mm/vmscan: push lruvec pointer into shrink_list()
[cascardo/linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57         /* Incremented by the number of inactive pages that were scanned */
58         unsigned long nr_scanned;
59
60         /* Number of pages freed so far during a call to shrink_zones() */
61         unsigned long nr_reclaimed;
62
63         /* How many pages shrink_list() should reclaim */
64         unsigned long nr_to_reclaim;
65
66         unsigned long hibernation_mode;
67
68         /* This context's GFP mask */
69         gfp_t gfp_mask;
70
71         int may_writepage;
72
73         /* Can mapped pages be reclaimed? */
74         int may_unmap;
75
76         /* Can pages be swapped as part of reclaim? */
77         int may_swap;
78
79         int order;
80
81         /* Scan (total_size >> priority) pages at once */
82         int priority;
83
84         /*
85          * The memory cgroup that hit its limit and as a result is the
86          * primary target of this reclaim invocation.
87          */
88         struct mem_cgroup *target_mem_cgroup;
89
90         /*
91          * Nodemask of nodes allowed by the caller. If NULL, all nodes
92          * are scanned.
93          */
94         nodemask_t      *nodemask;
95 };
96
97 struct mem_cgroup_zone {
98         struct mem_cgroup *mem_cgroup;
99         struct zone *zone;
100 };
101
102 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
103
104 #ifdef ARCH_HAS_PREFETCH
105 #define prefetch_prev_lru_page(_page, _base, _field)                    \
106         do {                                                            \
107                 if ((_page)->lru.prev != _base) {                       \
108                         struct page *prev;                              \
109                                                                         \
110                         prev = lru_to_page(&(_page->lru));              \
111                         prefetch(&prev->_field);                        \
112                 }                                                       \
113         } while (0)
114 #else
115 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117
118 #ifdef ARCH_HAS_PREFETCHW
119 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetchw(&prev->_field);                       \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 /*
133  * From 0 .. 100.  Higher means more swappy.
134  */
135 int vm_swappiness = 60;
136 long vm_total_pages;    /* The total number of pages which the VM controls */
137
138 static LIST_HEAD(shrinker_list);
139 static DECLARE_RWSEM(shrinker_rwsem);
140
141 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
142 static bool global_reclaim(struct scan_control *sc)
143 {
144         return !sc->target_mem_cgroup;
145 }
146 #else
147 static bool global_reclaim(struct scan_control *sc)
148 {
149         return true;
150 }
151 #endif
152
153 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
154 {
155         return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
156 }
157
158 static unsigned long get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
159 {
160         if (!mem_cgroup_disabled())
161                 return mem_cgroup_get_lruvec_size(lruvec, lru);
162
163         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
164 }
165
166 /*
167  * Add a shrinker callback to be called from the vm
168  */
169 void register_shrinker(struct shrinker *shrinker)
170 {
171         atomic_long_set(&shrinker->nr_in_batch, 0);
172         down_write(&shrinker_rwsem);
173         list_add_tail(&shrinker->list, &shrinker_list);
174         up_write(&shrinker_rwsem);
175 }
176 EXPORT_SYMBOL(register_shrinker);
177
178 /*
179  * Remove one
180  */
181 void unregister_shrinker(struct shrinker *shrinker)
182 {
183         down_write(&shrinker_rwsem);
184         list_del(&shrinker->list);
185         up_write(&shrinker_rwsem);
186 }
187 EXPORT_SYMBOL(unregister_shrinker);
188
189 static inline int do_shrinker_shrink(struct shrinker *shrinker,
190                                      struct shrink_control *sc,
191                                      unsigned long nr_to_scan)
192 {
193         sc->nr_to_scan = nr_to_scan;
194         return (*shrinker->shrink)(shrinker, sc);
195 }
196
197 #define SHRINK_BATCH 128
198 /*
199  * Call the shrink functions to age shrinkable caches
200  *
201  * Here we assume it costs one seek to replace a lru page and that it also
202  * takes a seek to recreate a cache object.  With this in mind we age equal
203  * percentages of the lru and ageable caches.  This should balance the seeks
204  * generated by these structures.
205  *
206  * If the vm encountered mapped pages on the LRU it increase the pressure on
207  * slab to avoid swapping.
208  *
209  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
210  *
211  * `lru_pages' represents the number of on-LRU pages in all the zones which
212  * are eligible for the caller's allocation attempt.  It is used for balancing
213  * slab reclaim versus page reclaim.
214  *
215  * Returns the number of slab objects which we shrunk.
216  */
217 unsigned long shrink_slab(struct shrink_control *shrink,
218                           unsigned long nr_pages_scanned,
219                           unsigned long lru_pages)
220 {
221         struct shrinker *shrinker;
222         unsigned long ret = 0;
223
224         if (nr_pages_scanned == 0)
225                 nr_pages_scanned = SWAP_CLUSTER_MAX;
226
227         if (!down_read_trylock(&shrinker_rwsem)) {
228                 /* Assume we'll be able to shrink next time */
229                 ret = 1;
230                 goto out;
231         }
232
233         list_for_each_entry(shrinker, &shrinker_list, list) {
234                 unsigned long long delta;
235                 long total_scan;
236                 long max_pass;
237                 int shrink_ret = 0;
238                 long nr;
239                 long new_nr;
240                 long batch_size = shrinker->batch ? shrinker->batch
241                                                   : SHRINK_BATCH;
242
243                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
244                 if (max_pass <= 0)
245                         continue;
246
247                 /*
248                  * copy the current shrinker scan count into a local variable
249                  * and zero it so that other concurrent shrinker invocations
250                  * don't also do this scanning work.
251                  */
252                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
253
254                 total_scan = nr;
255                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
256                 delta *= max_pass;
257                 do_div(delta, lru_pages + 1);
258                 total_scan += delta;
259                 if (total_scan < 0) {
260                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
261                                "delete nr=%ld\n",
262                                shrinker->shrink, total_scan);
263                         total_scan = max_pass;
264                 }
265
266                 /*
267                  * We need to avoid excessive windup on filesystem shrinkers
268                  * due to large numbers of GFP_NOFS allocations causing the
269                  * shrinkers to return -1 all the time. This results in a large
270                  * nr being built up so when a shrink that can do some work
271                  * comes along it empties the entire cache due to nr >>>
272                  * max_pass.  This is bad for sustaining a working set in
273                  * memory.
274                  *
275                  * Hence only allow the shrinker to scan the entire cache when
276                  * a large delta change is calculated directly.
277                  */
278                 if (delta < max_pass / 4)
279                         total_scan = min(total_scan, max_pass / 2);
280
281                 /*
282                  * Avoid risking looping forever due to too large nr value:
283                  * never try to free more than twice the estimate number of
284                  * freeable entries.
285                  */
286                 if (total_scan > max_pass * 2)
287                         total_scan = max_pass * 2;
288
289                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
290                                         nr_pages_scanned, lru_pages,
291                                         max_pass, delta, total_scan);
292
293                 while (total_scan >= batch_size) {
294                         int nr_before;
295
296                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
297                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
298                                                         batch_size);
299                         if (shrink_ret == -1)
300                                 break;
301                         if (shrink_ret < nr_before)
302                                 ret += nr_before - shrink_ret;
303                         count_vm_events(SLABS_SCANNED, batch_size);
304                         total_scan -= batch_size;
305
306                         cond_resched();
307                 }
308
309                 /*
310                  * move the unused scan count back into the shrinker in a
311                  * manner that handles concurrent updates. If we exhausted the
312                  * scan, there is no need to do an update.
313                  */
314                 if (total_scan > 0)
315                         new_nr = atomic_long_add_return(total_scan,
316                                         &shrinker->nr_in_batch);
317                 else
318                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
319
320                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
321         }
322         up_read(&shrinker_rwsem);
323 out:
324         cond_resched();
325         return ret;
326 }
327
328 static inline int is_page_cache_freeable(struct page *page)
329 {
330         /*
331          * A freeable page cache page is referenced only by the caller
332          * that isolated the page, the page cache radix tree and
333          * optional buffer heads at page->private.
334          */
335         return page_count(page) - page_has_private(page) == 2;
336 }
337
338 static int may_write_to_queue(struct backing_dev_info *bdi,
339                               struct scan_control *sc)
340 {
341         if (current->flags & PF_SWAPWRITE)
342                 return 1;
343         if (!bdi_write_congested(bdi))
344                 return 1;
345         if (bdi == current->backing_dev_info)
346                 return 1;
347         return 0;
348 }
349
350 /*
351  * We detected a synchronous write error writing a page out.  Probably
352  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
353  * fsync(), msync() or close().
354  *
355  * The tricky part is that after writepage we cannot touch the mapping: nothing
356  * prevents it from being freed up.  But we have a ref on the page and once
357  * that page is locked, the mapping is pinned.
358  *
359  * We're allowed to run sleeping lock_page() here because we know the caller has
360  * __GFP_FS.
361  */
362 static void handle_write_error(struct address_space *mapping,
363                                 struct page *page, int error)
364 {
365         lock_page(page);
366         if (page_mapping(page) == mapping)
367                 mapping_set_error(mapping, error);
368         unlock_page(page);
369 }
370
371 /* possible outcome of pageout() */
372 typedef enum {
373         /* failed to write page out, page is locked */
374         PAGE_KEEP,
375         /* move page to the active list, page is locked */
376         PAGE_ACTIVATE,
377         /* page has been sent to the disk successfully, page is unlocked */
378         PAGE_SUCCESS,
379         /* page is clean and locked */
380         PAGE_CLEAN,
381 } pageout_t;
382
383 /*
384  * pageout is called by shrink_page_list() for each dirty page.
385  * Calls ->writepage().
386  */
387 static pageout_t pageout(struct page *page, struct address_space *mapping,
388                          struct scan_control *sc)
389 {
390         /*
391          * If the page is dirty, only perform writeback if that write
392          * will be non-blocking.  To prevent this allocation from being
393          * stalled by pagecache activity.  But note that there may be
394          * stalls if we need to run get_block().  We could test
395          * PagePrivate for that.
396          *
397          * If this process is currently in __generic_file_aio_write() against
398          * this page's queue, we can perform writeback even if that
399          * will block.
400          *
401          * If the page is swapcache, write it back even if that would
402          * block, for some throttling. This happens by accident, because
403          * swap_backing_dev_info is bust: it doesn't reflect the
404          * congestion state of the swapdevs.  Easy to fix, if needed.
405          */
406         if (!is_page_cache_freeable(page))
407                 return PAGE_KEEP;
408         if (!mapping) {
409                 /*
410                  * Some data journaling orphaned pages can have
411                  * page->mapping == NULL while being dirty with clean buffers.
412                  */
413                 if (page_has_private(page)) {
414                         if (try_to_free_buffers(page)) {
415                                 ClearPageDirty(page);
416                                 printk("%s: orphaned page\n", __func__);
417                                 return PAGE_CLEAN;
418                         }
419                 }
420                 return PAGE_KEEP;
421         }
422         if (mapping->a_ops->writepage == NULL)
423                 return PAGE_ACTIVATE;
424         if (!may_write_to_queue(mapping->backing_dev_info, sc))
425                 return PAGE_KEEP;
426
427         if (clear_page_dirty_for_io(page)) {
428                 int res;
429                 struct writeback_control wbc = {
430                         .sync_mode = WB_SYNC_NONE,
431                         .nr_to_write = SWAP_CLUSTER_MAX,
432                         .range_start = 0,
433                         .range_end = LLONG_MAX,
434                         .for_reclaim = 1,
435                 };
436
437                 SetPageReclaim(page);
438                 res = mapping->a_ops->writepage(page, &wbc);
439                 if (res < 0)
440                         handle_write_error(mapping, page, res);
441                 if (res == AOP_WRITEPAGE_ACTIVATE) {
442                         ClearPageReclaim(page);
443                         return PAGE_ACTIVATE;
444                 }
445
446                 if (!PageWriteback(page)) {
447                         /* synchronous write or broken a_ops? */
448                         ClearPageReclaim(page);
449                 }
450                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
451                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
452                 return PAGE_SUCCESS;
453         }
454
455         return PAGE_CLEAN;
456 }
457
458 /*
459  * Same as remove_mapping, but if the page is removed from the mapping, it
460  * gets returned with a refcount of 0.
461  */
462 static int __remove_mapping(struct address_space *mapping, struct page *page)
463 {
464         BUG_ON(!PageLocked(page));
465         BUG_ON(mapping != page_mapping(page));
466
467         spin_lock_irq(&mapping->tree_lock);
468         /*
469          * The non racy check for a busy page.
470          *
471          * Must be careful with the order of the tests. When someone has
472          * a ref to the page, it may be possible that they dirty it then
473          * drop the reference. So if PageDirty is tested before page_count
474          * here, then the following race may occur:
475          *
476          * get_user_pages(&page);
477          * [user mapping goes away]
478          * write_to(page);
479          *                              !PageDirty(page)    [good]
480          * SetPageDirty(page);
481          * put_page(page);
482          *                              !page_count(page)   [good, discard it]
483          *
484          * [oops, our write_to data is lost]
485          *
486          * Reversing the order of the tests ensures such a situation cannot
487          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
488          * load is not satisfied before that of page->_count.
489          *
490          * Note that if SetPageDirty is always performed via set_page_dirty,
491          * and thus under tree_lock, then this ordering is not required.
492          */
493         if (!page_freeze_refs(page, 2))
494                 goto cannot_free;
495         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
496         if (unlikely(PageDirty(page))) {
497                 page_unfreeze_refs(page, 2);
498                 goto cannot_free;
499         }
500
501         if (PageSwapCache(page)) {
502                 swp_entry_t swap = { .val = page_private(page) };
503                 __delete_from_swap_cache(page);
504                 spin_unlock_irq(&mapping->tree_lock);
505                 swapcache_free(swap, page);
506         } else {
507                 void (*freepage)(struct page *);
508
509                 freepage = mapping->a_ops->freepage;
510
511                 __delete_from_page_cache(page);
512                 spin_unlock_irq(&mapping->tree_lock);
513                 mem_cgroup_uncharge_cache_page(page);
514
515                 if (freepage != NULL)
516                         freepage(page);
517         }
518
519         return 1;
520
521 cannot_free:
522         spin_unlock_irq(&mapping->tree_lock);
523         return 0;
524 }
525
526 /*
527  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
528  * someone else has a ref on the page, abort and return 0.  If it was
529  * successfully detached, return 1.  Assumes the caller has a single ref on
530  * this page.
531  */
532 int remove_mapping(struct address_space *mapping, struct page *page)
533 {
534         if (__remove_mapping(mapping, page)) {
535                 /*
536                  * Unfreezing the refcount with 1 rather than 2 effectively
537                  * drops the pagecache ref for us without requiring another
538                  * atomic operation.
539                  */
540                 page_unfreeze_refs(page, 1);
541                 return 1;
542         }
543         return 0;
544 }
545
546 /**
547  * putback_lru_page - put previously isolated page onto appropriate LRU list
548  * @page: page to be put back to appropriate lru list
549  *
550  * Add previously isolated @page to appropriate LRU list.
551  * Page may still be unevictable for other reasons.
552  *
553  * lru_lock must not be held, interrupts must be enabled.
554  */
555 void putback_lru_page(struct page *page)
556 {
557         int lru;
558         int active = !!TestClearPageActive(page);
559         int was_unevictable = PageUnevictable(page);
560
561         VM_BUG_ON(PageLRU(page));
562
563 redo:
564         ClearPageUnevictable(page);
565
566         if (page_evictable(page, NULL)) {
567                 /*
568                  * For evictable pages, we can use the cache.
569                  * In event of a race, worst case is we end up with an
570                  * unevictable page on [in]active list.
571                  * We know how to handle that.
572                  */
573                 lru = active + page_lru_base_type(page);
574                 lru_cache_add_lru(page, lru);
575         } else {
576                 /*
577                  * Put unevictable pages directly on zone's unevictable
578                  * list.
579                  */
580                 lru = LRU_UNEVICTABLE;
581                 add_page_to_unevictable_list(page);
582                 /*
583                  * When racing with an mlock or AS_UNEVICTABLE clearing
584                  * (page is unlocked) make sure that if the other thread
585                  * does not observe our setting of PG_lru and fails
586                  * isolation/check_move_unevictable_pages,
587                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
588                  * the page back to the evictable list.
589                  *
590                  * The other side is TestClearPageMlocked() or shmem_lock().
591                  */
592                 smp_mb();
593         }
594
595         /*
596          * page's status can change while we move it among lru. If an evictable
597          * page is on unevictable list, it never be freed. To avoid that,
598          * check after we added it to the list, again.
599          */
600         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
601                 if (!isolate_lru_page(page)) {
602                         put_page(page);
603                         goto redo;
604                 }
605                 /* This means someone else dropped this page from LRU
606                  * So, it will be freed or putback to LRU again. There is
607                  * nothing to do here.
608                  */
609         }
610
611         if (was_unevictable && lru != LRU_UNEVICTABLE)
612                 count_vm_event(UNEVICTABLE_PGRESCUED);
613         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
614                 count_vm_event(UNEVICTABLE_PGCULLED);
615
616         put_page(page);         /* drop ref from isolate */
617 }
618
619 enum page_references {
620         PAGEREF_RECLAIM,
621         PAGEREF_RECLAIM_CLEAN,
622         PAGEREF_KEEP,
623         PAGEREF_ACTIVATE,
624 };
625
626 static enum page_references page_check_references(struct page *page,
627                                                   struct scan_control *sc)
628 {
629         int referenced_ptes, referenced_page;
630         unsigned long vm_flags;
631
632         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
633                                           &vm_flags);
634         referenced_page = TestClearPageReferenced(page);
635
636         /*
637          * Mlock lost the isolation race with us.  Let try_to_unmap()
638          * move the page to the unevictable list.
639          */
640         if (vm_flags & VM_LOCKED)
641                 return PAGEREF_RECLAIM;
642
643         if (referenced_ptes) {
644                 if (PageSwapBacked(page))
645                         return PAGEREF_ACTIVATE;
646                 /*
647                  * All mapped pages start out with page table
648                  * references from the instantiating fault, so we need
649                  * to look twice if a mapped file page is used more
650                  * than once.
651                  *
652                  * Mark it and spare it for another trip around the
653                  * inactive list.  Another page table reference will
654                  * lead to its activation.
655                  *
656                  * Note: the mark is set for activated pages as well
657                  * so that recently deactivated but used pages are
658                  * quickly recovered.
659                  */
660                 SetPageReferenced(page);
661
662                 if (referenced_page || referenced_ptes > 1)
663                         return PAGEREF_ACTIVATE;
664
665                 /*
666                  * Activate file-backed executable pages after first usage.
667                  */
668                 if (vm_flags & VM_EXEC)
669                         return PAGEREF_ACTIVATE;
670
671                 return PAGEREF_KEEP;
672         }
673
674         /* Reclaim if clean, defer dirty pages to writeback */
675         if (referenced_page && !PageSwapBacked(page))
676                 return PAGEREF_RECLAIM_CLEAN;
677
678         return PAGEREF_RECLAIM;
679 }
680
681 /*
682  * shrink_page_list() returns the number of reclaimed pages
683  */
684 static unsigned long shrink_page_list(struct list_head *page_list,
685                                       struct zone *zone,
686                                       struct scan_control *sc,
687                                       unsigned long *ret_nr_dirty,
688                                       unsigned long *ret_nr_writeback)
689 {
690         LIST_HEAD(ret_pages);
691         LIST_HEAD(free_pages);
692         int pgactivate = 0;
693         unsigned long nr_dirty = 0;
694         unsigned long nr_congested = 0;
695         unsigned long nr_reclaimed = 0;
696         unsigned long nr_writeback = 0;
697
698         cond_resched();
699
700         while (!list_empty(page_list)) {
701                 enum page_references references;
702                 struct address_space *mapping;
703                 struct page *page;
704                 int may_enter_fs;
705
706                 cond_resched();
707
708                 page = lru_to_page(page_list);
709                 list_del(&page->lru);
710
711                 if (!trylock_page(page))
712                         goto keep;
713
714                 VM_BUG_ON(PageActive(page));
715                 VM_BUG_ON(page_zone(page) != zone);
716
717                 sc->nr_scanned++;
718
719                 if (unlikely(!page_evictable(page, NULL)))
720                         goto cull_mlocked;
721
722                 if (!sc->may_unmap && page_mapped(page))
723                         goto keep_locked;
724
725                 /* Double the slab pressure for mapped and swapcache pages */
726                 if (page_mapped(page) || PageSwapCache(page))
727                         sc->nr_scanned++;
728
729                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
730                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
731
732                 if (PageWriteback(page)) {
733                         nr_writeback++;
734                         unlock_page(page);
735                         goto keep;
736                 }
737
738                 references = page_check_references(page, sc);
739                 switch (references) {
740                 case PAGEREF_ACTIVATE:
741                         goto activate_locked;
742                 case PAGEREF_KEEP:
743                         goto keep_locked;
744                 case PAGEREF_RECLAIM:
745                 case PAGEREF_RECLAIM_CLEAN:
746                         ; /* try to reclaim the page below */
747                 }
748
749                 /*
750                  * Anonymous process memory has backing store?
751                  * Try to allocate it some swap space here.
752                  */
753                 if (PageAnon(page) && !PageSwapCache(page)) {
754                         if (!(sc->gfp_mask & __GFP_IO))
755                                 goto keep_locked;
756                         if (!add_to_swap(page))
757                                 goto activate_locked;
758                         may_enter_fs = 1;
759                 }
760
761                 mapping = page_mapping(page);
762
763                 /*
764                  * The page is mapped into the page tables of one or more
765                  * processes. Try to unmap it here.
766                  */
767                 if (page_mapped(page) && mapping) {
768                         switch (try_to_unmap(page, TTU_UNMAP)) {
769                         case SWAP_FAIL:
770                                 goto activate_locked;
771                         case SWAP_AGAIN:
772                                 goto keep_locked;
773                         case SWAP_MLOCK:
774                                 goto cull_mlocked;
775                         case SWAP_SUCCESS:
776                                 ; /* try to free the page below */
777                         }
778                 }
779
780                 if (PageDirty(page)) {
781                         nr_dirty++;
782
783                         /*
784                          * Only kswapd can writeback filesystem pages to
785                          * avoid risk of stack overflow but do not writeback
786                          * unless under significant pressure.
787                          */
788                         if (page_is_file_cache(page) &&
789                                         (!current_is_kswapd() ||
790                                          sc->priority >= DEF_PRIORITY - 2)) {
791                                 /*
792                                  * Immediately reclaim when written back.
793                                  * Similar in principal to deactivate_page()
794                                  * except we already have the page isolated
795                                  * and know it's dirty
796                                  */
797                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
798                                 SetPageReclaim(page);
799
800                                 goto keep_locked;
801                         }
802
803                         if (references == PAGEREF_RECLAIM_CLEAN)
804                                 goto keep_locked;
805                         if (!may_enter_fs)
806                                 goto keep_locked;
807                         if (!sc->may_writepage)
808                                 goto keep_locked;
809
810                         /* Page is dirty, try to write it out here */
811                         switch (pageout(page, mapping, sc)) {
812                         case PAGE_KEEP:
813                                 nr_congested++;
814                                 goto keep_locked;
815                         case PAGE_ACTIVATE:
816                                 goto activate_locked;
817                         case PAGE_SUCCESS:
818                                 if (PageWriteback(page))
819                                         goto keep;
820                                 if (PageDirty(page))
821                                         goto keep;
822
823                                 /*
824                                  * A synchronous write - probably a ramdisk.  Go
825                                  * ahead and try to reclaim the page.
826                                  */
827                                 if (!trylock_page(page))
828                                         goto keep;
829                                 if (PageDirty(page) || PageWriteback(page))
830                                         goto keep_locked;
831                                 mapping = page_mapping(page);
832                         case PAGE_CLEAN:
833                                 ; /* try to free the page below */
834                         }
835                 }
836
837                 /*
838                  * If the page has buffers, try to free the buffer mappings
839                  * associated with this page. If we succeed we try to free
840                  * the page as well.
841                  *
842                  * We do this even if the page is PageDirty().
843                  * try_to_release_page() does not perform I/O, but it is
844                  * possible for a page to have PageDirty set, but it is actually
845                  * clean (all its buffers are clean).  This happens if the
846                  * buffers were written out directly, with submit_bh(). ext3
847                  * will do this, as well as the blockdev mapping.
848                  * try_to_release_page() will discover that cleanness and will
849                  * drop the buffers and mark the page clean - it can be freed.
850                  *
851                  * Rarely, pages can have buffers and no ->mapping.  These are
852                  * the pages which were not successfully invalidated in
853                  * truncate_complete_page().  We try to drop those buffers here
854                  * and if that worked, and the page is no longer mapped into
855                  * process address space (page_count == 1) it can be freed.
856                  * Otherwise, leave the page on the LRU so it is swappable.
857                  */
858                 if (page_has_private(page)) {
859                         if (!try_to_release_page(page, sc->gfp_mask))
860                                 goto activate_locked;
861                         if (!mapping && page_count(page) == 1) {
862                                 unlock_page(page);
863                                 if (put_page_testzero(page))
864                                         goto free_it;
865                                 else {
866                                         /*
867                                          * rare race with speculative reference.
868                                          * the speculative reference will free
869                                          * this page shortly, so we may
870                                          * increment nr_reclaimed here (and
871                                          * leave it off the LRU).
872                                          */
873                                         nr_reclaimed++;
874                                         continue;
875                                 }
876                         }
877                 }
878
879                 if (!mapping || !__remove_mapping(mapping, page))
880                         goto keep_locked;
881
882                 /*
883                  * At this point, we have no other references and there is
884                  * no way to pick any more up (removed from LRU, removed
885                  * from pagecache). Can use non-atomic bitops now (and
886                  * we obviously don't have to worry about waking up a process
887                  * waiting on the page lock, because there are no references.
888                  */
889                 __clear_page_locked(page);
890 free_it:
891                 nr_reclaimed++;
892
893                 /*
894                  * Is there need to periodically free_page_list? It would
895                  * appear not as the counts should be low
896                  */
897                 list_add(&page->lru, &free_pages);
898                 continue;
899
900 cull_mlocked:
901                 if (PageSwapCache(page))
902                         try_to_free_swap(page);
903                 unlock_page(page);
904                 putback_lru_page(page);
905                 continue;
906
907 activate_locked:
908                 /* Not a candidate for swapping, so reclaim swap space. */
909                 if (PageSwapCache(page) && vm_swap_full())
910                         try_to_free_swap(page);
911                 VM_BUG_ON(PageActive(page));
912                 SetPageActive(page);
913                 pgactivate++;
914 keep_locked:
915                 unlock_page(page);
916 keep:
917                 list_add(&page->lru, &ret_pages);
918                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
919         }
920
921         /*
922          * Tag a zone as congested if all the dirty pages encountered were
923          * backed by a congested BDI. In this case, reclaimers should just
924          * back off and wait for congestion to clear because further reclaim
925          * will encounter the same problem
926          */
927         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
928                 zone_set_flag(zone, ZONE_CONGESTED);
929
930         free_hot_cold_page_list(&free_pages, 1);
931
932         list_splice(&ret_pages, page_list);
933         count_vm_events(PGACTIVATE, pgactivate);
934         *ret_nr_dirty += nr_dirty;
935         *ret_nr_writeback += nr_writeback;
936         return nr_reclaimed;
937 }
938
939 /*
940  * Attempt to remove the specified page from its LRU.  Only take this page
941  * if it is of the appropriate PageActive status.  Pages which are being
942  * freed elsewhere are also ignored.
943  *
944  * page:        page to consider
945  * mode:        one of the LRU isolation modes defined above
946  *
947  * returns 0 on success, -ve errno on failure.
948  */
949 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
950 {
951         int ret = -EINVAL;
952
953         /* Only take pages on the LRU. */
954         if (!PageLRU(page))
955                 return ret;
956
957         /* Do not give back unevictable pages for compaction */
958         if (PageUnevictable(page))
959                 return ret;
960
961         ret = -EBUSY;
962
963         /*
964          * To minimise LRU disruption, the caller can indicate that it only
965          * wants to isolate pages it will be able to operate on without
966          * blocking - clean pages for the most part.
967          *
968          * ISOLATE_CLEAN means that only clean pages should be isolated. This
969          * is used by reclaim when it is cannot write to backing storage
970          *
971          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
972          * that it is possible to migrate without blocking
973          */
974         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
975                 /* All the caller can do on PageWriteback is block */
976                 if (PageWriteback(page))
977                         return ret;
978
979                 if (PageDirty(page)) {
980                         struct address_space *mapping;
981
982                         /* ISOLATE_CLEAN means only clean pages */
983                         if (mode & ISOLATE_CLEAN)
984                                 return ret;
985
986                         /*
987                          * Only pages without mappings or that have a
988                          * ->migratepage callback are possible to migrate
989                          * without blocking
990                          */
991                         mapping = page_mapping(page);
992                         if (mapping && !mapping->a_ops->migratepage)
993                                 return ret;
994                 }
995         }
996
997         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
998                 return ret;
999
1000         if (likely(get_page_unless_zero(page))) {
1001                 /*
1002                  * Be careful not to clear PageLRU until after we're
1003                  * sure the page is not being freed elsewhere -- the
1004                  * page release code relies on it.
1005                  */
1006                 ClearPageLRU(page);
1007                 ret = 0;
1008         }
1009
1010         return ret;
1011 }
1012
1013 /*
1014  * zone->lru_lock is heavily contended.  Some of the functions that
1015  * shrink the lists perform better by taking out a batch of pages
1016  * and working on them outside the LRU lock.
1017  *
1018  * For pagecache intensive workloads, this function is the hottest
1019  * spot in the kernel (apart from copy_*_user functions).
1020  *
1021  * Appropriate locks must be held before calling this function.
1022  *
1023  * @nr_to_scan: The number of pages to look through on the list.
1024  * @lruvec:     The LRU vector to pull pages from.
1025  * @dst:        The temp list to put pages on to.
1026  * @nr_scanned: The number of pages that were scanned.
1027  * @sc:         The scan_control struct for this reclaim session
1028  * @mode:       One of the LRU isolation modes
1029  * @lru:        LRU list id for isolating
1030  *
1031  * returns how many pages were moved onto *@dst.
1032  */
1033 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1034                 struct lruvec *lruvec, struct list_head *dst,
1035                 unsigned long *nr_scanned, struct scan_control *sc,
1036                 isolate_mode_t mode, enum lru_list lru)
1037 {
1038         struct list_head *src;
1039         unsigned long nr_taken = 0;
1040         unsigned long scan;
1041         int file = is_file_lru(lru);
1042
1043         src = &lruvec->lists[lru];
1044
1045         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1046                 struct page *page;
1047
1048                 page = lru_to_page(src);
1049                 prefetchw_prev_lru_page(page, src, flags);
1050
1051                 VM_BUG_ON(!PageLRU(page));
1052
1053                 switch (__isolate_lru_page(page, mode)) {
1054                 case 0:
1055                         mem_cgroup_lru_del_list(page, lru);
1056                         list_move(&page->lru, dst);
1057                         nr_taken += hpage_nr_pages(page);
1058                         break;
1059
1060                 case -EBUSY:
1061                         /* else it is being freed elsewhere */
1062                         list_move(&page->lru, src);
1063                         continue;
1064
1065                 default:
1066                         BUG();
1067                 }
1068         }
1069
1070         *nr_scanned = scan;
1071
1072         trace_mm_vmscan_lru_isolate(sc->order,
1073                         nr_to_scan, scan,
1074                         nr_taken,
1075                         mode, file);
1076         return nr_taken;
1077 }
1078
1079 /**
1080  * isolate_lru_page - tries to isolate a page from its LRU list
1081  * @page: page to isolate from its LRU list
1082  *
1083  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1084  * vmstat statistic corresponding to whatever LRU list the page was on.
1085  *
1086  * Returns 0 if the page was removed from an LRU list.
1087  * Returns -EBUSY if the page was not on an LRU list.
1088  *
1089  * The returned page will have PageLRU() cleared.  If it was found on
1090  * the active list, it will have PageActive set.  If it was found on
1091  * the unevictable list, it will have the PageUnevictable bit set. That flag
1092  * may need to be cleared by the caller before letting the page go.
1093  *
1094  * The vmstat statistic corresponding to the list on which the page was
1095  * found will be decremented.
1096  *
1097  * Restrictions:
1098  * (1) Must be called with an elevated refcount on the page. This is a
1099  *     fundamentnal difference from isolate_lru_pages (which is called
1100  *     without a stable reference).
1101  * (2) the lru_lock must not be held.
1102  * (3) interrupts must be enabled.
1103  */
1104 int isolate_lru_page(struct page *page)
1105 {
1106         int ret = -EBUSY;
1107
1108         VM_BUG_ON(!page_count(page));
1109
1110         if (PageLRU(page)) {
1111                 struct zone *zone = page_zone(page);
1112
1113                 spin_lock_irq(&zone->lru_lock);
1114                 if (PageLRU(page)) {
1115                         int lru = page_lru(page);
1116                         ret = 0;
1117                         get_page(page);
1118                         ClearPageLRU(page);
1119
1120                         del_page_from_lru_list(zone, page, lru);
1121                 }
1122                 spin_unlock_irq(&zone->lru_lock);
1123         }
1124         return ret;
1125 }
1126
1127 /*
1128  * Are there way too many processes in the direct reclaim path already?
1129  */
1130 static int too_many_isolated(struct zone *zone, int file,
1131                 struct scan_control *sc)
1132 {
1133         unsigned long inactive, isolated;
1134
1135         if (current_is_kswapd())
1136                 return 0;
1137
1138         if (!global_reclaim(sc))
1139                 return 0;
1140
1141         if (file) {
1142                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1143                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1144         } else {
1145                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1146                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1147         }
1148
1149         return isolated > inactive;
1150 }
1151
1152 static noinline_for_stack void
1153 putback_inactive_pages(struct lruvec *lruvec,
1154                        struct list_head *page_list)
1155 {
1156         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1157         struct zone *zone = lruvec_zone(lruvec);
1158         LIST_HEAD(pages_to_free);
1159
1160         /*
1161          * Put back any unfreeable pages.
1162          */
1163         while (!list_empty(page_list)) {
1164                 struct page *page = lru_to_page(page_list);
1165                 int lru;
1166
1167                 VM_BUG_ON(PageLRU(page));
1168                 list_del(&page->lru);
1169                 if (unlikely(!page_evictable(page, NULL))) {
1170                         spin_unlock_irq(&zone->lru_lock);
1171                         putback_lru_page(page);
1172                         spin_lock_irq(&zone->lru_lock);
1173                         continue;
1174                 }
1175                 SetPageLRU(page);
1176                 lru = page_lru(page);
1177                 add_page_to_lru_list(zone, page, lru);
1178                 if (is_active_lru(lru)) {
1179                         int file = is_file_lru(lru);
1180                         int numpages = hpage_nr_pages(page);
1181                         reclaim_stat->recent_rotated[file] += numpages;
1182                 }
1183                 if (put_page_testzero(page)) {
1184                         __ClearPageLRU(page);
1185                         __ClearPageActive(page);
1186                         del_page_from_lru_list(zone, page, lru);
1187
1188                         if (unlikely(PageCompound(page))) {
1189                                 spin_unlock_irq(&zone->lru_lock);
1190                                 (*get_compound_page_dtor(page))(page);
1191                                 spin_lock_irq(&zone->lru_lock);
1192                         } else
1193                                 list_add(&page->lru, &pages_to_free);
1194                 }
1195         }
1196
1197         /*
1198          * To save our caller's stack, now use input list for pages to free.
1199          */
1200         list_splice(&pages_to_free, page_list);
1201 }
1202
1203 /*
1204  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1205  * of reclaimed pages
1206  */
1207 static noinline_for_stack unsigned long
1208 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1209                      struct scan_control *sc, enum lru_list lru)
1210 {
1211         LIST_HEAD(page_list);
1212         unsigned long nr_scanned;
1213         unsigned long nr_reclaimed = 0;
1214         unsigned long nr_taken;
1215         unsigned long nr_dirty = 0;
1216         unsigned long nr_writeback = 0;
1217         isolate_mode_t isolate_mode = 0;
1218         int file = is_file_lru(lru);
1219         struct zone *zone = lruvec_zone(lruvec);
1220         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1221
1222         while (unlikely(too_many_isolated(zone, file, sc))) {
1223                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1224
1225                 /* We are about to die and free our memory. Return now. */
1226                 if (fatal_signal_pending(current))
1227                         return SWAP_CLUSTER_MAX;
1228         }
1229
1230         lru_add_drain();
1231
1232         if (!sc->may_unmap)
1233                 isolate_mode |= ISOLATE_UNMAPPED;
1234         if (!sc->may_writepage)
1235                 isolate_mode |= ISOLATE_CLEAN;
1236
1237         spin_lock_irq(&zone->lru_lock);
1238
1239         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1240                                      &nr_scanned, sc, isolate_mode, lru);
1241
1242         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1243         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1244
1245         if (global_reclaim(sc)) {
1246                 zone->pages_scanned += nr_scanned;
1247                 if (current_is_kswapd())
1248                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1249                                                nr_scanned);
1250                 else
1251                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1252                                                nr_scanned);
1253         }
1254         spin_unlock_irq(&zone->lru_lock);
1255
1256         if (nr_taken == 0)
1257                 return 0;
1258
1259         nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1260                                                 &nr_dirty, &nr_writeback);
1261
1262         spin_lock_irq(&zone->lru_lock);
1263
1264         reclaim_stat->recent_scanned[file] += nr_taken;
1265
1266         if (global_reclaim(sc)) {
1267                 if (current_is_kswapd())
1268                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1269                                                nr_reclaimed);
1270                 else
1271                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1272                                                nr_reclaimed);
1273         }
1274
1275         putback_inactive_pages(lruvec, &page_list);
1276
1277         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1278
1279         spin_unlock_irq(&zone->lru_lock);
1280
1281         free_hot_cold_page_list(&page_list, 1);
1282
1283         /*
1284          * If reclaim is isolating dirty pages under writeback, it implies
1285          * that the long-lived page allocation rate is exceeding the page
1286          * laundering rate. Either the global limits are not being effective
1287          * at throttling processes due to the page distribution throughout
1288          * zones or there is heavy usage of a slow backing device. The
1289          * only option is to throttle from reclaim context which is not ideal
1290          * as there is no guarantee the dirtying process is throttled in the
1291          * same way balance_dirty_pages() manages.
1292          *
1293          * This scales the number of dirty pages that must be under writeback
1294          * before throttling depending on priority. It is a simple backoff
1295          * function that has the most effect in the range DEF_PRIORITY to
1296          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1297          * in trouble and reclaim is considered to be in trouble.
1298          *
1299          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1300          * DEF_PRIORITY-1  50% must be PageWriteback
1301          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1302          * ...
1303          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1304          *                     isolated page is PageWriteback
1305          */
1306         if (nr_writeback && nr_writeback >=
1307                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1308                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1309
1310         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1311                 zone_idx(zone),
1312                 nr_scanned, nr_reclaimed,
1313                 sc->priority,
1314                 trace_shrink_flags(file));
1315         return nr_reclaimed;
1316 }
1317
1318 /*
1319  * This moves pages from the active list to the inactive list.
1320  *
1321  * We move them the other way if the page is referenced by one or more
1322  * processes, from rmap.
1323  *
1324  * If the pages are mostly unmapped, the processing is fast and it is
1325  * appropriate to hold zone->lru_lock across the whole operation.  But if
1326  * the pages are mapped, the processing is slow (page_referenced()) so we
1327  * should drop zone->lru_lock around each page.  It's impossible to balance
1328  * this, so instead we remove the pages from the LRU while processing them.
1329  * It is safe to rely on PG_active against the non-LRU pages in here because
1330  * nobody will play with that bit on a non-LRU page.
1331  *
1332  * The downside is that we have to touch page->_count against each page.
1333  * But we had to alter page->flags anyway.
1334  */
1335
1336 static void move_active_pages_to_lru(struct zone *zone,
1337                                      struct list_head *list,
1338                                      struct list_head *pages_to_free,
1339                                      enum lru_list lru)
1340 {
1341         unsigned long pgmoved = 0;
1342         struct page *page;
1343
1344         while (!list_empty(list)) {
1345                 struct lruvec *lruvec;
1346
1347                 page = lru_to_page(list);
1348
1349                 VM_BUG_ON(PageLRU(page));
1350                 SetPageLRU(page);
1351
1352                 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1353                 list_move(&page->lru, &lruvec->lists[lru]);
1354                 pgmoved += hpage_nr_pages(page);
1355
1356                 if (put_page_testzero(page)) {
1357                         __ClearPageLRU(page);
1358                         __ClearPageActive(page);
1359                         del_page_from_lru_list(zone, page, lru);
1360
1361                         if (unlikely(PageCompound(page))) {
1362                                 spin_unlock_irq(&zone->lru_lock);
1363                                 (*get_compound_page_dtor(page))(page);
1364                                 spin_lock_irq(&zone->lru_lock);
1365                         } else
1366                                 list_add(&page->lru, pages_to_free);
1367                 }
1368         }
1369         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1370         if (!is_active_lru(lru))
1371                 __count_vm_events(PGDEACTIVATE, pgmoved);
1372 }
1373
1374 static void shrink_active_list(unsigned long nr_to_scan,
1375                                struct lruvec *lruvec,
1376                                struct scan_control *sc,
1377                                enum lru_list lru)
1378 {
1379         unsigned long nr_taken;
1380         unsigned long nr_scanned;
1381         unsigned long vm_flags;
1382         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1383         LIST_HEAD(l_active);
1384         LIST_HEAD(l_inactive);
1385         struct page *page;
1386         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1387         unsigned long nr_rotated = 0;
1388         isolate_mode_t isolate_mode = 0;
1389         int file = is_file_lru(lru);
1390         struct zone *zone = lruvec_zone(lruvec);
1391
1392         lru_add_drain();
1393
1394         if (!sc->may_unmap)
1395                 isolate_mode |= ISOLATE_UNMAPPED;
1396         if (!sc->may_writepage)
1397                 isolate_mode |= ISOLATE_CLEAN;
1398
1399         spin_lock_irq(&zone->lru_lock);
1400
1401         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1402                                      &nr_scanned, sc, isolate_mode, lru);
1403         if (global_reclaim(sc))
1404                 zone->pages_scanned += nr_scanned;
1405
1406         reclaim_stat->recent_scanned[file] += nr_taken;
1407
1408         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1409         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1410         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1411         spin_unlock_irq(&zone->lru_lock);
1412
1413         while (!list_empty(&l_hold)) {
1414                 cond_resched();
1415                 page = lru_to_page(&l_hold);
1416                 list_del(&page->lru);
1417
1418                 if (unlikely(!page_evictable(page, NULL))) {
1419                         putback_lru_page(page);
1420                         continue;
1421                 }
1422
1423                 if (unlikely(buffer_heads_over_limit)) {
1424                         if (page_has_private(page) && trylock_page(page)) {
1425                                 if (page_has_private(page))
1426                                         try_to_release_page(page, 0);
1427                                 unlock_page(page);
1428                         }
1429                 }
1430
1431                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1432                                     &vm_flags)) {
1433                         nr_rotated += hpage_nr_pages(page);
1434                         /*
1435                          * Identify referenced, file-backed active pages and
1436                          * give them one more trip around the active list. So
1437                          * that executable code get better chances to stay in
1438                          * memory under moderate memory pressure.  Anon pages
1439                          * are not likely to be evicted by use-once streaming
1440                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1441                          * so we ignore them here.
1442                          */
1443                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1444                                 list_add(&page->lru, &l_active);
1445                                 continue;
1446                         }
1447                 }
1448
1449                 ClearPageActive(page);  /* we are de-activating */
1450                 list_add(&page->lru, &l_inactive);
1451         }
1452
1453         /*
1454          * Move pages back to the lru list.
1455          */
1456         spin_lock_irq(&zone->lru_lock);
1457         /*
1458          * Count referenced pages from currently used mappings as rotated,
1459          * even though only some of them are actually re-activated.  This
1460          * helps balance scan pressure between file and anonymous pages in
1461          * get_scan_ratio.
1462          */
1463         reclaim_stat->recent_rotated[file] += nr_rotated;
1464
1465         move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1466         move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1467         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1468         spin_unlock_irq(&zone->lru_lock);
1469
1470         free_hot_cold_page_list(&l_hold, 1);
1471 }
1472
1473 #ifdef CONFIG_SWAP
1474 static int inactive_anon_is_low_global(struct zone *zone)
1475 {
1476         unsigned long active, inactive;
1477
1478         active = zone_page_state(zone, NR_ACTIVE_ANON);
1479         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1480
1481         if (inactive * zone->inactive_ratio < active)
1482                 return 1;
1483
1484         return 0;
1485 }
1486
1487 /**
1488  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1489  * @lruvec: LRU vector to check
1490  *
1491  * Returns true if the zone does not have enough inactive anon pages,
1492  * meaning some active anon pages need to be deactivated.
1493  */
1494 static int inactive_anon_is_low(struct lruvec *lruvec)
1495 {
1496         /*
1497          * If we don't have swap space, anonymous page deactivation
1498          * is pointless.
1499          */
1500         if (!total_swap_pages)
1501                 return 0;
1502
1503         if (!mem_cgroup_disabled())
1504                 return mem_cgroup_inactive_anon_is_low(lruvec);
1505
1506         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1507 }
1508 #else
1509 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1510 {
1511         return 0;
1512 }
1513 #endif
1514
1515 static int inactive_file_is_low_global(struct zone *zone)
1516 {
1517         unsigned long active, inactive;
1518
1519         active = zone_page_state(zone, NR_ACTIVE_FILE);
1520         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1521
1522         return (active > inactive);
1523 }
1524
1525 /**
1526  * inactive_file_is_low - check if file pages need to be deactivated
1527  * @lruvec: LRU vector to check
1528  *
1529  * When the system is doing streaming IO, memory pressure here
1530  * ensures that active file pages get deactivated, until more
1531  * than half of the file pages are on the inactive list.
1532  *
1533  * Once we get to that situation, protect the system's working
1534  * set from being evicted by disabling active file page aging.
1535  *
1536  * This uses a different ratio than the anonymous pages, because
1537  * the page cache uses a use-once replacement algorithm.
1538  */
1539 static int inactive_file_is_low(struct lruvec *lruvec)
1540 {
1541         if (!mem_cgroup_disabled())
1542                 return mem_cgroup_inactive_file_is_low(lruvec);
1543
1544         return inactive_file_is_low_global(lruvec_zone(lruvec));
1545 }
1546
1547 static int inactive_list_is_low(struct lruvec *lruvec, int file)
1548 {
1549         if (file)
1550                 return inactive_file_is_low(lruvec);
1551         else
1552                 return inactive_anon_is_low(lruvec);
1553 }
1554
1555 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1556                                  struct lruvec *lruvec, struct scan_control *sc)
1557 {
1558         int file = is_file_lru(lru);
1559
1560         if (is_active_lru(lru)) {
1561                 if (inactive_list_is_low(lruvec, file))
1562                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1563                 return 0;
1564         }
1565
1566         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1567 }
1568
1569 static int vmscan_swappiness(struct scan_control *sc)
1570 {
1571         if (global_reclaim(sc))
1572                 return vm_swappiness;
1573         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1574 }
1575
1576 /*
1577  * Determine how aggressively the anon and file LRU lists should be
1578  * scanned.  The relative value of each set of LRU lists is determined
1579  * by looking at the fraction of the pages scanned we did rotate back
1580  * onto the active list instead of evict.
1581  *
1582  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1583  */
1584 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1585                            unsigned long *nr)
1586 {
1587         unsigned long anon, file, free;
1588         unsigned long anon_prio, file_prio;
1589         unsigned long ap, fp;
1590         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1591         u64 fraction[2], denominator;
1592         enum lru_list lru;
1593         int noswap = 0;
1594         bool force_scan = false;
1595         struct lruvec *lruvec;
1596
1597         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1598
1599         /*
1600          * If the zone or memcg is small, nr[l] can be 0.  This
1601          * results in no scanning on this priority and a potential
1602          * priority drop.  Global direct reclaim can go to the next
1603          * zone and tends to have no problems. Global kswapd is for
1604          * zone balancing and it needs to scan a minimum amount. When
1605          * reclaiming for a memcg, a priority drop can cause high
1606          * latencies, so it's better to scan a minimum amount there as
1607          * well.
1608          */
1609         if (current_is_kswapd() && mz->zone->all_unreclaimable)
1610                 force_scan = true;
1611         if (!global_reclaim(sc))
1612                 force_scan = true;
1613
1614         /* If we have no swap space, do not bother scanning anon pages. */
1615         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1616                 noswap = 1;
1617                 fraction[0] = 0;
1618                 fraction[1] = 1;
1619                 denominator = 1;
1620                 goto out;
1621         }
1622
1623         anon  = get_lruvec_size(lruvec, LRU_ACTIVE_ANON) +
1624                 get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
1625         file  = get_lruvec_size(lruvec, LRU_ACTIVE_FILE) +
1626                 get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1627
1628         if (global_reclaim(sc)) {
1629                 free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1630                 /* If we have very few page cache pages,
1631                    force-scan anon pages. */
1632                 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1633                         fraction[0] = 1;
1634                         fraction[1] = 0;
1635                         denominator = 1;
1636                         goto out;
1637                 }
1638         }
1639
1640         /*
1641          * With swappiness at 100, anonymous and file have the same priority.
1642          * This scanning priority is essentially the inverse of IO cost.
1643          */
1644         anon_prio = vmscan_swappiness(sc);
1645         file_prio = 200 - vmscan_swappiness(sc);
1646
1647         /*
1648          * OK, so we have swap space and a fair amount of page cache
1649          * pages.  We use the recently rotated / recently scanned
1650          * ratios to determine how valuable each cache is.
1651          *
1652          * Because workloads change over time (and to avoid overflow)
1653          * we keep these statistics as a floating average, which ends
1654          * up weighing recent references more than old ones.
1655          *
1656          * anon in [0], file in [1]
1657          */
1658         spin_lock_irq(&mz->zone->lru_lock);
1659         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1660                 reclaim_stat->recent_scanned[0] /= 2;
1661                 reclaim_stat->recent_rotated[0] /= 2;
1662         }
1663
1664         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1665                 reclaim_stat->recent_scanned[1] /= 2;
1666                 reclaim_stat->recent_rotated[1] /= 2;
1667         }
1668
1669         /*
1670          * The amount of pressure on anon vs file pages is inversely
1671          * proportional to the fraction of recently scanned pages on
1672          * each list that were recently referenced and in active use.
1673          */
1674         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1675         ap /= reclaim_stat->recent_rotated[0] + 1;
1676
1677         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1678         fp /= reclaim_stat->recent_rotated[1] + 1;
1679         spin_unlock_irq(&mz->zone->lru_lock);
1680
1681         fraction[0] = ap;
1682         fraction[1] = fp;
1683         denominator = ap + fp + 1;
1684 out:
1685         for_each_evictable_lru(lru) {
1686                 int file = is_file_lru(lru);
1687                 unsigned long scan;
1688
1689                 scan = get_lruvec_size(lruvec, lru);
1690                 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1691                         scan >>= sc->priority;
1692                         if (!scan && force_scan)
1693                                 scan = SWAP_CLUSTER_MAX;
1694                         scan = div64_u64(scan * fraction[file], denominator);
1695                 }
1696                 nr[lru] = scan;
1697         }
1698 }
1699
1700 /* Use reclaim/compaction for costly allocs or under memory pressure */
1701 static bool in_reclaim_compaction(struct scan_control *sc)
1702 {
1703         if (COMPACTION_BUILD && sc->order &&
1704                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1705                          sc->priority < DEF_PRIORITY - 2))
1706                 return true;
1707
1708         return false;
1709 }
1710
1711 /*
1712  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1713  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1714  * true if more pages should be reclaimed such that when the page allocator
1715  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1716  * It will give up earlier than that if there is difficulty reclaiming pages.
1717  */
1718 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1719                                         unsigned long nr_reclaimed,
1720                                         unsigned long nr_scanned,
1721                                         struct scan_control *sc)
1722 {
1723         unsigned long pages_for_compaction;
1724         unsigned long inactive_lru_pages;
1725         struct lruvec *lruvec;
1726
1727         /* If not in reclaim/compaction mode, stop */
1728         if (!in_reclaim_compaction(sc))
1729                 return false;
1730
1731         /* Consider stopping depending on scan and reclaim activity */
1732         if (sc->gfp_mask & __GFP_REPEAT) {
1733                 /*
1734                  * For __GFP_REPEAT allocations, stop reclaiming if the
1735                  * full LRU list has been scanned and we are still failing
1736                  * to reclaim pages. This full LRU scan is potentially
1737                  * expensive but a __GFP_REPEAT caller really wants to succeed
1738                  */
1739                 if (!nr_reclaimed && !nr_scanned)
1740                         return false;
1741         } else {
1742                 /*
1743                  * For non-__GFP_REPEAT allocations which can presumably
1744                  * fail without consequence, stop if we failed to reclaim
1745                  * any pages from the last SWAP_CLUSTER_MAX number of
1746                  * pages that were scanned. This will return to the
1747                  * caller faster at the risk reclaim/compaction and
1748                  * the resulting allocation attempt fails
1749                  */
1750                 if (!nr_reclaimed)
1751                         return false;
1752         }
1753
1754         /*
1755          * If we have not reclaimed enough pages for compaction and the
1756          * inactive lists are large enough, continue reclaiming
1757          */
1758         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1759         pages_for_compaction = (2UL << sc->order);
1760         inactive_lru_pages = get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1761         if (nr_swap_pages > 0)
1762                 inactive_lru_pages += get_lruvec_size(lruvec,
1763                                                       LRU_INACTIVE_ANON);
1764         if (sc->nr_reclaimed < pages_for_compaction &&
1765                         inactive_lru_pages > pages_for_compaction)
1766                 return true;
1767
1768         /* If compaction would go ahead or the allocation would succeed, stop */
1769         switch (compaction_suitable(mz->zone, sc->order)) {
1770         case COMPACT_PARTIAL:
1771         case COMPACT_CONTINUE:
1772                 return false;
1773         default:
1774                 return true;
1775         }
1776 }
1777
1778 /*
1779  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1780  */
1781 static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
1782                                    struct scan_control *sc)
1783 {
1784         unsigned long nr[NR_LRU_LISTS];
1785         unsigned long nr_to_scan;
1786         enum lru_list lru;
1787         unsigned long nr_reclaimed, nr_scanned;
1788         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1789         struct blk_plug plug;
1790         struct lruvec *lruvec;
1791
1792         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1793
1794 restart:
1795         nr_reclaimed = 0;
1796         nr_scanned = sc->nr_scanned;
1797         get_scan_count(mz, sc, nr);
1798
1799         blk_start_plug(&plug);
1800         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1801                                         nr[LRU_INACTIVE_FILE]) {
1802                 for_each_evictable_lru(lru) {
1803                         if (nr[lru]) {
1804                                 nr_to_scan = min_t(unsigned long,
1805                                                    nr[lru], SWAP_CLUSTER_MAX);
1806                                 nr[lru] -= nr_to_scan;
1807
1808                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1809                                                             lruvec, sc);
1810                         }
1811                 }
1812                 /*
1813                  * On large memory systems, scan >> priority can become
1814                  * really large. This is fine for the starting priority;
1815                  * we want to put equal scanning pressure on each zone.
1816                  * However, if the VM has a harder time of freeing pages,
1817                  * with multiple processes reclaiming pages, the total
1818                  * freeing target can get unreasonably large.
1819                  */
1820                 if (nr_reclaimed >= nr_to_reclaim &&
1821                     sc->priority < DEF_PRIORITY)
1822                         break;
1823         }
1824         blk_finish_plug(&plug);
1825         sc->nr_reclaimed += nr_reclaimed;
1826
1827         /*
1828          * Even if we did not try to evict anon pages at all, we want to
1829          * rebalance the anon lru active/inactive ratio.
1830          */
1831         if (inactive_anon_is_low(lruvec))
1832                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1833                                    sc, LRU_ACTIVE_ANON);
1834
1835         /* reclaim/compaction might need reclaim to continue */
1836         if (should_continue_reclaim(mz, nr_reclaimed,
1837                                     sc->nr_scanned - nr_scanned, sc))
1838                 goto restart;
1839
1840         throttle_vm_writeout(sc->gfp_mask);
1841 }
1842
1843 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1844 {
1845         struct mem_cgroup *root = sc->target_mem_cgroup;
1846         struct mem_cgroup_reclaim_cookie reclaim = {
1847                 .zone = zone,
1848                 .priority = sc->priority,
1849         };
1850         struct mem_cgroup *memcg;
1851
1852         memcg = mem_cgroup_iter(root, NULL, &reclaim);
1853         do {
1854                 struct mem_cgroup_zone mz = {
1855                         .mem_cgroup = memcg,
1856                         .zone = zone,
1857                 };
1858
1859                 shrink_mem_cgroup_zone(&mz, sc);
1860                 /*
1861                  * Limit reclaim has historically picked one memcg and
1862                  * scanned it with decreasing priority levels until
1863                  * nr_to_reclaim had been reclaimed.  This priority
1864                  * cycle is thus over after a single memcg.
1865                  *
1866                  * Direct reclaim and kswapd, on the other hand, have
1867                  * to scan all memory cgroups to fulfill the overall
1868                  * scan target for the zone.
1869                  */
1870                 if (!global_reclaim(sc)) {
1871                         mem_cgroup_iter_break(root, memcg);
1872                         break;
1873                 }
1874                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1875         } while (memcg);
1876 }
1877
1878 /* Returns true if compaction should go ahead for a high-order request */
1879 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1880 {
1881         unsigned long balance_gap, watermark;
1882         bool watermark_ok;
1883
1884         /* Do not consider compaction for orders reclaim is meant to satisfy */
1885         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1886                 return false;
1887
1888         /*
1889          * Compaction takes time to run and there are potentially other
1890          * callers using the pages just freed. Continue reclaiming until
1891          * there is a buffer of free pages available to give compaction
1892          * a reasonable chance of completing and allocating the page
1893          */
1894         balance_gap = min(low_wmark_pages(zone),
1895                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1896                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
1897         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1898         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1899
1900         /*
1901          * If compaction is deferred, reclaim up to a point where
1902          * compaction will have a chance of success when re-enabled
1903          */
1904         if (compaction_deferred(zone, sc->order))
1905                 return watermark_ok;
1906
1907         /* If compaction is not ready to start, keep reclaiming */
1908         if (!compaction_suitable(zone, sc->order))
1909                 return false;
1910
1911         return watermark_ok;
1912 }
1913
1914 /*
1915  * This is the direct reclaim path, for page-allocating processes.  We only
1916  * try to reclaim pages from zones which will satisfy the caller's allocation
1917  * request.
1918  *
1919  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1920  * Because:
1921  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1922  *    allocation or
1923  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1924  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1925  *    zone defense algorithm.
1926  *
1927  * If a zone is deemed to be full of pinned pages then just give it a light
1928  * scan then give up on it.
1929  *
1930  * This function returns true if a zone is being reclaimed for a costly
1931  * high-order allocation and compaction is ready to begin. This indicates to
1932  * the caller that it should consider retrying the allocation instead of
1933  * further reclaim.
1934  */
1935 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1936 {
1937         struct zoneref *z;
1938         struct zone *zone;
1939         unsigned long nr_soft_reclaimed;
1940         unsigned long nr_soft_scanned;
1941         bool aborted_reclaim = false;
1942
1943         /*
1944          * If the number of buffer_heads in the machine exceeds the maximum
1945          * allowed level, force direct reclaim to scan the highmem zone as
1946          * highmem pages could be pinning lowmem pages storing buffer_heads
1947          */
1948         if (buffer_heads_over_limit)
1949                 sc->gfp_mask |= __GFP_HIGHMEM;
1950
1951         for_each_zone_zonelist_nodemask(zone, z, zonelist,
1952                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
1953                 if (!populated_zone(zone))
1954                         continue;
1955                 /*
1956                  * Take care memory controller reclaiming has small influence
1957                  * to global LRU.
1958                  */
1959                 if (global_reclaim(sc)) {
1960                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1961                                 continue;
1962                         if (zone->all_unreclaimable &&
1963                                         sc->priority != DEF_PRIORITY)
1964                                 continue;       /* Let kswapd poll it */
1965                         if (COMPACTION_BUILD) {
1966                                 /*
1967                                  * If we already have plenty of memory free for
1968                                  * compaction in this zone, don't free any more.
1969                                  * Even though compaction is invoked for any
1970                                  * non-zero order, only frequent costly order
1971                                  * reclamation is disruptive enough to become a
1972                                  * noticeable problem, like transparent huge
1973                                  * page allocations.
1974                                  */
1975                                 if (compaction_ready(zone, sc)) {
1976                                         aborted_reclaim = true;
1977                                         continue;
1978                                 }
1979                         }
1980                         /*
1981                          * This steals pages from memory cgroups over softlimit
1982                          * and returns the number of reclaimed pages and
1983                          * scanned pages. This works for global memory pressure
1984                          * and balancing, not for a memcg's limit.
1985                          */
1986                         nr_soft_scanned = 0;
1987                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1988                                                 sc->order, sc->gfp_mask,
1989                                                 &nr_soft_scanned);
1990                         sc->nr_reclaimed += nr_soft_reclaimed;
1991                         sc->nr_scanned += nr_soft_scanned;
1992                         /* need some check for avoid more shrink_zone() */
1993                 }
1994
1995                 shrink_zone(zone, sc);
1996         }
1997
1998         return aborted_reclaim;
1999 }
2000
2001 static bool zone_reclaimable(struct zone *zone)
2002 {
2003         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2004 }
2005
2006 /* All zones in zonelist are unreclaimable? */
2007 static bool all_unreclaimable(struct zonelist *zonelist,
2008                 struct scan_control *sc)
2009 {
2010         struct zoneref *z;
2011         struct zone *zone;
2012
2013         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2014                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2015                 if (!populated_zone(zone))
2016                         continue;
2017                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2018                         continue;
2019                 if (!zone->all_unreclaimable)
2020                         return false;
2021         }
2022
2023         return true;
2024 }
2025
2026 /*
2027  * This is the main entry point to direct page reclaim.
2028  *
2029  * If a full scan of the inactive list fails to free enough memory then we
2030  * are "out of memory" and something needs to be killed.
2031  *
2032  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2033  * high - the zone may be full of dirty or under-writeback pages, which this
2034  * caller can't do much about.  We kick the writeback threads and take explicit
2035  * naps in the hope that some of these pages can be written.  But if the
2036  * allocating task holds filesystem locks which prevent writeout this might not
2037  * work, and the allocation attempt will fail.
2038  *
2039  * returns:     0, if no pages reclaimed
2040  *              else, the number of pages reclaimed
2041  */
2042 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2043                                         struct scan_control *sc,
2044                                         struct shrink_control *shrink)
2045 {
2046         unsigned long total_scanned = 0;
2047         struct reclaim_state *reclaim_state = current->reclaim_state;
2048         struct zoneref *z;
2049         struct zone *zone;
2050         unsigned long writeback_threshold;
2051         bool aborted_reclaim;
2052
2053         delayacct_freepages_start();
2054
2055         if (global_reclaim(sc))
2056                 count_vm_event(ALLOCSTALL);
2057
2058         do {
2059                 sc->nr_scanned = 0;
2060                 aborted_reclaim = shrink_zones(zonelist, sc);
2061
2062                 /*
2063                  * Don't shrink slabs when reclaiming memory from
2064                  * over limit cgroups
2065                  */
2066                 if (global_reclaim(sc)) {
2067                         unsigned long lru_pages = 0;
2068                         for_each_zone_zonelist(zone, z, zonelist,
2069                                         gfp_zone(sc->gfp_mask)) {
2070                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2071                                         continue;
2072
2073                                 lru_pages += zone_reclaimable_pages(zone);
2074                         }
2075
2076                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2077                         if (reclaim_state) {
2078                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2079                                 reclaim_state->reclaimed_slab = 0;
2080                         }
2081                 }
2082                 total_scanned += sc->nr_scanned;
2083                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2084                         goto out;
2085
2086                 /*
2087                  * Try to write back as many pages as we just scanned.  This
2088                  * tends to cause slow streaming writers to write data to the
2089                  * disk smoothly, at the dirtying rate, which is nice.   But
2090                  * that's undesirable in laptop mode, where we *want* lumpy
2091                  * writeout.  So in laptop mode, write out the whole world.
2092                  */
2093                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2094                 if (total_scanned > writeback_threshold) {
2095                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2096                                                 WB_REASON_TRY_TO_FREE_PAGES);
2097                         sc->may_writepage = 1;
2098                 }
2099
2100                 /* Take a nap, wait for some writeback to complete */
2101                 if (!sc->hibernation_mode && sc->nr_scanned &&
2102                     sc->priority < DEF_PRIORITY - 2) {
2103                         struct zone *preferred_zone;
2104
2105                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2106                                                 &cpuset_current_mems_allowed,
2107                                                 &preferred_zone);
2108                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2109                 }
2110         } while (--sc->priority >= 0);
2111
2112 out:
2113         delayacct_freepages_end();
2114
2115         if (sc->nr_reclaimed)
2116                 return sc->nr_reclaimed;
2117
2118         /*
2119          * As hibernation is going on, kswapd is freezed so that it can't mark
2120          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2121          * check.
2122          */
2123         if (oom_killer_disabled)
2124                 return 0;
2125
2126         /* Aborted reclaim to try compaction? don't OOM, then */
2127         if (aborted_reclaim)
2128                 return 1;
2129
2130         /* top priority shrink_zones still had more to do? don't OOM, then */
2131         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2132                 return 1;
2133
2134         return 0;
2135 }
2136
2137 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2138                                 gfp_t gfp_mask, nodemask_t *nodemask)
2139 {
2140         unsigned long nr_reclaimed;
2141         struct scan_control sc = {
2142                 .gfp_mask = gfp_mask,
2143                 .may_writepage = !laptop_mode,
2144                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2145                 .may_unmap = 1,
2146                 .may_swap = 1,
2147                 .order = order,
2148                 .priority = DEF_PRIORITY,
2149                 .target_mem_cgroup = NULL,
2150                 .nodemask = nodemask,
2151         };
2152         struct shrink_control shrink = {
2153                 .gfp_mask = sc.gfp_mask,
2154         };
2155
2156         trace_mm_vmscan_direct_reclaim_begin(order,
2157                                 sc.may_writepage,
2158                                 gfp_mask);
2159
2160         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2161
2162         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2163
2164         return nr_reclaimed;
2165 }
2166
2167 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2168
2169 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2170                                                 gfp_t gfp_mask, bool noswap,
2171                                                 struct zone *zone,
2172                                                 unsigned long *nr_scanned)
2173 {
2174         struct scan_control sc = {
2175                 .nr_scanned = 0,
2176                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2177                 .may_writepage = !laptop_mode,
2178                 .may_unmap = 1,
2179                 .may_swap = !noswap,
2180                 .order = 0,
2181                 .priority = 0,
2182                 .target_mem_cgroup = memcg,
2183         };
2184         struct mem_cgroup_zone mz = {
2185                 .mem_cgroup = memcg,
2186                 .zone = zone,
2187         };
2188
2189         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2190                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2191
2192         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2193                                                       sc.may_writepage,
2194                                                       sc.gfp_mask);
2195
2196         /*
2197          * NOTE: Although we can get the priority field, using it
2198          * here is not a good idea, since it limits the pages we can scan.
2199          * if we don't reclaim here, the shrink_zone from balance_pgdat
2200          * will pick up pages from other mem cgroup's as well. We hack
2201          * the priority and make it zero.
2202          */
2203         shrink_mem_cgroup_zone(&mz, &sc);
2204
2205         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2206
2207         *nr_scanned = sc.nr_scanned;
2208         return sc.nr_reclaimed;
2209 }
2210
2211 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2212                                            gfp_t gfp_mask,
2213                                            bool noswap)
2214 {
2215         struct zonelist *zonelist;
2216         unsigned long nr_reclaimed;
2217         int nid;
2218         struct scan_control sc = {
2219                 .may_writepage = !laptop_mode,
2220                 .may_unmap = 1,
2221                 .may_swap = !noswap,
2222                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2223                 .order = 0,
2224                 .priority = DEF_PRIORITY,
2225                 .target_mem_cgroup = memcg,
2226                 .nodemask = NULL, /* we don't care the placement */
2227                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2228                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2229         };
2230         struct shrink_control shrink = {
2231                 .gfp_mask = sc.gfp_mask,
2232         };
2233
2234         /*
2235          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2236          * take care of from where we get pages. So the node where we start the
2237          * scan does not need to be the current node.
2238          */
2239         nid = mem_cgroup_select_victim_node(memcg);
2240
2241         zonelist = NODE_DATA(nid)->node_zonelists;
2242
2243         trace_mm_vmscan_memcg_reclaim_begin(0,
2244                                             sc.may_writepage,
2245                                             sc.gfp_mask);
2246
2247         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2248
2249         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2250
2251         return nr_reclaimed;
2252 }
2253 #endif
2254
2255 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2256 {
2257         struct mem_cgroup *memcg;
2258
2259         if (!total_swap_pages)
2260                 return;
2261
2262         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2263         do {
2264                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2265
2266                 if (inactive_anon_is_low(lruvec))
2267                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2268                                            sc, LRU_ACTIVE_ANON);
2269
2270                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2271         } while (memcg);
2272 }
2273
2274 /*
2275  * pgdat_balanced is used when checking if a node is balanced for high-order
2276  * allocations. Only zones that meet watermarks and are in a zone allowed
2277  * by the callers classzone_idx are added to balanced_pages. The total of
2278  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2279  * for the node to be considered balanced. Forcing all zones to be balanced
2280  * for high orders can cause excessive reclaim when there are imbalanced zones.
2281  * The choice of 25% is due to
2282  *   o a 16M DMA zone that is balanced will not balance a zone on any
2283  *     reasonable sized machine
2284  *   o On all other machines, the top zone must be at least a reasonable
2285  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2286  *     would need to be at least 256M for it to be balance a whole node.
2287  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2288  *     to balance a node on its own. These seemed like reasonable ratios.
2289  */
2290 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2291                                                 int classzone_idx)
2292 {
2293         unsigned long present_pages = 0;
2294         int i;
2295
2296         for (i = 0; i <= classzone_idx; i++)
2297                 present_pages += pgdat->node_zones[i].present_pages;
2298
2299         /* A special case here: if zone has no page, we think it's balanced */
2300         return balanced_pages >= (present_pages >> 2);
2301 }
2302
2303 /* is kswapd sleeping prematurely? */
2304 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2305                                         int classzone_idx)
2306 {
2307         int i;
2308         unsigned long balanced = 0;
2309         bool all_zones_ok = true;
2310
2311         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2312         if (remaining)
2313                 return true;
2314
2315         /* Check the watermark levels */
2316         for (i = 0; i <= classzone_idx; i++) {
2317                 struct zone *zone = pgdat->node_zones + i;
2318
2319                 if (!populated_zone(zone))
2320                         continue;
2321
2322                 /*
2323                  * balance_pgdat() skips over all_unreclaimable after
2324                  * DEF_PRIORITY. Effectively, it considers them balanced so
2325                  * they must be considered balanced here as well if kswapd
2326                  * is to sleep
2327                  */
2328                 if (zone->all_unreclaimable) {
2329                         balanced += zone->present_pages;
2330                         continue;
2331                 }
2332
2333                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2334                                                         i, 0))
2335                         all_zones_ok = false;
2336                 else
2337                         balanced += zone->present_pages;
2338         }
2339
2340         /*
2341          * For high-order requests, the balanced zones must contain at least
2342          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2343          * must be balanced
2344          */
2345         if (order)
2346                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2347         else
2348                 return !all_zones_ok;
2349 }
2350
2351 /*
2352  * For kswapd, balance_pgdat() will work across all this node's zones until
2353  * they are all at high_wmark_pages(zone).
2354  *
2355  * Returns the final order kswapd was reclaiming at
2356  *
2357  * There is special handling here for zones which are full of pinned pages.
2358  * This can happen if the pages are all mlocked, or if they are all used by
2359  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2360  * What we do is to detect the case where all pages in the zone have been
2361  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2362  * dead and from now on, only perform a short scan.  Basically we're polling
2363  * the zone for when the problem goes away.
2364  *
2365  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2366  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2367  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2368  * lower zones regardless of the number of free pages in the lower zones. This
2369  * interoperates with the page allocator fallback scheme to ensure that aging
2370  * of pages is balanced across the zones.
2371  */
2372 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2373                                                         int *classzone_idx)
2374 {
2375         int all_zones_ok;
2376         unsigned long balanced;
2377         int i;
2378         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2379         unsigned long total_scanned;
2380         struct reclaim_state *reclaim_state = current->reclaim_state;
2381         unsigned long nr_soft_reclaimed;
2382         unsigned long nr_soft_scanned;
2383         struct scan_control sc = {
2384                 .gfp_mask = GFP_KERNEL,
2385                 .may_unmap = 1,
2386                 .may_swap = 1,
2387                 /*
2388                  * kswapd doesn't want to be bailed out while reclaim. because
2389                  * we want to put equal scanning pressure on each zone.
2390                  */
2391                 .nr_to_reclaim = ULONG_MAX,
2392                 .order = order,
2393                 .target_mem_cgroup = NULL,
2394         };
2395         struct shrink_control shrink = {
2396                 .gfp_mask = sc.gfp_mask,
2397         };
2398 loop_again:
2399         total_scanned = 0;
2400         sc.priority = DEF_PRIORITY;
2401         sc.nr_reclaimed = 0;
2402         sc.may_writepage = !laptop_mode;
2403         count_vm_event(PAGEOUTRUN);
2404
2405         do {
2406                 unsigned long lru_pages = 0;
2407                 int has_under_min_watermark_zone = 0;
2408
2409                 all_zones_ok = 1;
2410                 balanced = 0;
2411
2412                 /*
2413                  * Scan in the highmem->dma direction for the highest
2414                  * zone which needs scanning
2415                  */
2416                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2417                         struct zone *zone = pgdat->node_zones + i;
2418
2419                         if (!populated_zone(zone))
2420                                 continue;
2421
2422                         if (zone->all_unreclaimable &&
2423                             sc.priority != DEF_PRIORITY)
2424                                 continue;
2425
2426                         /*
2427                          * Do some background aging of the anon list, to give
2428                          * pages a chance to be referenced before reclaiming.
2429                          */
2430                         age_active_anon(zone, &sc);
2431
2432                         /*
2433                          * If the number of buffer_heads in the machine
2434                          * exceeds the maximum allowed level and this node
2435                          * has a highmem zone, force kswapd to reclaim from
2436                          * it to relieve lowmem pressure.
2437                          */
2438                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2439                                 end_zone = i;
2440                                 break;
2441                         }
2442
2443                         if (!zone_watermark_ok_safe(zone, order,
2444                                         high_wmark_pages(zone), 0, 0)) {
2445                                 end_zone = i;
2446                                 break;
2447                         } else {
2448                                 /* If balanced, clear the congested flag */
2449                                 zone_clear_flag(zone, ZONE_CONGESTED);
2450                         }
2451                 }
2452                 if (i < 0)
2453                         goto out;
2454
2455                 for (i = 0; i <= end_zone; i++) {
2456                         struct zone *zone = pgdat->node_zones + i;
2457
2458                         lru_pages += zone_reclaimable_pages(zone);
2459                 }
2460
2461                 /*
2462                  * Now scan the zone in the dma->highmem direction, stopping
2463                  * at the last zone which needs scanning.
2464                  *
2465                  * We do this because the page allocator works in the opposite
2466                  * direction.  This prevents the page allocator from allocating
2467                  * pages behind kswapd's direction of progress, which would
2468                  * cause too much scanning of the lower zones.
2469                  */
2470                 for (i = 0; i <= end_zone; i++) {
2471                         struct zone *zone = pgdat->node_zones + i;
2472                         int nr_slab, testorder;
2473                         unsigned long balance_gap;
2474
2475                         if (!populated_zone(zone))
2476                                 continue;
2477
2478                         if (zone->all_unreclaimable &&
2479                             sc.priority != DEF_PRIORITY)
2480                                 continue;
2481
2482                         sc.nr_scanned = 0;
2483
2484                         nr_soft_scanned = 0;
2485                         /*
2486                          * Call soft limit reclaim before calling shrink_zone.
2487                          */
2488                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2489                                                         order, sc.gfp_mask,
2490                                                         &nr_soft_scanned);
2491                         sc.nr_reclaimed += nr_soft_reclaimed;
2492                         total_scanned += nr_soft_scanned;
2493
2494                         /*
2495                          * We put equal pressure on every zone, unless
2496                          * one zone has way too many pages free
2497                          * already. The "too many pages" is defined
2498                          * as the high wmark plus a "gap" where the
2499                          * gap is either the low watermark or 1%
2500                          * of the zone, whichever is smaller.
2501                          */
2502                         balance_gap = min(low_wmark_pages(zone),
2503                                 (zone->present_pages +
2504                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2505                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2506                         /*
2507                          * Kswapd reclaims only single pages with compaction
2508                          * enabled. Trying too hard to reclaim until contiguous
2509                          * free pages have become available can hurt performance
2510                          * by evicting too much useful data from memory.
2511                          * Do not reclaim more than needed for compaction.
2512                          */
2513                         testorder = order;
2514                         if (COMPACTION_BUILD && order &&
2515                                         compaction_suitable(zone, order) !=
2516                                                 COMPACT_SKIPPED)
2517                                 testorder = 0;
2518
2519                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2520                                     !zone_watermark_ok_safe(zone, testorder,
2521                                         high_wmark_pages(zone) + balance_gap,
2522                                         end_zone, 0)) {
2523                                 shrink_zone(zone, &sc);
2524
2525                                 reclaim_state->reclaimed_slab = 0;
2526                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2527                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2528                                 total_scanned += sc.nr_scanned;
2529
2530                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2531                                         zone->all_unreclaimable = 1;
2532                         }
2533
2534                         /*
2535                          * If we've done a decent amount of scanning and
2536                          * the reclaim ratio is low, start doing writepage
2537                          * even in laptop mode
2538                          */
2539                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2540                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2541                                 sc.may_writepage = 1;
2542
2543                         if (zone->all_unreclaimable) {
2544                                 if (end_zone && end_zone == i)
2545                                         end_zone--;
2546                                 continue;
2547                         }
2548
2549                         if (!zone_watermark_ok_safe(zone, testorder,
2550                                         high_wmark_pages(zone), end_zone, 0)) {
2551                                 all_zones_ok = 0;
2552                                 /*
2553                                  * We are still under min water mark.  This
2554                                  * means that we have a GFP_ATOMIC allocation
2555                                  * failure risk. Hurry up!
2556                                  */
2557                                 if (!zone_watermark_ok_safe(zone, order,
2558                                             min_wmark_pages(zone), end_zone, 0))
2559                                         has_under_min_watermark_zone = 1;
2560                         } else {
2561                                 /*
2562                                  * If a zone reaches its high watermark,
2563                                  * consider it to be no longer congested. It's
2564                                  * possible there are dirty pages backed by
2565                                  * congested BDIs but as pressure is relieved,
2566                                  * spectulatively avoid congestion waits
2567                                  */
2568                                 zone_clear_flag(zone, ZONE_CONGESTED);
2569                                 if (i <= *classzone_idx)
2570                                         balanced += zone->present_pages;
2571                         }
2572
2573                 }
2574                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2575                         break;          /* kswapd: all done */
2576                 /*
2577                  * OK, kswapd is getting into trouble.  Take a nap, then take
2578                  * another pass across the zones.
2579                  */
2580                 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2581                         if (has_under_min_watermark_zone)
2582                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2583                         else
2584                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2585                 }
2586
2587                 /*
2588                  * We do this so kswapd doesn't build up large priorities for
2589                  * example when it is freeing in parallel with allocators. It
2590                  * matches the direct reclaim path behaviour in terms of impact
2591                  * on zone->*_priority.
2592                  */
2593                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2594                         break;
2595         } while (--sc.priority >= 0);
2596 out:
2597
2598         /*
2599          * order-0: All zones must meet high watermark for a balanced node
2600          * high-order: Balanced zones must make up at least 25% of the node
2601          *             for the node to be balanced
2602          */
2603         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2604                 cond_resched();
2605
2606                 try_to_freeze();
2607
2608                 /*
2609                  * Fragmentation may mean that the system cannot be
2610                  * rebalanced for high-order allocations in all zones.
2611                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2612                  * it means the zones have been fully scanned and are still
2613                  * not balanced. For high-order allocations, there is
2614                  * little point trying all over again as kswapd may
2615                  * infinite loop.
2616                  *
2617                  * Instead, recheck all watermarks at order-0 as they
2618                  * are the most important. If watermarks are ok, kswapd will go
2619                  * back to sleep. High-order users can still perform direct
2620                  * reclaim if they wish.
2621                  */
2622                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2623                         order = sc.order = 0;
2624
2625                 goto loop_again;
2626         }
2627
2628         /*
2629          * If kswapd was reclaiming at a higher order, it has the option of
2630          * sleeping without all zones being balanced. Before it does, it must
2631          * ensure that the watermarks for order-0 on *all* zones are met and
2632          * that the congestion flags are cleared. The congestion flag must
2633          * be cleared as kswapd is the only mechanism that clears the flag
2634          * and it is potentially going to sleep here.
2635          */
2636         if (order) {
2637                 int zones_need_compaction = 1;
2638
2639                 for (i = 0; i <= end_zone; i++) {
2640                         struct zone *zone = pgdat->node_zones + i;
2641
2642                         if (!populated_zone(zone))
2643                                 continue;
2644
2645                         if (zone->all_unreclaimable &&
2646                             sc.priority != DEF_PRIORITY)
2647                                 continue;
2648
2649                         /* Would compaction fail due to lack of free memory? */
2650                         if (COMPACTION_BUILD &&
2651                             compaction_suitable(zone, order) == COMPACT_SKIPPED)
2652                                 goto loop_again;
2653
2654                         /* Confirm the zone is balanced for order-0 */
2655                         if (!zone_watermark_ok(zone, 0,
2656                                         high_wmark_pages(zone), 0, 0)) {
2657                                 order = sc.order = 0;
2658                                 goto loop_again;
2659                         }
2660
2661                         /* Check if the memory needs to be defragmented. */
2662                         if (zone_watermark_ok(zone, order,
2663                                     low_wmark_pages(zone), *classzone_idx, 0))
2664                                 zones_need_compaction = 0;
2665
2666                         /* If balanced, clear the congested flag */
2667                         zone_clear_flag(zone, ZONE_CONGESTED);
2668                 }
2669
2670                 if (zones_need_compaction)
2671                         compact_pgdat(pgdat, order);
2672         }
2673
2674         /*
2675          * Return the order we were reclaiming at so sleeping_prematurely()
2676          * makes a decision on the order we were last reclaiming at. However,
2677          * if another caller entered the allocator slow path while kswapd
2678          * was awake, order will remain at the higher level
2679          */
2680         *classzone_idx = end_zone;
2681         return order;
2682 }
2683
2684 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2685 {
2686         long remaining = 0;
2687         DEFINE_WAIT(wait);
2688
2689         if (freezing(current) || kthread_should_stop())
2690                 return;
2691
2692         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2693
2694         /* Try to sleep for a short interval */
2695         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2696                 remaining = schedule_timeout(HZ/10);
2697                 finish_wait(&pgdat->kswapd_wait, &wait);
2698                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2699         }
2700
2701         /*
2702          * After a short sleep, check if it was a premature sleep. If not, then
2703          * go fully to sleep until explicitly woken up.
2704          */
2705         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2706                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2707
2708                 /*
2709                  * vmstat counters are not perfectly accurate and the estimated
2710                  * value for counters such as NR_FREE_PAGES can deviate from the
2711                  * true value by nr_online_cpus * threshold. To avoid the zone
2712                  * watermarks being breached while under pressure, we reduce the
2713                  * per-cpu vmstat threshold while kswapd is awake and restore
2714                  * them before going back to sleep.
2715                  */
2716                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2717                 schedule();
2718                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2719         } else {
2720                 if (remaining)
2721                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2722                 else
2723                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2724         }
2725         finish_wait(&pgdat->kswapd_wait, &wait);
2726 }
2727
2728 /*
2729  * The background pageout daemon, started as a kernel thread
2730  * from the init process.
2731  *
2732  * This basically trickles out pages so that we have _some_
2733  * free memory available even if there is no other activity
2734  * that frees anything up. This is needed for things like routing
2735  * etc, where we otherwise might have all activity going on in
2736  * asynchronous contexts that cannot page things out.
2737  *
2738  * If there are applications that are active memory-allocators
2739  * (most normal use), this basically shouldn't matter.
2740  */
2741 static int kswapd(void *p)
2742 {
2743         unsigned long order, new_order;
2744         unsigned balanced_order;
2745         int classzone_idx, new_classzone_idx;
2746         int balanced_classzone_idx;
2747         pg_data_t *pgdat = (pg_data_t*)p;
2748         struct task_struct *tsk = current;
2749
2750         struct reclaim_state reclaim_state = {
2751                 .reclaimed_slab = 0,
2752         };
2753         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2754
2755         lockdep_set_current_reclaim_state(GFP_KERNEL);
2756
2757         if (!cpumask_empty(cpumask))
2758                 set_cpus_allowed_ptr(tsk, cpumask);
2759         current->reclaim_state = &reclaim_state;
2760
2761         /*
2762          * Tell the memory management that we're a "memory allocator",
2763          * and that if we need more memory we should get access to it
2764          * regardless (see "__alloc_pages()"). "kswapd" should
2765          * never get caught in the normal page freeing logic.
2766          *
2767          * (Kswapd normally doesn't need memory anyway, but sometimes
2768          * you need a small amount of memory in order to be able to
2769          * page out something else, and this flag essentially protects
2770          * us from recursively trying to free more memory as we're
2771          * trying to free the first piece of memory in the first place).
2772          */
2773         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2774         set_freezable();
2775
2776         order = new_order = 0;
2777         balanced_order = 0;
2778         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2779         balanced_classzone_idx = classzone_idx;
2780         for ( ; ; ) {
2781                 int ret;
2782
2783                 /*
2784                  * If the last balance_pgdat was unsuccessful it's unlikely a
2785                  * new request of a similar or harder type will succeed soon
2786                  * so consider going to sleep on the basis we reclaimed at
2787                  */
2788                 if (balanced_classzone_idx >= new_classzone_idx &&
2789                                         balanced_order == new_order) {
2790                         new_order = pgdat->kswapd_max_order;
2791                         new_classzone_idx = pgdat->classzone_idx;
2792                         pgdat->kswapd_max_order =  0;
2793                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2794                 }
2795
2796                 if (order < new_order || classzone_idx > new_classzone_idx) {
2797                         /*
2798                          * Don't sleep if someone wants a larger 'order'
2799                          * allocation or has tigher zone constraints
2800                          */
2801                         order = new_order;
2802                         classzone_idx = new_classzone_idx;
2803                 } else {
2804                         kswapd_try_to_sleep(pgdat, balanced_order,
2805                                                 balanced_classzone_idx);
2806                         order = pgdat->kswapd_max_order;
2807                         classzone_idx = pgdat->classzone_idx;
2808                         new_order = order;
2809                         new_classzone_idx = classzone_idx;
2810                         pgdat->kswapd_max_order = 0;
2811                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2812                 }
2813
2814                 ret = try_to_freeze();
2815                 if (kthread_should_stop())
2816                         break;
2817
2818                 /*
2819                  * We can speed up thawing tasks if we don't call balance_pgdat
2820                  * after returning from the refrigerator
2821                  */
2822                 if (!ret) {
2823                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2824                         balanced_classzone_idx = classzone_idx;
2825                         balanced_order = balance_pgdat(pgdat, order,
2826                                                 &balanced_classzone_idx);
2827                 }
2828         }
2829         return 0;
2830 }
2831
2832 /*
2833  * A zone is low on free memory, so wake its kswapd task to service it.
2834  */
2835 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2836 {
2837         pg_data_t *pgdat;
2838
2839         if (!populated_zone(zone))
2840                 return;
2841
2842         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2843                 return;
2844         pgdat = zone->zone_pgdat;
2845         if (pgdat->kswapd_max_order < order) {
2846                 pgdat->kswapd_max_order = order;
2847                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2848         }
2849         if (!waitqueue_active(&pgdat->kswapd_wait))
2850                 return;
2851         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2852                 return;
2853
2854         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2855         wake_up_interruptible(&pgdat->kswapd_wait);
2856 }
2857
2858 /*
2859  * The reclaimable count would be mostly accurate.
2860  * The less reclaimable pages may be
2861  * - mlocked pages, which will be moved to unevictable list when encountered
2862  * - mapped pages, which may require several travels to be reclaimed
2863  * - dirty pages, which is not "instantly" reclaimable
2864  */
2865 unsigned long global_reclaimable_pages(void)
2866 {
2867         int nr;
2868
2869         nr = global_page_state(NR_ACTIVE_FILE) +
2870              global_page_state(NR_INACTIVE_FILE);
2871
2872         if (nr_swap_pages > 0)
2873                 nr += global_page_state(NR_ACTIVE_ANON) +
2874                       global_page_state(NR_INACTIVE_ANON);
2875
2876         return nr;
2877 }
2878
2879 unsigned long zone_reclaimable_pages(struct zone *zone)
2880 {
2881         int nr;
2882
2883         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2884              zone_page_state(zone, NR_INACTIVE_FILE);
2885
2886         if (nr_swap_pages > 0)
2887                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2888                       zone_page_state(zone, NR_INACTIVE_ANON);
2889
2890         return nr;
2891 }
2892
2893 #ifdef CONFIG_HIBERNATION
2894 /*
2895  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2896  * freed pages.
2897  *
2898  * Rather than trying to age LRUs the aim is to preserve the overall
2899  * LRU order by reclaiming preferentially
2900  * inactive > active > active referenced > active mapped
2901  */
2902 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2903 {
2904         struct reclaim_state reclaim_state;
2905         struct scan_control sc = {
2906                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2907                 .may_swap = 1,
2908                 .may_unmap = 1,
2909                 .may_writepage = 1,
2910                 .nr_to_reclaim = nr_to_reclaim,
2911                 .hibernation_mode = 1,
2912                 .order = 0,
2913                 .priority = DEF_PRIORITY,
2914         };
2915         struct shrink_control shrink = {
2916                 .gfp_mask = sc.gfp_mask,
2917         };
2918         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2919         struct task_struct *p = current;
2920         unsigned long nr_reclaimed;
2921
2922         p->flags |= PF_MEMALLOC;
2923         lockdep_set_current_reclaim_state(sc.gfp_mask);
2924         reclaim_state.reclaimed_slab = 0;
2925         p->reclaim_state = &reclaim_state;
2926
2927         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2928
2929         p->reclaim_state = NULL;
2930         lockdep_clear_current_reclaim_state();
2931         p->flags &= ~PF_MEMALLOC;
2932
2933         return nr_reclaimed;
2934 }
2935 #endif /* CONFIG_HIBERNATION */
2936
2937 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2938    not required for correctness.  So if the last cpu in a node goes
2939    away, we get changed to run anywhere: as the first one comes back,
2940    restore their cpu bindings. */
2941 static int __devinit cpu_callback(struct notifier_block *nfb,
2942                                   unsigned long action, void *hcpu)
2943 {
2944         int nid;
2945
2946         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2947                 for_each_node_state(nid, N_HIGH_MEMORY) {
2948                         pg_data_t *pgdat = NODE_DATA(nid);
2949                         const struct cpumask *mask;
2950
2951                         mask = cpumask_of_node(pgdat->node_id);
2952
2953                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2954                                 /* One of our CPUs online: restore mask */
2955                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2956                 }
2957         }
2958         return NOTIFY_OK;
2959 }
2960
2961 /*
2962  * This kswapd start function will be called by init and node-hot-add.
2963  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2964  */
2965 int kswapd_run(int nid)
2966 {
2967         pg_data_t *pgdat = NODE_DATA(nid);
2968         int ret = 0;
2969
2970         if (pgdat->kswapd)
2971                 return 0;
2972
2973         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2974         if (IS_ERR(pgdat->kswapd)) {
2975                 /* failure at boot is fatal */
2976                 BUG_ON(system_state == SYSTEM_BOOTING);
2977                 printk("Failed to start kswapd on node %d\n",nid);
2978                 ret = -1;
2979         }
2980         return ret;
2981 }
2982
2983 /*
2984  * Called by memory hotplug when all memory in a node is offlined.
2985  */
2986 void kswapd_stop(int nid)
2987 {
2988         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2989
2990         if (kswapd)
2991                 kthread_stop(kswapd);
2992 }
2993
2994 static int __init kswapd_init(void)
2995 {
2996         int nid;
2997
2998         swap_setup();
2999         for_each_node_state(nid, N_HIGH_MEMORY)
3000                 kswapd_run(nid);
3001         hotcpu_notifier(cpu_callback, 0);
3002         return 0;
3003 }
3004
3005 module_init(kswapd_init)
3006
3007 #ifdef CONFIG_NUMA
3008 /*
3009  * Zone reclaim mode
3010  *
3011  * If non-zero call zone_reclaim when the number of free pages falls below
3012  * the watermarks.
3013  */
3014 int zone_reclaim_mode __read_mostly;
3015
3016 #define RECLAIM_OFF 0
3017 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3018 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3019 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3020
3021 /*
3022  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3023  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3024  * a zone.
3025  */
3026 #define ZONE_RECLAIM_PRIORITY 4
3027
3028 /*
3029  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3030  * occur.
3031  */
3032 int sysctl_min_unmapped_ratio = 1;
3033
3034 /*
3035  * If the number of slab pages in a zone grows beyond this percentage then
3036  * slab reclaim needs to occur.
3037  */
3038 int sysctl_min_slab_ratio = 5;
3039
3040 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3041 {
3042         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3043         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3044                 zone_page_state(zone, NR_ACTIVE_FILE);
3045
3046         /*
3047          * It's possible for there to be more file mapped pages than
3048          * accounted for by the pages on the file LRU lists because
3049          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3050          */
3051         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3052 }
3053
3054 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3055 static long zone_pagecache_reclaimable(struct zone *zone)
3056 {
3057         long nr_pagecache_reclaimable;
3058         long delta = 0;
3059
3060         /*
3061          * If RECLAIM_SWAP is set, then all file pages are considered
3062          * potentially reclaimable. Otherwise, we have to worry about
3063          * pages like swapcache and zone_unmapped_file_pages() provides
3064          * a better estimate
3065          */
3066         if (zone_reclaim_mode & RECLAIM_SWAP)
3067                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3068         else
3069                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3070
3071         /* If we can't clean pages, remove dirty pages from consideration */
3072         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3073                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3074
3075         /* Watch for any possible underflows due to delta */
3076         if (unlikely(delta > nr_pagecache_reclaimable))
3077                 delta = nr_pagecache_reclaimable;
3078
3079         return nr_pagecache_reclaimable - delta;
3080 }
3081
3082 /*
3083  * Try to free up some pages from this zone through reclaim.
3084  */
3085 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3086 {
3087         /* Minimum pages needed in order to stay on node */
3088         const unsigned long nr_pages = 1 << order;
3089         struct task_struct *p = current;
3090         struct reclaim_state reclaim_state;
3091         struct scan_control sc = {
3092                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3093                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3094                 .may_swap = 1,
3095                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3096                                        SWAP_CLUSTER_MAX),
3097                 .gfp_mask = gfp_mask,
3098                 .order = order,
3099                 .priority = ZONE_RECLAIM_PRIORITY,
3100         };
3101         struct shrink_control shrink = {
3102                 .gfp_mask = sc.gfp_mask,
3103         };
3104         unsigned long nr_slab_pages0, nr_slab_pages1;
3105
3106         cond_resched();
3107         /*
3108          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3109          * and we also need to be able to write out pages for RECLAIM_WRITE
3110          * and RECLAIM_SWAP.
3111          */
3112         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3113         lockdep_set_current_reclaim_state(gfp_mask);
3114         reclaim_state.reclaimed_slab = 0;
3115         p->reclaim_state = &reclaim_state;
3116
3117         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3118                 /*
3119                  * Free memory by calling shrink zone with increasing
3120                  * priorities until we have enough memory freed.
3121                  */
3122                 do {
3123                         shrink_zone(zone, &sc);
3124                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3125         }
3126
3127         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3128         if (nr_slab_pages0 > zone->min_slab_pages) {
3129                 /*
3130                  * shrink_slab() does not currently allow us to determine how
3131                  * many pages were freed in this zone. So we take the current
3132                  * number of slab pages and shake the slab until it is reduced
3133                  * by the same nr_pages that we used for reclaiming unmapped
3134                  * pages.
3135                  *
3136                  * Note that shrink_slab will free memory on all zones and may
3137                  * take a long time.
3138                  */
3139                 for (;;) {
3140                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3141
3142                         /* No reclaimable slab or very low memory pressure */
3143                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3144                                 break;
3145
3146                         /* Freed enough memory */
3147                         nr_slab_pages1 = zone_page_state(zone,
3148                                                         NR_SLAB_RECLAIMABLE);
3149                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3150                                 break;
3151                 }
3152
3153                 /*
3154                  * Update nr_reclaimed by the number of slab pages we
3155                  * reclaimed from this zone.
3156                  */
3157                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3158                 if (nr_slab_pages1 < nr_slab_pages0)
3159                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3160         }
3161
3162         p->reclaim_state = NULL;
3163         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3164         lockdep_clear_current_reclaim_state();
3165         return sc.nr_reclaimed >= nr_pages;
3166 }
3167
3168 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3169 {
3170         int node_id;
3171         int ret;
3172
3173         /*
3174          * Zone reclaim reclaims unmapped file backed pages and
3175          * slab pages if we are over the defined limits.
3176          *
3177          * A small portion of unmapped file backed pages is needed for
3178          * file I/O otherwise pages read by file I/O will be immediately
3179          * thrown out if the zone is overallocated. So we do not reclaim
3180          * if less than a specified percentage of the zone is used by
3181          * unmapped file backed pages.
3182          */
3183         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3184             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3185                 return ZONE_RECLAIM_FULL;
3186
3187         if (zone->all_unreclaimable)
3188                 return ZONE_RECLAIM_FULL;
3189
3190         /*
3191          * Do not scan if the allocation should not be delayed.
3192          */
3193         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3194                 return ZONE_RECLAIM_NOSCAN;
3195
3196         /*
3197          * Only run zone reclaim on the local zone or on zones that do not
3198          * have associated processors. This will favor the local processor
3199          * over remote processors and spread off node memory allocations
3200          * as wide as possible.
3201          */
3202         node_id = zone_to_nid(zone);
3203         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3204                 return ZONE_RECLAIM_NOSCAN;
3205
3206         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3207                 return ZONE_RECLAIM_NOSCAN;
3208
3209         ret = __zone_reclaim(zone, gfp_mask, order);
3210         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3211
3212         if (!ret)
3213                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3214
3215         return ret;
3216 }
3217 #endif
3218
3219 /*
3220  * page_evictable - test whether a page is evictable
3221  * @page: the page to test
3222  * @vma: the VMA in which the page is or will be mapped, may be NULL
3223  *
3224  * Test whether page is evictable--i.e., should be placed on active/inactive
3225  * lists vs unevictable list.  The vma argument is !NULL when called from the
3226  * fault path to determine how to instantate a new page.
3227  *
3228  * Reasons page might not be evictable:
3229  * (1) page's mapping marked unevictable
3230  * (2) page is part of an mlocked VMA
3231  *
3232  */
3233 int page_evictable(struct page *page, struct vm_area_struct *vma)
3234 {
3235
3236         if (mapping_unevictable(page_mapping(page)))
3237                 return 0;
3238
3239         if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3240                 return 0;
3241
3242         return 1;
3243 }
3244
3245 #ifdef CONFIG_SHMEM
3246 /**
3247  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3248  * @pages:      array of pages to check
3249  * @nr_pages:   number of pages to check
3250  *
3251  * Checks pages for evictability and moves them to the appropriate lru list.
3252  *
3253  * This function is only used for SysV IPC SHM_UNLOCK.
3254  */
3255 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3256 {
3257         struct lruvec *lruvec;
3258         struct zone *zone = NULL;
3259         int pgscanned = 0;
3260         int pgrescued = 0;
3261         int i;
3262
3263         for (i = 0; i < nr_pages; i++) {
3264                 struct page *page = pages[i];
3265                 struct zone *pagezone;
3266
3267                 pgscanned++;
3268                 pagezone = page_zone(page);
3269                 if (pagezone != zone) {
3270                         if (zone)
3271                                 spin_unlock_irq(&zone->lru_lock);
3272                         zone = pagezone;
3273                         spin_lock_irq(&zone->lru_lock);
3274                 }
3275
3276                 if (!PageLRU(page) || !PageUnevictable(page))
3277                         continue;
3278
3279                 if (page_evictable(page, NULL)) {
3280                         enum lru_list lru = page_lru_base_type(page);
3281
3282                         VM_BUG_ON(PageActive(page));
3283                         ClearPageUnevictable(page);
3284                         __dec_zone_state(zone, NR_UNEVICTABLE);
3285                         lruvec = mem_cgroup_lru_move_lists(zone, page,
3286                                                 LRU_UNEVICTABLE, lru);
3287                         list_move(&page->lru, &lruvec->lists[lru]);
3288                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3289                         pgrescued++;
3290                 }
3291         }
3292
3293         if (zone) {
3294                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3295                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3296                 spin_unlock_irq(&zone->lru_lock);
3297         }
3298 }
3299 #endif /* CONFIG_SHMEM */
3300
3301 static void warn_scan_unevictable_pages(void)
3302 {
3303         printk_once(KERN_WARNING
3304                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3305                     "disabled for lack of a legitimate use case.  If you have "
3306                     "one, please send an email to linux-mm@kvack.org.\n",
3307                     current->comm);
3308 }
3309
3310 /*
3311  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3312  * all nodes' unevictable lists for evictable pages
3313  */
3314 unsigned long scan_unevictable_pages;
3315
3316 int scan_unevictable_handler(struct ctl_table *table, int write,
3317                            void __user *buffer,
3318                            size_t *length, loff_t *ppos)
3319 {
3320         warn_scan_unevictable_pages();
3321         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3322         scan_unevictable_pages = 0;
3323         return 0;
3324 }
3325
3326 #ifdef CONFIG_NUMA
3327 /*
3328  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3329  * a specified node's per zone unevictable lists for evictable pages.
3330  */
3331
3332 static ssize_t read_scan_unevictable_node(struct device *dev,
3333                                           struct device_attribute *attr,
3334                                           char *buf)
3335 {
3336         warn_scan_unevictable_pages();
3337         return sprintf(buf, "0\n");     /* always zero; should fit... */
3338 }
3339
3340 static ssize_t write_scan_unevictable_node(struct device *dev,
3341                                            struct device_attribute *attr,
3342                                         const char *buf, size_t count)
3343 {
3344         warn_scan_unevictable_pages();
3345         return 1;
3346 }
3347
3348
3349 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3350                         read_scan_unevictable_node,
3351                         write_scan_unevictable_node);
3352
3353 int scan_unevictable_register_node(struct node *node)
3354 {
3355         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3356 }
3357
3358 void scan_unevictable_unregister_node(struct node *node)
3359 {
3360         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3361 }
3362 #endif