mm: memcontrol: group kmem init and exit functions together
[cascardo/linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59
60 /*
61  * all active swap_info_structs
62  * protected with swap_lock, and ordered by priority.
63  */
64 PLIST_HEAD(swap_active_head);
65
66 /*
67  * all available (active, not full) swap_info_structs
68  * protected with swap_avail_lock, ordered by priority.
69  * This is used by get_swap_page() instead of swap_active_head
70  * because swap_active_head includes all swap_info_structs,
71  * but get_swap_page() doesn't need to look at full ones.
72  * This uses its own lock instead of swap_lock because when a
73  * swap_info_struct changes between not-full/full, it needs to
74  * add/remove itself to/from this list, but the swap_info_struct->lock
75  * is held and the locking order requires swap_lock to be taken
76  * before any swap_info_struct->lock.
77  */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82
83 static DEFINE_MUTEX(swapon_mutex);
84
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
89 static inline unsigned char swap_count(unsigned char ent)
90 {
91         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
92 }
93
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98         swp_entry_t entry = swp_entry(si->type, offset);
99         struct page *page;
100         int ret = 0;
101
102         page = find_get_page(swap_address_space(entry), entry.val);
103         if (!page)
104                 return 0;
105         /*
106          * This function is called from scan_swap_map() and it's called
107          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108          * We have to use trylock for avoiding deadlock. This is a special
109          * case and you should use try_to_free_swap() with explicit lock_page()
110          * in usual operations.
111          */
112         if (trylock_page(page)) {
113                 ret = try_to_free_swap(page);
114                 unlock_page(page);
115         }
116         page_cache_release(page);
117         return ret;
118 }
119
120 /*
121  * swapon tell device that all the old swap contents can be discarded,
122  * to allow the swap device to optimize its wear-levelling.
123  */
124 static int discard_swap(struct swap_info_struct *si)
125 {
126         struct swap_extent *se;
127         sector_t start_block;
128         sector_t nr_blocks;
129         int err = 0;
130
131         /* Do not discard the swap header page! */
132         se = &si->first_swap_extent;
133         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135         if (nr_blocks) {
136                 err = blkdev_issue_discard(si->bdev, start_block,
137                                 nr_blocks, GFP_KERNEL, 0);
138                 if (err)
139                         return err;
140                 cond_resched();
141         }
142
143         list_for_each_entry(se, &si->first_swap_extent.list, list) {
144                 start_block = se->start_block << (PAGE_SHIFT - 9);
145                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146
147                 err = blkdev_issue_discard(si->bdev, start_block,
148                                 nr_blocks, GFP_KERNEL, 0);
149                 if (err)
150                         break;
151
152                 cond_resched();
153         }
154         return err;             /* That will often be -EOPNOTSUPP */
155 }
156
157 /*
158  * swap allocation tell device that a cluster of swap can now be discarded,
159  * to allow the swap device to optimize its wear-levelling.
160  */
161 static void discard_swap_cluster(struct swap_info_struct *si,
162                                  pgoff_t start_page, pgoff_t nr_pages)
163 {
164         struct swap_extent *se = si->curr_swap_extent;
165         int found_extent = 0;
166
167         while (nr_pages) {
168                 if (se->start_page <= start_page &&
169                     start_page < se->start_page + se->nr_pages) {
170                         pgoff_t offset = start_page - se->start_page;
171                         sector_t start_block = se->start_block + offset;
172                         sector_t nr_blocks = se->nr_pages - offset;
173
174                         if (nr_blocks > nr_pages)
175                                 nr_blocks = nr_pages;
176                         start_page += nr_blocks;
177                         nr_pages -= nr_blocks;
178
179                         if (!found_extent++)
180                                 si->curr_swap_extent = se;
181
182                         start_block <<= PAGE_SHIFT - 9;
183                         nr_blocks <<= PAGE_SHIFT - 9;
184                         if (blkdev_issue_discard(si->bdev, start_block,
185                                     nr_blocks, GFP_NOIO, 0))
186                                 break;
187                 }
188
189                 se = list_next_entry(se, list);
190         }
191 }
192
193 #define SWAPFILE_CLUSTER        256
194 #define LATENCY_LIMIT           256
195
196 static inline void cluster_set_flag(struct swap_cluster_info *info,
197         unsigned int flag)
198 {
199         info->flags = flag;
200 }
201
202 static inline unsigned int cluster_count(struct swap_cluster_info *info)
203 {
204         return info->data;
205 }
206
207 static inline void cluster_set_count(struct swap_cluster_info *info,
208                                      unsigned int c)
209 {
210         info->data = c;
211 }
212
213 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
214                                          unsigned int c, unsigned int f)
215 {
216         info->flags = f;
217         info->data = c;
218 }
219
220 static inline unsigned int cluster_next(struct swap_cluster_info *info)
221 {
222         return info->data;
223 }
224
225 static inline void cluster_set_next(struct swap_cluster_info *info,
226                                     unsigned int n)
227 {
228         info->data = n;
229 }
230
231 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
232                                          unsigned int n, unsigned int f)
233 {
234         info->flags = f;
235         info->data = n;
236 }
237
238 static inline bool cluster_is_free(struct swap_cluster_info *info)
239 {
240         return info->flags & CLUSTER_FLAG_FREE;
241 }
242
243 static inline bool cluster_is_null(struct swap_cluster_info *info)
244 {
245         return info->flags & CLUSTER_FLAG_NEXT_NULL;
246 }
247
248 static inline void cluster_set_null(struct swap_cluster_info *info)
249 {
250         info->flags = CLUSTER_FLAG_NEXT_NULL;
251         info->data = 0;
252 }
253
254 /* Add a cluster to discard list and schedule it to do discard */
255 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
256                 unsigned int idx)
257 {
258         /*
259          * If scan_swap_map() can't find a free cluster, it will check
260          * si->swap_map directly. To make sure the discarding cluster isn't
261          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
262          * will be cleared after discard
263          */
264         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
265                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
266
267         if (cluster_is_null(&si->discard_cluster_head)) {
268                 cluster_set_next_flag(&si->discard_cluster_head,
269                                                 idx, 0);
270                 cluster_set_next_flag(&si->discard_cluster_tail,
271                                                 idx, 0);
272         } else {
273                 unsigned int tail = cluster_next(&si->discard_cluster_tail);
274                 cluster_set_next(&si->cluster_info[tail], idx);
275                 cluster_set_next_flag(&si->discard_cluster_tail,
276                                                 idx, 0);
277         }
278
279         schedule_work(&si->discard_work);
280 }
281
282 /*
283  * Doing discard actually. After a cluster discard is finished, the cluster
284  * will be added to free cluster list. caller should hold si->lock.
285 */
286 static void swap_do_scheduled_discard(struct swap_info_struct *si)
287 {
288         struct swap_cluster_info *info;
289         unsigned int idx;
290
291         info = si->cluster_info;
292
293         while (!cluster_is_null(&si->discard_cluster_head)) {
294                 idx = cluster_next(&si->discard_cluster_head);
295
296                 cluster_set_next_flag(&si->discard_cluster_head,
297                                                 cluster_next(&info[idx]), 0);
298                 if (cluster_next(&si->discard_cluster_tail) == idx) {
299                         cluster_set_null(&si->discard_cluster_head);
300                         cluster_set_null(&si->discard_cluster_tail);
301                 }
302                 spin_unlock(&si->lock);
303
304                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
305                                 SWAPFILE_CLUSTER);
306
307                 spin_lock(&si->lock);
308                 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
309                 if (cluster_is_null(&si->free_cluster_head)) {
310                         cluster_set_next_flag(&si->free_cluster_head,
311                                                 idx, 0);
312                         cluster_set_next_flag(&si->free_cluster_tail,
313                                                 idx, 0);
314                 } else {
315                         unsigned int tail;
316
317                         tail = cluster_next(&si->free_cluster_tail);
318                         cluster_set_next(&info[tail], idx);
319                         cluster_set_next_flag(&si->free_cluster_tail,
320                                                 idx, 0);
321                 }
322                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
323                                 0, SWAPFILE_CLUSTER);
324         }
325 }
326
327 static void swap_discard_work(struct work_struct *work)
328 {
329         struct swap_info_struct *si;
330
331         si = container_of(work, struct swap_info_struct, discard_work);
332
333         spin_lock(&si->lock);
334         swap_do_scheduled_discard(si);
335         spin_unlock(&si->lock);
336 }
337
338 /*
339  * The cluster corresponding to page_nr will be used. The cluster will be
340  * removed from free cluster list and its usage counter will be increased.
341  */
342 static void inc_cluster_info_page(struct swap_info_struct *p,
343         struct swap_cluster_info *cluster_info, unsigned long page_nr)
344 {
345         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
346
347         if (!cluster_info)
348                 return;
349         if (cluster_is_free(&cluster_info[idx])) {
350                 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
351                 cluster_set_next_flag(&p->free_cluster_head,
352                         cluster_next(&cluster_info[idx]), 0);
353                 if (cluster_next(&p->free_cluster_tail) == idx) {
354                         cluster_set_null(&p->free_cluster_tail);
355                         cluster_set_null(&p->free_cluster_head);
356                 }
357                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
358         }
359
360         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
361         cluster_set_count(&cluster_info[idx],
362                 cluster_count(&cluster_info[idx]) + 1);
363 }
364
365 /*
366  * The cluster corresponding to page_nr decreases one usage. If the usage
367  * counter becomes 0, which means no page in the cluster is in using, we can
368  * optionally discard the cluster and add it to free cluster list.
369  */
370 static void dec_cluster_info_page(struct swap_info_struct *p,
371         struct swap_cluster_info *cluster_info, unsigned long page_nr)
372 {
373         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
374
375         if (!cluster_info)
376                 return;
377
378         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
379         cluster_set_count(&cluster_info[idx],
380                 cluster_count(&cluster_info[idx]) - 1);
381
382         if (cluster_count(&cluster_info[idx]) == 0) {
383                 /*
384                  * If the swap is discardable, prepare discard the cluster
385                  * instead of free it immediately. The cluster will be freed
386                  * after discard.
387                  */
388                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
389                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
390                         swap_cluster_schedule_discard(p, idx);
391                         return;
392                 }
393
394                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
395                 if (cluster_is_null(&p->free_cluster_head)) {
396                         cluster_set_next_flag(&p->free_cluster_head, idx, 0);
397                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
398                 } else {
399                         unsigned int tail = cluster_next(&p->free_cluster_tail);
400                         cluster_set_next(&cluster_info[tail], idx);
401                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
402                 }
403         }
404 }
405
406 /*
407  * It's possible scan_swap_map() uses a free cluster in the middle of free
408  * cluster list. Avoiding such abuse to avoid list corruption.
409  */
410 static bool
411 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
412         unsigned long offset)
413 {
414         struct percpu_cluster *percpu_cluster;
415         bool conflict;
416
417         offset /= SWAPFILE_CLUSTER;
418         conflict = !cluster_is_null(&si->free_cluster_head) &&
419                 offset != cluster_next(&si->free_cluster_head) &&
420                 cluster_is_free(&si->cluster_info[offset]);
421
422         if (!conflict)
423                 return false;
424
425         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
426         cluster_set_null(&percpu_cluster->index);
427         return true;
428 }
429
430 /*
431  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
432  * might involve allocating a new cluster for current CPU too.
433  */
434 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
435         unsigned long *offset, unsigned long *scan_base)
436 {
437         struct percpu_cluster *cluster;
438         bool found_free;
439         unsigned long tmp;
440
441 new_cluster:
442         cluster = this_cpu_ptr(si->percpu_cluster);
443         if (cluster_is_null(&cluster->index)) {
444                 if (!cluster_is_null(&si->free_cluster_head)) {
445                         cluster->index = si->free_cluster_head;
446                         cluster->next = cluster_next(&cluster->index) *
447                                         SWAPFILE_CLUSTER;
448                 } else if (!cluster_is_null(&si->discard_cluster_head)) {
449                         /*
450                          * we don't have free cluster but have some clusters in
451                          * discarding, do discard now and reclaim them
452                          */
453                         swap_do_scheduled_discard(si);
454                         *scan_base = *offset = si->cluster_next;
455                         goto new_cluster;
456                 } else
457                         return;
458         }
459
460         found_free = false;
461
462         /*
463          * Other CPUs can use our cluster if they can't find a free cluster,
464          * check if there is still free entry in the cluster
465          */
466         tmp = cluster->next;
467         while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
468                SWAPFILE_CLUSTER) {
469                 if (!si->swap_map[tmp]) {
470                         found_free = true;
471                         break;
472                 }
473                 tmp++;
474         }
475         if (!found_free) {
476                 cluster_set_null(&cluster->index);
477                 goto new_cluster;
478         }
479         cluster->next = tmp + 1;
480         *offset = tmp;
481         *scan_base = tmp;
482 }
483
484 static unsigned long scan_swap_map(struct swap_info_struct *si,
485                                    unsigned char usage)
486 {
487         unsigned long offset;
488         unsigned long scan_base;
489         unsigned long last_in_cluster = 0;
490         int latency_ration = LATENCY_LIMIT;
491
492         /*
493          * We try to cluster swap pages by allocating them sequentially
494          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
495          * way, however, we resort to first-free allocation, starting
496          * a new cluster.  This prevents us from scattering swap pages
497          * all over the entire swap partition, so that we reduce
498          * overall disk seek times between swap pages.  -- sct
499          * But we do now try to find an empty cluster.  -Andrea
500          * And we let swap pages go all over an SSD partition.  Hugh
501          */
502
503         si->flags += SWP_SCANNING;
504         scan_base = offset = si->cluster_next;
505
506         /* SSD algorithm */
507         if (si->cluster_info) {
508                 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
509                 goto checks;
510         }
511
512         if (unlikely(!si->cluster_nr--)) {
513                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
514                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
515                         goto checks;
516                 }
517
518                 spin_unlock(&si->lock);
519
520                 /*
521                  * If seek is expensive, start searching for new cluster from
522                  * start of partition, to minimize the span of allocated swap.
523                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
524                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
525                  */
526                 scan_base = offset = si->lowest_bit;
527                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
528
529                 /* Locate the first empty (unaligned) cluster */
530                 for (; last_in_cluster <= si->highest_bit; offset++) {
531                         if (si->swap_map[offset])
532                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
533                         else if (offset == last_in_cluster) {
534                                 spin_lock(&si->lock);
535                                 offset -= SWAPFILE_CLUSTER - 1;
536                                 si->cluster_next = offset;
537                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
538                                 goto checks;
539                         }
540                         if (unlikely(--latency_ration < 0)) {
541                                 cond_resched();
542                                 latency_ration = LATENCY_LIMIT;
543                         }
544                 }
545
546                 offset = scan_base;
547                 spin_lock(&si->lock);
548                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
549         }
550
551 checks:
552         if (si->cluster_info) {
553                 while (scan_swap_map_ssd_cluster_conflict(si, offset))
554                         scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
555         }
556         if (!(si->flags & SWP_WRITEOK))
557                 goto no_page;
558         if (!si->highest_bit)
559                 goto no_page;
560         if (offset > si->highest_bit)
561                 scan_base = offset = si->lowest_bit;
562
563         /* reuse swap entry of cache-only swap if not busy. */
564         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
565                 int swap_was_freed;
566                 spin_unlock(&si->lock);
567                 swap_was_freed = __try_to_reclaim_swap(si, offset);
568                 spin_lock(&si->lock);
569                 /* entry was freed successfully, try to use this again */
570                 if (swap_was_freed)
571                         goto checks;
572                 goto scan; /* check next one */
573         }
574
575         if (si->swap_map[offset])
576                 goto scan;
577
578         if (offset == si->lowest_bit)
579                 si->lowest_bit++;
580         if (offset == si->highest_bit)
581                 si->highest_bit--;
582         si->inuse_pages++;
583         if (si->inuse_pages == si->pages) {
584                 si->lowest_bit = si->max;
585                 si->highest_bit = 0;
586                 spin_lock(&swap_avail_lock);
587                 plist_del(&si->avail_list, &swap_avail_head);
588                 spin_unlock(&swap_avail_lock);
589         }
590         si->swap_map[offset] = usage;
591         inc_cluster_info_page(si, si->cluster_info, offset);
592         si->cluster_next = offset + 1;
593         si->flags -= SWP_SCANNING;
594
595         return offset;
596
597 scan:
598         spin_unlock(&si->lock);
599         while (++offset <= si->highest_bit) {
600                 if (!si->swap_map[offset]) {
601                         spin_lock(&si->lock);
602                         goto checks;
603                 }
604                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
605                         spin_lock(&si->lock);
606                         goto checks;
607                 }
608                 if (unlikely(--latency_ration < 0)) {
609                         cond_resched();
610                         latency_ration = LATENCY_LIMIT;
611                 }
612         }
613         offset = si->lowest_bit;
614         while (offset < scan_base) {
615                 if (!si->swap_map[offset]) {
616                         spin_lock(&si->lock);
617                         goto checks;
618                 }
619                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
620                         spin_lock(&si->lock);
621                         goto checks;
622                 }
623                 if (unlikely(--latency_ration < 0)) {
624                         cond_resched();
625                         latency_ration = LATENCY_LIMIT;
626                 }
627                 offset++;
628         }
629         spin_lock(&si->lock);
630
631 no_page:
632         si->flags -= SWP_SCANNING;
633         return 0;
634 }
635
636 swp_entry_t get_swap_page(void)
637 {
638         struct swap_info_struct *si, *next;
639         pgoff_t offset;
640
641         if (atomic_long_read(&nr_swap_pages) <= 0)
642                 goto noswap;
643         atomic_long_dec(&nr_swap_pages);
644
645         spin_lock(&swap_avail_lock);
646
647 start_over:
648         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
649                 /* requeue si to after same-priority siblings */
650                 plist_requeue(&si->avail_list, &swap_avail_head);
651                 spin_unlock(&swap_avail_lock);
652                 spin_lock(&si->lock);
653                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
654                         spin_lock(&swap_avail_lock);
655                         if (plist_node_empty(&si->avail_list)) {
656                                 spin_unlock(&si->lock);
657                                 goto nextsi;
658                         }
659                         WARN(!si->highest_bit,
660                              "swap_info %d in list but !highest_bit\n",
661                              si->type);
662                         WARN(!(si->flags & SWP_WRITEOK),
663                              "swap_info %d in list but !SWP_WRITEOK\n",
664                              si->type);
665                         plist_del(&si->avail_list, &swap_avail_head);
666                         spin_unlock(&si->lock);
667                         goto nextsi;
668                 }
669
670                 /* This is called for allocating swap entry for cache */
671                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
672                 spin_unlock(&si->lock);
673                 if (offset)
674                         return swp_entry(si->type, offset);
675                 pr_debug("scan_swap_map of si %d failed to find offset\n",
676                        si->type);
677                 spin_lock(&swap_avail_lock);
678 nextsi:
679                 /*
680                  * if we got here, it's likely that si was almost full before,
681                  * and since scan_swap_map() can drop the si->lock, multiple
682                  * callers probably all tried to get a page from the same si
683                  * and it filled up before we could get one; or, the si filled
684                  * up between us dropping swap_avail_lock and taking si->lock.
685                  * Since we dropped the swap_avail_lock, the swap_avail_head
686                  * list may have been modified; so if next is still in the
687                  * swap_avail_head list then try it, otherwise start over.
688                  */
689                 if (plist_node_empty(&next->avail_list))
690                         goto start_over;
691         }
692
693         spin_unlock(&swap_avail_lock);
694
695         atomic_long_inc(&nr_swap_pages);
696 noswap:
697         return (swp_entry_t) {0};
698 }
699
700 /* The only caller of this function is now suspend routine */
701 swp_entry_t get_swap_page_of_type(int type)
702 {
703         struct swap_info_struct *si;
704         pgoff_t offset;
705
706         si = swap_info[type];
707         spin_lock(&si->lock);
708         if (si && (si->flags & SWP_WRITEOK)) {
709                 atomic_long_dec(&nr_swap_pages);
710                 /* This is called for allocating swap entry, not cache */
711                 offset = scan_swap_map(si, 1);
712                 if (offset) {
713                         spin_unlock(&si->lock);
714                         return swp_entry(type, offset);
715                 }
716                 atomic_long_inc(&nr_swap_pages);
717         }
718         spin_unlock(&si->lock);
719         return (swp_entry_t) {0};
720 }
721
722 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
723 {
724         struct swap_info_struct *p;
725         unsigned long offset, type;
726
727         if (!entry.val)
728                 goto out;
729         type = swp_type(entry);
730         if (type >= nr_swapfiles)
731                 goto bad_nofile;
732         p = swap_info[type];
733         if (!(p->flags & SWP_USED))
734                 goto bad_device;
735         offset = swp_offset(entry);
736         if (offset >= p->max)
737                 goto bad_offset;
738         if (!p->swap_map[offset])
739                 goto bad_free;
740         spin_lock(&p->lock);
741         return p;
742
743 bad_free:
744         pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
745         goto out;
746 bad_offset:
747         pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
748         goto out;
749 bad_device:
750         pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
751         goto out;
752 bad_nofile:
753         pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
754 out:
755         return NULL;
756 }
757
758 static unsigned char swap_entry_free(struct swap_info_struct *p,
759                                      swp_entry_t entry, unsigned char usage)
760 {
761         unsigned long offset = swp_offset(entry);
762         unsigned char count;
763         unsigned char has_cache;
764
765         count = p->swap_map[offset];
766         has_cache = count & SWAP_HAS_CACHE;
767         count &= ~SWAP_HAS_CACHE;
768
769         if (usage == SWAP_HAS_CACHE) {
770                 VM_BUG_ON(!has_cache);
771                 has_cache = 0;
772         } else if (count == SWAP_MAP_SHMEM) {
773                 /*
774                  * Or we could insist on shmem.c using a special
775                  * swap_shmem_free() and free_shmem_swap_and_cache()...
776                  */
777                 count = 0;
778         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
779                 if (count == COUNT_CONTINUED) {
780                         if (swap_count_continued(p, offset, count))
781                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
782                         else
783                                 count = SWAP_MAP_MAX;
784                 } else
785                         count--;
786         }
787
788         if (!count)
789                 mem_cgroup_uncharge_swap(entry);
790
791         usage = count | has_cache;
792         p->swap_map[offset] = usage;
793
794         /* free if no reference */
795         if (!usage) {
796                 dec_cluster_info_page(p, p->cluster_info, offset);
797                 if (offset < p->lowest_bit)
798                         p->lowest_bit = offset;
799                 if (offset > p->highest_bit) {
800                         bool was_full = !p->highest_bit;
801                         p->highest_bit = offset;
802                         if (was_full && (p->flags & SWP_WRITEOK)) {
803                                 spin_lock(&swap_avail_lock);
804                                 WARN_ON(!plist_node_empty(&p->avail_list));
805                                 if (plist_node_empty(&p->avail_list))
806                                         plist_add(&p->avail_list,
807                                                   &swap_avail_head);
808                                 spin_unlock(&swap_avail_lock);
809                         }
810                 }
811                 atomic_long_inc(&nr_swap_pages);
812                 p->inuse_pages--;
813                 frontswap_invalidate_page(p->type, offset);
814                 if (p->flags & SWP_BLKDEV) {
815                         struct gendisk *disk = p->bdev->bd_disk;
816                         if (disk->fops->swap_slot_free_notify)
817                                 disk->fops->swap_slot_free_notify(p->bdev,
818                                                                   offset);
819                 }
820         }
821
822         return usage;
823 }
824
825 /*
826  * Caller has made sure that the swap device corresponding to entry
827  * is still around or has not been recycled.
828  */
829 void swap_free(swp_entry_t entry)
830 {
831         struct swap_info_struct *p;
832
833         p = swap_info_get(entry);
834         if (p) {
835                 swap_entry_free(p, entry, 1);
836                 spin_unlock(&p->lock);
837         }
838 }
839
840 /*
841  * Called after dropping swapcache to decrease refcnt to swap entries.
842  */
843 void swapcache_free(swp_entry_t entry)
844 {
845         struct swap_info_struct *p;
846
847         p = swap_info_get(entry);
848         if (p) {
849                 swap_entry_free(p, entry, SWAP_HAS_CACHE);
850                 spin_unlock(&p->lock);
851         }
852 }
853
854 /*
855  * How many references to page are currently swapped out?
856  * This does not give an exact answer when swap count is continued,
857  * but does include the high COUNT_CONTINUED flag to allow for that.
858  */
859 int page_swapcount(struct page *page)
860 {
861         int count = 0;
862         struct swap_info_struct *p;
863         swp_entry_t entry;
864
865         entry.val = page_private(page);
866         p = swap_info_get(entry);
867         if (p) {
868                 count = swap_count(p->swap_map[swp_offset(entry)]);
869                 spin_unlock(&p->lock);
870         }
871         return count;
872 }
873
874 /*
875  * How many references to @entry are currently swapped out?
876  * This considers COUNT_CONTINUED so it returns exact answer.
877  */
878 int swp_swapcount(swp_entry_t entry)
879 {
880         int count, tmp_count, n;
881         struct swap_info_struct *p;
882         struct page *page;
883         pgoff_t offset;
884         unsigned char *map;
885
886         p = swap_info_get(entry);
887         if (!p)
888                 return 0;
889
890         count = swap_count(p->swap_map[swp_offset(entry)]);
891         if (!(count & COUNT_CONTINUED))
892                 goto out;
893
894         count &= ~COUNT_CONTINUED;
895         n = SWAP_MAP_MAX + 1;
896
897         offset = swp_offset(entry);
898         page = vmalloc_to_page(p->swap_map + offset);
899         offset &= ~PAGE_MASK;
900         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
901
902         do {
903                 page = list_next_entry(page, lru);
904                 map = kmap_atomic(page);
905                 tmp_count = map[offset];
906                 kunmap_atomic(map);
907
908                 count += (tmp_count & ~COUNT_CONTINUED) * n;
909                 n *= (SWAP_CONT_MAX + 1);
910         } while (tmp_count & COUNT_CONTINUED);
911 out:
912         spin_unlock(&p->lock);
913         return count;
914 }
915
916 /*
917  * We can write to an anon page without COW if there are no other references
918  * to it.  And as a side-effect, free up its swap: because the old content
919  * on disk will never be read, and seeking back there to write new content
920  * later would only waste time away from clustering.
921  */
922 int reuse_swap_page(struct page *page)
923 {
924         int count;
925
926         VM_BUG_ON_PAGE(!PageLocked(page), page);
927         if (unlikely(PageKsm(page)))
928                 return 0;
929         /* The page is part of THP and cannot be reused */
930         if (PageTransCompound(page))
931                 return 0;
932         count = page_mapcount(page);
933         if (count <= 1 && PageSwapCache(page)) {
934                 count += page_swapcount(page);
935                 if (count == 1 && !PageWriteback(page)) {
936                         delete_from_swap_cache(page);
937                         SetPageDirty(page);
938                 }
939         }
940         return count <= 1;
941 }
942
943 /*
944  * If swap is getting full, or if there are no more mappings of this page,
945  * then try_to_free_swap is called to free its swap space.
946  */
947 int try_to_free_swap(struct page *page)
948 {
949         VM_BUG_ON_PAGE(!PageLocked(page), page);
950
951         if (!PageSwapCache(page))
952                 return 0;
953         if (PageWriteback(page))
954                 return 0;
955         if (page_swapcount(page))
956                 return 0;
957
958         /*
959          * Once hibernation has begun to create its image of memory,
960          * there's a danger that one of the calls to try_to_free_swap()
961          * - most probably a call from __try_to_reclaim_swap() while
962          * hibernation is allocating its own swap pages for the image,
963          * but conceivably even a call from memory reclaim - will free
964          * the swap from a page which has already been recorded in the
965          * image as a clean swapcache page, and then reuse its swap for
966          * another page of the image.  On waking from hibernation, the
967          * original page might be freed under memory pressure, then
968          * later read back in from swap, now with the wrong data.
969          *
970          * Hibernation suspends storage while it is writing the image
971          * to disk so check that here.
972          */
973         if (pm_suspended_storage())
974                 return 0;
975
976         delete_from_swap_cache(page);
977         SetPageDirty(page);
978         return 1;
979 }
980
981 /*
982  * Free the swap entry like above, but also try to
983  * free the page cache entry if it is the last user.
984  */
985 int free_swap_and_cache(swp_entry_t entry)
986 {
987         struct swap_info_struct *p;
988         struct page *page = NULL;
989
990         if (non_swap_entry(entry))
991                 return 1;
992
993         p = swap_info_get(entry);
994         if (p) {
995                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
996                         page = find_get_page(swap_address_space(entry),
997                                                 entry.val);
998                         if (page && !trylock_page(page)) {
999                                 page_cache_release(page);
1000                                 page = NULL;
1001                         }
1002                 }
1003                 spin_unlock(&p->lock);
1004         }
1005         if (page) {
1006                 /*
1007                  * Not mapped elsewhere, or swap space full? Free it!
1008                  * Also recheck PageSwapCache now page is locked (above).
1009                  */
1010                 if (PageSwapCache(page) && !PageWriteback(page) &&
1011                                 (!page_mapped(page) || vm_swap_full())) {
1012                         delete_from_swap_cache(page);
1013                         SetPageDirty(page);
1014                 }
1015                 unlock_page(page);
1016                 page_cache_release(page);
1017         }
1018         return p != NULL;
1019 }
1020
1021 #ifdef CONFIG_HIBERNATION
1022 /*
1023  * Find the swap type that corresponds to given device (if any).
1024  *
1025  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1026  * from 0, in which the swap header is expected to be located.
1027  *
1028  * This is needed for the suspend to disk (aka swsusp).
1029  */
1030 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1031 {
1032         struct block_device *bdev = NULL;
1033         int type;
1034
1035         if (device)
1036                 bdev = bdget(device);
1037
1038         spin_lock(&swap_lock);
1039         for (type = 0; type < nr_swapfiles; type++) {
1040                 struct swap_info_struct *sis = swap_info[type];
1041
1042                 if (!(sis->flags & SWP_WRITEOK))
1043                         continue;
1044
1045                 if (!bdev) {
1046                         if (bdev_p)
1047                                 *bdev_p = bdgrab(sis->bdev);
1048
1049                         spin_unlock(&swap_lock);
1050                         return type;
1051                 }
1052                 if (bdev == sis->bdev) {
1053                         struct swap_extent *se = &sis->first_swap_extent;
1054
1055                         if (se->start_block == offset) {
1056                                 if (bdev_p)
1057                                         *bdev_p = bdgrab(sis->bdev);
1058
1059                                 spin_unlock(&swap_lock);
1060                                 bdput(bdev);
1061                                 return type;
1062                         }
1063                 }
1064         }
1065         spin_unlock(&swap_lock);
1066         if (bdev)
1067                 bdput(bdev);
1068
1069         return -ENODEV;
1070 }
1071
1072 /*
1073  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1074  * corresponding to given index in swap_info (swap type).
1075  */
1076 sector_t swapdev_block(int type, pgoff_t offset)
1077 {
1078         struct block_device *bdev;
1079
1080         if ((unsigned int)type >= nr_swapfiles)
1081                 return 0;
1082         if (!(swap_info[type]->flags & SWP_WRITEOK))
1083                 return 0;
1084         return map_swap_entry(swp_entry(type, offset), &bdev);
1085 }
1086
1087 /*
1088  * Return either the total number of swap pages of given type, or the number
1089  * of free pages of that type (depending on @free)
1090  *
1091  * This is needed for software suspend
1092  */
1093 unsigned int count_swap_pages(int type, int free)
1094 {
1095         unsigned int n = 0;
1096
1097         spin_lock(&swap_lock);
1098         if ((unsigned int)type < nr_swapfiles) {
1099                 struct swap_info_struct *sis = swap_info[type];
1100
1101                 spin_lock(&sis->lock);
1102                 if (sis->flags & SWP_WRITEOK) {
1103                         n = sis->pages;
1104                         if (free)
1105                                 n -= sis->inuse_pages;
1106                 }
1107                 spin_unlock(&sis->lock);
1108         }
1109         spin_unlock(&swap_lock);
1110         return n;
1111 }
1112 #endif /* CONFIG_HIBERNATION */
1113
1114 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1115 {
1116         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1117 }
1118
1119 /*
1120  * No need to decide whether this PTE shares the swap entry with others,
1121  * just let do_wp_page work it out if a write is requested later - to
1122  * force COW, vm_page_prot omits write permission from any private vma.
1123  */
1124 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1125                 unsigned long addr, swp_entry_t entry, struct page *page)
1126 {
1127         struct page *swapcache;
1128         struct mem_cgroup *memcg;
1129         spinlock_t *ptl;
1130         pte_t *pte;
1131         int ret = 1;
1132
1133         swapcache = page;
1134         page = ksm_might_need_to_copy(page, vma, addr);
1135         if (unlikely(!page))
1136                 return -ENOMEM;
1137
1138         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1139                                 &memcg, false)) {
1140                 ret = -ENOMEM;
1141                 goto out_nolock;
1142         }
1143
1144         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1145         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1146                 mem_cgroup_cancel_charge(page, memcg, false);
1147                 ret = 0;
1148                 goto out;
1149         }
1150
1151         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1152         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1153         get_page(page);
1154         set_pte_at(vma->vm_mm, addr, pte,
1155                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1156         if (page == swapcache) {
1157                 page_add_anon_rmap(page, vma, addr, false);
1158                 mem_cgroup_commit_charge(page, memcg, true, false);
1159         } else { /* ksm created a completely new copy */
1160                 page_add_new_anon_rmap(page, vma, addr, false);
1161                 mem_cgroup_commit_charge(page, memcg, false, false);
1162                 lru_cache_add_active_or_unevictable(page, vma);
1163         }
1164         swap_free(entry);
1165         /*
1166          * Move the page to the active list so it is not
1167          * immediately swapped out again after swapon.
1168          */
1169         activate_page(page);
1170 out:
1171         pte_unmap_unlock(pte, ptl);
1172 out_nolock:
1173         if (page != swapcache) {
1174                 unlock_page(page);
1175                 put_page(page);
1176         }
1177         return ret;
1178 }
1179
1180 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1181                                 unsigned long addr, unsigned long end,
1182                                 swp_entry_t entry, struct page *page)
1183 {
1184         pte_t swp_pte = swp_entry_to_pte(entry);
1185         pte_t *pte;
1186         int ret = 0;
1187
1188         /*
1189          * We don't actually need pte lock while scanning for swp_pte: since
1190          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1191          * page table while we're scanning; though it could get zapped, and on
1192          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1193          * of unmatched parts which look like swp_pte, so unuse_pte must
1194          * recheck under pte lock.  Scanning without pte lock lets it be
1195          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1196          */
1197         pte = pte_offset_map(pmd, addr);
1198         do {
1199                 /*
1200                  * swapoff spends a _lot_ of time in this loop!
1201                  * Test inline before going to call unuse_pte.
1202                  */
1203                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1204                         pte_unmap(pte);
1205                         ret = unuse_pte(vma, pmd, addr, entry, page);
1206                         if (ret)
1207                                 goto out;
1208                         pte = pte_offset_map(pmd, addr);
1209                 }
1210         } while (pte++, addr += PAGE_SIZE, addr != end);
1211         pte_unmap(pte - 1);
1212 out:
1213         return ret;
1214 }
1215
1216 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1217                                 unsigned long addr, unsigned long end,
1218                                 swp_entry_t entry, struct page *page)
1219 {
1220         pmd_t *pmd;
1221         unsigned long next;
1222         int ret;
1223
1224         pmd = pmd_offset(pud, addr);
1225         do {
1226                 next = pmd_addr_end(addr, end);
1227                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1228                         continue;
1229                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1230                 if (ret)
1231                         return ret;
1232         } while (pmd++, addr = next, addr != end);
1233         return 0;
1234 }
1235
1236 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1237                                 unsigned long addr, unsigned long end,
1238                                 swp_entry_t entry, struct page *page)
1239 {
1240         pud_t *pud;
1241         unsigned long next;
1242         int ret;
1243
1244         pud = pud_offset(pgd, addr);
1245         do {
1246                 next = pud_addr_end(addr, end);
1247                 if (pud_none_or_clear_bad(pud))
1248                         continue;
1249                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1250                 if (ret)
1251                         return ret;
1252         } while (pud++, addr = next, addr != end);
1253         return 0;
1254 }
1255
1256 static int unuse_vma(struct vm_area_struct *vma,
1257                                 swp_entry_t entry, struct page *page)
1258 {
1259         pgd_t *pgd;
1260         unsigned long addr, end, next;
1261         int ret;
1262
1263         if (page_anon_vma(page)) {
1264                 addr = page_address_in_vma(page, vma);
1265                 if (addr == -EFAULT)
1266                         return 0;
1267                 else
1268                         end = addr + PAGE_SIZE;
1269         } else {
1270                 addr = vma->vm_start;
1271                 end = vma->vm_end;
1272         }
1273
1274         pgd = pgd_offset(vma->vm_mm, addr);
1275         do {
1276                 next = pgd_addr_end(addr, end);
1277                 if (pgd_none_or_clear_bad(pgd))
1278                         continue;
1279                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1280                 if (ret)
1281                         return ret;
1282         } while (pgd++, addr = next, addr != end);
1283         return 0;
1284 }
1285
1286 static int unuse_mm(struct mm_struct *mm,
1287                                 swp_entry_t entry, struct page *page)
1288 {
1289         struct vm_area_struct *vma;
1290         int ret = 0;
1291
1292         if (!down_read_trylock(&mm->mmap_sem)) {
1293                 /*
1294                  * Activate page so shrink_inactive_list is unlikely to unmap
1295                  * its ptes while lock is dropped, so swapoff can make progress.
1296                  */
1297                 activate_page(page);
1298                 unlock_page(page);
1299                 down_read(&mm->mmap_sem);
1300                 lock_page(page);
1301         }
1302         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1303                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1304                         break;
1305         }
1306         up_read(&mm->mmap_sem);
1307         return (ret < 0)? ret: 0;
1308 }
1309
1310 /*
1311  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1312  * from current position to next entry still in use.
1313  * Recycle to start on reaching the end, returning 0 when empty.
1314  */
1315 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1316                                         unsigned int prev, bool frontswap)
1317 {
1318         unsigned int max = si->max;
1319         unsigned int i = prev;
1320         unsigned char count;
1321
1322         /*
1323          * No need for swap_lock here: we're just looking
1324          * for whether an entry is in use, not modifying it; false
1325          * hits are okay, and sys_swapoff() has already prevented new
1326          * allocations from this area (while holding swap_lock).
1327          */
1328         for (;;) {
1329                 if (++i >= max) {
1330                         if (!prev) {
1331                                 i = 0;
1332                                 break;
1333                         }
1334                         /*
1335                          * No entries in use at top of swap_map,
1336                          * loop back to start and recheck there.
1337                          */
1338                         max = prev + 1;
1339                         prev = 0;
1340                         i = 1;
1341                 }
1342                 if (frontswap) {
1343                         if (frontswap_test(si, i))
1344                                 break;
1345                         else
1346                                 continue;
1347                 }
1348                 count = READ_ONCE(si->swap_map[i]);
1349                 if (count && swap_count(count) != SWAP_MAP_BAD)
1350                         break;
1351         }
1352         return i;
1353 }
1354
1355 /*
1356  * We completely avoid races by reading each swap page in advance,
1357  * and then search for the process using it.  All the necessary
1358  * page table adjustments can then be made atomically.
1359  *
1360  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1361  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1362  */
1363 int try_to_unuse(unsigned int type, bool frontswap,
1364                  unsigned long pages_to_unuse)
1365 {
1366         struct swap_info_struct *si = swap_info[type];
1367         struct mm_struct *start_mm;
1368         volatile unsigned char *swap_map; /* swap_map is accessed without
1369                                            * locking. Mark it as volatile
1370                                            * to prevent compiler doing
1371                                            * something odd.
1372                                            */
1373         unsigned char swcount;
1374         struct page *page;
1375         swp_entry_t entry;
1376         unsigned int i = 0;
1377         int retval = 0;
1378
1379         /*
1380          * When searching mms for an entry, a good strategy is to
1381          * start at the first mm we freed the previous entry from
1382          * (though actually we don't notice whether we or coincidence
1383          * freed the entry).  Initialize this start_mm with a hold.
1384          *
1385          * A simpler strategy would be to start at the last mm we
1386          * freed the previous entry from; but that would take less
1387          * advantage of mmlist ordering, which clusters forked mms
1388          * together, child after parent.  If we race with dup_mmap(), we
1389          * prefer to resolve parent before child, lest we miss entries
1390          * duplicated after we scanned child: using last mm would invert
1391          * that.
1392          */
1393         start_mm = &init_mm;
1394         atomic_inc(&init_mm.mm_users);
1395
1396         /*
1397          * Keep on scanning until all entries have gone.  Usually,
1398          * one pass through swap_map is enough, but not necessarily:
1399          * there are races when an instance of an entry might be missed.
1400          */
1401         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1402                 if (signal_pending(current)) {
1403                         retval = -EINTR;
1404                         break;
1405                 }
1406
1407                 /*
1408                  * Get a page for the entry, using the existing swap
1409                  * cache page if there is one.  Otherwise, get a clean
1410                  * page and read the swap into it.
1411                  */
1412                 swap_map = &si->swap_map[i];
1413                 entry = swp_entry(type, i);
1414                 page = read_swap_cache_async(entry,
1415                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1416                 if (!page) {
1417                         /*
1418                          * Either swap_duplicate() failed because entry
1419                          * has been freed independently, and will not be
1420                          * reused since sys_swapoff() already disabled
1421                          * allocation from here, or alloc_page() failed.
1422                          */
1423                         swcount = *swap_map;
1424                         /*
1425                          * We don't hold lock here, so the swap entry could be
1426                          * SWAP_MAP_BAD (when the cluster is discarding).
1427                          * Instead of fail out, We can just skip the swap
1428                          * entry because swapoff will wait for discarding
1429                          * finish anyway.
1430                          */
1431                         if (!swcount || swcount == SWAP_MAP_BAD)
1432                                 continue;
1433                         retval = -ENOMEM;
1434                         break;
1435                 }
1436
1437                 /*
1438                  * Don't hold on to start_mm if it looks like exiting.
1439                  */
1440                 if (atomic_read(&start_mm->mm_users) == 1) {
1441                         mmput(start_mm);
1442                         start_mm = &init_mm;
1443                         atomic_inc(&init_mm.mm_users);
1444                 }
1445
1446                 /*
1447                  * Wait for and lock page.  When do_swap_page races with
1448                  * try_to_unuse, do_swap_page can handle the fault much
1449                  * faster than try_to_unuse can locate the entry.  This
1450                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1451                  * defer to do_swap_page in such a case - in some tests,
1452                  * do_swap_page and try_to_unuse repeatedly compete.
1453                  */
1454                 wait_on_page_locked(page);
1455                 wait_on_page_writeback(page);
1456                 lock_page(page);
1457                 wait_on_page_writeback(page);
1458
1459                 /*
1460                  * Remove all references to entry.
1461                  */
1462                 swcount = *swap_map;
1463                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1464                         retval = shmem_unuse(entry, page);
1465                         /* page has already been unlocked and released */
1466                         if (retval < 0)
1467                                 break;
1468                         continue;
1469                 }
1470                 if (swap_count(swcount) && start_mm != &init_mm)
1471                         retval = unuse_mm(start_mm, entry, page);
1472
1473                 if (swap_count(*swap_map)) {
1474                         int set_start_mm = (*swap_map >= swcount);
1475                         struct list_head *p = &start_mm->mmlist;
1476                         struct mm_struct *new_start_mm = start_mm;
1477                         struct mm_struct *prev_mm = start_mm;
1478                         struct mm_struct *mm;
1479
1480                         atomic_inc(&new_start_mm->mm_users);
1481                         atomic_inc(&prev_mm->mm_users);
1482                         spin_lock(&mmlist_lock);
1483                         while (swap_count(*swap_map) && !retval &&
1484                                         (p = p->next) != &start_mm->mmlist) {
1485                                 mm = list_entry(p, struct mm_struct, mmlist);
1486                                 if (!atomic_inc_not_zero(&mm->mm_users))
1487                                         continue;
1488                                 spin_unlock(&mmlist_lock);
1489                                 mmput(prev_mm);
1490                                 prev_mm = mm;
1491
1492                                 cond_resched();
1493
1494                                 swcount = *swap_map;
1495                                 if (!swap_count(swcount)) /* any usage ? */
1496                                         ;
1497                                 else if (mm == &init_mm)
1498                                         set_start_mm = 1;
1499                                 else
1500                                         retval = unuse_mm(mm, entry, page);
1501
1502                                 if (set_start_mm && *swap_map < swcount) {
1503                                         mmput(new_start_mm);
1504                                         atomic_inc(&mm->mm_users);
1505                                         new_start_mm = mm;
1506                                         set_start_mm = 0;
1507                                 }
1508                                 spin_lock(&mmlist_lock);
1509                         }
1510                         spin_unlock(&mmlist_lock);
1511                         mmput(prev_mm);
1512                         mmput(start_mm);
1513                         start_mm = new_start_mm;
1514                 }
1515                 if (retval) {
1516                         unlock_page(page);
1517                         page_cache_release(page);
1518                         break;
1519                 }
1520
1521                 /*
1522                  * If a reference remains (rare), we would like to leave
1523                  * the page in the swap cache; but try_to_unmap could
1524                  * then re-duplicate the entry once we drop page lock,
1525                  * so we might loop indefinitely; also, that page could
1526                  * not be swapped out to other storage meanwhile.  So:
1527                  * delete from cache even if there's another reference,
1528                  * after ensuring that the data has been saved to disk -
1529                  * since if the reference remains (rarer), it will be
1530                  * read from disk into another page.  Splitting into two
1531                  * pages would be incorrect if swap supported "shared
1532                  * private" pages, but they are handled by tmpfs files.
1533                  *
1534                  * Given how unuse_vma() targets one particular offset
1535                  * in an anon_vma, once the anon_vma has been determined,
1536                  * this splitting happens to be just what is needed to
1537                  * handle where KSM pages have been swapped out: re-reading
1538                  * is unnecessarily slow, but we can fix that later on.
1539                  */
1540                 if (swap_count(*swap_map) &&
1541                      PageDirty(page) && PageSwapCache(page)) {
1542                         struct writeback_control wbc = {
1543                                 .sync_mode = WB_SYNC_NONE,
1544                         };
1545
1546                         swap_writepage(page, &wbc);
1547                         lock_page(page);
1548                         wait_on_page_writeback(page);
1549                 }
1550
1551                 /*
1552                  * It is conceivable that a racing task removed this page from
1553                  * swap cache just before we acquired the page lock at the top,
1554                  * or while we dropped it in unuse_mm().  The page might even
1555                  * be back in swap cache on another swap area: that we must not
1556                  * delete, since it may not have been written out to swap yet.
1557                  */
1558                 if (PageSwapCache(page) &&
1559                     likely(page_private(page) == entry.val))
1560                         delete_from_swap_cache(page);
1561
1562                 /*
1563                  * So we could skip searching mms once swap count went
1564                  * to 1, we did not mark any present ptes as dirty: must
1565                  * mark page dirty so shrink_page_list will preserve it.
1566                  */
1567                 SetPageDirty(page);
1568                 unlock_page(page);
1569                 page_cache_release(page);
1570
1571                 /*
1572                  * Make sure that we aren't completely killing
1573                  * interactive performance.
1574                  */
1575                 cond_resched();
1576                 if (frontswap && pages_to_unuse > 0) {
1577                         if (!--pages_to_unuse)
1578                                 break;
1579                 }
1580         }
1581
1582         mmput(start_mm);
1583         return retval;
1584 }
1585
1586 /*
1587  * After a successful try_to_unuse, if no swap is now in use, we know
1588  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1589  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1590  * added to the mmlist just after page_duplicate - before would be racy.
1591  */
1592 static void drain_mmlist(void)
1593 {
1594         struct list_head *p, *next;
1595         unsigned int type;
1596
1597         for (type = 0; type < nr_swapfiles; type++)
1598                 if (swap_info[type]->inuse_pages)
1599                         return;
1600         spin_lock(&mmlist_lock);
1601         list_for_each_safe(p, next, &init_mm.mmlist)
1602                 list_del_init(p);
1603         spin_unlock(&mmlist_lock);
1604 }
1605
1606 /*
1607  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1608  * corresponds to page offset for the specified swap entry.
1609  * Note that the type of this function is sector_t, but it returns page offset
1610  * into the bdev, not sector offset.
1611  */
1612 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1613 {
1614         struct swap_info_struct *sis;
1615         struct swap_extent *start_se;
1616         struct swap_extent *se;
1617         pgoff_t offset;
1618
1619         sis = swap_info[swp_type(entry)];
1620         *bdev = sis->bdev;
1621
1622         offset = swp_offset(entry);
1623         start_se = sis->curr_swap_extent;
1624         se = start_se;
1625
1626         for ( ; ; ) {
1627                 if (se->start_page <= offset &&
1628                                 offset < (se->start_page + se->nr_pages)) {
1629                         return se->start_block + (offset - se->start_page);
1630                 }
1631                 se = list_next_entry(se, list);
1632                 sis->curr_swap_extent = se;
1633                 BUG_ON(se == start_se);         /* It *must* be present */
1634         }
1635 }
1636
1637 /*
1638  * Returns the page offset into bdev for the specified page's swap entry.
1639  */
1640 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1641 {
1642         swp_entry_t entry;
1643         entry.val = page_private(page);
1644         return map_swap_entry(entry, bdev);
1645 }
1646
1647 /*
1648  * Free all of a swapdev's extent information
1649  */
1650 static void destroy_swap_extents(struct swap_info_struct *sis)
1651 {
1652         while (!list_empty(&sis->first_swap_extent.list)) {
1653                 struct swap_extent *se;
1654
1655                 se = list_first_entry(&sis->first_swap_extent.list,
1656                                 struct swap_extent, list);
1657                 list_del(&se->list);
1658                 kfree(se);
1659         }
1660
1661         if (sis->flags & SWP_FILE) {
1662                 struct file *swap_file = sis->swap_file;
1663                 struct address_space *mapping = swap_file->f_mapping;
1664
1665                 sis->flags &= ~SWP_FILE;
1666                 mapping->a_ops->swap_deactivate(swap_file);
1667         }
1668 }
1669
1670 /*
1671  * Add a block range (and the corresponding page range) into this swapdev's
1672  * extent list.  The extent list is kept sorted in page order.
1673  *
1674  * This function rather assumes that it is called in ascending page order.
1675  */
1676 int
1677 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1678                 unsigned long nr_pages, sector_t start_block)
1679 {
1680         struct swap_extent *se;
1681         struct swap_extent *new_se;
1682         struct list_head *lh;
1683
1684         if (start_page == 0) {
1685                 se = &sis->first_swap_extent;
1686                 sis->curr_swap_extent = se;
1687                 se->start_page = 0;
1688                 se->nr_pages = nr_pages;
1689                 se->start_block = start_block;
1690                 return 1;
1691         } else {
1692                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1693                 se = list_entry(lh, struct swap_extent, list);
1694                 BUG_ON(se->start_page + se->nr_pages != start_page);
1695                 if (se->start_block + se->nr_pages == start_block) {
1696                         /* Merge it */
1697                         se->nr_pages += nr_pages;
1698                         return 0;
1699                 }
1700         }
1701
1702         /*
1703          * No merge.  Insert a new extent, preserving ordering.
1704          */
1705         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1706         if (new_se == NULL)
1707                 return -ENOMEM;
1708         new_se->start_page = start_page;
1709         new_se->nr_pages = nr_pages;
1710         new_se->start_block = start_block;
1711
1712         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1713         return 1;
1714 }
1715
1716 /*
1717  * A `swap extent' is a simple thing which maps a contiguous range of pages
1718  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1719  * is built at swapon time and is then used at swap_writepage/swap_readpage
1720  * time for locating where on disk a page belongs.
1721  *
1722  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1723  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1724  * swap files identically.
1725  *
1726  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1727  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1728  * swapfiles are handled *identically* after swapon time.
1729  *
1730  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1731  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1732  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1733  * requirements, they are simply tossed out - we will never use those blocks
1734  * for swapping.
1735  *
1736  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1737  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1738  * which will scribble on the fs.
1739  *
1740  * The amount of disk space which a single swap extent represents varies.
1741  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1742  * extents in the list.  To avoid much list walking, we cache the previous
1743  * search location in `curr_swap_extent', and start new searches from there.
1744  * This is extremely effective.  The average number of iterations in
1745  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1746  */
1747 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1748 {
1749         struct file *swap_file = sis->swap_file;
1750         struct address_space *mapping = swap_file->f_mapping;
1751         struct inode *inode = mapping->host;
1752         int ret;
1753
1754         if (S_ISBLK(inode->i_mode)) {
1755                 ret = add_swap_extent(sis, 0, sis->max, 0);
1756                 *span = sis->pages;
1757                 return ret;
1758         }
1759
1760         if (mapping->a_ops->swap_activate) {
1761                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1762                 if (!ret) {
1763                         sis->flags |= SWP_FILE;
1764                         ret = add_swap_extent(sis, 0, sis->max, 0);
1765                         *span = sis->pages;
1766                 }
1767                 return ret;
1768         }
1769
1770         return generic_swapfile_activate(sis, swap_file, span);
1771 }
1772
1773 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1774                                 unsigned char *swap_map,
1775                                 struct swap_cluster_info *cluster_info)
1776 {
1777         if (prio >= 0)
1778                 p->prio = prio;
1779         else
1780                 p->prio = --least_priority;
1781         /*
1782          * the plist prio is negated because plist ordering is
1783          * low-to-high, while swap ordering is high-to-low
1784          */
1785         p->list.prio = -p->prio;
1786         p->avail_list.prio = -p->prio;
1787         p->swap_map = swap_map;
1788         p->cluster_info = cluster_info;
1789         p->flags |= SWP_WRITEOK;
1790         atomic_long_add(p->pages, &nr_swap_pages);
1791         total_swap_pages += p->pages;
1792
1793         assert_spin_locked(&swap_lock);
1794         /*
1795          * both lists are plists, and thus priority ordered.
1796          * swap_active_head needs to be priority ordered for swapoff(),
1797          * which on removal of any swap_info_struct with an auto-assigned
1798          * (i.e. negative) priority increments the auto-assigned priority
1799          * of any lower-priority swap_info_structs.
1800          * swap_avail_head needs to be priority ordered for get_swap_page(),
1801          * which allocates swap pages from the highest available priority
1802          * swap_info_struct.
1803          */
1804         plist_add(&p->list, &swap_active_head);
1805         spin_lock(&swap_avail_lock);
1806         plist_add(&p->avail_list, &swap_avail_head);
1807         spin_unlock(&swap_avail_lock);
1808 }
1809
1810 static void enable_swap_info(struct swap_info_struct *p, int prio,
1811                                 unsigned char *swap_map,
1812                                 struct swap_cluster_info *cluster_info,
1813                                 unsigned long *frontswap_map)
1814 {
1815         frontswap_init(p->type, frontswap_map);
1816         spin_lock(&swap_lock);
1817         spin_lock(&p->lock);
1818          _enable_swap_info(p, prio, swap_map, cluster_info);
1819         spin_unlock(&p->lock);
1820         spin_unlock(&swap_lock);
1821 }
1822
1823 static void reinsert_swap_info(struct swap_info_struct *p)
1824 {
1825         spin_lock(&swap_lock);
1826         spin_lock(&p->lock);
1827         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1828         spin_unlock(&p->lock);
1829         spin_unlock(&swap_lock);
1830 }
1831
1832 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1833 {
1834         struct swap_info_struct *p = NULL;
1835         unsigned char *swap_map;
1836         struct swap_cluster_info *cluster_info;
1837         unsigned long *frontswap_map;
1838         struct file *swap_file, *victim;
1839         struct address_space *mapping;
1840         struct inode *inode;
1841         struct filename *pathname;
1842         int err, found = 0;
1843         unsigned int old_block_size;
1844
1845         if (!capable(CAP_SYS_ADMIN))
1846                 return -EPERM;
1847
1848         BUG_ON(!current->mm);
1849
1850         pathname = getname(specialfile);
1851         if (IS_ERR(pathname))
1852                 return PTR_ERR(pathname);
1853
1854         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1855         err = PTR_ERR(victim);
1856         if (IS_ERR(victim))
1857                 goto out;
1858
1859         mapping = victim->f_mapping;
1860         spin_lock(&swap_lock);
1861         plist_for_each_entry(p, &swap_active_head, list) {
1862                 if (p->flags & SWP_WRITEOK) {
1863                         if (p->swap_file->f_mapping == mapping) {
1864                                 found = 1;
1865                                 break;
1866                         }
1867                 }
1868         }
1869         if (!found) {
1870                 err = -EINVAL;
1871                 spin_unlock(&swap_lock);
1872                 goto out_dput;
1873         }
1874         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1875                 vm_unacct_memory(p->pages);
1876         else {
1877                 err = -ENOMEM;
1878                 spin_unlock(&swap_lock);
1879                 goto out_dput;
1880         }
1881         spin_lock(&swap_avail_lock);
1882         plist_del(&p->avail_list, &swap_avail_head);
1883         spin_unlock(&swap_avail_lock);
1884         spin_lock(&p->lock);
1885         if (p->prio < 0) {
1886                 struct swap_info_struct *si = p;
1887
1888                 plist_for_each_entry_continue(si, &swap_active_head, list) {
1889                         si->prio++;
1890                         si->list.prio--;
1891                         si->avail_list.prio--;
1892                 }
1893                 least_priority++;
1894         }
1895         plist_del(&p->list, &swap_active_head);
1896         atomic_long_sub(p->pages, &nr_swap_pages);
1897         total_swap_pages -= p->pages;
1898         p->flags &= ~SWP_WRITEOK;
1899         spin_unlock(&p->lock);
1900         spin_unlock(&swap_lock);
1901
1902         set_current_oom_origin();
1903         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1904         clear_current_oom_origin();
1905
1906         if (err) {
1907                 /* re-insert swap space back into swap_list */
1908                 reinsert_swap_info(p);
1909                 goto out_dput;
1910         }
1911
1912         flush_work(&p->discard_work);
1913
1914         destroy_swap_extents(p);
1915         if (p->flags & SWP_CONTINUED)
1916                 free_swap_count_continuations(p);
1917
1918         mutex_lock(&swapon_mutex);
1919         spin_lock(&swap_lock);
1920         spin_lock(&p->lock);
1921         drain_mmlist();
1922
1923         /* wait for anyone still in scan_swap_map */
1924         p->highest_bit = 0;             /* cuts scans short */
1925         while (p->flags >= SWP_SCANNING) {
1926                 spin_unlock(&p->lock);
1927                 spin_unlock(&swap_lock);
1928                 schedule_timeout_uninterruptible(1);
1929                 spin_lock(&swap_lock);
1930                 spin_lock(&p->lock);
1931         }
1932
1933         swap_file = p->swap_file;
1934         old_block_size = p->old_block_size;
1935         p->swap_file = NULL;
1936         p->max = 0;
1937         swap_map = p->swap_map;
1938         p->swap_map = NULL;
1939         cluster_info = p->cluster_info;
1940         p->cluster_info = NULL;
1941         frontswap_map = frontswap_map_get(p);
1942         spin_unlock(&p->lock);
1943         spin_unlock(&swap_lock);
1944         frontswap_invalidate_area(p->type);
1945         frontswap_map_set(p, NULL);
1946         mutex_unlock(&swapon_mutex);
1947         free_percpu(p->percpu_cluster);
1948         p->percpu_cluster = NULL;
1949         vfree(swap_map);
1950         vfree(cluster_info);
1951         vfree(frontswap_map);
1952         /* Destroy swap account information */
1953         swap_cgroup_swapoff(p->type);
1954
1955         inode = mapping->host;
1956         if (S_ISBLK(inode->i_mode)) {
1957                 struct block_device *bdev = I_BDEV(inode);
1958                 set_blocksize(bdev, old_block_size);
1959                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1960         } else {
1961                 mutex_lock(&inode->i_mutex);
1962                 inode->i_flags &= ~S_SWAPFILE;
1963                 mutex_unlock(&inode->i_mutex);
1964         }
1965         filp_close(swap_file, NULL);
1966
1967         /*
1968          * Clear the SWP_USED flag after all resources are freed so that swapon
1969          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1970          * not hold p->lock after we cleared its SWP_WRITEOK.
1971          */
1972         spin_lock(&swap_lock);
1973         p->flags = 0;
1974         spin_unlock(&swap_lock);
1975
1976         err = 0;
1977         atomic_inc(&proc_poll_event);
1978         wake_up_interruptible(&proc_poll_wait);
1979
1980 out_dput:
1981         filp_close(victim, NULL);
1982 out:
1983         putname(pathname);
1984         return err;
1985 }
1986
1987 #ifdef CONFIG_PROC_FS
1988 static unsigned swaps_poll(struct file *file, poll_table *wait)
1989 {
1990         struct seq_file *seq = file->private_data;
1991
1992         poll_wait(file, &proc_poll_wait, wait);
1993
1994         if (seq->poll_event != atomic_read(&proc_poll_event)) {
1995                 seq->poll_event = atomic_read(&proc_poll_event);
1996                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1997         }
1998
1999         return POLLIN | POLLRDNORM;
2000 }
2001
2002 /* iterator */
2003 static void *swap_start(struct seq_file *swap, loff_t *pos)
2004 {
2005         struct swap_info_struct *si;
2006         int type;
2007         loff_t l = *pos;
2008
2009         mutex_lock(&swapon_mutex);
2010
2011         if (!l)
2012                 return SEQ_START_TOKEN;
2013
2014         for (type = 0; type < nr_swapfiles; type++) {
2015                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2016                 si = swap_info[type];
2017                 if (!(si->flags & SWP_USED) || !si->swap_map)
2018                         continue;
2019                 if (!--l)
2020                         return si;
2021         }
2022
2023         return NULL;
2024 }
2025
2026 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2027 {
2028         struct swap_info_struct *si = v;
2029         int type;
2030
2031         if (v == SEQ_START_TOKEN)
2032                 type = 0;
2033         else
2034                 type = si->type + 1;
2035
2036         for (; type < nr_swapfiles; type++) {
2037                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2038                 si = swap_info[type];
2039                 if (!(si->flags & SWP_USED) || !si->swap_map)
2040                         continue;
2041                 ++*pos;
2042                 return si;
2043         }
2044
2045         return NULL;
2046 }
2047
2048 static void swap_stop(struct seq_file *swap, void *v)
2049 {
2050         mutex_unlock(&swapon_mutex);
2051 }
2052
2053 static int swap_show(struct seq_file *swap, void *v)
2054 {
2055         struct swap_info_struct *si = v;
2056         struct file *file;
2057         int len;
2058
2059         if (si == SEQ_START_TOKEN) {
2060                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2061                 return 0;
2062         }
2063
2064         file = si->swap_file;
2065         len = seq_file_path(swap, file, " \t\n\\");
2066         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2067                         len < 40 ? 40 - len : 1, " ",
2068                         S_ISBLK(file_inode(file)->i_mode) ?
2069                                 "partition" : "file\t",
2070                         si->pages << (PAGE_SHIFT - 10),
2071                         si->inuse_pages << (PAGE_SHIFT - 10),
2072                         si->prio);
2073         return 0;
2074 }
2075
2076 static const struct seq_operations swaps_op = {
2077         .start =        swap_start,
2078         .next =         swap_next,
2079         .stop =         swap_stop,
2080         .show =         swap_show
2081 };
2082
2083 static int swaps_open(struct inode *inode, struct file *file)
2084 {
2085         struct seq_file *seq;
2086         int ret;
2087
2088         ret = seq_open(file, &swaps_op);
2089         if (ret)
2090                 return ret;
2091
2092         seq = file->private_data;
2093         seq->poll_event = atomic_read(&proc_poll_event);
2094         return 0;
2095 }
2096
2097 static const struct file_operations proc_swaps_operations = {
2098         .open           = swaps_open,
2099         .read           = seq_read,
2100         .llseek         = seq_lseek,
2101         .release        = seq_release,
2102         .poll           = swaps_poll,
2103 };
2104
2105 static int __init procswaps_init(void)
2106 {
2107         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2108         return 0;
2109 }
2110 __initcall(procswaps_init);
2111 #endif /* CONFIG_PROC_FS */
2112
2113 #ifdef MAX_SWAPFILES_CHECK
2114 static int __init max_swapfiles_check(void)
2115 {
2116         MAX_SWAPFILES_CHECK();
2117         return 0;
2118 }
2119 late_initcall(max_swapfiles_check);
2120 #endif
2121
2122 static struct swap_info_struct *alloc_swap_info(void)
2123 {
2124         struct swap_info_struct *p;
2125         unsigned int type;
2126
2127         p = kzalloc(sizeof(*p), GFP_KERNEL);
2128         if (!p)
2129                 return ERR_PTR(-ENOMEM);
2130
2131         spin_lock(&swap_lock);
2132         for (type = 0; type < nr_swapfiles; type++) {
2133                 if (!(swap_info[type]->flags & SWP_USED))
2134                         break;
2135         }
2136         if (type >= MAX_SWAPFILES) {
2137                 spin_unlock(&swap_lock);
2138                 kfree(p);
2139                 return ERR_PTR(-EPERM);
2140         }
2141         if (type >= nr_swapfiles) {
2142                 p->type = type;
2143                 swap_info[type] = p;
2144                 /*
2145                  * Write swap_info[type] before nr_swapfiles, in case a
2146                  * racing procfs swap_start() or swap_next() is reading them.
2147                  * (We never shrink nr_swapfiles, we never free this entry.)
2148                  */
2149                 smp_wmb();
2150                 nr_swapfiles++;
2151         } else {
2152                 kfree(p);
2153                 p = swap_info[type];
2154                 /*
2155                  * Do not memset this entry: a racing procfs swap_next()
2156                  * would be relying on p->type to remain valid.
2157                  */
2158         }
2159         INIT_LIST_HEAD(&p->first_swap_extent.list);
2160         plist_node_init(&p->list, 0);
2161         plist_node_init(&p->avail_list, 0);
2162         p->flags = SWP_USED;
2163         spin_unlock(&swap_lock);
2164         spin_lock_init(&p->lock);
2165
2166         return p;
2167 }
2168
2169 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2170 {
2171         int error;
2172
2173         if (S_ISBLK(inode->i_mode)) {
2174                 p->bdev = bdgrab(I_BDEV(inode));
2175                 error = blkdev_get(p->bdev,
2176                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2177                 if (error < 0) {
2178                         p->bdev = NULL;
2179                         return error;
2180                 }
2181                 p->old_block_size = block_size(p->bdev);
2182                 error = set_blocksize(p->bdev, PAGE_SIZE);
2183                 if (error < 0)
2184                         return error;
2185                 p->flags |= SWP_BLKDEV;
2186         } else if (S_ISREG(inode->i_mode)) {
2187                 p->bdev = inode->i_sb->s_bdev;
2188                 mutex_lock(&inode->i_mutex);
2189                 if (IS_SWAPFILE(inode))
2190                         return -EBUSY;
2191         } else
2192                 return -EINVAL;
2193
2194         return 0;
2195 }
2196
2197 static unsigned long read_swap_header(struct swap_info_struct *p,
2198                                         union swap_header *swap_header,
2199                                         struct inode *inode)
2200 {
2201         int i;
2202         unsigned long maxpages;
2203         unsigned long swapfilepages;
2204         unsigned long last_page;
2205
2206         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2207                 pr_err("Unable to find swap-space signature\n");
2208                 return 0;
2209         }
2210
2211         /* swap partition endianess hack... */
2212         if (swab32(swap_header->info.version) == 1) {
2213                 swab32s(&swap_header->info.version);
2214                 swab32s(&swap_header->info.last_page);
2215                 swab32s(&swap_header->info.nr_badpages);
2216                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2217                         swab32s(&swap_header->info.badpages[i]);
2218         }
2219         /* Check the swap header's sub-version */
2220         if (swap_header->info.version != 1) {
2221                 pr_warn("Unable to handle swap header version %d\n",
2222                         swap_header->info.version);
2223                 return 0;
2224         }
2225
2226         p->lowest_bit  = 1;
2227         p->cluster_next = 1;
2228         p->cluster_nr = 0;
2229
2230         /*
2231          * Find out how many pages are allowed for a single swap
2232          * device. There are two limiting factors: 1) the number
2233          * of bits for the swap offset in the swp_entry_t type, and
2234          * 2) the number of bits in the swap pte as defined by the
2235          * different architectures. In order to find the
2236          * largest possible bit mask, a swap entry with swap type 0
2237          * and swap offset ~0UL is created, encoded to a swap pte,
2238          * decoded to a swp_entry_t again, and finally the swap
2239          * offset is extracted. This will mask all the bits from
2240          * the initial ~0UL mask that can't be encoded in either
2241          * the swp_entry_t or the architecture definition of a
2242          * swap pte.
2243          */
2244         maxpages = swp_offset(pte_to_swp_entry(
2245                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2246         last_page = swap_header->info.last_page;
2247         if (last_page > maxpages) {
2248                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2249                         maxpages << (PAGE_SHIFT - 10),
2250                         last_page << (PAGE_SHIFT - 10));
2251         }
2252         if (maxpages > last_page) {
2253                 maxpages = last_page + 1;
2254                 /* p->max is an unsigned int: don't overflow it */
2255                 if ((unsigned int)maxpages == 0)
2256                         maxpages = UINT_MAX;
2257         }
2258         p->highest_bit = maxpages - 1;
2259
2260         if (!maxpages)
2261                 return 0;
2262         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2263         if (swapfilepages && maxpages > swapfilepages) {
2264                 pr_warn("Swap area shorter than signature indicates\n");
2265                 return 0;
2266         }
2267         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2268                 return 0;
2269         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2270                 return 0;
2271
2272         return maxpages;
2273 }
2274
2275 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2276                                         union swap_header *swap_header,
2277                                         unsigned char *swap_map,
2278                                         struct swap_cluster_info *cluster_info,
2279                                         unsigned long maxpages,
2280                                         sector_t *span)
2281 {
2282         int i;
2283         unsigned int nr_good_pages;
2284         int nr_extents;
2285         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2286         unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2287
2288         nr_good_pages = maxpages - 1;   /* omit header page */
2289
2290         cluster_set_null(&p->free_cluster_head);
2291         cluster_set_null(&p->free_cluster_tail);
2292         cluster_set_null(&p->discard_cluster_head);
2293         cluster_set_null(&p->discard_cluster_tail);
2294
2295         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2296                 unsigned int page_nr = swap_header->info.badpages[i];
2297                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2298                         return -EINVAL;
2299                 if (page_nr < maxpages) {
2300                         swap_map[page_nr] = SWAP_MAP_BAD;
2301                         nr_good_pages--;
2302                         /*
2303                          * Haven't marked the cluster free yet, no list
2304                          * operation involved
2305                          */
2306                         inc_cluster_info_page(p, cluster_info, page_nr);
2307                 }
2308         }
2309
2310         /* Haven't marked the cluster free yet, no list operation involved */
2311         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2312                 inc_cluster_info_page(p, cluster_info, i);
2313
2314         if (nr_good_pages) {
2315                 swap_map[0] = SWAP_MAP_BAD;
2316                 /*
2317                  * Not mark the cluster free yet, no list
2318                  * operation involved
2319                  */
2320                 inc_cluster_info_page(p, cluster_info, 0);
2321                 p->max = maxpages;
2322                 p->pages = nr_good_pages;
2323                 nr_extents = setup_swap_extents(p, span);
2324                 if (nr_extents < 0)
2325                         return nr_extents;
2326                 nr_good_pages = p->pages;
2327         }
2328         if (!nr_good_pages) {
2329                 pr_warn("Empty swap-file\n");
2330                 return -EINVAL;
2331         }
2332
2333         if (!cluster_info)
2334                 return nr_extents;
2335
2336         for (i = 0; i < nr_clusters; i++) {
2337                 if (!cluster_count(&cluster_info[idx])) {
2338                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2339                         if (cluster_is_null(&p->free_cluster_head)) {
2340                                 cluster_set_next_flag(&p->free_cluster_head,
2341                                                                 idx, 0);
2342                                 cluster_set_next_flag(&p->free_cluster_tail,
2343                                                                 idx, 0);
2344                         } else {
2345                                 unsigned int tail;
2346
2347                                 tail = cluster_next(&p->free_cluster_tail);
2348                                 cluster_set_next(&cluster_info[tail], idx);
2349                                 cluster_set_next_flag(&p->free_cluster_tail,
2350                                                                 idx, 0);
2351                         }
2352                 }
2353                 idx++;
2354                 if (idx == nr_clusters)
2355                         idx = 0;
2356         }
2357         return nr_extents;
2358 }
2359
2360 /*
2361  * Helper to sys_swapon determining if a given swap
2362  * backing device queue supports DISCARD operations.
2363  */
2364 static bool swap_discardable(struct swap_info_struct *si)
2365 {
2366         struct request_queue *q = bdev_get_queue(si->bdev);
2367
2368         if (!q || !blk_queue_discard(q))
2369                 return false;
2370
2371         return true;
2372 }
2373
2374 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2375 {
2376         struct swap_info_struct *p;
2377         struct filename *name;
2378         struct file *swap_file = NULL;
2379         struct address_space *mapping;
2380         int prio;
2381         int error;
2382         union swap_header *swap_header;
2383         int nr_extents;
2384         sector_t span;
2385         unsigned long maxpages;
2386         unsigned char *swap_map = NULL;
2387         struct swap_cluster_info *cluster_info = NULL;
2388         unsigned long *frontswap_map = NULL;
2389         struct page *page = NULL;
2390         struct inode *inode = NULL;
2391
2392         if (swap_flags & ~SWAP_FLAGS_VALID)
2393                 return -EINVAL;
2394
2395         if (!capable(CAP_SYS_ADMIN))
2396                 return -EPERM;
2397
2398         p = alloc_swap_info();
2399         if (IS_ERR(p))
2400                 return PTR_ERR(p);
2401
2402         INIT_WORK(&p->discard_work, swap_discard_work);
2403
2404         name = getname(specialfile);
2405         if (IS_ERR(name)) {
2406                 error = PTR_ERR(name);
2407                 name = NULL;
2408                 goto bad_swap;
2409         }
2410         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2411         if (IS_ERR(swap_file)) {
2412                 error = PTR_ERR(swap_file);
2413                 swap_file = NULL;
2414                 goto bad_swap;
2415         }
2416
2417         p->swap_file = swap_file;
2418         mapping = swap_file->f_mapping;
2419         inode = mapping->host;
2420
2421         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2422         error = claim_swapfile(p, inode);
2423         if (unlikely(error))
2424                 goto bad_swap;
2425
2426         /*
2427          * Read the swap header.
2428          */
2429         if (!mapping->a_ops->readpage) {
2430                 error = -EINVAL;
2431                 goto bad_swap;
2432         }
2433         page = read_mapping_page(mapping, 0, swap_file);
2434         if (IS_ERR(page)) {
2435                 error = PTR_ERR(page);
2436                 goto bad_swap;
2437         }
2438         swap_header = kmap(page);
2439
2440         maxpages = read_swap_header(p, swap_header, inode);
2441         if (unlikely(!maxpages)) {
2442                 error = -EINVAL;
2443                 goto bad_swap;
2444         }
2445
2446         /* OK, set up the swap map and apply the bad block list */
2447         swap_map = vzalloc(maxpages);
2448         if (!swap_map) {
2449                 error = -ENOMEM;
2450                 goto bad_swap;
2451         }
2452         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2453                 int cpu;
2454
2455                 p->flags |= SWP_SOLIDSTATE;
2456                 /*
2457                  * select a random position to start with to help wear leveling
2458                  * SSD
2459                  */
2460                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2461
2462                 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2463                         SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2464                 if (!cluster_info) {
2465                         error = -ENOMEM;
2466                         goto bad_swap;
2467                 }
2468                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2469                 if (!p->percpu_cluster) {
2470                         error = -ENOMEM;
2471                         goto bad_swap;
2472                 }
2473                 for_each_possible_cpu(cpu) {
2474                         struct percpu_cluster *cluster;
2475                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2476                         cluster_set_null(&cluster->index);
2477                 }
2478         }
2479
2480         error = swap_cgroup_swapon(p->type, maxpages);
2481         if (error)
2482                 goto bad_swap;
2483
2484         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2485                 cluster_info, maxpages, &span);
2486         if (unlikely(nr_extents < 0)) {
2487                 error = nr_extents;
2488                 goto bad_swap;
2489         }
2490         /* frontswap enabled? set up bit-per-page map for frontswap */
2491         if (frontswap_enabled)
2492                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2493
2494         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2495                 /*
2496                  * When discard is enabled for swap with no particular
2497                  * policy flagged, we set all swap discard flags here in
2498                  * order to sustain backward compatibility with older
2499                  * swapon(8) releases.
2500                  */
2501                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2502                              SWP_PAGE_DISCARD);
2503
2504                 /*
2505                  * By flagging sys_swapon, a sysadmin can tell us to
2506                  * either do single-time area discards only, or to just
2507                  * perform discards for released swap page-clusters.
2508                  * Now it's time to adjust the p->flags accordingly.
2509                  */
2510                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2511                         p->flags &= ~SWP_PAGE_DISCARD;
2512                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2513                         p->flags &= ~SWP_AREA_DISCARD;
2514
2515                 /* issue a swapon-time discard if it's still required */
2516                 if (p->flags & SWP_AREA_DISCARD) {
2517                         int err = discard_swap(p);
2518                         if (unlikely(err))
2519                                 pr_err("swapon: discard_swap(%p): %d\n",
2520                                         p, err);
2521                 }
2522         }
2523
2524         mutex_lock(&swapon_mutex);
2525         prio = -1;
2526         if (swap_flags & SWAP_FLAG_PREFER)
2527                 prio =
2528                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2529         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2530
2531         pr_info("Adding %uk swap on %s.  "
2532                         "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2533                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2534                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2535                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2536                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2537                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2538                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2539                 (frontswap_map) ? "FS" : "");
2540
2541         mutex_unlock(&swapon_mutex);
2542         atomic_inc(&proc_poll_event);
2543         wake_up_interruptible(&proc_poll_wait);
2544
2545         if (S_ISREG(inode->i_mode))
2546                 inode->i_flags |= S_SWAPFILE;
2547         error = 0;
2548         goto out;
2549 bad_swap:
2550         free_percpu(p->percpu_cluster);
2551         p->percpu_cluster = NULL;
2552         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2553                 set_blocksize(p->bdev, p->old_block_size);
2554                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2555         }
2556         destroy_swap_extents(p);
2557         swap_cgroup_swapoff(p->type);
2558         spin_lock(&swap_lock);
2559         p->swap_file = NULL;
2560         p->flags = 0;
2561         spin_unlock(&swap_lock);
2562         vfree(swap_map);
2563         vfree(cluster_info);
2564         if (swap_file) {
2565                 if (inode && S_ISREG(inode->i_mode)) {
2566                         mutex_unlock(&inode->i_mutex);
2567                         inode = NULL;
2568                 }
2569                 filp_close(swap_file, NULL);
2570         }
2571 out:
2572         if (page && !IS_ERR(page)) {
2573                 kunmap(page);
2574                 page_cache_release(page);
2575         }
2576         if (name)
2577                 putname(name);
2578         if (inode && S_ISREG(inode->i_mode))
2579                 mutex_unlock(&inode->i_mutex);
2580         return error;
2581 }
2582
2583 void si_swapinfo(struct sysinfo *val)
2584 {
2585         unsigned int type;
2586         unsigned long nr_to_be_unused = 0;
2587
2588         spin_lock(&swap_lock);
2589         for (type = 0; type < nr_swapfiles; type++) {
2590                 struct swap_info_struct *si = swap_info[type];
2591
2592                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2593                         nr_to_be_unused += si->inuse_pages;
2594         }
2595         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2596         val->totalswap = total_swap_pages + nr_to_be_unused;
2597         spin_unlock(&swap_lock);
2598 }
2599
2600 /*
2601  * Verify that a swap entry is valid and increment its swap map count.
2602  *
2603  * Returns error code in following case.
2604  * - success -> 0
2605  * - swp_entry is invalid -> EINVAL
2606  * - swp_entry is migration entry -> EINVAL
2607  * - swap-cache reference is requested but there is already one. -> EEXIST
2608  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2609  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2610  */
2611 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2612 {
2613         struct swap_info_struct *p;
2614         unsigned long offset, type;
2615         unsigned char count;
2616         unsigned char has_cache;
2617         int err = -EINVAL;
2618
2619         if (non_swap_entry(entry))
2620                 goto out;
2621
2622         type = swp_type(entry);
2623         if (type >= nr_swapfiles)
2624                 goto bad_file;
2625         p = swap_info[type];
2626         offset = swp_offset(entry);
2627
2628         spin_lock(&p->lock);
2629         if (unlikely(offset >= p->max))
2630                 goto unlock_out;
2631
2632         count = p->swap_map[offset];
2633
2634         /*
2635          * swapin_readahead() doesn't check if a swap entry is valid, so the
2636          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2637          */
2638         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2639                 err = -ENOENT;
2640                 goto unlock_out;
2641         }
2642
2643         has_cache = count & SWAP_HAS_CACHE;
2644         count &= ~SWAP_HAS_CACHE;
2645         err = 0;
2646
2647         if (usage == SWAP_HAS_CACHE) {
2648
2649                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2650                 if (!has_cache && count)
2651                         has_cache = SWAP_HAS_CACHE;
2652                 else if (has_cache)             /* someone else added cache */
2653                         err = -EEXIST;
2654                 else                            /* no users remaining */
2655                         err = -ENOENT;
2656
2657         } else if (count || has_cache) {
2658
2659                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2660                         count += usage;
2661                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2662                         err = -EINVAL;
2663                 else if (swap_count_continued(p, offset, count))
2664                         count = COUNT_CONTINUED;
2665                 else
2666                         err = -ENOMEM;
2667         } else
2668                 err = -ENOENT;                  /* unused swap entry */
2669
2670         p->swap_map[offset] = count | has_cache;
2671
2672 unlock_out:
2673         spin_unlock(&p->lock);
2674 out:
2675         return err;
2676
2677 bad_file:
2678         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2679         goto out;
2680 }
2681
2682 /*
2683  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2684  * (in which case its reference count is never incremented).
2685  */
2686 void swap_shmem_alloc(swp_entry_t entry)
2687 {
2688         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2689 }
2690
2691 /*
2692  * Increase reference count of swap entry by 1.
2693  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2694  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2695  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2696  * might occur if a page table entry has got corrupted.
2697  */
2698 int swap_duplicate(swp_entry_t entry)
2699 {
2700         int err = 0;
2701
2702         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2703                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2704         return err;
2705 }
2706
2707 /*
2708  * @entry: swap entry for which we allocate swap cache.
2709  *
2710  * Called when allocating swap cache for existing swap entry,
2711  * This can return error codes. Returns 0 at success.
2712  * -EBUSY means there is a swap cache.
2713  * Note: return code is different from swap_duplicate().
2714  */
2715 int swapcache_prepare(swp_entry_t entry)
2716 {
2717         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2718 }
2719
2720 struct swap_info_struct *page_swap_info(struct page *page)
2721 {
2722         swp_entry_t swap = { .val = page_private(page) };
2723         BUG_ON(!PageSwapCache(page));
2724         return swap_info[swp_type(swap)];
2725 }
2726
2727 /*
2728  * out-of-line __page_file_ methods to avoid include hell.
2729  */
2730 struct address_space *__page_file_mapping(struct page *page)
2731 {
2732         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2733         return page_swap_info(page)->swap_file->f_mapping;
2734 }
2735 EXPORT_SYMBOL_GPL(__page_file_mapping);
2736
2737 pgoff_t __page_file_index(struct page *page)
2738 {
2739         swp_entry_t swap = { .val = page_private(page) };
2740         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2741         return swp_offset(swap);
2742 }
2743 EXPORT_SYMBOL_GPL(__page_file_index);
2744
2745 /*
2746  * add_swap_count_continuation - called when a swap count is duplicated
2747  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2748  * page of the original vmalloc'ed swap_map, to hold the continuation count
2749  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2750  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2751  *
2752  * These continuation pages are seldom referenced: the common paths all work
2753  * on the original swap_map, only referring to a continuation page when the
2754  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2755  *
2756  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2757  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2758  * can be called after dropping locks.
2759  */
2760 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2761 {
2762         struct swap_info_struct *si;
2763         struct page *head;
2764         struct page *page;
2765         struct page *list_page;
2766         pgoff_t offset;
2767         unsigned char count;
2768
2769         /*
2770          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2771          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2772          */
2773         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2774
2775         si = swap_info_get(entry);
2776         if (!si) {
2777                 /*
2778                  * An acceptable race has occurred since the failing
2779                  * __swap_duplicate(): the swap entry has been freed,
2780                  * perhaps even the whole swap_map cleared for swapoff.
2781                  */
2782                 goto outer;
2783         }
2784
2785         offset = swp_offset(entry);
2786         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2787
2788         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2789                 /*
2790                  * The higher the swap count, the more likely it is that tasks
2791                  * will race to add swap count continuation: we need to avoid
2792                  * over-provisioning.
2793                  */
2794                 goto out;
2795         }
2796
2797         if (!page) {
2798                 spin_unlock(&si->lock);
2799                 return -ENOMEM;
2800         }
2801
2802         /*
2803          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2804          * no architecture is using highmem pages for kernel page tables: so it
2805          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2806          */
2807         head = vmalloc_to_page(si->swap_map + offset);
2808         offset &= ~PAGE_MASK;
2809
2810         /*
2811          * Page allocation does not initialize the page's lru field,
2812          * but it does always reset its private field.
2813          */
2814         if (!page_private(head)) {
2815                 BUG_ON(count & COUNT_CONTINUED);
2816                 INIT_LIST_HEAD(&head->lru);
2817                 set_page_private(head, SWP_CONTINUED);
2818                 si->flags |= SWP_CONTINUED;
2819         }
2820
2821         list_for_each_entry(list_page, &head->lru, lru) {
2822                 unsigned char *map;
2823
2824                 /*
2825                  * If the previous map said no continuation, but we've found
2826                  * a continuation page, free our allocation and use this one.
2827                  */
2828                 if (!(count & COUNT_CONTINUED))
2829                         goto out;
2830
2831                 map = kmap_atomic(list_page) + offset;
2832                 count = *map;
2833                 kunmap_atomic(map);
2834
2835                 /*
2836                  * If this continuation count now has some space in it,
2837                  * free our allocation and use this one.
2838                  */
2839                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2840                         goto out;
2841         }
2842
2843         list_add_tail(&page->lru, &head->lru);
2844         page = NULL;                    /* now it's attached, don't free it */
2845 out:
2846         spin_unlock(&si->lock);
2847 outer:
2848         if (page)
2849                 __free_page(page);
2850         return 0;
2851 }
2852
2853 /*
2854  * swap_count_continued - when the original swap_map count is incremented
2855  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2856  * into, carry if so, or else fail until a new continuation page is allocated;
2857  * when the original swap_map count is decremented from 0 with continuation,
2858  * borrow from the continuation and report whether it still holds more.
2859  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2860  */
2861 static bool swap_count_continued(struct swap_info_struct *si,
2862                                  pgoff_t offset, unsigned char count)
2863 {
2864         struct page *head;
2865         struct page *page;
2866         unsigned char *map;
2867
2868         head = vmalloc_to_page(si->swap_map + offset);
2869         if (page_private(head) != SWP_CONTINUED) {
2870                 BUG_ON(count & COUNT_CONTINUED);
2871                 return false;           /* need to add count continuation */
2872         }
2873
2874         offset &= ~PAGE_MASK;
2875         page = list_entry(head->lru.next, struct page, lru);
2876         map = kmap_atomic(page) + offset;
2877
2878         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2879                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2880
2881         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2882                 /*
2883                  * Think of how you add 1 to 999
2884                  */
2885                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2886                         kunmap_atomic(map);
2887                         page = list_entry(page->lru.next, struct page, lru);
2888                         BUG_ON(page == head);
2889                         map = kmap_atomic(page) + offset;
2890                 }
2891                 if (*map == SWAP_CONT_MAX) {
2892                         kunmap_atomic(map);
2893                         page = list_entry(page->lru.next, struct page, lru);
2894                         if (page == head)
2895                                 return false;   /* add count continuation */
2896                         map = kmap_atomic(page) + offset;
2897 init_map:               *map = 0;               /* we didn't zero the page */
2898                 }
2899                 *map += 1;
2900                 kunmap_atomic(map);
2901                 page = list_entry(page->lru.prev, struct page, lru);
2902                 while (page != head) {
2903                         map = kmap_atomic(page) + offset;
2904                         *map = COUNT_CONTINUED;
2905                         kunmap_atomic(map);
2906                         page = list_entry(page->lru.prev, struct page, lru);
2907                 }
2908                 return true;                    /* incremented */
2909
2910         } else {                                /* decrementing */
2911                 /*
2912                  * Think of how you subtract 1 from 1000
2913                  */
2914                 BUG_ON(count != COUNT_CONTINUED);
2915                 while (*map == COUNT_CONTINUED) {
2916                         kunmap_atomic(map);
2917                         page = list_entry(page->lru.next, struct page, lru);
2918                         BUG_ON(page == head);
2919                         map = kmap_atomic(page) + offset;
2920                 }
2921                 BUG_ON(*map == 0);
2922                 *map -= 1;
2923                 if (*map == 0)
2924                         count = 0;
2925                 kunmap_atomic(map);
2926                 page = list_entry(page->lru.prev, struct page, lru);
2927                 while (page != head) {
2928                         map = kmap_atomic(page) + offset;
2929                         *map = SWAP_CONT_MAX | count;
2930                         count = COUNT_CONTINUED;
2931                         kunmap_atomic(map);
2932                         page = list_entry(page->lru.prev, struct page, lru);
2933                 }
2934                 return count == COUNT_CONTINUED;
2935         }
2936 }
2937
2938 /*
2939  * free_swap_count_continuations - swapoff free all the continuation pages
2940  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2941  */
2942 static void free_swap_count_continuations(struct swap_info_struct *si)
2943 {
2944         pgoff_t offset;
2945
2946         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2947                 struct page *head;
2948                 head = vmalloc_to_page(si->swap_map + offset);
2949                 if (page_private(head)) {
2950                         struct page *page, *next;
2951
2952                         list_for_each_entry_safe(page, next, &head->lru, lru) {
2953                                 list_del(&page->lru);
2954                                 __free_page(page);
2955                         }
2956                 }
2957         }
2958 }