Merge branch 'akpm' (patches from Andrew)
[cascardo/linux.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *
24  * Usage of struct page flags:
25  *      PG_private: identifies the first component page
26  *      PG_private2: identifies the last component page
27  *      PG_owner_priv_1: indentifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/bitops.h>
37 #include <linux/errno.h>
38 #include <linux/highmem.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <asm/tlbflush.h>
42 #include <asm/pgtable.h>
43 #include <linux/cpumask.h>
44 #include <linux/cpu.h>
45 #include <linux/vmalloc.h>
46 #include <linux/preempt.h>
47 #include <linux/spinlock.h>
48 #include <linux/types.h>
49 #include <linux/debugfs.h>
50 #include <linux/zsmalloc.h>
51 #include <linux/zpool.h>
52 #include <linux/mount.h>
53 #include <linux/migrate.h>
54 #include <linux/pagemap.h>
55
56 #define ZSPAGE_MAGIC    0x58
57
58 /*
59  * This must be power of 2 and greater than of equal to sizeof(link_free).
60  * These two conditions ensure that any 'struct link_free' itself doesn't
61  * span more than 1 page which avoids complex case of mapping 2 pages simply
62  * to restore link_free pointer values.
63  */
64 #define ZS_ALIGN                8
65
66 /*
67  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
68  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
69  */
70 #define ZS_MAX_ZSPAGE_ORDER 2
71 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
72
73 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
74
75 /*
76  * Object location (<PFN>, <obj_idx>) is encoded as
77  * as single (unsigned long) handle value.
78  *
79  * Note that object index <obj_idx> starts from 0.
80  *
81  * This is made more complicated by various memory models and PAE.
82  */
83
84 #ifndef MAX_PHYSMEM_BITS
85 #ifdef CONFIG_HIGHMEM64G
86 #define MAX_PHYSMEM_BITS 36
87 #else /* !CONFIG_HIGHMEM64G */
88 /*
89  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
90  * be PAGE_SHIFT
91  */
92 #define MAX_PHYSMEM_BITS BITS_PER_LONG
93 #endif
94 #endif
95 #define _PFN_BITS               (MAX_PHYSMEM_BITS - PAGE_SHIFT)
96
97 /*
98  * Memory for allocating for handle keeps object position by
99  * encoding <page, obj_idx> and the encoded value has a room
100  * in least bit(ie, look at obj_to_location).
101  * We use the bit to synchronize between object access by
102  * user and migration.
103  */
104 #define HANDLE_PIN_BIT  0
105
106 /*
107  * Head in allocated object should have OBJ_ALLOCATED_TAG
108  * to identify the object was allocated or not.
109  * It's okay to add the status bit in the least bit because
110  * header keeps handle which is 4byte-aligned address so we
111  * have room for two bit at least.
112  */
113 #define OBJ_ALLOCATED_TAG 1
114 #define OBJ_TAG_BITS 1
115 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
116 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
117
118 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
119 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
120 #define ZS_MIN_ALLOC_SIZE \
121         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
122 /* each chunk includes extra space to keep handle */
123 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
124
125 /*
126  * On systems with 4K page size, this gives 255 size classes! There is a
127  * trader-off here:
128  *  - Large number of size classes is potentially wasteful as free page are
129  *    spread across these classes
130  *  - Small number of size classes causes large internal fragmentation
131  *  - Probably its better to use specific size classes (empirically
132  *    determined). NOTE: all those class sizes must be set as multiple of
133  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
134  *
135  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
136  *  (reason above)
137  */
138 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
139
140 /*
141  * We do not maintain any list for completely empty or full pages
142  */
143 enum fullness_group {
144         ZS_EMPTY,
145         ZS_ALMOST_EMPTY,
146         ZS_ALMOST_FULL,
147         ZS_FULL,
148         NR_ZS_FULLNESS,
149 };
150
151 enum zs_stat_type {
152         CLASS_EMPTY,
153         CLASS_ALMOST_EMPTY,
154         CLASS_ALMOST_FULL,
155         CLASS_FULL,
156         OBJ_ALLOCATED,
157         OBJ_USED,
158         NR_ZS_STAT_TYPE,
159 };
160
161 struct zs_size_stat {
162         unsigned long objs[NR_ZS_STAT_TYPE];
163 };
164
165 #ifdef CONFIG_ZSMALLOC_STAT
166 static struct dentry *zs_stat_root;
167 #endif
168
169 #ifdef CONFIG_COMPACTION
170 static struct vfsmount *zsmalloc_mnt;
171 #endif
172
173 /*
174  * number of size_classes
175  */
176 static int zs_size_classes;
177
178 /*
179  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
180  *      n <= N / f, where
181  * n = number of allocated objects
182  * N = total number of objects zspage can store
183  * f = fullness_threshold_frac
184  *
185  * Similarly, we assign zspage to:
186  *      ZS_ALMOST_FULL  when n > N / f
187  *      ZS_EMPTY        when n == 0
188  *      ZS_FULL         when n == N
189  *
190  * (see: fix_fullness_group())
191  */
192 static const int fullness_threshold_frac = 4;
193
194 struct size_class {
195         spinlock_t lock;
196         struct list_head fullness_list[NR_ZS_FULLNESS];
197         /*
198          * Size of objects stored in this class. Must be multiple
199          * of ZS_ALIGN.
200          */
201         int size;
202         int objs_per_zspage;
203         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204         int pages_per_zspage;
205
206         unsigned int index;
207         struct zs_size_stat stats;
208 };
209
210 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
211 static void SetPageHugeObject(struct page *page)
212 {
213         SetPageOwnerPriv1(page);
214 }
215
216 static void ClearPageHugeObject(struct page *page)
217 {
218         ClearPageOwnerPriv1(page);
219 }
220
221 static int PageHugeObject(struct page *page)
222 {
223         return PageOwnerPriv1(page);
224 }
225
226 /*
227  * Placed within free objects to form a singly linked list.
228  * For every zspage, zspage->freeobj gives head of this list.
229  *
230  * This must be power of 2 and less than or equal to ZS_ALIGN
231  */
232 struct link_free {
233         union {
234                 /*
235                  * Free object index;
236                  * It's valid for non-allocated object
237                  */
238                 unsigned long next;
239                 /*
240                  * Handle of allocated object.
241                  */
242                 unsigned long handle;
243         };
244 };
245
246 struct zs_pool {
247         const char *name;
248
249         struct size_class **size_class;
250         struct kmem_cache *handle_cachep;
251         struct kmem_cache *zspage_cachep;
252
253         atomic_long_t pages_allocated;
254
255         struct zs_pool_stats stats;
256
257         /* Compact classes */
258         struct shrinker shrinker;
259         /*
260          * To signify that register_shrinker() was successful
261          * and unregister_shrinker() will not Oops.
262          */
263         bool shrinker_enabled;
264 #ifdef CONFIG_ZSMALLOC_STAT
265         struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268         struct inode *inode;
269         struct work_struct free_work;
270 #endif
271 };
272
273 /*
274  * A zspage's class index and fullness group
275  * are encoded in its (first)page->mapping
276  */
277 #define FULLNESS_BITS   2
278 #define CLASS_BITS      8
279 #define ISOLATED_BITS   3
280 #define MAGIC_VAL_BITS  8
281
282 struct zspage {
283         struct {
284                 unsigned int fullness:FULLNESS_BITS;
285                 unsigned int class:CLASS_BITS;
286                 unsigned int isolated:ISOLATED_BITS;
287                 unsigned int magic:MAGIC_VAL_BITS;
288         };
289         unsigned int inuse;
290         unsigned int freeobj;
291         struct page *first_page;
292         struct list_head list; /* fullness list */
293 #ifdef CONFIG_COMPACTION
294         rwlock_t lock;
295 #endif
296 };
297
298 struct mapping_area {
299 #ifdef CONFIG_PGTABLE_MAPPING
300         struct vm_struct *vm; /* vm area for mapping object that span pages */
301 #else
302         char *vm_buf; /* copy buffer for objects that span pages */
303 #endif
304         char *vm_addr; /* address of kmap_atomic()'ed pages */
305         enum zs_mapmode vm_mm; /* mapping mode */
306 };
307
308 #ifdef CONFIG_COMPACTION
309 static int zs_register_migration(struct zs_pool *pool);
310 static void zs_unregister_migration(struct zs_pool *pool);
311 static void migrate_lock_init(struct zspage *zspage);
312 static void migrate_read_lock(struct zspage *zspage);
313 static void migrate_read_unlock(struct zspage *zspage);
314 static void kick_deferred_free(struct zs_pool *pool);
315 static void init_deferred_free(struct zs_pool *pool);
316 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
317 #else
318 static int zsmalloc_mount(void) { return 0; }
319 static void zsmalloc_unmount(void) {}
320 static int zs_register_migration(struct zs_pool *pool) { return 0; }
321 static void zs_unregister_migration(struct zs_pool *pool) {}
322 static void migrate_lock_init(struct zspage *zspage) {}
323 static void migrate_read_lock(struct zspage *zspage) {}
324 static void migrate_read_unlock(struct zspage *zspage) {}
325 static void kick_deferred_free(struct zs_pool *pool) {}
326 static void init_deferred_free(struct zs_pool *pool) {}
327 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
328 #endif
329
330 static int create_cache(struct zs_pool *pool)
331 {
332         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
333                                         0, 0, NULL);
334         if (!pool->handle_cachep)
335                 return 1;
336
337         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
338                                         0, 0, NULL);
339         if (!pool->zspage_cachep) {
340                 kmem_cache_destroy(pool->handle_cachep);
341                 pool->handle_cachep = NULL;
342                 return 1;
343         }
344
345         return 0;
346 }
347
348 static void destroy_cache(struct zs_pool *pool)
349 {
350         kmem_cache_destroy(pool->handle_cachep);
351         kmem_cache_destroy(pool->zspage_cachep);
352 }
353
354 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
355 {
356         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
357                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
358 }
359
360 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
361 {
362         kmem_cache_free(pool->handle_cachep, (void *)handle);
363 }
364
365 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
366 {
367         return kmem_cache_alloc(pool->zspage_cachep,
368                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
369 };
370
371 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
372 {
373         kmem_cache_free(pool->zspage_cachep, zspage);
374 }
375
376 static void record_obj(unsigned long handle, unsigned long obj)
377 {
378         /*
379          * lsb of @obj represents handle lock while other bits
380          * represent object value the handle is pointing so
381          * updating shouldn't do store tearing.
382          */
383         WRITE_ONCE(*(unsigned long *)handle, obj);
384 }
385
386 /* zpool driver */
387
388 #ifdef CONFIG_ZPOOL
389
390 static void *zs_zpool_create(const char *name, gfp_t gfp,
391                              const struct zpool_ops *zpool_ops,
392                              struct zpool *zpool)
393 {
394         /*
395          * Ignore global gfp flags: zs_malloc() may be invoked from
396          * different contexts and its caller must provide a valid
397          * gfp mask.
398          */
399         return zs_create_pool(name);
400 }
401
402 static void zs_zpool_destroy(void *pool)
403 {
404         zs_destroy_pool(pool);
405 }
406
407 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
408                         unsigned long *handle)
409 {
410         *handle = zs_malloc(pool, size, gfp);
411         return *handle ? 0 : -1;
412 }
413 static void zs_zpool_free(void *pool, unsigned long handle)
414 {
415         zs_free(pool, handle);
416 }
417
418 static int zs_zpool_shrink(void *pool, unsigned int pages,
419                         unsigned int *reclaimed)
420 {
421         return -EINVAL;
422 }
423
424 static void *zs_zpool_map(void *pool, unsigned long handle,
425                         enum zpool_mapmode mm)
426 {
427         enum zs_mapmode zs_mm;
428
429         switch (mm) {
430         case ZPOOL_MM_RO:
431                 zs_mm = ZS_MM_RO;
432                 break;
433         case ZPOOL_MM_WO:
434                 zs_mm = ZS_MM_WO;
435                 break;
436         case ZPOOL_MM_RW: /* fallthru */
437         default:
438                 zs_mm = ZS_MM_RW;
439                 break;
440         }
441
442         return zs_map_object(pool, handle, zs_mm);
443 }
444 static void zs_zpool_unmap(void *pool, unsigned long handle)
445 {
446         zs_unmap_object(pool, handle);
447 }
448
449 static u64 zs_zpool_total_size(void *pool)
450 {
451         return zs_get_total_pages(pool) << PAGE_SHIFT;
452 }
453
454 static struct zpool_driver zs_zpool_driver = {
455         .type =         "zsmalloc",
456         .owner =        THIS_MODULE,
457         .create =       zs_zpool_create,
458         .destroy =      zs_zpool_destroy,
459         .malloc =       zs_zpool_malloc,
460         .free =         zs_zpool_free,
461         .shrink =       zs_zpool_shrink,
462         .map =          zs_zpool_map,
463         .unmap =        zs_zpool_unmap,
464         .total_size =   zs_zpool_total_size,
465 };
466
467 MODULE_ALIAS("zpool-zsmalloc");
468 #endif /* CONFIG_ZPOOL */
469
470 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
471 {
472         return pages_per_zspage * PAGE_SIZE / size;
473 }
474
475 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
476 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
477
478 static bool is_zspage_isolated(struct zspage *zspage)
479 {
480         return zspage->isolated;
481 }
482
483 static int is_first_page(struct page *page)
484 {
485         return PagePrivate(page);
486 }
487
488 /* Protected by class->lock */
489 static inline int get_zspage_inuse(struct zspage *zspage)
490 {
491         return zspage->inuse;
492 }
493
494 static inline void set_zspage_inuse(struct zspage *zspage, int val)
495 {
496         zspage->inuse = val;
497 }
498
499 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
500 {
501         zspage->inuse += val;
502 }
503
504 static inline struct page *get_first_page(struct zspage *zspage)
505 {
506         struct page *first_page = zspage->first_page;
507
508         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
509         return first_page;
510 }
511
512 static inline int get_first_obj_offset(struct page *page)
513 {
514         return page->units;
515 }
516
517 static inline void set_first_obj_offset(struct page *page, int offset)
518 {
519         page->units = offset;
520 }
521
522 static inline unsigned int get_freeobj(struct zspage *zspage)
523 {
524         return zspage->freeobj;
525 }
526
527 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
528 {
529         zspage->freeobj = obj;
530 }
531
532 static void get_zspage_mapping(struct zspage *zspage,
533                                 unsigned int *class_idx,
534                                 enum fullness_group *fullness)
535 {
536         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
537
538         *fullness = zspage->fullness;
539         *class_idx = zspage->class;
540 }
541
542 static void set_zspage_mapping(struct zspage *zspage,
543                                 unsigned int class_idx,
544                                 enum fullness_group fullness)
545 {
546         zspage->class = class_idx;
547         zspage->fullness = fullness;
548 }
549
550 /*
551  * zsmalloc divides the pool into various size classes where each
552  * class maintains a list of zspages where each zspage is divided
553  * into equal sized chunks. Each allocation falls into one of these
554  * classes depending on its size. This function returns index of the
555  * size class which has chunk size big enough to hold the give size.
556  */
557 static int get_size_class_index(int size)
558 {
559         int idx = 0;
560
561         if (likely(size > ZS_MIN_ALLOC_SIZE))
562                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
563                                 ZS_SIZE_CLASS_DELTA);
564
565         return min(zs_size_classes - 1, idx);
566 }
567
568 static inline void zs_stat_inc(struct size_class *class,
569                                 enum zs_stat_type type, unsigned long cnt)
570 {
571         class->stats.objs[type] += cnt;
572 }
573
574 static inline void zs_stat_dec(struct size_class *class,
575                                 enum zs_stat_type type, unsigned long cnt)
576 {
577         class->stats.objs[type] -= cnt;
578 }
579
580 static inline unsigned long zs_stat_get(struct size_class *class,
581                                 enum zs_stat_type type)
582 {
583         return class->stats.objs[type];
584 }
585
586 #ifdef CONFIG_ZSMALLOC_STAT
587
588 static void __init zs_stat_init(void)
589 {
590         if (!debugfs_initialized()) {
591                 pr_warn("debugfs not available, stat dir not created\n");
592                 return;
593         }
594
595         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
596         if (!zs_stat_root)
597                 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
598 }
599
600 static void __exit zs_stat_exit(void)
601 {
602         debugfs_remove_recursive(zs_stat_root);
603 }
604
605 static unsigned long zs_can_compact(struct size_class *class);
606
607 static int zs_stats_size_show(struct seq_file *s, void *v)
608 {
609         int i;
610         struct zs_pool *pool = s->private;
611         struct size_class *class;
612         int objs_per_zspage;
613         unsigned long class_almost_full, class_almost_empty;
614         unsigned long obj_allocated, obj_used, pages_used, freeable;
615         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
616         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
617         unsigned long total_freeable = 0;
618
619         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
620                         "class", "size", "almost_full", "almost_empty",
621                         "obj_allocated", "obj_used", "pages_used",
622                         "pages_per_zspage", "freeable");
623
624         for (i = 0; i < zs_size_classes; i++) {
625                 class = pool->size_class[i];
626
627                 if (class->index != i)
628                         continue;
629
630                 spin_lock(&class->lock);
631                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
632                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
633                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
634                 obj_used = zs_stat_get(class, OBJ_USED);
635                 freeable = zs_can_compact(class);
636                 spin_unlock(&class->lock);
637
638                 objs_per_zspage = get_maxobj_per_zspage(class->size,
639                                 class->pages_per_zspage);
640                 pages_used = obj_allocated / objs_per_zspage *
641                                 class->pages_per_zspage;
642
643                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
644                                 " %10lu %10lu %16d %8lu\n",
645                         i, class->size, class_almost_full, class_almost_empty,
646                         obj_allocated, obj_used, pages_used,
647                         class->pages_per_zspage, freeable);
648
649                 total_class_almost_full += class_almost_full;
650                 total_class_almost_empty += class_almost_empty;
651                 total_objs += obj_allocated;
652                 total_used_objs += obj_used;
653                 total_pages += pages_used;
654                 total_freeable += freeable;
655         }
656
657         seq_puts(s, "\n");
658         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
659                         "Total", "", total_class_almost_full,
660                         total_class_almost_empty, total_objs,
661                         total_used_objs, total_pages, "", total_freeable);
662
663         return 0;
664 }
665
666 static int zs_stats_size_open(struct inode *inode, struct file *file)
667 {
668         return single_open(file, zs_stats_size_show, inode->i_private);
669 }
670
671 static const struct file_operations zs_stat_size_ops = {
672         .open           = zs_stats_size_open,
673         .read           = seq_read,
674         .llseek         = seq_lseek,
675         .release        = single_release,
676 };
677
678 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
679 {
680         struct dentry *entry;
681
682         if (!zs_stat_root) {
683                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
684                 return;
685         }
686
687         entry = debugfs_create_dir(name, zs_stat_root);
688         if (!entry) {
689                 pr_warn("debugfs dir <%s> creation failed\n", name);
690                 return;
691         }
692         pool->stat_dentry = entry;
693
694         entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
695                         pool->stat_dentry, pool, &zs_stat_size_ops);
696         if (!entry) {
697                 pr_warn("%s: debugfs file entry <%s> creation failed\n",
698                                 name, "classes");
699                 debugfs_remove_recursive(pool->stat_dentry);
700                 pool->stat_dentry = NULL;
701         }
702 }
703
704 static void zs_pool_stat_destroy(struct zs_pool *pool)
705 {
706         debugfs_remove_recursive(pool->stat_dentry);
707 }
708
709 #else /* CONFIG_ZSMALLOC_STAT */
710 static void __init zs_stat_init(void)
711 {
712 }
713
714 static void __exit zs_stat_exit(void)
715 {
716 }
717
718 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
719 {
720 }
721
722 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
723 {
724 }
725 #endif
726
727
728 /*
729  * For each size class, zspages are divided into different groups
730  * depending on how "full" they are. This was done so that we could
731  * easily find empty or nearly empty zspages when we try to shrink
732  * the pool (not yet implemented). This function returns fullness
733  * status of the given page.
734  */
735 static enum fullness_group get_fullness_group(struct size_class *class,
736                                                 struct zspage *zspage)
737 {
738         int inuse, objs_per_zspage;
739         enum fullness_group fg;
740
741         inuse = get_zspage_inuse(zspage);
742         objs_per_zspage = class->objs_per_zspage;
743
744         if (inuse == 0)
745                 fg = ZS_EMPTY;
746         else if (inuse == objs_per_zspage)
747                 fg = ZS_FULL;
748         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
749                 fg = ZS_ALMOST_EMPTY;
750         else
751                 fg = ZS_ALMOST_FULL;
752
753         return fg;
754 }
755
756 /*
757  * Each size class maintains various freelists and zspages are assigned
758  * to one of these freelists based on the number of live objects they
759  * have. This functions inserts the given zspage into the freelist
760  * identified by <class, fullness_group>.
761  */
762 static void insert_zspage(struct size_class *class,
763                                 struct zspage *zspage,
764                                 enum fullness_group fullness)
765 {
766         struct zspage *head;
767
768         zs_stat_inc(class, fullness, 1);
769         head = list_first_entry_or_null(&class->fullness_list[fullness],
770                                         struct zspage, list);
771         /*
772          * We want to see more ZS_FULL pages and less almost empty/full.
773          * Put pages with higher ->inuse first.
774          */
775         if (head) {
776                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
777                         list_add(&zspage->list, &head->list);
778                         return;
779                 }
780         }
781         list_add(&zspage->list, &class->fullness_list[fullness]);
782 }
783
784 /*
785  * This function removes the given zspage from the freelist identified
786  * by <class, fullness_group>.
787  */
788 static void remove_zspage(struct size_class *class,
789                                 struct zspage *zspage,
790                                 enum fullness_group fullness)
791 {
792         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
793         VM_BUG_ON(is_zspage_isolated(zspage));
794
795         list_del_init(&zspage->list);
796         zs_stat_dec(class, fullness, 1);
797 }
798
799 /*
800  * Each size class maintains zspages in different fullness groups depending
801  * on the number of live objects they contain. When allocating or freeing
802  * objects, the fullness status of the page can change, say, from ALMOST_FULL
803  * to ALMOST_EMPTY when freeing an object. This function checks if such
804  * a status change has occurred for the given page and accordingly moves the
805  * page from the freelist of the old fullness group to that of the new
806  * fullness group.
807  */
808 static enum fullness_group fix_fullness_group(struct size_class *class,
809                                                 struct zspage *zspage)
810 {
811         int class_idx;
812         enum fullness_group currfg, newfg;
813
814         get_zspage_mapping(zspage, &class_idx, &currfg);
815         newfg = get_fullness_group(class, zspage);
816         if (newfg == currfg)
817                 goto out;
818
819         if (!is_zspage_isolated(zspage)) {
820                 remove_zspage(class, zspage, currfg);
821                 insert_zspage(class, zspage, newfg);
822         }
823
824         set_zspage_mapping(zspage, class_idx, newfg);
825
826 out:
827         return newfg;
828 }
829
830 /*
831  * We have to decide on how many pages to link together
832  * to form a zspage for each size class. This is important
833  * to reduce wastage due to unusable space left at end of
834  * each zspage which is given as:
835  *     wastage = Zp % class_size
836  *     usage = Zp - wastage
837  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
838  *
839  * For example, for size class of 3/8 * PAGE_SIZE, we should
840  * link together 3 PAGE_SIZE sized pages to form a zspage
841  * since then we can perfectly fit in 8 such objects.
842  */
843 static int get_pages_per_zspage(int class_size)
844 {
845         int i, max_usedpc = 0;
846         /* zspage order which gives maximum used size per KB */
847         int max_usedpc_order = 1;
848
849         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
850                 int zspage_size;
851                 int waste, usedpc;
852
853                 zspage_size = i * PAGE_SIZE;
854                 waste = zspage_size % class_size;
855                 usedpc = (zspage_size - waste) * 100 / zspage_size;
856
857                 if (usedpc > max_usedpc) {
858                         max_usedpc = usedpc;
859                         max_usedpc_order = i;
860                 }
861         }
862
863         return max_usedpc_order;
864 }
865
866 static struct zspage *get_zspage(struct page *page)
867 {
868         struct zspage *zspage = (struct zspage *)page->private;
869
870         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
871         return zspage;
872 }
873
874 static struct page *get_next_page(struct page *page)
875 {
876         if (unlikely(PageHugeObject(page)))
877                 return NULL;
878
879         return page->freelist;
880 }
881
882 /**
883  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
884  * @page: page object resides in zspage
885  * @obj_idx: object index
886  */
887 static void obj_to_location(unsigned long obj, struct page **page,
888                                 unsigned int *obj_idx)
889 {
890         obj >>= OBJ_TAG_BITS;
891         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
892         *obj_idx = (obj & OBJ_INDEX_MASK);
893 }
894
895 /**
896  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
897  * @page: page object resides in zspage
898  * @obj_idx: object index
899  */
900 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
901 {
902         unsigned long obj;
903
904         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
905         obj |= obj_idx & OBJ_INDEX_MASK;
906         obj <<= OBJ_TAG_BITS;
907
908         return obj;
909 }
910
911 static unsigned long handle_to_obj(unsigned long handle)
912 {
913         return *(unsigned long *)handle;
914 }
915
916 static unsigned long obj_to_head(struct page *page, void *obj)
917 {
918         if (unlikely(PageHugeObject(page))) {
919                 VM_BUG_ON_PAGE(!is_first_page(page), page);
920                 return page->index;
921         } else
922                 return *(unsigned long *)obj;
923 }
924
925 static inline int testpin_tag(unsigned long handle)
926 {
927         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
928 }
929
930 static inline int trypin_tag(unsigned long handle)
931 {
932         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
933 }
934
935 static void pin_tag(unsigned long handle)
936 {
937         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
938 }
939
940 static void unpin_tag(unsigned long handle)
941 {
942         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
943 }
944
945 static void reset_page(struct page *page)
946 {
947         __ClearPageMovable(page);
948         clear_bit(PG_private, &page->flags);
949         clear_bit(PG_private_2, &page->flags);
950         set_page_private(page, 0);
951         page_mapcount_reset(page);
952         ClearPageHugeObject(page);
953         page->freelist = NULL;
954 }
955
956 /*
957  * To prevent zspage destroy during migration, zspage freeing should
958  * hold locks of all pages in the zspage.
959  */
960 void lock_zspage(struct zspage *zspage)
961 {
962         struct page *page = get_first_page(zspage);
963
964         do {
965                 lock_page(page);
966         } while ((page = get_next_page(page)) != NULL);
967 }
968
969 int trylock_zspage(struct zspage *zspage)
970 {
971         struct page *cursor, *fail;
972
973         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
974                                         get_next_page(cursor)) {
975                 if (!trylock_page(cursor)) {
976                         fail = cursor;
977                         goto unlock;
978                 }
979         }
980
981         return 1;
982 unlock:
983         for (cursor = get_first_page(zspage); cursor != fail; cursor =
984                                         get_next_page(cursor))
985                 unlock_page(cursor);
986
987         return 0;
988 }
989
990 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
991                                 struct zspage *zspage)
992 {
993         struct page *page, *next;
994         enum fullness_group fg;
995         unsigned int class_idx;
996
997         get_zspage_mapping(zspage, &class_idx, &fg);
998
999         assert_spin_locked(&class->lock);
1000
1001         VM_BUG_ON(get_zspage_inuse(zspage));
1002         VM_BUG_ON(fg != ZS_EMPTY);
1003
1004         next = page = get_first_page(zspage);
1005         do {
1006                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1007                 next = get_next_page(page);
1008                 reset_page(page);
1009                 unlock_page(page);
1010                 dec_zone_page_state(page, NR_ZSPAGES);
1011                 put_page(page);
1012                 page = next;
1013         } while (page != NULL);
1014
1015         cache_free_zspage(pool, zspage);
1016
1017         zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1018                         class->size, class->pages_per_zspage));
1019         atomic_long_sub(class->pages_per_zspage,
1020                                         &pool->pages_allocated);
1021 }
1022
1023 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1024                                 struct zspage *zspage)
1025 {
1026         VM_BUG_ON(get_zspage_inuse(zspage));
1027         VM_BUG_ON(list_empty(&zspage->list));
1028
1029         if (!trylock_zspage(zspage)) {
1030                 kick_deferred_free(pool);
1031                 return;
1032         }
1033
1034         remove_zspage(class, zspage, ZS_EMPTY);
1035         __free_zspage(pool, class, zspage);
1036 }
1037
1038 /* Initialize a newly allocated zspage */
1039 static void init_zspage(struct size_class *class, struct zspage *zspage)
1040 {
1041         unsigned int freeobj = 1;
1042         unsigned long off = 0;
1043         struct page *page = get_first_page(zspage);
1044
1045         while (page) {
1046                 struct page *next_page;
1047                 struct link_free *link;
1048                 void *vaddr;
1049
1050                 set_first_obj_offset(page, off);
1051
1052                 vaddr = kmap_atomic(page);
1053                 link = (struct link_free *)vaddr + off / sizeof(*link);
1054
1055                 while ((off += class->size) < PAGE_SIZE) {
1056                         link->next = freeobj++ << OBJ_TAG_BITS;
1057                         link += class->size / sizeof(*link);
1058                 }
1059
1060                 /*
1061                  * We now come to the last (full or partial) object on this
1062                  * page, which must point to the first object on the next
1063                  * page (if present)
1064                  */
1065                 next_page = get_next_page(page);
1066                 if (next_page) {
1067                         link->next = freeobj++ << OBJ_TAG_BITS;
1068                 } else {
1069                         /*
1070                          * Reset OBJ_TAG_BITS bit to last link to tell
1071                          * whether it's allocated object or not.
1072                          */
1073                         link->next = -1 << OBJ_TAG_BITS;
1074                 }
1075                 kunmap_atomic(vaddr);
1076                 page = next_page;
1077                 off %= PAGE_SIZE;
1078         }
1079
1080         set_freeobj(zspage, 0);
1081 }
1082
1083 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1084                                 struct page *pages[])
1085 {
1086         int i;
1087         struct page *page;
1088         struct page *prev_page = NULL;
1089         int nr_pages = class->pages_per_zspage;
1090
1091         /*
1092          * Allocate individual pages and link them together as:
1093          * 1. all pages are linked together using page->freelist
1094          * 2. each sub-page point to zspage using page->private
1095          *
1096          * we set PG_private to identify the first page (i.e. no other sub-page
1097          * has this flag set) and PG_private_2 to identify the last page.
1098          */
1099         for (i = 0; i < nr_pages; i++) {
1100                 page = pages[i];
1101                 set_page_private(page, (unsigned long)zspage);
1102                 page->freelist = NULL;
1103                 if (i == 0) {
1104                         zspage->first_page = page;
1105                         SetPagePrivate(page);
1106                         if (unlikely(class->objs_per_zspage == 1 &&
1107                                         class->pages_per_zspage == 1))
1108                                 SetPageHugeObject(page);
1109                 } else {
1110                         prev_page->freelist = page;
1111                 }
1112                 if (i == nr_pages - 1)
1113                         SetPagePrivate2(page);
1114                 prev_page = page;
1115         }
1116 }
1117
1118 /*
1119  * Allocate a zspage for the given size class
1120  */
1121 static struct zspage *alloc_zspage(struct zs_pool *pool,
1122                                         struct size_class *class,
1123                                         gfp_t gfp)
1124 {
1125         int i;
1126         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1127         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1128
1129         if (!zspage)
1130                 return NULL;
1131
1132         memset(zspage, 0, sizeof(struct zspage));
1133         zspage->magic = ZSPAGE_MAGIC;
1134         migrate_lock_init(zspage);
1135
1136         for (i = 0; i < class->pages_per_zspage; i++) {
1137                 struct page *page;
1138
1139                 page = alloc_page(gfp);
1140                 if (!page) {
1141                         while (--i >= 0) {
1142                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1143                                 __free_page(pages[i]);
1144                         }
1145                         cache_free_zspage(pool, zspage);
1146                         return NULL;
1147                 }
1148
1149                 inc_zone_page_state(page, NR_ZSPAGES);
1150                 pages[i] = page;
1151         }
1152
1153         create_page_chain(class, zspage, pages);
1154         init_zspage(class, zspage);
1155
1156         return zspage;
1157 }
1158
1159 static struct zspage *find_get_zspage(struct size_class *class)
1160 {
1161         int i;
1162         struct zspage *zspage;
1163
1164         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1165                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1166                                 struct zspage, list);
1167                 if (zspage)
1168                         break;
1169         }
1170
1171         return zspage;
1172 }
1173
1174 #ifdef CONFIG_PGTABLE_MAPPING
1175 static inline int __zs_cpu_up(struct mapping_area *area)
1176 {
1177         /*
1178          * Make sure we don't leak memory if a cpu UP notification
1179          * and zs_init() race and both call zs_cpu_up() on the same cpu
1180          */
1181         if (area->vm)
1182                 return 0;
1183         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1184         if (!area->vm)
1185                 return -ENOMEM;
1186         return 0;
1187 }
1188
1189 static inline void __zs_cpu_down(struct mapping_area *area)
1190 {
1191         if (area->vm)
1192                 free_vm_area(area->vm);
1193         area->vm = NULL;
1194 }
1195
1196 static inline void *__zs_map_object(struct mapping_area *area,
1197                                 struct page *pages[2], int off, int size)
1198 {
1199         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1200         area->vm_addr = area->vm->addr;
1201         return area->vm_addr + off;
1202 }
1203
1204 static inline void __zs_unmap_object(struct mapping_area *area,
1205                                 struct page *pages[2], int off, int size)
1206 {
1207         unsigned long addr = (unsigned long)area->vm_addr;
1208
1209         unmap_kernel_range(addr, PAGE_SIZE * 2);
1210 }
1211
1212 #else /* CONFIG_PGTABLE_MAPPING */
1213
1214 static inline int __zs_cpu_up(struct mapping_area *area)
1215 {
1216         /*
1217          * Make sure we don't leak memory if a cpu UP notification
1218          * and zs_init() race and both call zs_cpu_up() on the same cpu
1219          */
1220         if (area->vm_buf)
1221                 return 0;
1222         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1223         if (!area->vm_buf)
1224                 return -ENOMEM;
1225         return 0;
1226 }
1227
1228 static inline void __zs_cpu_down(struct mapping_area *area)
1229 {
1230         kfree(area->vm_buf);
1231         area->vm_buf = NULL;
1232 }
1233
1234 static void *__zs_map_object(struct mapping_area *area,
1235                         struct page *pages[2], int off, int size)
1236 {
1237         int sizes[2];
1238         void *addr;
1239         char *buf = area->vm_buf;
1240
1241         /* disable page faults to match kmap_atomic() return conditions */
1242         pagefault_disable();
1243
1244         /* no read fastpath */
1245         if (area->vm_mm == ZS_MM_WO)
1246                 goto out;
1247
1248         sizes[0] = PAGE_SIZE - off;
1249         sizes[1] = size - sizes[0];
1250
1251         /* copy object to per-cpu buffer */
1252         addr = kmap_atomic(pages[0]);
1253         memcpy(buf, addr + off, sizes[0]);
1254         kunmap_atomic(addr);
1255         addr = kmap_atomic(pages[1]);
1256         memcpy(buf + sizes[0], addr, sizes[1]);
1257         kunmap_atomic(addr);
1258 out:
1259         return area->vm_buf;
1260 }
1261
1262 static void __zs_unmap_object(struct mapping_area *area,
1263                         struct page *pages[2], int off, int size)
1264 {
1265         int sizes[2];
1266         void *addr;
1267         char *buf;
1268
1269         /* no write fastpath */
1270         if (area->vm_mm == ZS_MM_RO)
1271                 goto out;
1272
1273         buf = area->vm_buf;
1274         buf = buf + ZS_HANDLE_SIZE;
1275         size -= ZS_HANDLE_SIZE;
1276         off += ZS_HANDLE_SIZE;
1277
1278         sizes[0] = PAGE_SIZE - off;
1279         sizes[1] = size - sizes[0];
1280
1281         /* copy per-cpu buffer to object */
1282         addr = kmap_atomic(pages[0]);
1283         memcpy(addr + off, buf, sizes[0]);
1284         kunmap_atomic(addr);
1285         addr = kmap_atomic(pages[1]);
1286         memcpy(addr, buf + sizes[0], sizes[1]);
1287         kunmap_atomic(addr);
1288
1289 out:
1290         /* enable page faults to match kunmap_atomic() return conditions */
1291         pagefault_enable();
1292 }
1293
1294 #endif /* CONFIG_PGTABLE_MAPPING */
1295
1296 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1297                                 void *pcpu)
1298 {
1299         int ret, cpu = (long)pcpu;
1300         struct mapping_area *area;
1301
1302         switch (action) {
1303         case CPU_UP_PREPARE:
1304                 area = &per_cpu(zs_map_area, cpu);
1305                 ret = __zs_cpu_up(area);
1306                 if (ret)
1307                         return notifier_from_errno(ret);
1308                 break;
1309         case CPU_DEAD:
1310         case CPU_UP_CANCELED:
1311                 area = &per_cpu(zs_map_area, cpu);
1312                 __zs_cpu_down(area);
1313                 break;
1314         }
1315
1316         return NOTIFY_OK;
1317 }
1318
1319 static struct notifier_block zs_cpu_nb = {
1320         .notifier_call = zs_cpu_notifier
1321 };
1322
1323 static int zs_register_cpu_notifier(void)
1324 {
1325         int cpu, uninitialized_var(ret);
1326
1327         cpu_notifier_register_begin();
1328
1329         __register_cpu_notifier(&zs_cpu_nb);
1330         for_each_online_cpu(cpu) {
1331                 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1332                 if (notifier_to_errno(ret))
1333                         break;
1334         }
1335
1336         cpu_notifier_register_done();
1337         return notifier_to_errno(ret);
1338 }
1339
1340 static void zs_unregister_cpu_notifier(void)
1341 {
1342         int cpu;
1343
1344         cpu_notifier_register_begin();
1345
1346         for_each_online_cpu(cpu)
1347                 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1348         __unregister_cpu_notifier(&zs_cpu_nb);
1349
1350         cpu_notifier_register_done();
1351 }
1352
1353 static void init_zs_size_classes(void)
1354 {
1355         int nr;
1356
1357         nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1358         if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1359                 nr += 1;
1360
1361         zs_size_classes = nr;
1362 }
1363
1364 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1365 {
1366         if (prev->pages_per_zspage != pages_per_zspage)
1367                 return false;
1368
1369         if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1370                 != get_maxobj_per_zspage(size, pages_per_zspage))
1371                 return false;
1372
1373         return true;
1374 }
1375
1376 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1377 {
1378         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1379 }
1380
1381 unsigned long zs_get_total_pages(struct zs_pool *pool)
1382 {
1383         return atomic_long_read(&pool->pages_allocated);
1384 }
1385 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1386
1387 /**
1388  * zs_map_object - get address of allocated object from handle.
1389  * @pool: pool from which the object was allocated
1390  * @handle: handle returned from zs_malloc
1391  *
1392  * Before using an object allocated from zs_malloc, it must be mapped using
1393  * this function. When done with the object, it must be unmapped using
1394  * zs_unmap_object.
1395  *
1396  * Only one object can be mapped per cpu at a time. There is no protection
1397  * against nested mappings.
1398  *
1399  * This function returns with preemption and page faults disabled.
1400  */
1401 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1402                         enum zs_mapmode mm)
1403 {
1404         struct zspage *zspage;
1405         struct page *page;
1406         unsigned long obj, off;
1407         unsigned int obj_idx;
1408
1409         unsigned int class_idx;
1410         enum fullness_group fg;
1411         struct size_class *class;
1412         struct mapping_area *area;
1413         struct page *pages[2];
1414         void *ret;
1415
1416         /*
1417          * Because we use per-cpu mapping areas shared among the
1418          * pools/users, we can't allow mapping in interrupt context
1419          * because it can corrupt another users mappings.
1420          */
1421         WARN_ON_ONCE(in_interrupt());
1422
1423         /* From now on, migration cannot move the object */
1424         pin_tag(handle);
1425
1426         obj = handle_to_obj(handle);
1427         obj_to_location(obj, &page, &obj_idx);
1428         zspage = get_zspage(page);
1429
1430         /* migration cannot move any subpage in this zspage */
1431         migrate_read_lock(zspage);
1432
1433         get_zspage_mapping(zspage, &class_idx, &fg);
1434         class = pool->size_class[class_idx];
1435         off = (class->size * obj_idx) & ~PAGE_MASK;
1436
1437         area = &get_cpu_var(zs_map_area);
1438         area->vm_mm = mm;
1439         if (off + class->size <= PAGE_SIZE) {
1440                 /* this object is contained entirely within a page */
1441                 area->vm_addr = kmap_atomic(page);
1442                 ret = area->vm_addr + off;
1443                 goto out;
1444         }
1445
1446         /* this object spans two pages */
1447         pages[0] = page;
1448         pages[1] = get_next_page(page);
1449         BUG_ON(!pages[1]);
1450
1451         ret = __zs_map_object(area, pages, off, class->size);
1452 out:
1453         if (likely(!PageHugeObject(page)))
1454                 ret += ZS_HANDLE_SIZE;
1455
1456         return ret;
1457 }
1458 EXPORT_SYMBOL_GPL(zs_map_object);
1459
1460 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1461 {
1462         struct zspage *zspage;
1463         struct page *page;
1464         unsigned long obj, off;
1465         unsigned int obj_idx;
1466
1467         unsigned int class_idx;
1468         enum fullness_group fg;
1469         struct size_class *class;
1470         struct mapping_area *area;
1471
1472         obj = handle_to_obj(handle);
1473         obj_to_location(obj, &page, &obj_idx);
1474         zspage = get_zspage(page);
1475         get_zspage_mapping(zspage, &class_idx, &fg);
1476         class = pool->size_class[class_idx];
1477         off = (class->size * obj_idx) & ~PAGE_MASK;
1478
1479         area = this_cpu_ptr(&zs_map_area);
1480         if (off + class->size <= PAGE_SIZE)
1481                 kunmap_atomic(area->vm_addr);
1482         else {
1483                 struct page *pages[2];
1484
1485                 pages[0] = page;
1486                 pages[1] = get_next_page(page);
1487                 BUG_ON(!pages[1]);
1488
1489                 __zs_unmap_object(area, pages, off, class->size);
1490         }
1491         put_cpu_var(zs_map_area);
1492
1493         migrate_read_unlock(zspage);
1494         unpin_tag(handle);
1495 }
1496 EXPORT_SYMBOL_GPL(zs_unmap_object);
1497
1498 static unsigned long obj_malloc(struct size_class *class,
1499                                 struct zspage *zspage, unsigned long handle)
1500 {
1501         int i, nr_page, offset;
1502         unsigned long obj;
1503         struct link_free *link;
1504
1505         struct page *m_page;
1506         unsigned long m_offset;
1507         void *vaddr;
1508
1509         handle |= OBJ_ALLOCATED_TAG;
1510         obj = get_freeobj(zspage);
1511
1512         offset = obj * class->size;
1513         nr_page = offset >> PAGE_SHIFT;
1514         m_offset = offset & ~PAGE_MASK;
1515         m_page = get_first_page(zspage);
1516
1517         for (i = 0; i < nr_page; i++)
1518                 m_page = get_next_page(m_page);
1519
1520         vaddr = kmap_atomic(m_page);
1521         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1522         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1523         if (likely(!PageHugeObject(m_page)))
1524                 /* record handle in the header of allocated chunk */
1525                 link->handle = handle;
1526         else
1527                 /* record handle to page->index */
1528                 zspage->first_page->index = handle;
1529
1530         kunmap_atomic(vaddr);
1531         mod_zspage_inuse(zspage, 1);
1532         zs_stat_inc(class, OBJ_USED, 1);
1533
1534         obj = location_to_obj(m_page, obj);
1535
1536         return obj;
1537 }
1538
1539
1540 /**
1541  * zs_malloc - Allocate block of given size from pool.
1542  * @pool: pool to allocate from
1543  * @size: size of block to allocate
1544  *
1545  * On success, handle to the allocated object is returned,
1546  * otherwise 0.
1547  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1548  */
1549 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1550 {
1551         unsigned long handle, obj;
1552         struct size_class *class;
1553         enum fullness_group newfg;
1554         struct zspage *zspage;
1555
1556         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1557                 return 0;
1558
1559         handle = cache_alloc_handle(pool, gfp);
1560         if (!handle)
1561                 return 0;
1562
1563         /* extra space in chunk to keep the handle */
1564         size += ZS_HANDLE_SIZE;
1565         class = pool->size_class[get_size_class_index(size)];
1566
1567         spin_lock(&class->lock);
1568         zspage = find_get_zspage(class);
1569         if (likely(zspage)) {
1570                 obj = obj_malloc(class, zspage, handle);
1571                 /* Now move the zspage to another fullness group, if required */
1572                 fix_fullness_group(class, zspage);
1573                 record_obj(handle, obj);
1574                 spin_unlock(&class->lock);
1575
1576                 return handle;
1577         }
1578
1579         spin_unlock(&class->lock);
1580
1581         zspage = alloc_zspage(pool, class, gfp);
1582         if (!zspage) {
1583                 cache_free_handle(pool, handle);
1584                 return 0;
1585         }
1586
1587         spin_lock(&class->lock);
1588         obj = obj_malloc(class, zspage, handle);
1589         newfg = get_fullness_group(class, zspage);
1590         insert_zspage(class, zspage, newfg);
1591         set_zspage_mapping(zspage, class->index, newfg);
1592         record_obj(handle, obj);
1593         atomic_long_add(class->pages_per_zspage,
1594                                 &pool->pages_allocated);
1595         zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1596                         class->size, class->pages_per_zspage));
1597
1598         /* We completely set up zspage so mark them as movable */
1599         SetZsPageMovable(pool, zspage);
1600         spin_unlock(&class->lock);
1601
1602         return handle;
1603 }
1604 EXPORT_SYMBOL_GPL(zs_malloc);
1605
1606 static void obj_free(struct size_class *class, unsigned long obj)
1607 {
1608         struct link_free *link;
1609         struct zspage *zspage;
1610         struct page *f_page;
1611         unsigned long f_offset;
1612         unsigned int f_objidx;
1613         void *vaddr;
1614
1615         obj &= ~OBJ_ALLOCATED_TAG;
1616         obj_to_location(obj, &f_page, &f_objidx);
1617         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1618         zspage = get_zspage(f_page);
1619
1620         vaddr = kmap_atomic(f_page);
1621
1622         /* Insert this object in containing zspage's freelist */
1623         link = (struct link_free *)(vaddr + f_offset);
1624         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1625         kunmap_atomic(vaddr);
1626         set_freeobj(zspage, f_objidx);
1627         mod_zspage_inuse(zspage, -1);
1628         zs_stat_dec(class, OBJ_USED, 1);
1629 }
1630
1631 void zs_free(struct zs_pool *pool, unsigned long handle)
1632 {
1633         struct zspage *zspage;
1634         struct page *f_page;
1635         unsigned long obj;
1636         unsigned int f_objidx;
1637         int class_idx;
1638         struct size_class *class;
1639         enum fullness_group fullness;
1640         bool isolated;
1641
1642         if (unlikely(!handle))
1643                 return;
1644
1645         pin_tag(handle);
1646         obj = handle_to_obj(handle);
1647         obj_to_location(obj, &f_page, &f_objidx);
1648         zspage = get_zspage(f_page);
1649
1650         migrate_read_lock(zspage);
1651
1652         get_zspage_mapping(zspage, &class_idx, &fullness);
1653         class = pool->size_class[class_idx];
1654
1655         spin_lock(&class->lock);
1656         obj_free(class, obj);
1657         fullness = fix_fullness_group(class, zspage);
1658         if (fullness != ZS_EMPTY) {
1659                 migrate_read_unlock(zspage);
1660                 goto out;
1661         }
1662
1663         isolated = is_zspage_isolated(zspage);
1664         migrate_read_unlock(zspage);
1665         /* If zspage is isolated, zs_page_putback will free the zspage */
1666         if (likely(!isolated))
1667                 free_zspage(pool, class, zspage);
1668 out:
1669
1670         spin_unlock(&class->lock);
1671         unpin_tag(handle);
1672         cache_free_handle(pool, handle);
1673 }
1674 EXPORT_SYMBOL_GPL(zs_free);
1675
1676 static void zs_object_copy(struct size_class *class, unsigned long dst,
1677                                 unsigned long src)
1678 {
1679         struct page *s_page, *d_page;
1680         unsigned int s_objidx, d_objidx;
1681         unsigned long s_off, d_off;
1682         void *s_addr, *d_addr;
1683         int s_size, d_size, size;
1684         int written = 0;
1685
1686         s_size = d_size = class->size;
1687
1688         obj_to_location(src, &s_page, &s_objidx);
1689         obj_to_location(dst, &d_page, &d_objidx);
1690
1691         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1692         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1693
1694         if (s_off + class->size > PAGE_SIZE)
1695                 s_size = PAGE_SIZE - s_off;
1696
1697         if (d_off + class->size > PAGE_SIZE)
1698                 d_size = PAGE_SIZE - d_off;
1699
1700         s_addr = kmap_atomic(s_page);
1701         d_addr = kmap_atomic(d_page);
1702
1703         while (1) {
1704                 size = min(s_size, d_size);
1705                 memcpy(d_addr + d_off, s_addr + s_off, size);
1706                 written += size;
1707
1708                 if (written == class->size)
1709                         break;
1710
1711                 s_off += size;
1712                 s_size -= size;
1713                 d_off += size;
1714                 d_size -= size;
1715
1716                 if (s_off >= PAGE_SIZE) {
1717                         kunmap_atomic(d_addr);
1718                         kunmap_atomic(s_addr);
1719                         s_page = get_next_page(s_page);
1720                         s_addr = kmap_atomic(s_page);
1721                         d_addr = kmap_atomic(d_page);
1722                         s_size = class->size - written;
1723                         s_off = 0;
1724                 }
1725
1726                 if (d_off >= PAGE_SIZE) {
1727                         kunmap_atomic(d_addr);
1728                         d_page = get_next_page(d_page);
1729                         d_addr = kmap_atomic(d_page);
1730                         d_size = class->size - written;
1731                         d_off = 0;
1732                 }
1733         }
1734
1735         kunmap_atomic(d_addr);
1736         kunmap_atomic(s_addr);
1737 }
1738
1739 /*
1740  * Find alloced object in zspage from index object and
1741  * return handle.
1742  */
1743 static unsigned long find_alloced_obj(struct size_class *class,
1744                                         struct page *page, int index)
1745 {
1746         unsigned long head;
1747         int offset = 0;
1748         unsigned long handle = 0;
1749         void *addr = kmap_atomic(page);
1750
1751         offset = get_first_obj_offset(page);
1752         offset += class->size * index;
1753
1754         while (offset < PAGE_SIZE) {
1755                 head = obj_to_head(page, addr + offset);
1756                 if (head & OBJ_ALLOCATED_TAG) {
1757                         handle = head & ~OBJ_ALLOCATED_TAG;
1758                         if (trypin_tag(handle))
1759                                 break;
1760                         handle = 0;
1761                 }
1762
1763                 offset += class->size;
1764                 index++;
1765         }
1766
1767         kunmap_atomic(addr);
1768         return handle;
1769 }
1770
1771 struct zs_compact_control {
1772         /* Source spage for migration which could be a subpage of zspage */
1773         struct page *s_page;
1774         /* Destination page for migration which should be a first page
1775          * of zspage. */
1776         struct page *d_page;
1777          /* Starting object index within @s_page which used for live object
1778           * in the subpage. */
1779         int index;
1780 };
1781
1782 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1783                                 struct zs_compact_control *cc)
1784 {
1785         unsigned long used_obj, free_obj;
1786         unsigned long handle;
1787         struct page *s_page = cc->s_page;
1788         struct page *d_page = cc->d_page;
1789         unsigned long index = cc->index;
1790         int ret = 0;
1791
1792         while (1) {
1793                 handle = find_alloced_obj(class, s_page, index);
1794                 if (!handle) {
1795                         s_page = get_next_page(s_page);
1796                         if (!s_page)
1797                                 break;
1798                         index = 0;
1799                         continue;
1800                 }
1801
1802                 /* Stop if there is no more space */
1803                 if (zspage_full(class, get_zspage(d_page))) {
1804                         unpin_tag(handle);
1805                         ret = -ENOMEM;
1806                         break;
1807                 }
1808
1809                 used_obj = handle_to_obj(handle);
1810                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1811                 zs_object_copy(class, free_obj, used_obj);
1812                 index++;
1813                 /*
1814                  * record_obj updates handle's value to free_obj and it will
1815                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1816                  * breaks synchronization using pin_tag(e,g, zs_free) so
1817                  * let's keep the lock bit.
1818                  */
1819                 free_obj |= BIT(HANDLE_PIN_BIT);
1820                 record_obj(handle, free_obj);
1821                 unpin_tag(handle);
1822                 obj_free(class, used_obj);
1823         }
1824
1825         /* Remember last position in this iteration */
1826         cc->s_page = s_page;
1827         cc->index = index;
1828
1829         return ret;
1830 }
1831
1832 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1833 {
1834         int i;
1835         struct zspage *zspage;
1836         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1837
1838         if (!source) {
1839                 fg[0] = ZS_ALMOST_FULL;
1840                 fg[1] = ZS_ALMOST_EMPTY;
1841         }
1842
1843         for (i = 0; i < 2; i++) {
1844                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1845                                                         struct zspage, list);
1846                 if (zspage) {
1847                         VM_BUG_ON(is_zspage_isolated(zspage));
1848                         remove_zspage(class, zspage, fg[i]);
1849                         return zspage;
1850                 }
1851         }
1852
1853         return zspage;
1854 }
1855
1856 /*
1857  * putback_zspage - add @zspage into right class's fullness list
1858  * @class: destination class
1859  * @zspage: target page
1860  *
1861  * Return @zspage's fullness_group
1862  */
1863 static enum fullness_group putback_zspage(struct size_class *class,
1864                         struct zspage *zspage)
1865 {
1866         enum fullness_group fullness;
1867
1868         VM_BUG_ON(is_zspage_isolated(zspage));
1869
1870         fullness = get_fullness_group(class, zspage);
1871         insert_zspage(class, zspage, fullness);
1872         set_zspage_mapping(zspage, class->index, fullness);
1873
1874         return fullness;
1875 }
1876
1877 #ifdef CONFIG_COMPACTION
1878 static struct dentry *zs_mount(struct file_system_type *fs_type,
1879                                 int flags, const char *dev_name, void *data)
1880 {
1881         static const struct dentry_operations ops = {
1882                 .d_dname = simple_dname,
1883         };
1884
1885         return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1886 }
1887
1888 static struct file_system_type zsmalloc_fs = {
1889         .name           = "zsmalloc",
1890         .mount          = zs_mount,
1891         .kill_sb        = kill_anon_super,
1892 };
1893
1894 static int zsmalloc_mount(void)
1895 {
1896         int ret = 0;
1897
1898         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1899         if (IS_ERR(zsmalloc_mnt))
1900                 ret = PTR_ERR(zsmalloc_mnt);
1901
1902         return ret;
1903 }
1904
1905 static void zsmalloc_unmount(void)
1906 {
1907         kern_unmount(zsmalloc_mnt);
1908 }
1909
1910 static void migrate_lock_init(struct zspage *zspage)
1911 {
1912         rwlock_init(&zspage->lock);
1913 }
1914
1915 static void migrate_read_lock(struct zspage *zspage)
1916 {
1917         read_lock(&zspage->lock);
1918 }
1919
1920 static void migrate_read_unlock(struct zspage *zspage)
1921 {
1922         read_unlock(&zspage->lock);
1923 }
1924
1925 static void migrate_write_lock(struct zspage *zspage)
1926 {
1927         write_lock(&zspage->lock);
1928 }
1929
1930 static void migrate_write_unlock(struct zspage *zspage)
1931 {
1932         write_unlock(&zspage->lock);
1933 }
1934
1935 /* Number of isolated subpage for *page migration* in this zspage */
1936 static void inc_zspage_isolation(struct zspage *zspage)
1937 {
1938         zspage->isolated++;
1939 }
1940
1941 static void dec_zspage_isolation(struct zspage *zspage)
1942 {
1943         zspage->isolated--;
1944 }
1945
1946 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1947                                 struct page *newpage, struct page *oldpage)
1948 {
1949         struct page *page;
1950         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1951         int idx = 0;
1952
1953         page = get_first_page(zspage);
1954         do {
1955                 if (page == oldpage)
1956                         pages[idx] = newpage;
1957                 else
1958                         pages[idx] = page;
1959                 idx++;
1960         } while ((page = get_next_page(page)) != NULL);
1961
1962         create_page_chain(class, zspage, pages);
1963         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1964         if (unlikely(PageHugeObject(oldpage)))
1965                 newpage->index = oldpage->index;
1966         __SetPageMovable(newpage, page_mapping(oldpage));
1967 }
1968
1969 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1970 {
1971         struct zs_pool *pool;
1972         struct size_class *class;
1973         int class_idx;
1974         enum fullness_group fullness;
1975         struct zspage *zspage;
1976         struct address_space *mapping;
1977
1978         /*
1979          * Page is locked so zspage couldn't be destroyed. For detail, look at
1980          * lock_zspage in free_zspage.
1981          */
1982         VM_BUG_ON_PAGE(!PageMovable(page), page);
1983         VM_BUG_ON_PAGE(PageIsolated(page), page);
1984
1985         zspage = get_zspage(page);
1986
1987         /*
1988          * Without class lock, fullness could be stale while class_idx is okay
1989          * because class_idx is constant unless page is freed so we should get
1990          * fullness again under class lock.
1991          */
1992         get_zspage_mapping(zspage, &class_idx, &fullness);
1993         mapping = page_mapping(page);
1994         pool = mapping->private_data;
1995         class = pool->size_class[class_idx];
1996
1997         spin_lock(&class->lock);
1998         if (get_zspage_inuse(zspage) == 0) {
1999                 spin_unlock(&class->lock);
2000                 return false;
2001         }
2002
2003         /* zspage is isolated for object migration */
2004         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2005                 spin_unlock(&class->lock);
2006                 return false;
2007         }
2008
2009         /*
2010          * If this is first time isolation for the zspage, isolate zspage from
2011          * size_class to prevent further object allocation from the zspage.
2012          */
2013         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2014                 get_zspage_mapping(zspage, &class_idx, &fullness);
2015                 remove_zspage(class, zspage, fullness);
2016         }
2017
2018         inc_zspage_isolation(zspage);
2019         spin_unlock(&class->lock);
2020
2021         return true;
2022 }
2023
2024 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2025                 struct page *page, enum migrate_mode mode)
2026 {
2027         struct zs_pool *pool;
2028         struct size_class *class;
2029         int class_idx;
2030         enum fullness_group fullness;
2031         struct zspage *zspage;
2032         struct page *dummy;
2033         void *s_addr, *d_addr, *addr;
2034         int offset, pos;
2035         unsigned long handle, head;
2036         unsigned long old_obj, new_obj;
2037         unsigned int obj_idx;
2038         int ret = -EAGAIN;
2039
2040         VM_BUG_ON_PAGE(!PageMovable(page), page);
2041         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2042
2043         zspage = get_zspage(page);
2044
2045         /* Concurrent compactor cannot migrate any subpage in zspage */
2046         migrate_write_lock(zspage);
2047         get_zspage_mapping(zspage, &class_idx, &fullness);
2048         pool = mapping->private_data;
2049         class = pool->size_class[class_idx];
2050         offset = get_first_obj_offset(page);
2051
2052         spin_lock(&class->lock);
2053         if (!get_zspage_inuse(zspage)) {
2054                 ret = -EBUSY;
2055                 goto unlock_class;
2056         }
2057
2058         pos = offset;
2059         s_addr = kmap_atomic(page);
2060         while (pos < PAGE_SIZE) {
2061                 head = obj_to_head(page, s_addr + pos);
2062                 if (head & OBJ_ALLOCATED_TAG) {
2063                         handle = head & ~OBJ_ALLOCATED_TAG;
2064                         if (!trypin_tag(handle))
2065                                 goto unpin_objects;
2066                 }
2067                 pos += class->size;
2068         }
2069
2070         /*
2071          * Here, any user cannot access all objects in the zspage so let's move.
2072          */
2073         d_addr = kmap_atomic(newpage);
2074         memcpy(d_addr, s_addr, PAGE_SIZE);
2075         kunmap_atomic(d_addr);
2076
2077         for (addr = s_addr + offset; addr < s_addr + pos;
2078                                         addr += class->size) {
2079                 head = obj_to_head(page, addr);
2080                 if (head & OBJ_ALLOCATED_TAG) {
2081                         handle = head & ~OBJ_ALLOCATED_TAG;
2082                         if (!testpin_tag(handle))
2083                                 BUG();
2084
2085                         old_obj = handle_to_obj(handle);
2086                         obj_to_location(old_obj, &dummy, &obj_idx);
2087                         new_obj = (unsigned long)location_to_obj(newpage,
2088                                                                 obj_idx);
2089                         new_obj |= BIT(HANDLE_PIN_BIT);
2090                         record_obj(handle, new_obj);
2091                 }
2092         }
2093
2094         replace_sub_page(class, zspage, newpage, page);
2095         get_page(newpage);
2096
2097         dec_zspage_isolation(zspage);
2098
2099         /*
2100          * Page migration is done so let's putback isolated zspage to
2101          * the list if @page is final isolated subpage in the zspage.
2102          */
2103         if (!is_zspage_isolated(zspage))
2104                 putback_zspage(class, zspage);
2105
2106         reset_page(page);
2107         put_page(page);
2108         page = newpage;
2109
2110         ret = MIGRATEPAGE_SUCCESS;
2111 unpin_objects:
2112         for (addr = s_addr + offset; addr < s_addr + pos;
2113                                                 addr += class->size) {
2114                 head = obj_to_head(page, addr);
2115                 if (head & OBJ_ALLOCATED_TAG) {
2116                         handle = head & ~OBJ_ALLOCATED_TAG;
2117                         if (!testpin_tag(handle))
2118                                 BUG();
2119                         unpin_tag(handle);
2120                 }
2121         }
2122         kunmap_atomic(s_addr);
2123 unlock_class:
2124         spin_unlock(&class->lock);
2125         migrate_write_unlock(zspage);
2126
2127         return ret;
2128 }
2129
2130 void zs_page_putback(struct page *page)
2131 {
2132         struct zs_pool *pool;
2133         struct size_class *class;
2134         int class_idx;
2135         enum fullness_group fg;
2136         struct address_space *mapping;
2137         struct zspage *zspage;
2138
2139         VM_BUG_ON_PAGE(!PageMovable(page), page);
2140         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2141
2142         zspage = get_zspage(page);
2143         get_zspage_mapping(zspage, &class_idx, &fg);
2144         mapping = page_mapping(page);
2145         pool = mapping->private_data;
2146         class = pool->size_class[class_idx];
2147
2148         spin_lock(&class->lock);
2149         dec_zspage_isolation(zspage);
2150         if (!is_zspage_isolated(zspage)) {
2151                 fg = putback_zspage(class, zspage);
2152                 /*
2153                  * Due to page_lock, we cannot free zspage immediately
2154                  * so let's defer.
2155                  */
2156                 if (fg == ZS_EMPTY)
2157                         schedule_work(&pool->free_work);
2158         }
2159         spin_unlock(&class->lock);
2160 }
2161
2162 const struct address_space_operations zsmalloc_aops = {
2163         .isolate_page = zs_page_isolate,
2164         .migratepage = zs_page_migrate,
2165         .putback_page = zs_page_putback,
2166 };
2167
2168 static int zs_register_migration(struct zs_pool *pool)
2169 {
2170         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2171         if (IS_ERR(pool->inode)) {
2172                 pool->inode = NULL;
2173                 return 1;
2174         }
2175
2176         pool->inode->i_mapping->private_data = pool;
2177         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2178         return 0;
2179 }
2180
2181 static void zs_unregister_migration(struct zs_pool *pool)
2182 {
2183         flush_work(&pool->free_work);
2184         if (pool->inode)
2185                 iput(pool->inode);
2186 }
2187
2188 /*
2189  * Caller should hold page_lock of all pages in the zspage
2190  * In here, we cannot use zspage meta data.
2191  */
2192 static void async_free_zspage(struct work_struct *work)
2193 {
2194         int i;
2195         struct size_class *class;
2196         unsigned int class_idx;
2197         enum fullness_group fullness;
2198         struct zspage *zspage, *tmp;
2199         LIST_HEAD(free_pages);
2200         struct zs_pool *pool = container_of(work, struct zs_pool,
2201                                         free_work);
2202
2203         for (i = 0; i < zs_size_classes; i++) {
2204                 class = pool->size_class[i];
2205                 if (class->index != i)
2206                         continue;
2207
2208                 spin_lock(&class->lock);
2209                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2210                 spin_unlock(&class->lock);
2211         }
2212
2213
2214         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2215                 list_del(&zspage->list);
2216                 lock_zspage(zspage);
2217
2218                 get_zspage_mapping(zspage, &class_idx, &fullness);
2219                 VM_BUG_ON(fullness != ZS_EMPTY);
2220                 class = pool->size_class[class_idx];
2221                 spin_lock(&class->lock);
2222                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2223                 spin_unlock(&class->lock);
2224         }
2225 };
2226
2227 static void kick_deferred_free(struct zs_pool *pool)
2228 {
2229         schedule_work(&pool->free_work);
2230 }
2231
2232 static void init_deferred_free(struct zs_pool *pool)
2233 {
2234         INIT_WORK(&pool->free_work, async_free_zspage);
2235 }
2236
2237 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2238 {
2239         struct page *page = get_first_page(zspage);
2240
2241         do {
2242                 WARN_ON(!trylock_page(page));
2243                 __SetPageMovable(page, pool->inode->i_mapping);
2244                 unlock_page(page);
2245         } while ((page = get_next_page(page)) != NULL);
2246 }
2247 #endif
2248
2249 /*
2250  *
2251  * Based on the number of unused allocated objects calculate
2252  * and return the number of pages that we can free.
2253  */
2254 static unsigned long zs_can_compact(struct size_class *class)
2255 {
2256         unsigned long obj_wasted;
2257         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2258         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2259
2260         if (obj_allocated <= obj_used)
2261                 return 0;
2262
2263         obj_wasted = obj_allocated - obj_used;
2264         obj_wasted /= get_maxobj_per_zspage(class->size,
2265                         class->pages_per_zspage);
2266
2267         return obj_wasted * class->pages_per_zspage;
2268 }
2269
2270 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2271 {
2272         struct zs_compact_control cc;
2273         struct zspage *src_zspage;
2274         struct zspage *dst_zspage = NULL;
2275
2276         spin_lock(&class->lock);
2277         while ((src_zspage = isolate_zspage(class, true))) {
2278
2279                 if (!zs_can_compact(class))
2280                         break;
2281
2282                 cc.index = 0;
2283                 cc.s_page = get_first_page(src_zspage);
2284
2285                 while ((dst_zspage = isolate_zspage(class, false))) {
2286                         cc.d_page = get_first_page(dst_zspage);
2287                         /*
2288                          * If there is no more space in dst_page, resched
2289                          * and see if anyone had allocated another zspage.
2290                          */
2291                         if (!migrate_zspage(pool, class, &cc))
2292                                 break;
2293
2294                         putback_zspage(class, dst_zspage);
2295                 }
2296
2297                 /* Stop if we couldn't find slot */
2298                 if (dst_zspage == NULL)
2299                         break;
2300
2301                 putback_zspage(class, dst_zspage);
2302                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2303                         free_zspage(pool, class, src_zspage);
2304                         pool->stats.pages_compacted += class->pages_per_zspage;
2305                 }
2306                 spin_unlock(&class->lock);
2307                 cond_resched();
2308                 spin_lock(&class->lock);
2309         }
2310
2311         if (src_zspage)
2312                 putback_zspage(class, src_zspage);
2313
2314         spin_unlock(&class->lock);
2315 }
2316
2317 unsigned long zs_compact(struct zs_pool *pool)
2318 {
2319         int i;
2320         struct size_class *class;
2321
2322         for (i = zs_size_classes - 1; i >= 0; i--) {
2323                 class = pool->size_class[i];
2324                 if (!class)
2325                         continue;
2326                 if (class->index != i)
2327                         continue;
2328                 __zs_compact(pool, class);
2329         }
2330
2331         return pool->stats.pages_compacted;
2332 }
2333 EXPORT_SYMBOL_GPL(zs_compact);
2334
2335 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2336 {
2337         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2338 }
2339 EXPORT_SYMBOL_GPL(zs_pool_stats);
2340
2341 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2342                 struct shrink_control *sc)
2343 {
2344         unsigned long pages_freed;
2345         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2346                         shrinker);
2347
2348         pages_freed = pool->stats.pages_compacted;
2349         /*
2350          * Compact classes and calculate compaction delta.
2351          * Can run concurrently with a manually triggered
2352          * (by user) compaction.
2353          */
2354         pages_freed = zs_compact(pool) - pages_freed;
2355
2356         return pages_freed ? pages_freed : SHRINK_STOP;
2357 }
2358
2359 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2360                 struct shrink_control *sc)
2361 {
2362         int i;
2363         struct size_class *class;
2364         unsigned long pages_to_free = 0;
2365         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2366                         shrinker);
2367
2368         for (i = zs_size_classes - 1; i >= 0; i--) {
2369                 class = pool->size_class[i];
2370                 if (!class)
2371                         continue;
2372                 if (class->index != i)
2373                         continue;
2374
2375                 pages_to_free += zs_can_compact(class);
2376         }
2377
2378         return pages_to_free;
2379 }
2380
2381 static void zs_unregister_shrinker(struct zs_pool *pool)
2382 {
2383         if (pool->shrinker_enabled) {
2384                 unregister_shrinker(&pool->shrinker);
2385                 pool->shrinker_enabled = false;
2386         }
2387 }
2388
2389 static int zs_register_shrinker(struct zs_pool *pool)
2390 {
2391         pool->shrinker.scan_objects = zs_shrinker_scan;
2392         pool->shrinker.count_objects = zs_shrinker_count;
2393         pool->shrinker.batch = 0;
2394         pool->shrinker.seeks = DEFAULT_SEEKS;
2395
2396         return register_shrinker(&pool->shrinker);
2397 }
2398
2399 /**
2400  * zs_create_pool - Creates an allocation pool to work from.
2401  * @flags: allocation flags used to allocate pool metadata
2402  *
2403  * This function must be called before anything when using
2404  * the zsmalloc allocator.
2405  *
2406  * On success, a pointer to the newly created pool is returned,
2407  * otherwise NULL.
2408  */
2409 struct zs_pool *zs_create_pool(const char *name)
2410 {
2411         int i;
2412         struct zs_pool *pool;
2413         struct size_class *prev_class = NULL;
2414
2415         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2416         if (!pool)
2417                 return NULL;
2418
2419         init_deferred_free(pool);
2420         pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2421                         GFP_KERNEL);
2422         if (!pool->size_class) {
2423                 kfree(pool);
2424                 return NULL;
2425         }
2426
2427         pool->name = kstrdup(name, GFP_KERNEL);
2428         if (!pool->name)
2429                 goto err;
2430
2431         if (create_cache(pool))
2432                 goto err;
2433
2434         /*
2435          * Iterate reversly, because, size of size_class that we want to use
2436          * for merging should be larger or equal to current size.
2437          */
2438         for (i = zs_size_classes - 1; i >= 0; i--) {
2439                 int size;
2440                 int pages_per_zspage;
2441                 struct size_class *class;
2442                 int fullness = 0;
2443
2444                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2445                 if (size > ZS_MAX_ALLOC_SIZE)
2446                         size = ZS_MAX_ALLOC_SIZE;
2447                 pages_per_zspage = get_pages_per_zspage(size);
2448
2449                 /*
2450                  * size_class is used for normal zsmalloc operation such
2451                  * as alloc/free for that size. Although it is natural that we
2452                  * have one size_class for each size, there is a chance that we
2453                  * can get more memory utilization if we use one size_class for
2454                  * many different sizes whose size_class have same
2455                  * characteristics. So, we makes size_class point to
2456                  * previous size_class if possible.
2457                  */
2458                 if (prev_class) {
2459                         if (can_merge(prev_class, size, pages_per_zspage)) {
2460                                 pool->size_class[i] = prev_class;
2461                                 continue;
2462                         }
2463                 }
2464
2465                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2466                 if (!class)
2467                         goto err;
2468
2469                 class->size = size;
2470                 class->index = i;
2471                 class->pages_per_zspage = pages_per_zspage;
2472                 class->objs_per_zspage = class->pages_per_zspage *
2473                                                 PAGE_SIZE / class->size;
2474                 spin_lock_init(&class->lock);
2475                 pool->size_class[i] = class;
2476                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2477                                                         fullness++)
2478                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2479
2480                 prev_class = class;
2481         }
2482
2483         /* debug only, don't abort if it fails */
2484         zs_pool_stat_create(pool, name);
2485
2486         if (zs_register_migration(pool))
2487                 goto err;
2488
2489         /*
2490          * Not critical, we still can use the pool
2491          * and user can trigger compaction manually.
2492          */
2493         if (zs_register_shrinker(pool) == 0)
2494                 pool->shrinker_enabled = true;
2495         return pool;
2496
2497 err:
2498         zs_destroy_pool(pool);
2499         return NULL;
2500 }
2501 EXPORT_SYMBOL_GPL(zs_create_pool);
2502
2503 void zs_destroy_pool(struct zs_pool *pool)
2504 {
2505         int i;
2506
2507         zs_unregister_shrinker(pool);
2508         zs_unregister_migration(pool);
2509         zs_pool_stat_destroy(pool);
2510
2511         for (i = 0; i < zs_size_classes; i++) {
2512                 int fg;
2513                 struct size_class *class = pool->size_class[i];
2514
2515                 if (!class)
2516                         continue;
2517
2518                 if (class->index != i)
2519                         continue;
2520
2521                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2522                         if (!list_empty(&class->fullness_list[fg])) {
2523                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2524                                         class->size, fg);
2525                         }
2526                 }
2527                 kfree(class);
2528         }
2529
2530         destroy_cache(pool);
2531         kfree(pool->size_class);
2532         kfree(pool->name);
2533         kfree(pool);
2534 }
2535 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2536
2537 static int __init zs_init(void)
2538 {
2539         int ret;
2540
2541         ret = zsmalloc_mount();
2542         if (ret)
2543                 goto out;
2544
2545         ret = zs_register_cpu_notifier();
2546
2547         if (ret)
2548                 goto notifier_fail;
2549
2550         init_zs_size_classes();
2551
2552 #ifdef CONFIG_ZPOOL
2553         zpool_register_driver(&zs_zpool_driver);
2554 #endif
2555
2556         zs_stat_init();
2557
2558         return 0;
2559
2560 notifier_fail:
2561         zs_unregister_cpu_notifier();
2562         zsmalloc_unmount();
2563 out:
2564         return ret;
2565 }
2566
2567 static void __exit zs_exit(void)
2568 {
2569 #ifdef CONFIG_ZPOOL
2570         zpool_unregister_driver(&zs_zpool_driver);
2571 #endif
2572         zsmalloc_unmount();
2573         zs_unregister_cpu_notifier();
2574
2575         zs_stat_exit();
2576 }
2577
2578 module_init(zs_init);
2579 module_exit(zs_exit);
2580
2581 MODULE_LICENSE("Dual BSD/GPL");
2582 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");