags = flags,
1665                 .ops = &page_cache_pipe_buf_ops,
1666                 .spd_release = spd_release_page,
1667         };
1668
1669         isize = i_size_read(inode);
1670         if (unlikely(*ppos >= isize))
1671                 return 0;
1672
1673         left = isize - *ppos;
1674         if (unlikely(left < len))
1675                 len = left;
1676
1677         if (splice_grow_spd(pipe, &spd))
1678                 return -ENOMEM;
1679
1680         index = *ppos >> PAGE_CACHE_SHIFT;
1681         loff = *ppos & ~PAGE_CACHE_MASK;
1682         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1683         nr_pages = min(req_pages, spd.nr_pages_max);
1684
1685         spd.nr_pages = find_get_pages_contig(mapping, index,
1686                                                 nr_pages, spd.pages);
1687         index += spd.nr_pages;
1688         error = 0;
1689
1690         while (spd.nr_pages < nr_pages) {
1691                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1692                 if (error)
1693                         break;
1694                 unlock_page(page);
1695                 spd.pages[spd.nr_pages++] = page;
1696                 index++;
1697         }
1698
1699         index = *ppos >> PAGE_CACHE_SHIFT;
1700         nr_pages = spd.nr_pages;
1701         spd.nr_pages = 0;
1702
1703         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1704                 unsigned int this_len;
1705
1706                 if (!len)
1707                         break;
1708
1709                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1710                 page = spd.pages[page_nr];
1711
1712                 if (!PageUptodate(page) || page->mapping != mapping) {
1713                         error = shmem_getpage(inode, index, &page,
1714                                                         SGP_CACHE, NULL);
1715                         if (error)
1716                                 break;
1717                         unlock_page(page);
1718                         page_cache_release(spd.pages[page_nr]);
1719                         spd.pages[page_nr] = page;
1720                 }
1721
1722                 isize = i_size_read(inode);
1723                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1724                 if (unlikely(!isize || index > end_index))
1725                         break;
1726
1727                 if (end_index == index) {
1728                         unsigned int plen;
1729
1730                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1731                         if (plen <= loff)
1732                                 break;
1733
1734                         this_len = min(this_len, plen - loff);
1735                         len = this_len;
1736                 }
1737
1738                 spd.partial[page_nr].offset = loff;
1739                 spd.partial[page_nr].len = this_len;
1740                 len -= this_len;
1741                 loff = 0;
1742                 spd.nr_pages++;
1743                 index++;
1744         }
1745
1746         while (page_nr < nr_pages)
1747                 page_cache_release(spd.pages[page_nr++]);
1748
1749         if (spd.nr_pages)
1750                 error = splice_to_pipe(pipe, &spd);
1751
1752         splice_shrink_spd(&spd);
1753
1754         if (error > 0) {
1755                 *ppos += error;
1756                 file_accessed(in);
1757         }
1758         return error;
1759 }
1760
1761 /*
1762  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1763  */
1764 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1765                                     pgoff_t index, pgoff_t end, int whence)
1766 {
1767         struct page *page;
1768         struct pagevec pvec;
1769         pgoff_t indices[PAGEVEC_SIZE];
1770         bool done = false;
1771         int i;
1772
1773         pagevec_init(&pvec, 0);
1774         pvec.nr = 1;            /* start small: we may be there already */
1775         while (!done) {
1776                 pvec.nr = find_get_entries(mapping, index,
1777                                         pvec.nr, pvec.pages, indices);
1778                 if (!pvec.nr) {
1779                         if (whence == SEEK_DATA)
1780                                 index = end;
1781                         break;
1782                 }
1783                 for (i = 0; i < pvec.nr; i++, index++) {
1784                         if (index < indices[i]) {
1785                                 if (whence == SEEK_HOLE) {
1786                                         done = true;
1787                                         break;
1788                                 }
1789                                 index = indices[i];
1790                         }
1791                         page = pvec.pages[i];
1792                         if (page && !radix_tree_exceptional_entry(page)) {
1793                                 if (!PageUptodate(page))
1794                                         page = NULL;
1795                         }
1796                         if (index >= end ||
1797                             (page && whence == SEEK_DATA) ||
1798                             (!page && whence == SEEK_HOLE)) {
1799                                 done = true;
1800                                 break;
1801                         }
1802                 }
1803                 pagevec_remove_exceptionals(&pvec);
1804                 pagevec_release(&pvec);
1805                 pvec.nr = PAGEVEC_SIZE;
1806                 cond_resched();
1807         }
1808         return index;
1809 }
1810
1811 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1812 {
1813         struct address_space *mapping = file->f_mapping;
1814         struct inode *inode = mapping->host;
1815         pgoff_t start, end;
1816         loff_t new_offset;
1817
1818         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1819                 return generic_file_llseek_size(file, offset, whence,
1820                                         MAX_LFS_FILESIZE, i_size_read(inode));
1821         mutex_lock(&inode->i_mutex);
1822         /* We're holding i_mutex so we can access i_size directly */
1823
1824         if (offset < 0)
1825                 offset = -EINVAL;
1826         else if (offset >= inode->i_size)
1827                 offset = -ENXIO;
1828         else {
1829                 start = offset >> PAGE_CACHE_SHIFT;
1830                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1831                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1832                 new_offset <<= PAGE_CACHE_SHIFT;
1833                 if (new_offset > offset) {
1834                         if (new_offset < inode->i_size)
1835                                 offset = new_offset;
1836                         else if (whence == SEEK_DATA)
1837                                 offset = -ENXIO;
1838                         else
1839                                 offset = inode->i_size;
1840                 }
1841         }
1842
1843         if (offset >= 0)
1844                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1845         mutex_unlock(&inode->i_mutex);
1846         return offset;
1847 }
1848
1849 /*
1850  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1851  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1852  */
1853 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1854 #define LAST_SCAN               4       /* about 150ms max */
1855
1856 static void shmem_tag_pins(struct address_space *mapping)
1857 {
1858         struct radix_tree_iter iter;
1859         void **slot;
1860         pgoff_t start;
1861         struct page *page;
1862
1863         lru_add_drain();
1864         start = 0;
1865         rcu_read_lock();
1866
1867 restart:
1868         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1869                 page = radix_tree_deref_slot(slot);
1870                 if (!page || radix_tree_exception(page)) {
1871                         if (radix_tree_deref_retry(page))
1872                                 goto restart;
1873                 } else if (page_count(page) - page_mapcount(page) > 1) {
1874                         spin_lock_irq(&mapping->tree_lock);
1875                         radix_tree_tag_set(&mapping->page_tree, iter.index,
1876                                            SHMEM_TAG_PINNED);
1877                         spin_unlock_irq(&mapping->tree_lock);
1878                 }
1879
1880                 if (need_resched()) {
1881                         cond_resched_rcu();
1882                         start = iter.index + 1;
1883                         goto restart;
1884                 }
1885         }
1886         rcu_read_unlock();
1887 }
1888
1889 /*
1890  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1891  * via get_user_pages(), drivers might have some pending I/O without any active
1892  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1893  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1894  * them to be dropped.
1895  * The caller must guarantee that no new user will acquire writable references
1896  * to those pages to avoid races.
1897  */
1898 static int shmem_wait_for_pins(struct address_space *mapping)
1899 {
1900         struct radix_tree_iter iter;
1901         void **slot;
1902         pgoff_t start;
1903         struct page *page;
1904         int error, scan;
1905
1906         shmem_tag_pins(mapping);
1907
1908         error = 0;
1909         for (scan = 0; scan <= LAST_SCAN; scan++) {
1910                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1911                         break;
1912
1913                 if (!scan)
1914                         lru_add_drain_all();
1915                 else if (schedule_timeout_killable((HZ << scan) / 200))
1916                         scan = LAST_SCAN;
1917
1918                 start = 0;
1919                 rcu_read_lock();
1920 restart:
1921                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1922                                            start, SHMEM_TAG_PINNED) {
1923
1924                         page = radix_tree_deref_slot(slot);
1925                         if (radix_tree_exception(page)) {
1926                                 if (radix_tree_deref_retry(page))
1927                                         goto restart;
1928
1929                                 page = NULL;
1930                         }
1931
1932                         if (page &&
1933                             page_count(page) - page_mapcount(page) != 1) {
1934                                 if (scan < LAST_SCAN)
1935                                         goto continue_resched;
1936
1937                                 /*
1938                                  * On the last scan, we clean up all those tags
1939                                  * we inserted; but make a note that we still
1940                                  * found pages pinned.
1941                                  */
1942                                 error = -EBUSY;
1943                         }
1944
1945                         spin_lock_irq(&mapping->tree_lock);
1946                         radix_tree_tag_clear(&mapping->page_tree,
1947                                              iter.index, SHMEM_TAG_PINNED);
1948                         spin_unlock_irq(&mapping->tree_lock);
1949 continue_resched:
1950                         if (need_resched()) {
1951                                 cond_resched_rcu();
1952                                 start = iter.index + 1;
1953                                 goto restart;
1954                         }
1955                 }
1956                 rcu_read_unlock();
1957         }
1958
1959         return error;
1960 }
1961
1962 #define F_ALL_SEALS (F_SEAL_SEAL | \
1963                      F_SEAL_SHRINK | \
1964                      F_SEAL_GROW | \
1965                      F_SEAL_WRITE)
1966
1967 int shmem_add_seals(struct file *file, unsigned int seals)
1968 {
1969         struct inode *inode = file_inode(file);
1970         struct shmem_inode_info *info = SHMEM_I(inode);
1971         int error;
1972
1973         /*
1974          * SEALING
1975          * Sealing allows multiple parties to share a shmem-file but restrict
1976          * access to a specific subset of file operations. Seals can only be
1977          * added, but never removed. This way, mutually untrusted parties can
1978          * share common memory regions with a well-defined policy. A malicious
1979          * peer can thus never perform unwanted operations on a shared object.
1980          *
1981          * Seals are only supported on special shmem-files and always affect
1982          * the whole underlying inode. Once a seal is set, it may prevent some
1983          * kinds of access to the file. Currently, the following seals are
1984          * defined:
1985          *   SEAL_SEAL: Prevent further seals from being set on this file
1986          *   SEAL_SHRINK: Prevent the file from shrinking
1987          *   SEAL_GROW: Prevent the file from growing
1988          *   SEAL_WRITE: Prevent write access to the file
1989          *
1990          * As we don't require any trust relationship between two parties, we
1991          * must prevent seals from being removed. Therefore, sealing a file
1992          * only adds a given set of seals to the file, it never touches
1993          * existing seals. Furthermore, the "setting seals"-operation can be
1994          * sealed itself, which basically prevents any further seal from being
1995          * added.
1996          *
1997          * Semantics of sealing are only defined on volatile files. Only
1998          * anonymous shmem files support sealing. More importantly, seals are
1999          * never written to disk. Therefore, there's no plan to support it on
2000          * other file types.
2001          */
2002
2003         if (file->f_op != &shmem_file_operations)
2004                 return -EINVAL;
2005         if (!(file->f_mode & FMODE_WRITE))
2006                 return -EPERM;
2007         if (seals & ~(unsigned int)F_ALL_SEALS)
2008                 return -EINVAL;
2009
2010         mutex_lock(&inode->i_mutex);
2011
2012         if (info->seals & F_SEAL_SEAL) {
2013                 error = -EPERM;
2014                 goto unlock;
2015         }
2016
2017         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2018                 error = mapping_deny_writable(file->f_mapping);
2019                 if (error)
2020                         goto unlock;
2021
2022                 error = shmem_wait_for_pins(file->f_mapping);
2023                 if (error) {
2024                         mapping_allow_writable(file->f_mapping);
2025                         goto unlock;
2026                 }
2027         }
2028
2029         info->seals |= seals;
2030         error = 0;
2031
2032 unlock:
2033         mutex_unlock(&inode->i_mutex);
2034         return error;
2035 }
2036 EXPORT_SYMBOL_GPL(shmem_add_seals);
2037
2038 int shmem_get_seals(struct file *file)
2039 {
2040         if (file->f_op != &shmem_file_operations)
2041                 return -EINVAL;
2042
2043         return SHMEM_I(file_inode(file))->seals;
2044 }
2045 EXPORT_SYMBOL_GPL(shmem_get_seals);
2046
2047 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2048 {
2049         long error;
2050
2051         switch (cmd) {
2052         case F_ADD_SEALS:
2053                 /* disallow upper 32bit */
2054                 if (arg > UINT_MAX)
2055                         return -EINVAL;
2056
2057                 error = shmem_add_seals(file, arg);
2058                 break;
2059         case F_GET_SEALS:
2060                 error = shmem_get_seals(file);
2061                 break;
2062         default:
2063                 error = -EINVAL;
2064                 break;
2065         }
2066
2067         return error;
2068 }
2069
2070 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2071                                                          loff_t len)
2072 {
2073         struct inode *inode = file_inode(file);
2074         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2075         struct shmem_inode_info *info = SHMEM_I(inode);
2076         struct shmem_falloc shmem_falloc;
2077         pgoff_t start, index, end;
2078         int error;
2079
2080         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2081                 return -EOPNOTSUPP;
2082
2083         mutex_lock(&inode->i_mutex);
2084
2085         if (mode & FALLOC_FL_PUNCH_HOLE) {
2086                 struct address_space *mapping = file->f_mapping;
2087                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2088                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2089                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2090
2091                 /* protected by i_mutex */
2092                 if (info->seals & F_SEAL_WRITE) {
2093                         error = -EPERM;
2094                         goto out;
2095                 }
2096
2097                 shmem_falloc.waitq = &shmem_falloc_waitq;
2098                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2099                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2100                 spin_lock(&inode->i_lock);
2101                 inode->i_private = &shmem_falloc;
2102                 spin_unlock(&inode->i_lock);
2103
2104                 if ((u64)unmap_end > (u64)unmap_start)
2105                         unmap_mapping_range(mapping, unmap_start,
2106                                             1 + unmap_end - unmap_start, 0);
2107                 shmem_truncate_range(inode, offset, offset + len - 1);
2108                 /* No need to unmap again: hole-punching leaves COWed pages */
2109
2110                 spin_lock(&inode->i_lock);
2111                 inode->i_private = NULL;
2112                 wake_up_all(&shmem_falloc_waitq);
2113                 spin_unlock(&inode->i_lock);
2114                 error = 0;
2115                 goto out;
2116         }
2117
2118         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2119         error = inode_newsize_ok(inode, offset + len);
2120         if (error)
2121                 goto out;
2122
2123         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2124                 error = -EPERM;
2125                 goto out;
2126         }
2127
2128         start = offset >> PAGE_CACHE_SHIFT;
2129         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2130         /* Try to avoid a swapstorm if len is impossible to satisfy */
2131         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2132                 error = -ENOSPC;
2133                 goto out;
2134         }
2135
2136         shmem_falloc.waitq = NULL;
2137         shmem_falloc.start = start;
2138         shmem_falloc.next  = start;
2139         shmem_falloc.nr_falloced = 0;
2140         shmem_falloc.nr_unswapped = 0;
2141         spin_lock(&inode->i_lock);
2142         inode->i_private = &shmem_falloc;
2143         spin_unlock(&inode->i_lock);
2144
2145         for (index = start; index < end; index++) {
2146                 struct page *page;
2147
2148                 /*
2149                  * Good, the fallocate(2) manpage permits EINTR: we may have
2150                  * been interrupted because we are using up too much memory.
2151                  */
2152                 if (signal_pending(current))
2153                         error = -EINTR;
2154                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2155                         error = -ENOMEM;
2156                 else
2157                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2158                                                                         NULL);
2159                 if (error) {
2160                         /* Remove the !PageUptodate pages we added */
2161                         shmem_undo_range(inode,
2162                                 (loff_t)start << PAGE_CACHE_SHIFT,
2163                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
2164                         goto undone;
2165                 }
2166
2167                 /*
2168                  * Inform shmem_writepage() how far we have reached.
2169                  * No need for lock or barrier: we have the page lock.
2170                  */
2171                 shmem_falloc.next++;
2172                 if (!PageUptodate(page))
2173                         shmem_falloc.nr_falloced++;
2174
2175                 /*
2176                  * If !PageUptodate, leave it that way so that freeable pages
2177                  * can be recognized if we need to rollback on error later.
2178                  * But set_page_dirty so that memory pressure will swap rather
2179                  * than free the pages we are allocating (and SGP_CACHE pages
2180                  * might still be clean: we now need to mark those dirty too).
2181                  */
2182                 set_page_dirty(page);
2183                 unlock_page(page);
2184                 page_cache_release(page);
2185                 cond_resched();
2186         }
2187
2188         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2189                 i_size_write(inode, offset + len);
2190         inode->i_ctime = CURRENT_TIME;
2191 undone:
2192         spin_lock(&inode->i_lock);
2193         inode->i_private = NULL;
2194         spin_unlock(&inode->i_lock);
2195 out:
2196         mutex_unlock(&inode->i_mutex);
2197         return error;
2198 }
2199
2200 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2201 {
2202         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2203
2204         buf->f_type = TMPFS_MAGIC;
2205         buf->f_bsize = PAGE_CACHE_SIZE;
2206         buf->f_namelen = NAME_MAX;
2207         if (sbinfo->max_blocks) {
2208                 buf->f_blocks = sbinfo->max_blocks;
2209                 buf->f_bavail =
2210                 buf->f_bfree  = sbinfo->max_blocks -
2211                                 percpu_counter_sum(&sbinfo->used_blocks);
2212         }
2213         if (sbinfo->max_inodes) {
2214                 buf->f_files = sbinfo->max_inodes;
2215                 buf->f_ffree = sbinfo->free_inodes;
2216         }
2217         /* else leave those fields 0 like simple_statfs */
2218         return 0;
2219 }
2220
2221 /*
2222  * File creation. Allocate an inode, and we're done..
2223  */
2224 static int
2225 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2226 {
2227         struct inode *inode;
2228         int error = -ENOSPC;
2229
2230         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2231         if (inode) {
2232                 error = simple_acl_create(dir, inode);
2233                 if (error)
2234                         goto out_iput;
2235                 error = security_inode_init_security(inode, dir,
2236                                                      &dentry->d_name,
2237                                                      shmem_initxattrs, NULL);
2238                 if (error && error != -EOPNOTSUPP)
2239                         goto out_iput;
2240
2241                 error = 0;
2242                 dir->i_size += BOGO_DIRENT_SIZE;
2243                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2244                 d_instantiate(dentry, inode);
2245                 dget(dentry); /* Extra count - pin the dentry in core */
2246         }
2247         return error;
2248 out_iput:
2249         iput(inode);
2250         return error;
2251 }
2252
2253 static int
2254 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2255 {
2256         struct inode *inode;
2257         int error = -ENOSPC;
2258
2259         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2260         if (inode) {
2261                 error = security_inode_init_security(inode, dir,
2262                                                      NULL,
2263                                                      shmem_initxattrs, NULL);
2264                 if (error && error != -EOPNOTSUPP)
2265                         goto out_iput;
2266                 error = simple_acl_create(dir, inode);
2267                 if (error)
2268                         goto out_iput;
2269                 d_tmpfile(dentry, inode);
2270         }
2271         return error;
2272 out_iput:
2273         iput(inode);
2274         return error;
2275 }
2276
2277 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2278 {
2279         int error;
2280
2281         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2282                 return error;
2283         inc_nlink(dir);
2284         return 0;
2285 }
2286
2287 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2288                 bool excl)
2289 {
2290         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2291 }
2292
2293 /*
2294  * Link a file..
2295  */
2296 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2297 {
2298         struct inode *inode = d_inode(old_dentry);
2299         int ret;
2300
2301         /*
2302          * No ordinary (disk based) filesystem counts links as inodes;
2303          * but each new link needs a new dentry, pinning lowmem, and
2304          * tmpfs dentries cannot be pruned until they are unlinked.
2305          */
2306         ret = shmem_reserve_inode(inode->i_sb);
2307         if (ret)
2308                 goto out;
2309
2310         dir->i_size += BOGO_DIRENT_SIZE;
2311         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2312         inc_nlink(inode);
2313         ihold(inode);   /* New dentry reference */
2314         dget(dentry);           /* Extra pinning count for the created dentry */
2315         d_instantiate(dentry, inode);
2316 out:
2317         return ret;
2318 }
2319
2320 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2321 {
2322         struct inode *inode = d_inode(dentry);
2323
2324         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2325                 shmem_free_inode(inode->i_sb);
2326
2327         dir->i_size -= BOGO_DIRENT_SIZE;
2328         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2329         drop_nlink(inode);
2330         dput(dentry);   /* Undo the count from "create" - this does all the work */
2331         return 0;
2332 }
2333
2334 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2335 {
2336         if (!simple_empty(dentry))
2337                 return -ENOTEMPTY;
2338
2339         drop_nlink(d_inode(dentry));
2340         drop_nlink(dir);
2341         return shmem_unlink(dir, dentry);
2342 }
2343
2344 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2345 {
2346         bool old_is_dir = d_is_dir(old_dentry);
2347         bool new_is_dir = d_is_dir(new_dentry);
2348
2349         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2350                 if (old_is_dir) {
2351                         drop_nlink(old_dir);
2352                         inc_nlink(new_dir);
2353                 } else {
2354                         drop_nlink(new_dir);
2355                         inc_nlink(old_dir);
2356                 }
2357         }
2358         old_dir->i_ctime = old_dir->i_mtime =
2359         new_dir->i_ctime = new_dir->i_mtime =
2360         d_inode(old_dentry)->i_ctime =
2361         d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2362
2363         return 0;
2364 }
2365
2366 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2367 {
2368         struct dentry *whiteout;
2369         int error;
2370
2371         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2372         if (!whiteout)
2373                 return -ENOMEM;
2374
2375         error = shmem_mknod(old_dir, whiteout,
2376                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2377         dput(whiteout);
2378         if (error)
2379                 return error;
2380
2381         /*
2382          * Cheat and hash the whiteout while the old dentry is still in
2383          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2384          *
2385          * d_lookup() will consistently find one of them at this point,
2386          * not sure which one, but that isn't even important.
2387          */
2388         d_rehash(whiteout);
2389         return 0;
2390 }
2391
2392 /*
2393  * The VFS layer already does all the dentry stuff for rename,
2394  * we just have to decrement the usage count for the target if
2395  * it exists so that the VFS layer correctly free's it when it
2396  * gets overwritten.
2397  */
2398 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2399 {
2400         struct inode *inode = d_inode(old_dentry);
2401         int they_are_dirs = S_ISDIR(inode->i_mode);
2402
2403         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2404                 return -EINVAL;
2405
2406         if (flags & RENAME_EXCHANGE)
2407                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2408
2409         if (!simple_empty(new_dentry))
2410                 return -ENOTEMPTY;
2411
2412         if (flags & RENAME_WHITEOUT) {
2413                 int error;
2414
2415                 error = shmem_whiteout(old_dir, old_dentry);
2416                 if (error)
2417                         return error;
2418         }
2419
2420         if (d_really_is_positive(new_dentry)) {
2421                 (void) shmem_unlink(new_dir, new_dentry);
2422                 if (they_are_dirs) {
2423                         drop_nlink(d_inode(new_dentry));
2424                         drop_nlink(old_dir);
2425                 }
2426         } else if (they_are_dirs) {
2427                 drop_nlink(old_dir);
2428                 inc_nlink(new_dir);
2429         }
2430
2431         old_dir->i_size -= BOGO_DIRENT_SIZE;
2432         new_dir->i_size += BOGO_DIRENT_SIZE;
2433         old_dir->i_ctime = old_dir->i_mtime =
2434         new_dir->i_ctime = new_dir->i_mtime =
2435         inode->i_ctime = CURRENT_TIME;
2436         return 0;
2437 }
2438
2439 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2440 {
2441         int error;
2442         int len;
2443         struct inode *inode;
2444         struct page *page;
2445         char *kaddr;
2446         struct shmem_inode_info *info;
2447
2448         len = strlen(symname) + 1;
2449         if (len > PAGE_CACHE_SIZE)
2450                 return -ENAMETOOLONG;
2451
2452         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2453         if (!inode)
2454                 return -ENOSPC;
2455
2456         error = security_inode_init_security(inode, dir, &dentry->d_name,
2457                                              shmem_initxattrs, NULL);
2458         if (error) {
2459                 if (error != -EOPNOTSUPP) {
2460                         iput(inode);
2461                         return error;
2462                 }
2463                 error = 0;
2464         }
2465
2466         info = SHMEM_I(inode);
2467         inode->i_size = len-1;
2468         if (len <= SHORT_SYMLINK_LEN) {
2469                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2470                 if (!info->symlink) {
2471                         iput(inode);
2472                         return -ENOMEM;
2473                 }
2474                 inode->i_op = &shmem_short_symlink_operations;
2475                 inode->i_link = info->symlink;
2476         } else {
2477                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2478                 if (error) {
2479                         iput(inode);
2480                         return error;
2481                 }
2482                 inode->i_mapping->a_ops = &shmem_aops;
2483                 inode->i_op = &shmem_symlink_inode_operations;
2484                 kaddr = kmap_atomic(page);
2485                 memcpy(kaddr, symname, len);
2486                 kunmap_atomic(kaddr);
2487                 SetPageUptodate(page);
2488                 set_page_dirty(page);
2489                 unlock_page(page);
2490                 page_cache_release(page);
2491         }
2492         dir->i_size += BOGO_DIRENT_SIZE;
2493         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2494         d_instantiate(dentry, inode);
2495         dget(dentry);
2496         return 0;
2497 }
2498
2499 static const char *shmem_follow_link(struct dentry *dentry, void **cookie)
2500 {
2501         struct page *page = NULL;
2502         int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
2503         if (error)
2504                 return ERR_PTR(error);
2505         unlock_page(page);
2506         *cookie = page;
2507         return kmap(page);
2508 }
2509
2510 static void shmem_put_link(struct inode *unused, void *cookie)
2511 {
2512         struct page *page = cookie;
2513         kunmap(page);
2514         mark_page_accessed(page);
2515         page_cache_release(page);
2516 }
2517
2518 #ifdef CONFIG_TMPFS_XATTR
2519 /*
2520  * Superblocks without xattr inode operations may get some security.* xattr
2521  * support from the LSM "for free". As soon as we have any other xattrs
2522  * like ACLs, we also need to implement the security.* handlers at
2523  * filesystem level, though.
2524  */
2525
2526 /*
2527  * Callback for security_inode_init_security() for acquiring xattrs.
2528  */
2529 static int shmem_initxattrs(struct inode *inode,
2530                             const struct xattr *xattr_array,
2531                             void *fs_info)
2532 {
2533         struct shmem_inode_info *info = SHMEM_I(inode);
2534         const struct xattr *xattr;
2535         struct simple_xattr *new_xattr;
2536         size_t len;
2537
2538         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2539                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2540                 if (!new_xattr)
2541                         return -ENOMEM;
2542
2543                 len = strlen(xattr->name) + 1;
2544                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2545                                           GFP_KERNEL);
2546                 if (!new_xattr->name) {
2547                         kfree(new_xattr);
2548                         return -ENOMEM;
2549                 }
2550
2551                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2552                        XATTR_SECURITY_PREFIX_LEN);
2553                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2554                        xattr->name, len);
2555
2556                 simple_xattr_list_add(&info->xattrs, new_xattr);
2557         }
2558
2559         return 0;
2560 }
2561
2562 static const struct xattr_handler *shmem_xattr_handlers[] = {
2563 #ifdef CONFIG_TMPFS_POSIX_ACL
2564         &posix_acl_access_xattr_handler,
2565         &posix_acl_default_xattr_handler,
2566 #endif
2567         NULL
2568 };
2569
2570 static int shmem_xattr_validate(const char *name)
2571 {
2572         struct { const char *prefix; size_t len; } arr[] = {
2573                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2574                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2575         };
2576         int i;
2577
2578         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2579                 size_t preflen = arr[i].len;
2580                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2581                         if (!name[preflen])
2582                                 return -EINVAL;
2583                         return 0;
2584                 }
2585         }
2586         return -EOPNOTSUPP;
2587 }
2588
2589 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2590                               void *buffer, size_t size)
2591 {
2592         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2593         int err;
2594
2595         /*
2596          * If this is a request for a synthetic attribute in the system.*
2597          * namespace use the generic infrastructure to resolve a handler
2598          * for it via sb->s_xattr.
2599          */
2600         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2601                 return generic_getxattr(dentry, name, buffer, size);
2602
2603         err = shmem_xattr_validate(name);
2604         if (err)
2605                 return err;
2606
2607         return simple_xattr_get(&info->xattrs, name, buffer, size);
2608 }
2609
2610 static int shmem_setxattr(struct dentry *dentry, const char *name,
2611                           const void *value, size_t size, int flags)
2612 {
2613         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2614         int err;
2615
2616         /*
2617          * If this is a request for a synthetic attribute in the system.*
2618          * namespace use the generic infrastructure to resolve a handler
2619          * for it via sb->s_xattr.
2620          */
2621         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2622                 return generic_setxattr(dentry, name, value, size, flags);
2623
2624         err = shmem_xattr_validate(name);
2625         if (err)
2626                 return err;
2627
2628         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2629 }
2630
2631 static int shmem_removexattr(struct dentry *dentry, const char *name)
2632 {
2633         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2634         int err;
2635
2636         /*
2637          * If this is a request for a synthetic attribute in the system.*
2638          * namespace use the generic infrastructure to resolve a handler
2639          * for it via sb->s_xattr.
2640          */
2641         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2642                 return generic_removexattr(dentry, name);
2643
2644         err = shmem_xattr_validate(name);
2645         if (err)
2646                 return err;
2647
2648         return simple_xattr_remove(&info->xattrs, name);
2649 }
2650
2651 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2652 {
2653         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2654         return simple_xattr_list(&info->xattrs, buffer, size);
2655 }
2656 #endif /* CONFIG_TMPFS_XATTR */
2657
2658 static const struct inode_operations shmem_short_symlink_operations = {
2659         .readlink       = generic_readlink,
2660         .follow_link    = simple_follow_link,
2661 #ifdef CONFIG_TMPFS_XATTR
2662         .setxattr       = shmem_setxattr,
2663         .getxattr       = shmem_getxattr,
2664         .listxattr      = shmem_listxattr,
2665         .removexattr    = shmem_removexattr,
2666 #endif
2667 };
2668
2669 static const struct inode_operations shmem_symlink_inode_operations = {
2670         .readlink       = generic_readlink,
2671         .follow_link    = shmem_follow_link,
2672         .put_link       = shmem_put_link,
2673 #ifdef CONFIG_TMPFS_XATTR
2674         .setxattr       = shmem_setxattr,
2675         .getxattr       = shmem_getxattr,
2676         .listxattr      = shmem_listxattr,
2677         .removexattr    = shmem_removexattr,
2678 #endif
2679 };
2680
2681 static struct dentry *shmem_get_parent(struct dentry *child)
2682 {
2683         return ERR_PTR(-ESTALE);
2684 }
2685
2686 static int shmem_match(struct inode *ino, void *vfh)
2687 {
2688         __u32 *fh = vfh;
2689         __u64 inum = fh[2];
2690         inum = (inum << 32) | fh[1];
2691         return ino->i_ino == inum && fh[0] == ino->i_generation;
2692 }
2693
2694 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2695                 struct fid *fid, int fh_len, int fh_type)
2696 {
2697         struct inode *inode;
2698         struct dentry *dentry = NULL;
2699         u64 inum;
2700
2701         if (fh_len < 3)
2702                 return NULL;
2703
2704         inum = fid->raw[2];
2705         inum = (inum << 32) | fid->raw[1];
2706
2707         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2708                         shmem_match, fid->raw);
2709         if (inode) {
2710                 dentry = d_find_alias(inode);
2711                 iput(inode);
2712         }
2713
2714         return dentry;
2715 }
2716
2717 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2718                                 struct inode *parent)
2719 {
2720         if (*len < 3) {
2721                 *len = 3;
2722                 return FILEID_INVALID;
2723         }
2724
2725         if (inode_unhashed(inode)) {
2726                 /* Unfortunately insert_inode_hash is not idempotent,
2727                  * so as we hash inodes here rather than at creation
2728                  * time, we need a lock to ensure we only try
2729                  * to do it once
2730                  */
2731                 static DEFINE_SPINLOCK(lock);
2732                 spin_lock(&lock);
2733                 if (inode_unhashed(inode))
2734                         __insert_inode_hash(inode,
2735                                             inode->i_ino + inode->i_generation);
2736                 spin_unlock(&lock);
2737         }
2738
2739         fh[0] = inode->i_generation;
2740         fh[1] = inode->i_ino;
2741         fh[2] = ((__u64)inode->i_ino) >> 32;
2742
2743         *len = 3;
2744         return 1;
2745 }
2746
2747 static const struct export_operations shmem_export_ops = {
2748         .get_parent     = shmem_get_parent,
2749         .encode_fh      = shmem_encode_fh,
2750         .fh_to_dentry   = shmem_fh_to_dentry,
2751 };
2752
2753 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2754                                bool remount)
2755 {
2756         char *this_char, *value, *rest;
2757         struct mempolicy *mpol = NULL;
2758         uid_t uid;
2759         gid_t gid;
2760
2761         while (options != NULL) {
2762                 this_char = options;
2763                 for (;;) {
2764                         /*
2765                          * NUL-terminate this option: unfortunately,
2766                          * mount options form a comma-separated list,
2767                          * but mpol's nodelist may also contain commas.
2768                          */
2769                         options = strchr(options, ',');
2770                         if (options == NULL)
2771                                 break;
2772                         options++;
2773                         if (!isdigit(*options)) {
2774                                 options[-1] = '\0';
2775                                 break;
2776                         }
2777                 }
2778                 if (!*this_char)
2779                         continue;
2780                 if ((value = strchr(this_char,'=')) != NULL) {
2781                         *value++ = 0;
2782                 } else {
2783                         printk(KERN_ERR
2784                             "tmpfs: No value for mount option '%s'\n",
2785                             this_char);
2786                         goto error;
2787                 }
2788
2789                 if (!strcmp(this_char,"size")) {
2790                         unsigned long long size;
2791                         size = memparse(value,&rest);
2792                         if (*rest == '%') {
2793                                 size <<= PAGE_SHIFT;
2794                                 size *= totalram_pages;
2795                                 do_div(size, 100);
2796                                 rest++;
2797                         }
2798                         if (*rest)
2799                                 goto bad_val;
2800                         sbinfo->max_blocks =
2801                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2802                 } else if (!strcmp(this_char,"nr_blocks")) {
2803                         sbinfo->max_blocks = memparse(value, &rest);
2804                         if (*rest)
2805                                 goto bad_val;
2806                 } else if (!strcmp(this_char,"nr_inodes")) {
2807                         sbinfo->max_inodes = memparse(value, &rest);
2808                         if (*rest)
2809                                 goto bad_val;
2810                 } else if (!strcmp(this_char,"mode")) {
2811                         if (remount)
2812                                 continue;
2813                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2814                         if (*rest)
2815                                 goto bad_val;
2816                 } else if (!strcmp(this_char,"uid")) {
2817                         if (remount)
2818                                 continue;
2819                         uid = simple_strtoul(value, &rest, 0);
2820                         if (*rest)
2821                                 goto bad_val;
2822                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2823                         if (!uid_valid(sbinfo->uid))
2824                                 goto bad_val;
2825                 } else if (!strcmp(this_char,"gid")) {
2826                         if (remount)
2827                                 continue;
2828                         gid = simple_strtoul(value, &rest, 0);
2829                         if (*rest)
2830                                 goto bad_val;
2831                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2832                         if (!gid_valid(sbinfo->gid))
2833                                 goto bad_val;
2834                 } else if (!strcmp(this_char,"mpol")) {
2835                         mpol_put(mpol);
2836                         mpol = NULL;
2837                         if (mpol_parse_str(value, &mpol))
2838                                 goto bad_val;
2839                 } else {
2840                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2841                                this_char);
2842                         goto error;
2843                 }
2844         }
2845         sbinfo->mpol = mpol;
2846         return 0;
2847
2848 bad_val:
2849         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2850                value, this_char);
2851 error:
2852         mpol_put(mpol);
2853         return 1;
2854
2855 }
2856
2857 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2858 {
2859         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2860         struct shmem_sb_info config = *sbinfo;
2861         unsigned long inodes;
2862         int error = -EINVAL;
2863
2864         config.mpol = NULL;
2865         if (shmem_parse_options(data, &config, true))
2866                 return error;
2867
2868         spin_lock(&sbinfo->stat_lock);
2869         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2870         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2871                 goto out;
2872         if (config.max_inodes < inodes)
2873                 goto out;
2874         /*
2875          * Those tests disallow limited->unlimited while any are in use;
2876          * but we must separately disallow unlimited->limited, because
2877          * in that case we have no record of how much is already in use.
2878          */
2879         if (config.max_blocks && !sbinfo->max_blocks)
2880                 goto out;
2881         if (config.max_inodes && !sbinfo->max_inodes)
2882                 goto out;
2883
2884         error = 0;
2885         sbinfo->max_blocks  = config.max_blocks;
2886         sbinfo->max_inodes  = config.max_inodes;
2887         sbinfo->free_inodes = config.max_inodes - inodes;
2888
2889         /*
2890          * Preserve previous mempolicy unless mpol remount option was specified.
2891          */
2892         if (config.mpol) {
2893                 mpol_put(sbinfo->mpol);
2894                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2895         }
2896 out:
2897         spin_unlock(&sbinfo->stat_lock);
2898         return error;
2899 }
2900
2901 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2902 {
2903         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2904
2905         if (sbinfo->max_blocks != shmem_default_max_blocks())
2906                 seq_printf(seq, ",size=%luk",
2907                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2908         if (sbinfo->max_inodes != shmem_default_max_inodes())
2909                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2910         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2911                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2912         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2913                 seq_printf(seq, ",uid=%u",
2914                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2915         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2916                 seq_printf(seq, ",gid=%u",
2917                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2918         shmem_show_mpol(seq, sbinfo->mpol);
2919         return 0;
2920 }
2921
2922 #define MFD_NAME_PREFIX "memfd:"
2923 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2924 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2925
2926 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2927
2928 SYSCALL_DEFINE2(memfd_create,
2929                 const char __user *, uname,
2930                 unsigned int, flags)
2931 {
2932         struct shmem_inode_info *info;
2933         struct file *file;
2934         int fd, error;
2935         char *name;
2936         long len;
2937
2938         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2939                 return -EINVAL;
2940
2941         /* length includes terminating zero */
2942         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2943         if (len <= 0)
2944                 return -EFAULT;
2945         if (len > MFD_NAME_MAX_LEN + 1)
2946                 return -EINVAL;
2947
2948         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2949         if (!name)
2950                 return -ENOMEM;
2951
2952         strcpy(name, MFD_NAME_PREFIX);
2953         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2954                 error = -EFAULT;
2955                 goto err_name;
2956         }
2957
2958         /* terminating-zero may have changed after strnlen_user() returned */
2959         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2960                 error = -EFAULT;
2961                 goto err_name;
2962         }
2963
2964         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2965         if (fd < 0) {
2966                 error = fd;
2967                 goto err_name;
2968         }
2969
2970         file = shmem_file_setup(name, 0, VM_NORESERVE);
2971         if (IS_ERR(file)) {
2972                 error = PTR_ERR(file);
2973                 goto err_fd;
2974         }
2975         info = SHMEM_I(file_inode(file));
2976         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2977         file->f_flags |= O_RDWR | O_LARGEFILE;
2978         if (flags & MFD_ALLOW_SEALING)
2979                 info->seals &= ~F_SEAL_SEAL;
2980
2981         fd_install(fd, file);
2982         kfree(name);
2983         return fd;
2984
2985 err_fd:
2986         put_unused_fd(fd);
2987 err_name:
2988         kfree(name);
2989         return error;
2990 }
2991
2992 #endif /* CONFIG_TMPFS */
2993
2994 static void shmem_put_super(struct super_block *sb)
2995 {
2996         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2997
2998         percpu_counter_destroy(&sbinfo->used_blocks);
2999         mpol_put(sbinfo->mpol);
3000         kfree(sbinfo);
3001         sb->s_fs_info = NULL;
3002 }
3003
3004 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3005 {
3006         struct inode *inode;
3007         struct shmem_sb_info *sbinfo;
3008         int err = -ENOMEM;
3009
3010         /* Round up to L1_CACHE_BYTES to resist false sharing */
3011         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3012                                 L1_CACHE_BYTES), GFP_KERNEL);
3013         if (!sbinfo)
3014                 return -ENOMEM;
3015
3016         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3017         sbinfo->uid = current_fsuid();
3018         sbinfo->gid = current_fsgid();
3019         sb->s_fs_info = sbinfo;
3020
3021 #ifdef CONFIG_TMPFS
3022         /*
3023          * Per default we only allow half of the physical ram per
3024          * tmpfs instance, limiting inodes to one per page of lowmem;
3025          * but the internal instance is left unlimited.
3026          */
3027         if (!(sb->s_flags & MS_KERNMOUNT)) {
3028                 sbinfo->max_blocks = shmem_default_max_blocks();
3029                 sbinfo->max_inodes = shmem_default_max_inodes();
3030                 if (shmem_parse_options(data, sbinfo, false)) {
3031                         err = -EINVAL;
3032                         goto failed;
3033                 }
3034         } else {
3035                 sb->s_flags |= MS_NOUSER;
3036         }
3037         sb->s_export_op = &shmem_export_ops;
3038         sb->s_flags |= MS_NOSEC;
3039 #else
3040         sb->s_flags |= MS_NOUSER;
3041 #endif
3042
3043         spin_lock_init(&sbinfo->stat_lock);
3044         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3045                 goto failed;
3046         sbinfo->free_inodes = sbinfo->max_inodes;
3047
3048         sb->s_maxbytes = MAX_LFS_FILESIZE;
3049         sb->s_blocksize = PAGE_CACHE_SIZE;
3050         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3051         sb->s_magic = TMPFS_MAGIC;
3052         sb->s_op = &shmem_ops;
3053         sb->s_time_gran = 1;
3054 #ifdef CONFIG_TMPFS_XATTR
3055         sb->s_xattr = shmem_xattr_handlers;
3056 #endif
3057 #ifdef CONFIG_TMPFS_POSIX_ACL
3058         sb->s_flags |= MS_POSIXACL;
3059 #endif
3060
3061         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3062         if (!inode)
3063                 goto failed;
3064         inode->i_uid = sbinfo->uid;
3065         inode->i_gid = sbinfo->gid;
3066         sb->s_root = d_make_root(inode);
3067         if (!sb->s_root)
3068                 goto failed;
3069         return 0;
3070
3071 failed:
3072         shmem_put_super(sb);
3073         return err;
3074 }
3075
3076 static struct kmem_cache *shmem_inode_cachep;
3077
3078 static struct inode *shmem_alloc_inode(struct super_block *sb)
3079 {
3080         struct shmem_inode_info *info;
3081         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3082         if (!info)
3083                 return NULL;
3084         return &info->vfs_inode;
3085 }
3086
3087 static void shmem_destroy_callback(struct rcu_head *head)
3088 {
3089         struct inode *inode = container_of(head, struct inode, i_rcu);
3090         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3091 }
3092
3093 static void shmem_destroy_inode(struct inode *inode)
3094 {
3095         if (S_ISREG(inode->i_mode))
3096                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3097         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3098 }
3099
3100 static void shmem_init_inode(void *foo)
3101 {
3102         struct shmem_inode_info *info = foo;
3103         inode_init_once(&info->vfs_inode);
3104 }
3105
3106 static int shmem_init_inodecache(void)
3107 {
3108         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3109                                 sizeof(struct shmem_inode_info),
3110                                 0, SLAB_PANIC, shmem_init_inode);
3111         return 0;
3112 }
3113
3114 static void shmem_destroy_inodecache(void)
3115 {
3116         kmem_cache_destroy(shmem_inode_cachep);
3117 }
3118
3119 static const struct address_space_operations shmem_aops = {
3120         .writepage      = shmem_writepage,
3121         .set_page_dirty = __set_page_dirty_no_writeback,
3122 #ifdef CONFIG_TMPFS
3123         .write_begin    = shmem_write_begin,
3124         .write_end      = shmem_write_end,
3125 #endif
3126 #ifdef CONFIG_MIGRATION
3127         .migratepage    = migrate_page,
3128 #endif
3129         .error_remove_page = generic_error_remove_page,
3130 };
3131
3132 static const struct file_operations shmem_file_operations = {
3133         .mmap           = shmem_mmap,
3134 #ifdef CONFIG_TMPFS
3135         .llseek         = shmem_file_llseek,
3136         .read_iter      = shmem_file_read_iter,
3137         .write_iter     = generic_file_write_iter,
3138         .fsync          = noop_fsync,
3139         .splice_read    = shmem_file_splice_read,
3140         .splice_write   = iter_file_splice_write,
3141         .fallocate      = shmem_fallocate,
3142 #endif
3143 };
3144
3145 static const struct inode_operations shmem_inode_operations = {
3146         .getattr        = shmem_getattr,
3147         .setattr        = shmem_setattr,
3148 #ifdef CONFIG_TMPFS_XATTR
3149         .setxattr       = shmem_setxattr,
3150         .getxattr       = shmem_getxattr,
3151         .listxattr      = shmem_listxattr,
3152         .removexattr    = shmem_removexattr,
3153         .set_acl        = simple_set_acl,
3154 #endif
3155 };
3156
3157 static const struct inode_operations shmem_dir_inode_operations = {
3158 #ifdef CONFIG_TMPFS
3159         .create         = shmem_create,
3160         .lookup         = simple_lookup,
3161         .link           = shmem_link,
3162         .unlink         = shmem_unlink,
3163         .symlink        = shmem_symlink,
3164         .mkdir          = shmem_mkdir,
3165         .rmdir          = shmem_rmdir,
3166         .mknod          = shmem_mknod,
3167         .rename2        = shmem_rename2,
3168         .tmpfile        = shmem_tmpfile,
3169 #endif
3170 #ifdef CONFIG_TMPFS_XATTR
3171         .setxattr       = shmem_setxattr,
3172         .getxattr       = shmem_getxattr,
3173         .listxattr      = shmem_listxattr,
3174         .removexattr    = shmem_removexattr,
3175 #endif
3176 #ifdef CONFIG_TMPFS_POSIX_ACL
3177         .setattr        = shmem_setattr,
3178         .set_acl        = simple_set_acl,
3179 #endif
3180 };
3181
3182 static const struct inode_operations shmem_special_inode_operations = {
3183 #ifdef CONFIG_TMPFS_XATTR
3184         .setxattr       = shmem_setxattr,
3185         .getxattr       = shmem_getxattr,
3186         .listxattr      = shmem_listxattr,
3187         .removexattr    = shmem_removexattr,
3188 #endif
3189 #ifdef CONFIG_TMPFS_POSIX_ACL
3190         .setattr        = shmem_setattr,
3191         .set_acl        = simple_set_acl,
3192 #endif
3193 };
3194
3195 static const struct super_operations shmem_ops = {
3196         .alloc_inode    = shmem_alloc_inode,
3197         .destroy_inode  = shmem_destroy_inode,
3198 #ifdef CONFIG_TMPFS
3199         .statfs         = shmem_statfs,
3200         .remount_fs     = shmem_remount_fs,
3201         .show_options   = shmem_show_options,
3202 #endif
3203         .evict_inode    = shmem_evict_inode,
3204         .drop_inode     = generic_delete_inode,
3205         .put_super      = shmem_put_super,
3206 };
3207
3208 static const struct vm_operations_struct shmem_vm_ops = {
3209         .fault          = shmem_fault,
3210         .map_pages      = filemap_map_pages,
3211 #ifdef CONFIG_NUMA
3212         .set_policy     = shmem_set_policy,
3213         .get_policy     = shmem_get_policy,
3214 #endif
3215 };
3216
3217 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3218         int flags, const char *dev_name, void *data)
3219 {
3220         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3221 }
3222
3223 static struct file_system_type shmem_fs_type = {
3224         .owner          = THIS_MODULE,
3225         .name           = "tmpfs",
3226         .mount          = shmem_mount,
3227         .kill_sb        = kill_litter_super,
3228         .fs_flags       = FS_USERNS_MOUNT,
3229 };
3230
3231 int __init shmem_init(void)
3232 {
3233         int error;
3234
3235         /* If rootfs called this, don't re-init */
3236         if (shmem_inode_cachep)
3237                 return 0;
3238
3239         error = shmem_init_inodecache();
3240         if (error)
3241                 goto out3;
3242
3243         error = register_filesystem(&shmem_fs_type);
3244         if (error) {
3245                 printk(KERN_ERR "Could not register tmpfs\n");
3246                 goto out2;
3247         }
3248
3249         shm_mnt = kern_mount(&shmem_fs_type);
3250         if (IS_ERR(shm_mnt)) {
3251                 error = PTR_ERR(shm_mnt);
3252                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3253                 goto out1;
3254         }
3255         return 0;
3256
3257 out1:
3258         unregister_filesystem(&shmem_fs_type);
3259 out2:
3260         shmem_destroy_inodecache();
3261 out3:
3262         shm_mnt = ERR_PTR(error);
3263         return error;
3264 }
3265
3266 #else /* !CONFIG_SHMEM */
3267
3268 /*
3269  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3270  *
3271  * This is intended for small system where the benefits of the full
3272  * shmem code (swap-backed and resource-limited) are outweighed by
3273  * their complexity. On systems without swap this code should be
3274  * effectively equivalent, but much lighter weight.
3275  */
3276
3277 static struct file_system_type shmem_fs_type = {
3278         .name           = "tmpfs",
3279         .mount          = ramfs_mount,
3280         .kill_sb        = kill_litter_super,
3281         .fs_flags       = FS_USERNS_MOUNT,
3282 };
3283
3284 int __init shmem_init(void)
3285 {
3286         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3287
3288         shm_mnt = kern_mount(&shmem_fs_type);
3289         BUG_ON(IS_ERR(shm_mnt));
3290
3291         return 0;
3292 }
3293
3294 int shmem_unuse(swp_entry_t swap, struct page *page)
3295 {
3296         return 0;
3297 }
3298
3299 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3300 {
3301         return 0;
3302 }
3303
3304 void shmem_unlock_mapping(struct address_space *mapping)
3305 {
3306 }
3307
3308 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3309 {
3310         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3311 }
3312 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3313
3314 #define shmem_vm_ops                            generic_file_vm_ops
3315 #define shmem_file_operations                   ramfs_file_operations
3316 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3317 #define shmem_acct_size(flags, size)            0
3318 #define shmem_unacct_size(flags, size)          do {} while (0)
3319
3320 #endif /* CONFIG_SHMEM */
3321
3322 /* common code */
3323
3324 static struct dentry_operations anon_ops = {
3325         .d_dname = simple_dname
3326 };
3327
3328 static struct file *__shmem_file_setup(const char *name, loff_t size,
3329                                        unsigned long flags, unsigned int i_flags)
3330 {
3331         struct file *res;
3332         struct inode *inode;
3333         struct path path;
3334         struct super_block *sb;
3335         struct qstr this;
3336
3337         if (IS_ERR(shm_mnt))
3338                 return ERR_CAST(shm_mnt);
3339
3340         if (size < 0 || size > MAX_LFS_FILESIZE)
3341                 return ERR_PTR(-EINVAL);
3342
3343         if (shmem_acct_size(flags, size))
3344                 return ERR_PTR(-ENOMEM);
3345
3346         res = ERR_PTR(-ENOMEM);
3347         this.name = name;
3348         this.len = strlen(name);
3349         this.hash = 0; /* will go */
3350         sb = shm_mnt->mnt_sb;
3351         path.mnt = mntget(shm_mnt);
3352         path.dentry = d_alloc_pseudo(sb, &this);
3353         if (!path.dentry)
3354                 goto put_memory;
3355         d_set_d_op(path.dentry, &anon_ops);
3356
3357         res = ERR_PTR(-ENOSPC);
3358         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3359         if (!inode)
3360                 goto put_memory;
3361
3362         inode->i_flags |= i_flags;
3363         d_instantiate(path.dentry, inode);
3364         inode->i_size = size;
3365         clear_nlink(inode);     /* It is unlinked */
3366         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3367         if (IS_ERR(res))
3368                 goto put_path;
3369
3370         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3371                   &shmem_file_operations);
3372         if (IS_ERR(res))
3373                 goto put_path;
3374
3375         return res;
3376
3377 put_memory:
3378         shmem_unacct_size(flags, size);
3379 put_path:
3380         path_put(&path);
3381         return res;
3382 }
3383
3384 /**
3385  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3386  *      kernel internal.  There will be NO LSM permission checks against the
3387  *      underlying inode.  So users of this interface must do LSM checks at a
3388  *      higher layer.  The users are the big_key and shm implementations.  LSM
3389  *      checks are provided at the key or shm level rather than the inode.
3390  * @name: name for dentry (to be seen in /proc/<pid>/maps
3391  * @size: size to be set for the file
3392  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3393  */
3394 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3395 {
3396         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3397 }
3398
3399 /**
3400  * shmem_file_setup - get an unlinked file living in tmpfs
3401  * @name: name for dentry (to be seen in /proc/<pid>/maps
3402  * @size: size to be set for the file
3403  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3404  */
3405 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3406 {
3407         return __shmem_file_setup(name, size, flags, 0);
3408 }
3409 EXPORT_SYMBOL_GPL(shmem_file_setup);
3410
3411 /**
3412  * shmem_zero_setup - setup a shared anonymous mapping
3413  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3414  */
3415 int shmem_zero_setup(struct vm_area_struct *vma)
3416 {
3417         struct file *file;
3418         loff_t size = vma->vm_end - vma->vm_start;
3419
3420         /*
3421          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3422          * between XFS directory reading and selinux: since this file is only
3423          * accessible to the user through its mapping, use S_PRIVATE flag to
3424          * bypass file security, in the same way as shmem_kernel_file_setup().
3425          */
3426         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3427         if (IS_ERR(file))
3428                 return PTR_ERR(file);
3429
3430         if (vma->vm_file)
3431                 fput(vma->vm_file);
3432         vma->vm_file = file;
3433         vma->vm_ops = &shmem_vm_ops;
3434         return 0;
3435 }
3436
3437 /**
3438  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3439  * @mapping:    the page's address_space
3440  * @index:      the page index
3441  * @gfp:        the page allocator flags to use if allocating
3442  *
3443  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3444  * with any new page allocations done using the specified allocation flags.
3445  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3446  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3447  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3448  *
3449  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3450  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3451  */
3452 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3453                                          pgoff_t index, gfp_t gfp)
3454 {
3455 #ifdef CONFIG_SHMEM
3456         struct inode *inode = mapping->host;
3457         struct page *page;
3458         int error;
3459
3460         BUG_ON(mapping->a_ops != &shmem_aops);
3461         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3462         if (error)
3463                 page = ERR_PTR(error);
3464         else
3465                 unlock_page(page);
3466         return page;
3467 #else
3468         /*
3469          * The tiny !SHMEM case uses ramfs without swap
3470          */
3471         return read_cache_page_gfp(mapping, index, gfp);
3472 #endif
3473 }
3474 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);