Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[cascardo/linux.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43 #include "leds.h"
44
45 static void hci_rx_work(struct work_struct *work);
46 static void hci_cmd_work(struct work_struct *work);
47 static void hci_tx_work(struct work_struct *work);
48
49 /* HCI device list */
50 LIST_HEAD(hci_dev_list);
51 DEFINE_RWLOCK(hci_dev_list_lock);
52
53 /* HCI callback list */
54 LIST_HEAD(hci_cb_list);
55 DEFINE_MUTEX(hci_cb_list_lock);
56
57 /* HCI ID Numbering */
58 static DEFINE_IDA(hci_index_ida);
59
60 /* ---- HCI debugfs entries ---- */
61
62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63                              size_t count, loff_t *ppos)
64 {
65         struct hci_dev *hdev = file->private_data;
66         char buf[3];
67
68         buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69         buf[1] = '\n';
70         buf[2] = '\0';
71         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72 }
73
74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75                               size_t count, loff_t *ppos)
76 {
77         struct hci_dev *hdev = file->private_data;
78         struct sk_buff *skb;
79         char buf[32];
80         size_t buf_size = min(count, (sizeof(buf)-1));
81         bool enable;
82
83         if (!test_bit(HCI_UP, &hdev->flags))
84                 return -ENETDOWN;
85
86         if (copy_from_user(buf, user_buf, buf_size))
87                 return -EFAULT;
88
89         buf[buf_size] = '\0';
90         if (strtobool(buf, &enable))
91                 return -EINVAL;
92
93         if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94                 return -EALREADY;
95
96         hci_req_sync_lock(hdev);
97         if (enable)
98                 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99                                      HCI_CMD_TIMEOUT);
100         else
101                 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102                                      HCI_CMD_TIMEOUT);
103         hci_req_sync_unlock(hdev);
104
105         if (IS_ERR(skb))
106                 return PTR_ERR(skb);
107
108         kfree_skb(skb);
109
110         hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112         return count;
113 }
114
115 static const struct file_operations dut_mode_fops = {
116         .open           = simple_open,
117         .read           = dut_mode_read,
118         .write          = dut_mode_write,
119         .llseek         = default_llseek,
120 };
121
122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123                                 size_t count, loff_t *ppos)
124 {
125         struct hci_dev *hdev = file->private_data;
126         char buf[3];
127
128         buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129         buf[1] = '\n';
130         buf[2] = '\0';
131         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132 }
133
134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135                                  size_t count, loff_t *ppos)
136 {
137         struct hci_dev *hdev = file->private_data;
138         char buf[32];
139         size_t buf_size = min(count, (sizeof(buf)-1));
140         bool enable;
141         int err;
142
143         if (copy_from_user(buf, user_buf, buf_size))
144                 return -EFAULT;
145
146         buf[buf_size] = '\0';
147         if (strtobool(buf, &enable))
148                 return -EINVAL;
149
150         /* When the diagnostic flags are not persistent and the transport
151          * is not active, then there is no need for the vendor callback.
152          *
153          * Instead just store the desired value. If needed the setting
154          * will be programmed when the controller gets powered on.
155          */
156         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
157             !test_bit(HCI_RUNNING, &hdev->flags))
158                 goto done;
159
160         hci_req_sync_lock(hdev);
161         err = hdev->set_diag(hdev, enable);
162         hci_req_sync_unlock(hdev);
163
164         if (err < 0)
165                 return err;
166
167 done:
168         if (enable)
169                 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170         else
171                 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172
173         return count;
174 }
175
176 static const struct file_operations vendor_diag_fops = {
177         .open           = simple_open,
178         .read           = vendor_diag_read,
179         .write          = vendor_diag_write,
180         .llseek         = default_llseek,
181 };
182
183 static void hci_debugfs_create_basic(struct hci_dev *hdev)
184 {
185         debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186                             &dut_mode_fops);
187
188         if (hdev->set_diag)
189                 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190                                     &vendor_diag_fops);
191 }
192
193 static int hci_reset_req(struct hci_request *req, unsigned long opt)
194 {
195         BT_DBG("%s %ld", req->hdev->name, opt);
196
197         /* Reset device */
198         set_bit(HCI_RESET, &req->hdev->flags);
199         hci_req_add(req, HCI_OP_RESET, 0, NULL);
200         return 0;
201 }
202
203 static void bredr_init(struct hci_request *req)
204 {
205         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206
207         /* Read Local Supported Features */
208         hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209
210         /* Read Local Version */
211         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212
213         /* Read BD Address */
214         hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215 }
216
217 static void amp_init1(struct hci_request *req)
218 {
219         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220
221         /* Read Local Version */
222         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223
224         /* Read Local Supported Commands */
225         hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226
227         /* Read Local AMP Info */
228         hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229
230         /* Read Data Blk size */
231         hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232
233         /* Read Flow Control Mode */
234         hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235
236         /* Read Location Data */
237         hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238 }
239
240 static int amp_init2(struct hci_request *req)
241 {
242         /* Read Local Supported Features. Not all AMP controllers
243          * support this so it's placed conditionally in the second
244          * stage init.
245          */
246         if (req->hdev->commands[14] & 0x20)
247                 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248
249         return 0;
250 }
251
252 static int hci_init1_req(struct hci_request *req, unsigned long opt)
253 {
254         struct hci_dev *hdev = req->hdev;
255
256         BT_DBG("%s %ld", hdev->name, opt);
257
258         /* Reset */
259         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260                 hci_reset_req(req, 0);
261
262         switch (hdev->dev_type) {
263         case HCI_PRIMARY:
264                 bredr_init(req);
265                 break;
266         case HCI_AMP:
267                 amp_init1(req);
268                 break;
269         default:
270                 BT_ERR("Unknown device type %d", hdev->dev_type);
271                 break;
272         }
273
274         return 0;
275 }
276
277 static void bredr_setup(struct hci_request *req)
278 {
279         __le16 param;
280         __u8 flt_type;
281
282         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
283         hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
284
285         /* Read Class of Device */
286         hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
287
288         /* Read Local Name */
289         hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
290
291         /* Read Voice Setting */
292         hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
293
294         /* Read Number of Supported IAC */
295         hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
296
297         /* Read Current IAC LAP */
298         hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
299
300         /* Clear Event Filters */
301         flt_type = HCI_FLT_CLEAR_ALL;
302         hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
303
304         /* Connection accept timeout ~20 secs */
305         param = cpu_to_le16(0x7d00);
306         hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
307 }
308
309 static void le_setup(struct hci_request *req)
310 {
311         struct hci_dev *hdev = req->hdev;
312
313         /* Read LE Buffer Size */
314         hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
315
316         /* Read LE Local Supported Features */
317         hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
318
319         /* Read LE Supported States */
320         hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
321
322         /* LE-only controllers have LE implicitly enabled */
323         if (!lmp_bredr_capable(hdev))
324                 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
325 }
326
327 static void hci_setup_event_mask(struct hci_request *req)
328 {
329         struct hci_dev *hdev = req->hdev;
330
331         /* The second byte is 0xff instead of 0x9f (two reserved bits
332          * disabled) since a Broadcom 1.2 dongle doesn't respond to the
333          * command otherwise.
334          */
335         u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
336
337         /* CSR 1.1 dongles does not accept any bitfield so don't try to set
338          * any event mask for pre 1.2 devices.
339          */
340         if (hdev->hci_ver < BLUETOOTH_VER_1_2)
341                 return;
342
343         if (lmp_bredr_capable(hdev)) {
344                 events[4] |= 0x01; /* Flow Specification Complete */
345         } else {
346                 /* Use a different default for LE-only devices */
347                 memset(events, 0, sizeof(events));
348                 events[1] |= 0x20; /* Command Complete */
349                 events[1] |= 0x40; /* Command Status */
350                 events[1] |= 0x80; /* Hardware Error */
351
352                 /* If the controller supports the Disconnect command, enable
353                  * the corresponding event. In addition enable packet flow
354                  * control related events.
355                  */
356                 if (hdev->commands[0] & 0x20) {
357                         events[0] |= 0x10; /* Disconnection Complete */
358                         events[2] |= 0x04; /* Number of Completed Packets */
359                         events[3] |= 0x02; /* Data Buffer Overflow */
360                 }
361
362                 /* If the controller supports the Read Remote Version
363                  * Information command, enable the corresponding event.
364                  */
365                 if (hdev->commands[2] & 0x80)
366                         events[1] |= 0x08; /* Read Remote Version Information
367                                             * Complete
368                                             */
369
370                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
371                         events[0] |= 0x80; /* Encryption Change */
372                         events[5] |= 0x80; /* Encryption Key Refresh Complete */
373                 }
374         }
375
376         if (lmp_inq_rssi_capable(hdev) ||
377             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
378                 events[4] |= 0x02; /* Inquiry Result with RSSI */
379
380         if (lmp_ext_feat_capable(hdev))
381                 events[4] |= 0x04; /* Read Remote Extended Features Complete */
382
383         if (lmp_esco_capable(hdev)) {
384                 events[5] |= 0x08; /* Synchronous Connection Complete */
385                 events[5] |= 0x10; /* Synchronous Connection Changed */
386         }
387
388         if (lmp_sniffsubr_capable(hdev))
389                 events[5] |= 0x20; /* Sniff Subrating */
390
391         if (lmp_pause_enc_capable(hdev))
392                 events[5] |= 0x80; /* Encryption Key Refresh Complete */
393
394         if (lmp_ext_inq_capable(hdev))
395                 events[5] |= 0x40; /* Extended Inquiry Result */
396
397         if (lmp_no_flush_capable(hdev))
398                 events[7] |= 0x01; /* Enhanced Flush Complete */
399
400         if (lmp_lsto_capable(hdev))
401                 events[6] |= 0x80; /* Link Supervision Timeout Changed */
402
403         if (lmp_ssp_capable(hdev)) {
404                 events[6] |= 0x01;      /* IO Capability Request */
405                 events[6] |= 0x02;      /* IO Capability Response */
406                 events[6] |= 0x04;      /* User Confirmation Request */
407                 events[6] |= 0x08;      /* User Passkey Request */
408                 events[6] |= 0x10;      /* Remote OOB Data Request */
409                 events[6] |= 0x20;      /* Simple Pairing Complete */
410                 events[7] |= 0x04;      /* User Passkey Notification */
411                 events[7] |= 0x08;      /* Keypress Notification */
412                 events[7] |= 0x10;      /* Remote Host Supported
413                                          * Features Notification
414                                          */
415         }
416
417         if (lmp_le_capable(hdev))
418                 events[7] |= 0x20;      /* LE Meta-Event */
419
420         hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
421 }
422
423 static int hci_init2_req(struct hci_request *req, unsigned long opt)
424 {
425         struct hci_dev *hdev = req->hdev;
426
427         if (hdev->dev_type == HCI_AMP)
428                 return amp_init2(req);
429
430         if (lmp_bredr_capable(hdev))
431                 bredr_setup(req);
432         else
433                 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
434
435         if (lmp_le_capable(hdev))
436                 le_setup(req);
437
438         /* All Bluetooth 1.2 and later controllers should support the
439          * HCI command for reading the local supported commands.
440          *
441          * Unfortunately some controllers indicate Bluetooth 1.2 support,
442          * but do not have support for this command. If that is the case,
443          * the driver can quirk the behavior and skip reading the local
444          * supported commands.
445          */
446         if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
447             !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
448                 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
449
450         if (lmp_ssp_capable(hdev)) {
451                 /* When SSP is available, then the host features page
452                  * should also be available as well. However some
453                  * controllers list the max_page as 0 as long as SSP
454                  * has not been enabled. To achieve proper debugging
455                  * output, force the minimum max_page to 1 at least.
456                  */
457                 hdev->max_page = 0x01;
458
459                 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
460                         u8 mode = 0x01;
461
462                         hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
463                                     sizeof(mode), &mode);
464                 } else {
465                         struct hci_cp_write_eir cp;
466
467                         memset(hdev->eir, 0, sizeof(hdev->eir));
468                         memset(&cp, 0, sizeof(cp));
469
470                         hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
471                 }
472         }
473
474         if (lmp_inq_rssi_capable(hdev) ||
475             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
476                 u8 mode;
477
478                 /* If Extended Inquiry Result events are supported, then
479                  * they are clearly preferred over Inquiry Result with RSSI
480                  * events.
481                  */
482                 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
483
484                 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
485         }
486
487         if (lmp_inq_tx_pwr_capable(hdev))
488                 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
489
490         if (lmp_ext_feat_capable(hdev)) {
491                 struct hci_cp_read_local_ext_features cp;
492
493                 cp.page = 0x01;
494                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
495                             sizeof(cp), &cp);
496         }
497
498         if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
499                 u8 enable = 1;
500                 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
501                             &enable);
502         }
503
504         return 0;
505 }
506
507 static void hci_setup_link_policy(struct hci_request *req)
508 {
509         struct hci_dev *hdev = req->hdev;
510         struct hci_cp_write_def_link_policy cp;
511         u16 link_policy = 0;
512
513         if (lmp_rswitch_capable(hdev))
514                 link_policy |= HCI_LP_RSWITCH;
515         if (lmp_hold_capable(hdev))
516                 link_policy |= HCI_LP_HOLD;
517         if (lmp_sniff_capable(hdev))
518                 link_policy |= HCI_LP_SNIFF;
519         if (lmp_park_capable(hdev))
520                 link_policy |= HCI_LP_PARK;
521
522         cp.policy = cpu_to_le16(link_policy);
523         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
524 }
525
526 static void hci_set_le_support(struct hci_request *req)
527 {
528         struct hci_dev *hdev = req->hdev;
529         struct hci_cp_write_le_host_supported cp;
530
531         /* LE-only devices do not support explicit enablement */
532         if (!lmp_bredr_capable(hdev))
533                 return;
534
535         memset(&cp, 0, sizeof(cp));
536
537         if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
538                 cp.le = 0x01;
539                 cp.simul = 0x00;
540         }
541
542         if (cp.le != lmp_host_le_capable(hdev))
543                 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
544                             &cp);
545 }
546
547 static void hci_set_event_mask_page_2(struct hci_request *req)
548 {
549         struct hci_dev *hdev = req->hdev;
550         u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
551
552         /* If Connectionless Slave Broadcast master role is supported
553          * enable all necessary events for it.
554          */
555         if (lmp_csb_master_capable(hdev)) {
556                 events[1] |= 0x40;      /* Triggered Clock Capture */
557                 events[1] |= 0x80;      /* Synchronization Train Complete */
558                 events[2] |= 0x10;      /* Slave Page Response Timeout */
559                 events[2] |= 0x20;      /* CSB Channel Map Change */
560         }
561
562         /* If Connectionless Slave Broadcast slave role is supported
563          * enable all necessary events for it.
564          */
565         if (lmp_csb_slave_capable(hdev)) {
566                 events[2] |= 0x01;      /* Synchronization Train Received */
567                 events[2] |= 0x02;      /* CSB Receive */
568                 events[2] |= 0x04;      /* CSB Timeout */
569                 events[2] |= 0x08;      /* Truncated Page Complete */
570         }
571
572         /* Enable Authenticated Payload Timeout Expired event if supported */
573         if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
574                 events[2] |= 0x80;
575
576         hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
577 }
578
579 static int hci_init3_req(struct hci_request *req, unsigned long opt)
580 {
581         struct hci_dev *hdev = req->hdev;
582         u8 p;
583
584         hci_setup_event_mask(req);
585
586         if (hdev->commands[6] & 0x20 &&
587             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
588                 struct hci_cp_read_stored_link_key cp;
589
590                 bacpy(&cp.bdaddr, BDADDR_ANY);
591                 cp.read_all = 0x01;
592                 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
593         }
594
595         if (hdev->commands[5] & 0x10)
596                 hci_setup_link_policy(req);
597
598         if (hdev->commands[8] & 0x01)
599                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
600
601         /* Some older Broadcom based Bluetooth 1.2 controllers do not
602          * support the Read Page Scan Type command. Check support for
603          * this command in the bit mask of supported commands.
604          */
605         if (hdev->commands[13] & 0x01)
606                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
607
608         if (lmp_le_capable(hdev)) {
609                 u8 events[8];
610
611                 memset(events, 0, sizeof(events));
612
613                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
614                         events[0] |= 0x10;      /* LE Long Term Key Request */
615
616                 /* If controller supports the Connection Parameters Request
617                  * Link Layer Procedure, enable the corresponding event.
618                  */
619                 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
620                         events[0] |= 0x20;      /* LE Remote Connection
621                                                  * Parameter Request
622                                                  */
623
624                 /* If the controller supports the Data Length Extension
625                  * feature, enable the corresponding event.
626                  */
627                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
628                         events[0] |= 0x40;      /* LE Data Length Change */
629
630                 /* If the controller supports Extended Scanner Filter
631                  * Policies, enable the correspondig event.
632                  */
633                 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
634                         events[1] |= 0x04;      /* LE Direct Advertising
635                                                  * Report
636                                                  */
637
638                 /* If the controller supports the LE Set Scan Enable command,
639                  * enable the corresponding advertising report event.
640                  */
641                 if (hdev->commands[26] & 0x08)
642                         events[0] |= 0x02;      /* LE Advertising Report */
643
644                 /* If the controller supports the LE Create Connection
645                  * command, enable the corresponding event.
646                  */
647                 if (hdev->commands[26] & 0x10)
648                         events[0] |= 0x01;      /* LE Connection Complete */
649
650                 /* If the controller supports the LE Connection Update
651                  * command, enable the corresponding event.
652                  */
653                 if (hdev->commands[27] & 0x04)
654                         events[0] |= 0x04;      /* LE Connection Update
655                                                  * Complete
656                                                  */
657
658                 /* If the controller supports the LE Read Remote Used Features
659                  * command, enable the corresponding event.
660                  */
661                 if (hdev->commands[27] & 0x20)
662                         events[0] |= 0x08;      /* LE Read Remote Used
663                                                  * Features Complete
664                                                  */
665
666                 /* If the controller supports the LE Read Local P-256
667                  * Public Key command, enable the corresponding event.
668                  */
669                 if (hdev->commands[34] & 0x02)
670                         events[0] |= 0x80;      /* LE Read Local P-256
671                                                  * Public Key Complete
672                                                  */
673
674                 /* If the controller supports the LE Generate DHKey
675                  * command, enable the corresponding event.
676                  */
677                 if (hdev->commands[34] & 0x04)
678                         events[1] |= 0x01;      /* LE Generate DHKey Complete */
679
680                 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
681                             events);
682
683                 if (hdev->commands[25] & 0x40) {
684                         /* Read LE Advertising Channel TX Power */
685                         hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
686                 }
687
688                 if (hdev->commands[26] & 0x40) {
689                         /* Read LE White List Size */
690                         hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
691                                     0, NULL);
692                 }
693
694                 if (hdev->commands[26] & 0x80) {
695                         /* Clear LE White List */
696                         hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
697                 }
698
699                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
700                         /* Read LE Maximum Data Length */
701                         hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
702
703                         /* Read LE Suggested Default Data Length */
704                         hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
705                 }
706
707                 hci_set_le_support(req);
708         }
709
710         /* Read features beyond page 1 if available */
711         for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
712                 struct hci_cp_read_local_ext_features cp;
713
714                 cp.page = p;
715                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
716                             sizeof(cp), &cp);
717         }
718
719         return 0;
720 }
721
722 static int hci_init4_req(struct hci_request *req, unsigned long opt)
723 {
724         struct hci_dev *hdev = req->hdev;
725
726         /* Some Broadcom based Bluetooth controllers do not support the
727          * Delete Stored Link Key command. They are clearly indicating its
728          * absence in the bit mask of supported commands.
729          *
730          * Check the supported commands and only if the the command is marked
731          * as supported send it. If not supported assume that the controller
732          * does not have actual support for stored link keys which makes this
733          * command redundant anyway.
734          *
735          * Some controllers indicate that they support handling deleting
736          * stored link keys, but they don't. The quirk lets a driver
737          * just disable this command.
738          */
739         if (hdev->commands[6] & 0x80 &&
740             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
741                 struct hci_cp_delete_stored_link_key cp;
742
743                 bacpy(&cp.bdaddr, BDADDR_ANY);
744                 cp.delete_all = 0x01;
745                 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
746                             sizeof(cp), &cp);
747         }
748
749         /* Set event mask page 2 if the HCI command for it is supported */
750         if (hdev->commands[22] & 0x04)
751                 hci_set_event_mask_page_2(req);
752
753         /* Read local codec list if the HCI command is supported */
754         if (hdev->commands[29] & 0x20)
755                 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
756
757         /* Get MWS transport configuration if the HCI command is supported */
758         if (hdev->commands[30] & 0x08)
759                 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
760
761         /* Check for Synchronization Train support */
762         if (lmp_sync_train_capable(hdev))
763                 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
764
765         /* Enable Secure Connections if supported and configured */
766         if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
767             bredr_sc_enabled(hdev)) {
768                 u8 support = 0x01;
769
770                 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
771                             sizeof(support), &support);
772         }
773
774         return 0;
775 }
776
777 static int __hci_init(struct hci_dev *hdev)
778 {
779         int err;
780
781         err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
782         if (err < 0)
783                 return err;
784
785         if (hci_dev_test_flag(hdev, HCI_SETUP))
786                 hci_debugfs_create_basic(hdev);
787
788         err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
789         if (err < 0)
790                 return err;
791
792         /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
793          * BR/EDR/LE type controllers. AMP controllers only need the
794          * first two stages of init.
795          */
796         if (hdev->dev_type != HCI_PRIMARY)
797                 return 0;
798
799         err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
800         if (err < 0)
801                 return err;
802
803         err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
804         if (err < 0)
805                 return err;
806
807         /* This function is only called when the controller is actually in
808          * configured state. When the controller is marked as unconfigured,
809          * this initialization procedure is not run.
810          *
811          * It means that it is possible that a controller runs through its
812          * setup phase and then discovers missing settings. If that is the
813          * case, then this function will not be called. It then will only
814          * be called during the config phase.
815          *
816          * So only when in setup phase or config phase, create the debugfs
817          * entries and register the SMP channels.
818          */
819         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
820             !hci_dev_test_flag(hdev, HCI_CONFIG))
821                 return 0;
822
823         hci_debugfs_create_common(hdev);
824
825         if (lmp_bredr_capable(hdev))
826                 hci_debugfs_create_bredr(hdev);
827
828         if (lmp_le_capable(hdev))
829                 hci_debugfs_create_le(hdev);
830
831         return 0;
832 }
833
834 static int hci_init0_req(struct hci_request *req, unsigned long opt)
835 {
836         struct hci_dev *hdev = req->hdev;
837
838         BT_DBG("%s %ld", hdev->name, opt);
839
840         /* Reset */
841         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
842                 hci_reset_req(req, 0);
843
844         /* Read Local Version */
845         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
846
847         /* Read BD Address */
848         if (hdev->set_bdaddr)
849                 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
850
851         return 0;
852 }
853
854 static int __hci_unconf_init(struct hci_dev *hdev)
855 {
856         int err;
857
858         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
859                 return 0;
860
861         err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
862         if (err < 0)
863                 return err;
864
865         if (hci_dev_test_flag(hdev, HCI_SETUP))
866                 hci_debugfs_create_basic(hdev);
867
868         return 0;
869 }
870
871 static int hci_scan_req(struct hci_request *req, unsigned long opt)
872 {
873         __u8 scan = opt;
874
875         BT_DBG("%s %x", req->hdev->name, scan);
876
877         /* Inquiry and Page scans */
878         hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
879         return 0;
880 }
881
882 static int hci_auth_req(struct hci_request *req, unsigned long opt)
883 {
884         __u8 auth = opt;
885
886         BT_DBG("%s %x", req->hdev->name, auth);
887
888         /* Authentication */
889         hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
890         return 0;
891 }
892
893 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
894 {
895         __u8 encrypt = opt;
896
897         BT_DBG("%s %x", req->hdev->name, encrypt);
898
899         /* Encryption */
900         hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
901         return 0;
902 }
903
904 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
905 {
906         __le16 policy = cpu_to_le16(opt);
907
908         BT_DBG("%s %x", req->hdev->name, policy);
909
910         /* Default link policy */
911         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
912         return 0;
913 }
914
915 /* Get HCI device by index.
916  * Device is held on return. */
917 struct hci_dev *hci_dev_get(int index)
918 {
919         struct hci_dev *hdev = NULL, *d;
920
921         BT_DBG("%d", index);
922
923         if (index < 0)
924                 return NULL;
925
926         read_lock(&hci_dev_list_lock);
927         list_for_each_entry(d, &hci_dev_list, list) {
928                 if (d->id == index) {
929                         hdev = hci_dev_hold(d);
930                         break;
931                 }
932         }
933         read_unlock(&hci_dev_list_lock);
934         return hdev;
935 }
936
937 /* ---- Inquiry support ---- */
938
939 bool hci_discovery_active(struct hci_dev *hdev)
940 {
941         struct discovery_state *discov = &hdev->discovery;
942
943         switch (discov->state) {
944         case DISCOVERY_FINDING:
945         case DISCOVERY_RESOLVING:
946                 return true;
947
948         default:
949                 return false;
950         }
951 }
952
953 void hci_discovery_set_state(struct hci_dev *hdev, int state)
954 {
955         int old_state = hdev->discovery.state;
956
957         BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
958
959         if (old_state == state)
960                 return;
961
962         hdev->discovery.state = state;
963
964         switch (state) {
965         case DISCOVERY_STOPPED:
966                 hci_update_background_scan(hdev);
967
968                 if (old_state != DISCOVERY_STARTING)
969                         mgmt_discovering(hdev, 0);
970                 break;
971         case DISCOVERY_STARTING:
972                 break;
973         case DISCOVERY_FINDING:
974                 mgmt_discovering(hdev, 1);
975                 break;
976         case DISCOVERY_RESOLVING:
977                 break;
978         case DISCOVERY_STOPPING:
979                 break;
980         }
981 }
982
983 void hci_inquiry_cache_flush(struct hci_dev *hdev)
984 {
985         struct discovery_state *cache = &hdev->discovery;
986         struct inquiry_entry *p, *n;
987
988         list_for_each_entry_safe(p, n, &cache->all, all) {
989                 list_del(&p->all);
990                 kfree(p);
991         }
992
993         INIT_LIST_HEAD(&cache->unknown);
994         INIT_LIST_HEAD(&cache->resolve);
995 }
996
997 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
998                                                bdaddr_t *bdaddr)
999 {
1000         struct discovery_state *cache = &hdev->discovery;
1001         struct inquiry_entry *e;
1002
1003         BT_DBG("cache %p, %pMR", cache, bdaddr);
1004
1005         list_for_each_entry(e, &cache->all, all) {
1006                 if (!bacmp(&e->data.bdaddr, bdaddr))
1007                         return e;
1008         }
1009
1010         return NULL;
1011 }
1012
1013 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1014                                                        bdaddr_t *bdaddr)
1015 {
1016         struct discovery_state *cache = &hdev->discovery;
1017         struct inquiry_entry *e;
1018
1019         BT_DBG("cache %p, %pMR", cache, bdaddr);
1020
1021         list_for_each_entry(e, &cache->unknown, list) {
1022                 if (!bacmp(&e->data.bdaddr, bdaddr))
1023                         return e;
1024         }
1025
1026         return NULL;
1027 }
1028
1029 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1030                                                        bdaddr_t *bdaddr,
1031                                                        int state)
1032 {
1033         struct discovery_state *cache = &hdev->discovery;
1034         struct inquiry_entry *e;
1035
1036         BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1037
1038         list_for_each_entry(e, &cache->resolve, list) {
1039                 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1040                         return e;
1041                 if (!bacmp(&e->data.bdaddr, bdaddr))
1042                         return e;
1043         }
1044
1045         return NULL;
1046 }
1047
1048 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1049                                       struct inquiry_entry *ie)
1050 {
1051         struct discovery_state *cache = &hdev->discovery;
1052         struct list_head *pos = &cache->resolve;
1053         struct inquiry_entry *p;
1054
1055         list_del(&ie->list);
1056
1057         list_for_each_entry(p, &cache->resolve, list) {
1058                 if (p->name_state != NAME_PENDING &&
1059                     abs(p->data.rssi) >= abs(ie->data.rssi))
1060                         break;
1061                 pos = &p->list;
1062         }
1063
1064         list_add(&ie->list, pos);
1065 }
1066
1067 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1068                              bool name_known)
1069 {
1070         struct discovery_state *cache = &hdev->discovery;
1071         struct inquiry_entry *ie;
1072         u32 flags = 0;
1073
1074         BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1075
1076         hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1077
1078         if (!data->ssp_mode)
1079                 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1080
1081         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1082         if (ie) {
1083                 if (!ie->data.ssp_mode)
1084                         flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1085
1086                 if (ie->name_state == NAME_NEEDED &&
1087                     data->rssi != ie->data.rssi) {
1088                         ie->data.rssi = data->rssi;
1089                         hci_inquiry_cache_update_resolve(hdev, ie);
1090                 }
1091
1092                 goto update;
1093         }
1094
1095         /* Entry not in the cache. Add new one. */
1096         ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1097         if (!ie) {
1098                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1099                 goto done;
1100         }
1101
1102         list_add(&ie->all, &cache->all);
1103
1104         if (name_known) {
1105                 ie->name_state = NAME_KNOWN;
1106         } else {
1107                 ie->name_state = NAME_NOT_KNOWN;
1108                 list_add(&ie->list, &cache->unknown);
1109         }
1110
1111 update:
1112         if (name_known && ie->name_state != NAME_KNOWN &&
1113             ie->name_state != NAME_PENDING) {
1114                 ie->name_state = NAME_KNOWN;
1115                 list_del(&ie->list);
1116         }
1117
1118         memcpy(&ie->data, data, sizeof(*data));
1119         ie->timestamp = jiffies;
1120         cache->timestamp = jiffies;
1121
1122         if (ie->name_state == NAME_NOT_KNOWN)
1123                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1124
1125 done:
1126         return flags;
1127 }
1128
1129 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1130 {
1131         struct discovery_state *cache = &hdev->discovery;
1132         struct inquiry_info *info = (struct inquiry_info *) buf;
1133         struct inquiry_entry *e;
1134         int copied = 0;
1135
1136         list_for_each_entry(e, &cache->all, all) {
1137                 struct inquiry_data *data = &e->data;
1138
1139                 if (copied >= num)
1140                         break;
1141
1142                 bacpy(&info->bdaddr, &data->bdaddr);
1143                 info->pscan_rep_mode    = data->pscan_rep_mode;
1144                 info->pscan_period_mode = data->pscan_period_mode;
1145                 info->pscan_mode        = data->pscan_mode;
1146                 memcpy(info->dev_class, data->dev_class, 3);
1147                 info->clock_offset      = data->clock_offset;
1148
1149                 info++;
1150                 copied++;
1151         }
1152
1153         BT_DBG("cache %p, copied %d", cache, copied);
1154         return copied;
1155 }
1156
1157 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1158 {
1159         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1160         struct hci_dev *hdev = req->hdev;
1161         struct hci_cp_inquiry cp;
1162
1163         BT_DBG("%s", hdev->name);
1164
1165         if (test_bit(HCI_INQUIRY, &hdev->flags))
1166                 return 0;
1167
1168         /* Start Inquiry */
1169         memcpy(&cp.lap, &ir->lap, 3);
1170         cp.length  = ir->length;
1171         cp.num_rsp = ir->num_rsp;
1172         hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1173
1174         return 0;
1175 }
1176
1177 int hci_inquiry(void __user *arg)
1178 {
1179         __u8 __user *ptr = arg;
1180         struct hci_inquiry_req ir;
1181         struct hci_dev *hdev;
1182         int err = 0, do_inquiry = 0, max_rsp;
1183         long timeo;
1184         __u8 *buf;
1185
1186         if (copy_from_user(&ir, ptr, sizeof(ir)))
1187                 return -EFAULT;
1188
1189         hdev = hci_dev_get(ir.dev_id);
1190         if (!hdev)
1191                 return -ENODEV;
1192
1193         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1194                 err = -EBUSY;
1195                 goto done;
1196         }
1197
1198         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1199                 err = -EOPNOTSUPP;
1200                 goto done;
1201         }
1202
1203         if (hdev->dev_type != HCI_PRIMARY) {
1204                 err = -EOPNOTSUPP;
1205                 goto done;
1206         }
1207
1208         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1209                 err = -EOPNOTSUPP;
1210                 goto done;
1211         }
1212
1213         hci_dev_lock(hdev);
1214         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1215             inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1216                 hci_inquiry_cache_flush(hdev);
1217                 do_inquiry = 1;
1218         }
1219         hci_dev_unlock(hdev);
1220
1221         timeo = ir.length * msecs_to_jiffies(2000);
1222
1223         if (do_inquiry) {
1224                 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1225                                    timeo, NULL);
1226                 if (err < 0)
1227                         goto done;
1228
1229                 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1230                  * cleared). If it is interrupted by a signal, return -EINTR.
1231                  */
1232                 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1233                                 TASK_INTERRUPTIBLE))
1234                         return -EINTR;
1235         }
1236
1237         /* for unlimited number of responses we will use buffer with
1238          * 255 entries
1239          */
1240         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1241
1242         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1243          * copy it to the user space.
1244          */
1245         buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1246         if (!buf) {
1247                 err = -ENOMEM;
1248                 goto done;
1249         }
1250
1251         hci_dev_lock(hdev);
1252         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1253         hci_dev_unlock(hdev);
1254
1255         BT_DBG("num_rsp %d", ir.num_rsp);
1256
1257         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1258                 ptr += sizeof(ir);
1259                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1260                                  ir.num_rsp))
1261                         err = -EFAULT;
1262         } else
1263                 err = -EFAULT;
1264
1265         kfree(buf);
1266
1267 done:
1268         hci_dev_put(hdev);
1269         return err;
1270 }
1271
1272 static int hci_dev_do_open(struct hci_dev *hdev)
1273 {
1274         int ret = 0;
1275
1276         BT_DBG("%s %p", hdev->name, hdev);
1277
1278         hci_req_sync_lock(hdev);
1279
1280         if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1281                 ret = -ENODEV;
1282                 goto done;
1283         }
1284
1285         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1286             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1287                 /* Check for rfkill but allow the HCI setup stage to
1288                  * proceed (which in itself doesn't cause any RF activity).
1289                  */
1290                 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1291                         ret = -ERFKILL;
1292                         goto done;
1293                 }
1294
1295                 /* Check for valid public address or a configured static
1296                  * random adddress, but let the HCI setup proceed to
1297                  * be able to determine if there is a public address
1298                  * or not.
1299                  *
1300                  * In case of user channel usage, it is not important
1301                  * if a public address or static random address is
1302                  * available.
1303                  *
1304                  * This check is only valid for BR/EDR controllers
1305                  * since AMP controllers do not have an address.
1306                  */
1307                 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1308                     hdev->dev_type == HCI_PRIMARY &&
1309                     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1310                     !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1311                         ret = -EADDRNOTAVAIL;
1312                         goto done;
1313                 }
1314         }
1315
1316         if (test_bit(HCI_UP, &hdev->flags)) {
1317                 ret = -EALREADY;
1318                 goto done;
1319         }
1320
1321         if (hdev->open(hdev)) {
1322                 ret = -EIO;
1323                 goto done;
1324         }
1325
1326         set_bit(HCI_RUNNING, &hdev->flags);
1327         hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1328
1329         atomic_set(&hdev->cmd_cnt, 1);
1330         set_bit(HCI_INIT, &hdev->flags);
1331
1332         if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1333                 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1334
1335                 if (hdev->setup)
1336                         ret = hdev->setup(hdev);
1337
1338                 /* The transport driver can set these quirks before
1339                  * creating the HCI device or in its setup callback.
1340                  *
1341                  * In case any of them is set, the controller has to
1342                  * start up as unconfigured.
1343                  */
1344                 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1345                     test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1346                         hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1347
1348                 /* For an unconfigured controller it is required to
1349                  * read at least the version information provided by
1350                  * the Read Local Version Information command.
1351                  *
1352                  * If the set_bdaddr driver callback is provided, then
1353                  * also the original Bluetooth public device address
1354                  * will be read using the Read BD Address command.
1355                  */
1356                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1357                         ret = __hci_unconf_init(hdev);
1358         }
1359
1360         if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1361                 /* If public address change is configured, ensure that
1362                  * the address gets programmed. If the driver does not
1363                  * support changing the public address, fail the power
1364                  * on procedure.
1365                  */
1366                 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1367                     hdev->set_bdaddr)
1368                         ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1369                 else
1370                         ret = -EADDRNOTAVAIL;
1371         }
1372
1373         if (!ret) {
1374                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1375                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1376                         ret = __hci_init(hdev);
1377                         if (!ret && hdev->post_init)
1378                                 ret = hdev->post_init(hdev);
1379                 }
1380         }
1381
1382         /* If the HCI Reset command is clearing all diagnostic settings,
1383          * then they need to be reprogrammed after the init procedure
1384          * completed.
1385          */
1386         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1387             hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1388                 ret = hdev->set_diag(hdev, true);
1389
1390         clear_bit(HCI_INIT, &hdev->flags);
1391
1392         if (!ret) {
1393                 hci_dev_hold(hdev);
1394                 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1395                 set_bit(HCI_UP, &hdev->flags);
1396                 hci_sock_dev_event(hdev, HCI_DEV_UP);
1397                 hci_leds_update_powered(hdev, true);
1398                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399                     !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1400                     !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1401                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1402                     hci_dev_test_flag(hdev, HCI_MGMT) &&
1403                     hdev->dev_type == HCI_PRIMARY) {
1404                         ret = __hci_req_hci_power_on(hdev);
1405                         mgmt_power_on(hdev, ret);
1406                 }
1407         } else {
1408                 /* Init failed, cleanup */
1409                 flush_work(&hdev->tx_work);
1410                 flush_work(&hdev->cmd_work);
1411                 flush_work(&hdev->rx_work);
1412
1413                 skb_queue_purge(&hdev->cmd_q);
1414                 skb_queue_purge(&hdev->rx_q);
1415
1416                 if (hdev->flush)
1417                         hdev->flush(hdev);
1418
1419                 if (hdev->sent_cmd) {
1420                         kfree_skb(hdev->sent_cmd);
1421                         hdev->sent_cmd = NULL;
1422                 }
1423
1424                 clear_bit(HCI_RUNNING, &hdev->flags);
1425                 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1426
1427                 hdev->close(hdev);
1428                 hdev->flags &= BIT(HCI_RAW);
1429         }
1430
1431 done:
1432         hci_req_sync_unlock(hdev);
1433         return ret;
1434 }
1435
1436 /* ---- HCI ioctl helpers ---- */
1437
1438 int hci_dev_open(__u16 dev)
1439 {
1440         struct hci_dev *hdev;
1441         int err;
1442
1443         hdev = hci_dev_get(dev);
1444         if (!hdev)
1445                 return -ENODEV;
1446
1447         /* Devices that are marked as unconfigured can only be powered
1448          * up as user channel. Trying to bring them up as normal devices
1449          * will result into a failure. Only user channel operation is
1450          * possible.
1451          *
1452          * When this function is called for a user channel, the flag
1453          * HCI_USER_CHANNEL will be set first before attempting to
1454          * open the device.
1455          */
1456         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1457             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1458                 err = -EOPNOTSUPP;
1459                 goto done;
1460         }
1461
1462         /* We need to ensure that no other power on/off work is pending
1463          * before proceeding to call hci_dev_do_open. This is
1464          * particularly important if the setup procedure has not yet
1465          * completed.
1466          */
1467         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1468                 cancel_delayed_work(&hdev->power_off);
1469
1470         /* After this call it is guaranteed that the setup procedure
1471          * has finished. This means that error conditions like RFKILL
1472          * or no valid public or static random address apply.
1473          */
1474         flush_workqueue(hdev->req_workqueue);
1475
1476         /* For controllers not using the management interface and that
1477          * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1478          * so that pairing works for them. Once the management interface
1479          * is in use this bit will be cleared again and userspace has
1480          * to explicitly enable it.
1481          */
1482         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1483             !hci_dev_test_flag(hdev, HCI_MGMT))
1484                 hci_dev_set_flag(hdev, HCI_BONDABLE);
1485
1486         err = hci_dev_do_open(hdev);
1487
1488 done:
1489         hci_dev_put(hdev);
1490         return err;
1491 }
1492
1493 /* This function requires the caller holds hdev->lock */
1494 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1495 {
1496         struct hci_conn_params *p;
1497
1498         list_for_each_entry(p, &hdev->le_conn_params, list) {
1499                 if (p->conn) {
1500                         hci_conn_drop(p->conn);
1501                         hci_conn_put(p->conn);
1502                         p->conn = NULL;
1503                 }
1504                 list_del_init(&p->action);
1505         }
1506
1507         BT_DBG("All LE pending actions cleared");
1508 }
1509
1510 int hci_dev_do_close(struct hci_dev *hdev)
1511 {
1512         bool auto_off;
1513
1514         BT_DBG("%s %p", hdev->name, hdev);
1515
1516         if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1517             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1518             test_bit(HCI_UP, &hdev->flags)) {
1519                 /* Execute vendor specific shutdown routine */
1520                 if (hdev->shutdown)
1521                         hdev->shutdown(hdev);
1522         }
1523
1524         cancel_delayed_work(&hdev->power_off);
1525
1526         hci_request_cancel_all(hdev);
1527         hci_req_sync_lock(hdev);
1528
1529         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1530                 cancel_delayed_work_sync(&hdev->cmd_timer);
1531                 hci_req_sync_unlock(hdev);
1532                 return 0;
1533         }
1534
1535         hci_leds_update_powered(hdev, false);
1536
1537         /* Flush RX and TX works */
1538         flush_work(&hdev->tx_work);
1539         flush_work(&hdev->rx_work);
1540
1541         if (hdev->discov_timeout > 0) {
1542                 hdev->discov_timeout = 0;
1543                 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1544                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1545         }
1546
1547         if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1548                 cancel_delayed_work(&hdev->service_cache);
1549
1550         if (hci_dev_test_flag(hdev, HCI_MGMT))
1551                 cancel_delayed_work_sync(&hdev->rpa_expired);
1552
1553         /* Avoid potential lockdep warnings from the *_flush() calls by
1554          * ensuring the workqueue is empty up front.
1555          */
1556         drain_workqueue(hdev->workqueue);
1557
1558         hci_dev_lock(hdev);
1559
1560         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1561
1562         auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1563
1564         if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1565             hci_dev_test_flag(hdev, HCI_MGMT))
1566                 __mgmt_power_off(hdev);
1567
1568         hci_inquiry_cache_flush(hdev);
1569         hci_pend_le_actions_clear(hdev);
1570         hci_conn_hash_flush(hdev);
1571         hci_dev_unlock(hdev);
1572
1573         smp_unregister(hdev);
1574
1575         hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1576
1577         if (hdev->flush)
1578                 hdev->flush(hdev);
1579
1580         /* Reset device */
1581         skb_queue_purge(&hdev->cmd_q);
1582         atomic_set(&hdev->cmd_cnt, 1);
1583         if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1584             !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1585                 set_bit(HCI_INIT, &hdev->flags);
1586                 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1587                 clear_bit(HCI_INIT, &hdev->flags);
1588         }
1589
1590         /* flush cmd  work */
1591         flush_work(&hdev->cmd_work);
1592
1593         /* Drop queues */
1594         skb_queue_purge(&hdev->rx_q);
1595         skb_queue_purge(&hdev->cmd_q);
1596         skb_queue_purge(&hdev->raw_q);
1597
1598         /* Drop last sent command */
1599         if (hdev->sent_cmd) {
1600                 cancel_delayed_work_sync(&hdev->cmd_timer);
1601                 kfree_skb(hdev->sent_cmd);
1602                 hdev->sent_cmd = NULL;
1603         }
1604
1605         clear_bit(HCI_RUNNING, &hdev->flags);
1606         hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1607
1608         /* After this point our queues are empty
1609          * and no tasks are scheduled. */
1610         hdev->close(hdev);
1611
1612         /* Clear flags */
1613         hdev->flags &= BIT(HCI_RAW);
1614         hci_dev_clear_volatile_flags(hdev);
1615
1616         /* Controller radio is available but is currently powered down */
1617         hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1618
1619         memset(hdev->eir, 0, sizeof(hdev->eir));
1620         memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1621         bacpy(&hdev->random_addr, BDADDR_ANY);
1622
1623         hci_req_sync_unlock(hdev);
1624
1625         hci_dev_put(hdev);
1626         return 0;
1627 }
1628
1629 int hci_dev_close(__u16 dev)
1630 {
1631         struct hci_dev *hdev;
1632         int err;
1633
1634         hdev = hci_dev_get(dev);
1635         if (!hdev)
1636                 return -ENODEV;
1637
1638         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1639                 err = -EBUSY;
1640                 goto done;
1641         }
1642
1643         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1644                 cancel_delayed_work(&hdev->power_off);
1645
1646         err = hci_dev_do_close(hdev);
1647
1648 done:
1649         hci_dev_put(hdev);
1650         return err;
1651 }
1652
1653 static int hci_dev_do_reset(struct hci_dev *hdev)
1654 {
1655         int ret;
1656
1657         BT_DBG("%s %p", hdev->name, hdev);
1658
1659         hci_req_sync_lock(hdev);
1660
1661         /* Drop queues */
1662         skb_queue_purge(&hdev->rx_q);
1663         skb_queue_purge(&hdev->cmd_q);
1664
1665         /* Avoid potential lockdep warnings from the *_flush() calls by
1666          * ensuring the workqueue is empty up front.
1667          */
1668         drain_workqueue(hdev->workqueue);
1669
1670         hci_dev_lock(hdev);
1671         hci_inquiry_cache_flush(hdev);
1672         hci_conn_hash_flush(hdev);
1673         hci_dev_unlock(hdev);
1674
1675         if (hdev->flush)
1676                 hdev->flush(hdev);
1677
1678         atomic_set(&hdev->cmd_cnt, 1);
1679         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1680
1681         ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1682
1683         hci_req_sync_unlock(hdev);
1684         return ret;
1685 }
1686
1687 int hci_dev_reset(__u16 dev)
1688 {
1689         struct hci_dev *hdev;
1690         int err;
1691
1692         hdev = hci_dev_get(dev);
1693         if (!hdev)
1694                 return -ENODEV;
1695
1696         if (!test_bit(HCI_UP, &hdev->flags)) {
1697                 err = -ENETDOWN;
1698                 goto done;
1699         }
1700
1701         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1702                 err = -EBUSY;
1703                 goto done;
1704         }
1705
1706         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1707                 err = -EOPNOTSUPP;
1708                 goto done;
1709         }
1710
1711         err = hci_dev_do_reset(hdev);
1712
1713 done:
1714         hci_dev_put(hdev);
1715         return err;
1716 }
1717
1718 int hci_dev_reset_stat(__u16 dev)
1719 {
1720         struct hci_dev *hdev;
1721         int ret = 0;
1722
1723         hdev = hci_dev_get(dev);
1724         if (!hdev)
1725                 return -ENODEV;
1726
1727         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1728                 ret = -EBUSY;
1729                 goto done;
1730         }
1731
1732         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1733                 ret = -EOPNOTSUPP;
1734                 goto done;
1735         }
1736
1737         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1738
1739 done:
1740         hci_dev_put(hdev);
1741         return ret;
1742 }
1743
1744 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1745 {
1746         bool conn_changed, discov_changed;
1747
1748         BT_DBG("%s scan 0x%02x", hdev->name, scan);
1749
1750         if ((scan & SCAN_PAGE))
1751                 conn_changed = !hci_dev_test_and_set_flag(hdev,
1752                                                           HCI_CONNECTABLE);
1753         else
1754                 conn_changed = hci_dev_test_and_clear_flag(hdev,
1755                                                            HCI_CONNECTABLE);
1756
1757         if ((scan & SCAN_INQUIRY)) {
1758                 discov_changed = !hci_dev_test_and_set_flag(hdev,
1759                                                             HCI_DISCOVERABLE);
1760         } else {
1761                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1762                 discov_changed = hci_dev_test_and_clear_flag(hdev,
1763                                                              HCI_DISCOVERABLE);
1764         }
1765
1766         if (!hci_dev_test_flag(hdev, HCI_MGMT))
1767                 return;
1768
1769         if (conn_changed || discov_changed) {
1770                 /* In case this was disabled through mgmt */
1771                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1772
1773                 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1774                         hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1775
1776                 mgmt_new_settings(hdev);
1777         }
1778 }
1779
1780 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1781 {
1782         struct hci_dev *hdev;
1783         struct hci_dev_req dr;
1784         int err = 0;
1785
1786         if (copy_from_user(&dr, arg, sizeof(dr)))
1787                 return -EFAULT;
1788
1789         hdev = hci_dev_get(dr.dev_id);
1790         if (!hdev)
1791                 return -ENODEV;
1792
1793         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1794                 err = -EBUSY;
1795                 goto done;
1796         }
1797
1798         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1799                 err = -EOPNOTSUPP;
1800                 goto done;
1801         }
1802
1803         if (hdev->dev_type != HCI_PRIMARY) {
1804                 err = -EOPNOTSUPP;
1805                 goto done;
1806         }
1807
1808         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1809                 err = -EOPNOTSUPP;
1810                 goto done;
1811         }
1812
1813         switch (cmd) {
1814         case HCISETAUTH:
1815                 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1816                                    HCI_INIT_TIMEOUT, NULL);
1817                 break;
1818
1819         case HCISETENCRYPT:
1820                 if (!lmp_encrypt_capable(hdev)) {
1821                         err = -EOPNOTSUPP;
1822                         break;
1823                 }
1824
1825                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1826                         /* Auth must be enabled first */
1827                         err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1828                                            HCI_INIT_TIMEOUT, NULL);
1829                         if (err)
1830                                 break;
1831                 }
1832
1833                 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1834                                    HCI_INIT_TIMEOUT, NULL);
1835                 break;
1836
1837         case HCISETSCAN:
1838                 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1839                                    HCI_INIT_TIMEOUT, NULL);
1840
1841                 /* Ensure that the connectable and discoverable states
1842                  * get correctly modified as this was a non-mgmt change.
1843                  */
1844                 if (!err)
1845                         hci_update_scan_state(hdev, dr.dev_opt);
1846                 break;
1847
1848         case HCISETLINKPOL:
1849                 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1850                                    HCI_INIT_TIMEOUT, NULL);
1851                 break;
1852
1853         case HCISETLINKMODE:
1854                 hdev->link_mode = ((__u16) dr.dev_opt) &
1855                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
1856                 break;
1857
1858         case HCISETPTYPE:
1859                 hdev->pkt_type = (__u16) dr.dev_opt;
1860                 break;
1861
1862         case HCISETACLMTU:
1863                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1864                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1865                 break;
1866
1867         case HCISETSCOMTU:
1868                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1869                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1870                 break;
1871
1872         default:
1873                 err = -EINVAL;
1874                 break;
1875         }
1876
1877 done:
1878         hci_dev_put(hdev);
1879         return err;
1880 }
1881
1882 int hci_get_dev_list(void __user *arg)
1883 {
1884         struct hci_dev *hdev;
1885         struct hci_dev_list_req *dl;
1886         struct hci_dev_req *dr;
1887         int n = 0, size, err;
1888         __u16 dev_num;
1889
1890         if (get_user(dev_num, (__u16 __user *) arg))
1891                 return -EFAULT;
1892
1893         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1894                 return -EINVAL;
1895
1896         size = sizeof(*dl) + dev_num * sizeof(*dr);
1897
1898         dl = kzalloc(size, GFP_KERNEL);
1899         if (!dl)
1900                 return -ENOMEM;
1901
1902         dr = dl->dev_req;
1903
1904         read_lock(&hci_dev_list_lock);
1905         list_for_each_entry(hdev, &hci_dev_list, list) {
1906                 unsigned long flags = hdev->flags;
1907
1908                 /* When the auto-off is configured it means the transport
1909                  * is running, but in that case still indicate that the
1910                  * device is actually down.
1911                  */
1912                 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1913                         flags &= ~BIT(HCI_UP);
1914
1915                 (dr + n)->dev_id  = hdev->id;
1916                 (dr + n)->dev_opt = flags;
1917
1918                 if (++n >= dev_num)
1919                         break;
1920         }
1921         read_unlock(&hci_dev_list_lock);
1922
1923         dl->dev_num = n;
1924         size = sizeof(*dl) + n * sizeof(*dr);
1925
1926         err = copy_to_user(arg, dl, size);
1927         kfree(dl);
1928
1929         return err ? -EFAULT : 0;
1930 }
1931
1932 int hci_get_dev_info(void __user *arg)
1933 {
1934         struct hci_dev *hdev;
1935         struct hci_dev_info di;
1936         unsigned long flags;
1937         int err = 0;
1938
1939         if (copy_from_user(&di, arg, sizeof(di)))
1940                 return -EFAULT;
1941
1942         hdev = hci_dev_get(di.dev_id);
1943         if (!hdev)
1944                 return -ENODEV;
1945
1946         /* When the auto-off is configured it means the transport
1947          * is running, but in that case still indicate that the
1948          * device is actually down.
1949          */
1950         if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1951                 flags = hdev->flags & ~BIT(HCI_UP);
1952         else
1953                 flags = hdev->flags;
1954
1955         strcpy(di.name, hdev->name);
1956         di.bdaddr   = hdev->bdaddr;
1957         di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1958         di.flags    = flags;
1959         di.pkt_type = hdev->pkt_type;
1960         if (lmp_bredr_capable(hdev)) {
1961                 di.acl_mtu  = hdev->acl_mtu;
1962                 di.acl_pkts = hdev->acl_pkts;
1963                 di.sco_mtu  = hdev->sco_mtu;
1964                 di.sco_pkts = hdev->sco_pkts;
1965         } else {
1966                 di.acl_mtu  = hdev->le_mtu;
1967                 di.acl_pkts = hdev->le_pkts;
1968                 di.sco_mtu  = 0;
1969                 di.sco_pkts = 0;
1970         }
1971         di.link_policy = hdev->link_policy;
1972         di.link_mode   = hdev->link_mode;
1973
1974         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1975         memcpy(&di.features, &hdev->features, sizeof(di.features));
1976
1977         if (copy_to_user(arg, &di, sizeof(di)))
1978                 err = -EFAULT;
1979
1980         hci_dev_put(hdev);
1981
1982         return err;
1983 }
1984
1985 /* ---- Interface to HCI drivers ---- */
1986
1987 static int hci_rfkill_set_block(void *data, bool blocked)
1988 {
1989         struct hci_dev *hdev = data;
1990
1991         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1992
1993         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1994                 return -EBUSY;
1995
1996         if (blocked) {
1997                 hci_dev_set_flag(hdev, HCI_RFKILLED);
1998                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1999                     !hci_dev_test_flag(hdev, HCI_CONFIG))
2000                         hci_dev_do_close(hdev);
2001         } else {
2002                 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2003         }
2004
2005         return 0;
2006 }
2007
2008 static const struct rfkill_ops hci_rfkill_ops = {
2009         .set_block = hci_rfkill_set_block,
2010 };
2011
2012 static void hci_power_on(struct work_struct *work)
2013 {
2014         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2015         int err;
2016
2017         BT_DBG("%s", hdev->name);
2018
2019         if (test_bit(HCI_UP, &hdev->flags) &&
2020             hci_dev_test_flag(hdev, HCI_MGMT) &&
2021             hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2022                 cancel_delayed_work(&hdev->power_off);
2023                 hci_req_sync_lock(hdev);
2024                 err = __hci_req_hci_power_on(hdev);
2025                 hci_req_sync_unlock(hdev);
2026                 mgmt_power_on(hdev, err);
2027                 return;
2028         }
2029
2030         err = hci_dev_do_open(hdev);
2031         if (err < 0) {
2032                 hci_dev_lock(hdev);
2033                 mgmt_set_powered_failed(hdev, err);
2034                 hci_dev_unlock(hdev);
2035                 return;
2036         }
2037
2038         /* During the HCI setup phase, a few error conditions are
2039          * ignored and they need to be checked now. If they are still
2040          * valid, it is important to turn the device back off.
2041          */
2042         if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2043             hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2044             (hdev->dev_type == HCI_PRIMARY &&
2045              !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2046              !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2047                 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2048                 hci_dev_do_close(hdev);
2049         } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2050                 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2051                                    HCI_AUTO_OFF_TIMEOUT);
2052         }
2053
2054         if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2055                 /* For unconfigured devices, set the HCI_RAW flag
2056                  * so that userspace can easily identify them.
2057                  */
2058                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2059                         set_bit(HCI_RAW, &hdev->flags);
2060
2061                 /* For fully configured devices, this will send
2062                  * the Index Added event. For unconfigured devices,
2063                  * it will send Unconfigued Index Added event.
2064                  *
2065                  * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2066                  * and no event will be send.
2067                  */
2068                 mgmt_index_added(hdev);
2069         } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2070                 /* When the controller is now configured, then it
2071                  * is important to clear the HCI_RAW flag.
2072                  */
2073                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2074                         clear_bit(HCI_RAW, &hdev->flags);
2075
2076                 /* Powering on the controller with HCI_CONFIG set only
2077                  * happens with the transition from unconfigured to
2078                  * configured. This will send the Index Added event.
2079                  */
2080                 mgmt_index_added(hdev);
2081         }
2082 }
2083
2084 static void hci_power_off(struct work_struct *work)
2085 {
2086         struct hci_dev *hdev = container_of(work, struct hci_dev,
2087                                             power_off.work);
2088
2089         BT_DBG("%s", hdev->name);
2090
2091         hci_dev_do_close(hdev);
2092 }
2093
2094 static void hci_error_reset(struct work_struct *work)
2095 {
2096         struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2097
2098         BT_DBG("%s", hdev->name);
2099
2100         if (hdev->hw_error)
2101                 hdev->hw_error(hdev, hdev->hw_error_code);
2102         else
2103                 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2104                        hdev->hw_error_code);
2105
2106         if (hci_dev_do_close(hdev))
2107                 return;
2108
2109         hci_dev_do_open(hdev);
2110 }
2111
2112 void hci_uuids_clear(struct hci_dev *hdev)
2113 {
2114         struct bt_uuid *uuid, *tmp;
2115
2116         list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2117                 list_del(&uuid->list);
2118                 kfree(uuid);
2119         }
2120 }
2121
2122 void hci_link_keys_clear(struct hci_dev *hdev)
2123 {
2124         struct link_key *key;
2125
2126         list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2127                 list_del_rcu(&key->list);
2128                 kfree_rcu(key, rcu);
2129         }
2130 }
2131
2132 void hci_smp_ltks_clear(struct hci_dev *hdev)
2133 {
2134         struct smp_ltk *k;
2135
2136         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2137                 list_del_rcu(&k->list);
2138                 kfree_rcu(k, rcu);
2139         }
2140 }
2141
2142 void hci_smp_irks_clear(struct hci_dev *hdev)
2143 {
2144         struct smp_irk *k;
2145
2146         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2147                 list_del_rcu(&k->list);
2148                 kfree_rcu(k, rcu);
2149         }
2150 }
2151
2152 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2153 {
2154         struct link_key *k;
2155
2156         rcu_read_lock();
2157         list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2158                 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2159                         rcu_read_unlock();
2160                         return k;
2161                 }
2162         }
2163         rcu_read_unlock();
2164
2165         return NULL;
2166 }
2167
2168 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2169                                u8 key_type, u8 old_key_type)
2170 {
2171         /* Legacy key */
2172         if (key_type < 0x03)
2173                 return true;
2174
2175         /* Debug keys are insecure so don't store them persistently */
2176         if (key_type == HCI_LK_DEBUG_COMBINATION)
2177                 return false;
2178
2179         /* Changed combination key and there's no previous one */
2180         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2181                 return false;
2182
2183         /* Security mode 3 case */
2184         if (!conn)
2185                 return true;
2186
2187         /* BR/EDR key derived using SC from an LE link */
2188         if (conn->type == LE_LINK)
2189                 return true;
2190
2191         /* Neither local nor remote side had no-bonding as requirement */
2192         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2193                 return true;
2194
2195         /* Local side had dedicated bonding as requirement */
2196         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2197                 return true;
2198
2199         /* Remote side had dedicated bonding as requirement */
2200         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2201                 return true;
2202
2203         /* If none of the above criteria match, then don't store the key
2204          * persistently */
2205         return false;
2206 }
2207
2208 static u8 ltk_role(u8 type)
2209 {
2210         if (type == SMP_LTK)
2211                 return HCI_ROLE_MASTER;
2212
2213         return HCI_ROLE_SLAVE;
2214 }
2215
2216 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2217                              u8 addr_type, u8 role)
2218 {
2219         struct smp_ltk *k;
2220
2221         rcu_read_lock();
2222         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2223                 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2224                         continue;
2225
2226                 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2227                         rcu_read_unlock();
2228                         return k;
2229                 }
2230         }
2231         rcu_read_unlock();
2232
2233         return NULL;
2234 }
2235
2236 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2237 {
2238         struct smp_irk *irk;
2239
2240         rcu_read_lock();
2241         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2242                 if (!bacmp(&irk->rpa, rpa)) {
2243                         rcu_read_unlock();
2244                         return irk;
2245                 }
2246         }
2247
2248         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2249                 if (smp_irk_matches(hdev, irk->val, rpa)) {
2250                         bacpy(&irk->rpa, rpa);
2251                         rcu_read_unlock();
2252                         return irk;
2253                 }
2254         }
2255         rcu_read_unlock();
2256
2257         return NULL;
2258 }
2259
2260 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2261                                      u8 addr_type)
2262 {
2263         struct smp_irk *irk;
2264
2265         /* Identity Address must be public or static random */
2266         if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2267                 return NULL;
2268
2269         rcu_read_lock();
2270         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2271                 if (addr_type == irk->addr_type &&
2272                     bacmp(bdaddr, &irk->bdaddr) == 0) {
2273                         rcu_read_unlock();
2274                         return irk;
2275                 }
2276         }
2277         rcu_read_unlock();
2278
2279         return NULL;
2280 }
2281
2282 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2283                                   bdaddr_t *bdaddr, u8 *val, u8 type,
2284                                   u8 pin_len, bool *persistent)
2285 {
2286         struct link_key *key, *old_key;
2287         u8 old_key_type;
2288
2289         old_key = hci_find_link_key(hdev, bdaddr);
2290         if (old_key) {
2291                 old_key_type = old_key->type;
2292                 key = old_key;
2293         } else {
2294                 old_key_type = conn ? conn->key_type : 0xff;
2295                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2296                 if (!key)
2297                         return NULL;
2298                 list_add_rcu(&key->list, &hdev->link_keys);
2299         }
2300
2301         BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2302
2303         /* Some buggy controller combinations generate a changed
2304          * combination key for legacy pairing even when there's no
2305          * previous key */
2306         if (type == HCI_LK_CHANGED_COMBINATION &&
2307             (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2308                 type = HCI_LK_COMBINATION;
2309                 if (conn)
2310                         conn->key_type = type;
2311         }
2312
2313         bacpy(&key->bdaddr, bdaddr);
2314         memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2315         key->pin_len = pin_len;
2316
2317         if (type == HCI_LK_CHANGED_COMBINATION)
2318                 key->type = old_key_type;
2319         else
2320                 key->type = type;
2321
2322         if (persistent)
2323                 *persistent = hci_persistent_key(hdev, conn, type,
2324                                                  old_key_type);
2325
2326         return key;
2327 }
2328
2329 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2330                             u8 addr_type, u8 type, u8 authenticated,
2331                             u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2332 {
2333         struct smp_ltk *key, *old_key;
2334         u8 role = ltk_role(type);
2335
2336         old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2337         if (old_key)
2338                 key = old_key;
2339         else {
2340                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2341                 if (!key)
2342                         return NULL;
2343                 list_add_rcu(&key->list, &hdev->long_term_keys);
2344         }
2345
2346         bacpy(&key->bdaddr, bdaddr);
2347         key->bdaddr_type = addr_type;
2348         memcpy(key->val, tk, sizeof(key->val));
2349         key->authenticated = authenticated;
2350         key->ediv = ediv;
2351         key->rand = rand;
2352         key->enc_size = enc_size;
2353         key->type = type;
2354
2355         return key;
2356 }
2357
2358 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2359                             u8 addr_type, u8 val[16], bdaddr_t *rpa)
2360 {
2361         struct smp_irk *irk;
2362
2363         irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2364         if (!irk) {
2365                 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2366                 if (!irk)
2367                         return NULL;
2368
2369                 bacpy(&irk->bdaddr, bdaddr);
2370                 irk->addr_type = addr_type;
2371
2372                 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2373         }
2374
2375         memcpy(irk->val, val, 16);
2376         bacpy(&irk->rpa, rpa);
2377
2378         return irk;
2379 }
2380
2381 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2382 {
2383         struct link_key *key;
2384
2385         key = hci_find_link_key(hdev, bdaddr);
2386         if (!key)
2387                 return -ENOENT;
2388
2389         BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2390
2391         list_del_rcu(&key->list);
2392         kfree_rcu(key, rcu);
2393
2394         return 0;
2395 }
2396
2397 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2398 {
2399         struct smp_ltk *k;
2400         int removed = 0;
2401
2402         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2403                 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2404                         continue;
2405
2406                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2407
2408                 list_del_rcu(&k->list);
2409                 kfree_rcu(k, rcu);
2410                 removed++;
2411         }
2412
2413         return removed ? 0 : -ENOENT;
2414 }
2415
2416 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2417 {
2418         struct smp_irk *k;
2419
2420         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2421                 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2422                         continue;
2423
2424                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2425
2426                 list_del_rcu(&k->list);
2427                 kfree_rcu(k, rcu);
2428         }
2429 }
2430
2431 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2432 {
2433         struct smp_ltk *k;
2434         struct smp_irk *irk;
2435         u8 addr_type;
2436
2437         if (type == BDADDR_BREDR) {
2438                 if (hci_find_link_key(hdev, bdaddr))
2439                         return true;
2440                 return false;
2441         }
2442
2443         /* Convert to HCI addr type which struct smp_ltk uses */
2444         if (type == BDADDR_LE_PUBLIC)
2445                 addr_type = ADDR_LE_DEV_PUBLIC;
2446         else
2447                 addr_type = ADDR_LE_DEV_RANDOM;
2448
2449         irk = hci_get_irk(hdev, bdaddr, addr_type);
2450         if (irk) {
2451                 bdaddr = &irk->bdaddr;
2452                 addr_type = irk->addr_type;
2453         }
2454
2455         rcu_read_lock();
2456         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2457                 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2458                         rcu_read_unlock();
2459                         return true;
2460                 }
2461         }
2462         rcu_read_unlock();
2463
2464         return false;
2465 }
2466
2467 /* HCI command timer function */
2468 static void hci_cmd_timeout(struct work_struct *work)
2469 {
2470         struct hci_dev *hdev = container_of(work, struct hci_dev,
2471                                             cmd_timer.work);
2472
2473         if (hdev->sent_cmd) {
2474                 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2475                 u16 opcode = __le16_to_cpu(sent->opcode);
2476
2477                 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2478         } else {
2479                 BT_ERR("%s command tx timeout", hdev->name);
2480         }
2481
2482         atomic_set(&hdev->cmd_cnt, 1);
2483         queue_work(hdev->workqueue, &hdev->cmd_work);
2484 }
2485
2486 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2487                                           bdaddr_t *bdaddr, u8 bdaddr_type)
2488 {
2489         struct oob_data *data;
2490
2491         list_for_each_entry(data, &hdev->remote_oob_data, list) {
2492                 if (bacmp(bdaddr, &data->bdaddr) != 0)
2493                         continue;
2494                 if (data->bdaddr_type != bdaddr_type)
2495                         continue;
2496                 return data;
2497         }
2498
2499         return NULL;
2500 }
2501
2502 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2503                                u8 bdaddr_type)
2504 {
2505         struct oob_data *data;
2506
2507         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2508         if (!data)
2509                 return -ENOENT;
2510
2511         BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2512
2513         list_del(&data->list);
2514         kfree(data);
2515
2516         return 0;
2517 }
2518
2519 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2520 {
2521         struct oob_data *data, *n;
2522
2523         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2524                 list_del(&data->list);
2525                 kfree(data);
2526         }
2527 }
2528
2529 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2530                             u8 bdaddr_type, u8 *hash192, u8 *rand192,
2531                             u8 *hash256, u8 *rand256)
2532 {
2533         struct oob_data *data;
2534
2535         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2536         if (!data) {
2537                 data = kmalloc(sizeof(*data), GFP_KERNEL);
2538                 if (!data)
2539                         return -ENOMEM;
2540
2541                 bacpy(&data->bdaddr, bdaddr);
2542                 data->bdaddr_type = bdaddr_type;
2543                 list_add(&data->list, &hdev->remote_oob_data);
2544         }
2545
2546         if (hash192 && rand192) {
2547                 memcpy(data->hash192, hash192, sizeof(data->hash192));
2548                 memcpy(data->rand192, rand192, sizeof(data->rand192));
2549                 if (hash256 && rand256)
2550                         data->present = 0x03;
2551         } else {
2552                 memset(data->hash192, 0, sizeof(data->hash192));
2553                 memset(data->rand192, 0, sizeof(data->rand192));
2554                 if (hash256 && rand256)
2555                         data->present = 0x02;
2556                 else
2557                         data->present = 0x00;
2558         }
2559
2560         if (hash256 && rand256) {
2561                 memcpy(data->hash256, hash256, sizeof(data->hash256));
2562                 memcpy(data->rand256, rand256, sizeof(data->rand256));
2563         } else {
2564                 memset(data->hash256, 0, sizeof(data->hash256));
2565                 memset(data->rand256, 0, sizeof(data->rand256));
2566                 if (hash192 && rand192)
2567                         data->present = 0x01;
2568         }
2569
2570         BT_DBG("%s for %pMR", hdev->name, bdaddr);
2571
2572         return 0;
2573 }
2574
2575 /* This function requires the caller holds hdev->lock */
2576 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2577 {
2578         struct adv_info *adv_instance;
2579
2580         list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2581                 if (adv_instance->instance == instance)
2582                         return adv_instance;
2583         }
2584
2585         return NULL;
2586 }
2587
2588 /* This function requires the caller holds hdev->lock */
2589 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2590 {
2591         struct adv_info *cur_instance;
2592
2593         cur_instance = hci_find_adv_instance(hdev, instance);
2594         if (!cur_instance)
2595                 return NULL;
2596
2597         if (cur_instance == list_last_entry(&hdev->adv_instances,
2598                                             struct adv_info, list))
2599                 return list_first_entry(&hdev->adv_instances,
2600                                                  struct adv_info, list);
2601         else
2602                 return list_next_entry(cur_instance, list);
2603 }
2604
2605 /* This function requires the caller holds hdev->lock */
2606 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2607 {
2608         struct adv_info *adv_instance;
2609
2610         adv_instance = hci_find_adv_instance(hdev, instance);
2611         if (!adv_instance)
2612                 return -ENOENT;
2613
2614         BT_DBG("%s removing %dMR", hdev->name, instance);
2615
2616         if (hdev->cur_adv_instance == instance) {
2617                 if (hdev->adv_instance_timeout) {
2618                         cancel_delayed_work(&hdev->adv_instance_expire);
2619                         hdev->adv_instance_timeout = 0;
2620                 }
2621                 hdev->cur_adv_instance = 0x00;
2622         }
2623
2624         list_del(&adv_instance->list);
2625         kfree(adv_instance);
2626
2627         hdev->adv_instance_cnt--;
2628
2629         return 0;
2630 }
2631
2632 /* This function requires the caller holds hdev->lock */
2633 void hci_adv_instances_clear(struct hci_dev *hdev)
2634 {
2635         struct adv_info *adv_instance, *n;
2636
2637         if (hdev->adv_instance_timeout) {
2638                 cancel_delayed_work(&hdev->adv_instance_expire);
2639                 hdev->adv_instance_timeout = 0;
2640         }
2641
2642         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2643                 list_del(&adv_instance->list);
2644                 kfree(adv_instance);
2645         }
2646
2647         hdev->adv_instance_cnt = 0;
2648         hdev->cur_adv_instance = 0x00;
2649 }
2650
2651 /* This function requires the caller holds hdev->lock */
2652 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2653                          u16 adv_data_len, u8 *adv_data,
2654                          u16 scan_rsp_len, u8 *scan_rsp_data,
2655                          u16 timeout, u16 duration)
2656 {
2657         struct adv_info *adv_instance;
2658
2659         adv_instance = hci_find_adv_instance(hdev, instance);
2660         if (adv_instance) {
2661                 memset(adv_instance->adv_data, 0,
2662                        sizeof(adv_instance->adv_data));
2663                 memset(adv_instance->scan_rsp_data, 0,
2664                        sizeof(adv_instance->scan_rsp_data));
2665         } else {
2666                 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2667                     instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2668                         return -EOVERFLOW;
2669
2670                 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2671                 if (!adv_instance)
2672                         return -ENOMEM;
2673
2674                 adv_instance->pending = true;
2675                 adv_instance->instance = instance;
2676                 list_add(&adv_instance->list, &hdev->adv_instances);
2677                 hdev->adv_instance_cnt++;
2678         }
2679
2680         adv_instance->flags = flags;
2681         adv_instance->adv_data_len = adv_data_len;
2682         adv_instance->scan_rsp_len = scan_rsp_len;
2683
2684         if (adv_data_len)
2685                 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2686
2687         if (scan_rsp_len)
2688                 memcpy(adv_instance->scan_rsp_data,
2689                        scan_rsp_data, scan_rsp_len);
2690
2691         adv_instance->timeout = timeout;
2692         adv_instance->remaining_time = timeout;
2693
2694         if (duration == 0)
2695                 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2696         else
2697                 adv_instance->duration = duration;
2698
2699         BT_DBG("%s for %dMR", hdev->name, instance);
2700
2701         return 0;
2702 }
2703
2704 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2705                                          bdaddr_t *bdaddr, u8 type)
2706 {
2707         struct bdaddr_list *b;
2708
2709         list_for_each_entry(b, bdaddr_list, list) {
2710                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2711                         return b;
2712         }
2713
2714         return NULL;
2715 }
2716
2717 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2718 {
2719         struct bdaddr_list *b, *n;
2720
2721         list_for_each_entry_safe(b, n, bdaddr_list, list) {
2722                 list_del(&b->list);
2723                 kfree(b);
2724         }
2725 }
2726
2727 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2728 {
2729         struct bdaddr_list *entry;
2730
2731         if (!bacmp(bdaddr, BDADDR_ANY))
2732                 return -EBADF;
2733
2734         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2735                 return -EEXIST;
2736
2737         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2738         if (!entry)
2739                 return -ENOMEM;
2740
2741         bacpy(&entry->bdaddr, bdaddr);
2742         entry->bdaddr_type = type;
2743
2744         list_add(&entry->list, list);
2745
2746         return 0;
2747 }
2748
2749 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2750 {
2751         struct bdaddr_list *entry;
2752
2753         if (!bacmp(bdaddr, BDADDR_ANY)) {
2754                 hci_bdaddr_list_clear(list);
2755                 return 0;
2756         }
2757
2758         entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2759         if (!entry)
2760                 return -ENOENT;
2761
2762         list_del(&entry->list);
2763         kfree(entry);
2764
2765         return 0;
2766 }
2767
2768 /* This function requires the caller holds hdev->lock */
2769 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2770                                                bdaddr_t *addr, u8 addr_type)
2771 {
2772         struct hci_conn_params *params;
2773
2774         list_for_each_entry(params, &hdev->le_conn_params, list) {
2775                 if (bacmp(&params->addr, addr) == 0 &&
2776                     params->addr_type == addr_type) {
2777                         return params;
2778                 }
2779         }
2780
2781         return NULL;
2782 }
2783
2784 /* This function requires the caller holds hdev->lock */
2785 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2786                                                   bdaddr_t *addr, u8 addr_type)
2787 {
2788         struct hci_conn_params *param;
2789
2790         list_for_each_entry(param, list, action) {
2791                 if (bacmp(&param->addr, addr) == 0 &&
2792                     param->addr_type == addr_type)
2793                         return param;
2794         }
2795
2796         return NULL;
2797 }
2798
2799 /* This function requires the caller holds hdev->lock */
2800 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2801                                             bdaddr_t *addr, u8 addr_type)
2802 {
2803         struct hci_conn_params *params;
2804
2805         params = hci_conn_params_lookup(hdev, addr, addr_type);
2806         if (params)
2807                 return params;
2808
2809         params = kzalloc(sizeof(*params), GFP_KERNEL);
2810         if (!params) {
2811                 BT_ERR("Out of memory");
2812                 return NULL;
2813         }
2814
2815         bacpy(&params->addr, addr);
2816         params->addr_type = addr_type;
2817
2818         list_add(&params->list, &hdev->le_conn_params);
2819         INIT_LIST_HEAD(&params->action);
2820
2821         params->conn_min_interval = hdev->le_conn_min_interval;
2822         params->conn_max_interval = hdev->le_conn_max_interval;
2823         params->conn_latency = hdev->le_conn_latency;
2824         params->supervision_timeout = hdev->le_supv_timeout;
2825         params->auto_connect = HCI_AUTO_CONN_DISABLED;
2826
2827         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2828
2829         return params;
2830 }
2831
2832 static void hci_conn_params_free(struct hci_conn_params *params)
2833 {
2834         if (params->conn) {
2835                 hci_conn_drop(params->conn);
2836                 hci_conn_put(params->conn);
2837         }
2838
2839         list_del(&params->action);
2840         list_del(&params->list);
2841         kfree(params);
2842 }
2843
2844 /* This function requires the caller holds hdev->lock */
2845 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2846 {
2847         struct hci_conn_params *params;
2848
2849         params = hci_conn_params_lookup(hdev, addr, addr_type);
2850         if (!params)
2851                 return;
2852
2853         hci_conn_params_free(params);
2854
2855         hci_update_background_scan(hdev);
2856
2857         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2858 }
2859
2860 /* This function requires the caller holds hdev->lock */
2861 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2862 {
2863         struct hci_conn_params *params, *tmp;
2864
2865         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2866                 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2867                         continue;
2868
2869                 /* If trying to estabilish one time connection to disabled
2870                  * device, leave the params, but mark them as just once.
2871                  */
2872                 if (params->explicit_connect) {
2873                         params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2874                         continue;
2875                 }
2876
2877                 list_del(&params->list);
2878                 kfree(params);
2879         }
2880
2881         BT_DBG("All LE disabled connection parameters were removed");
2882 }
2883
2884 /* This function requires the caller holds hdev->lock */
2885 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2886 {
2887         struct hci_conn_params *params, *tmp;
2888
2889         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2890                 hci_conn_params_free(params);
2891
2892         BT_DBG("All LE connection parameters were removed");
2893 }
2894
2895 /* Copy the Identity Address of the controller.
2896  *
2897  * If the controller has a public BD_ADDR, then by default use that one.
2898  * If this is a LE only controller without a public address, default to
2899  * the static random address.
2900  *
2901  * For debugging purposes it is possible to force controllers with a
2902  * public address to use the static random address instead.
2903  *
2904  * In case BR/EDR has been disabled on a dual-mode controller and
2905  * userspace has configured a static address, then that address
2906  * becomes the identity address instead of the public BR/EDR address.
2907  */
2908 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2909                                u8 *bdaddr_type)
2910 {
2911         if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2912             !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2913             (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2914              bacmp(&hdev->static_addr, BDADDR_ANY))) {
2915                 bacpy(bdaddr, &hdev->static_addr);
2916                 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2917         } else {
2918                 bacpy(bdaddr, &hdev->bdaddr);
2919                 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2920         }
2921 }
2922
2923 /* Alloc HCI device */
2924 struct hci_dev *hci_alloc_dev(void)
2925 {
2926         struct hci_dev *hdev;
2927
2928         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2929         if (!hdev)
2930                 return NULL;
2931
2932         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2933         hdev->esco_type = (ESCO_HV1);
2934         hdev->link_mode = (HCI_LM_ACCEPT);
2935         hdev->num_iac = 0x01;           /* One IAC support is mandatory */
2936         hdev->io_capability = 0x03;     /* No Input No Output */
2937         hdev->manufacturer = 0xffff;    /* Default to internal use */
2938         hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2939         hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2940         hdev->adv_instance_cnt = 0;
2941         hdev->cur_adv_instance = 0x00;
2942         hdev->adv_instance_timeout = 0;
2943
2944         hdev->sniff_max_interval = 800;
2945         hdev->sniff_min_interval = 80;
2946
2947         hdev->le_adv_channel_map = 0x07;
2948         hdev->le_adv_min_interval = 0x0800;
2949         hdev->le_adv_max_interval = 0x0800;
2950         hdev->le_scan_interval = 0x0060;
2951         hdev->le_scan_window = 0x0030;
2952         hdev->le_conn_min_interval = 0x0028;
2953         hdev->le_conn_max_interval = 0x0038;
2954         hdev->le_conn_latency = 0x0000;
2955         hdev->le_supv_timeout = 0x002a;
2956         hdev->le_def_tx_len = 0x001b;
2957         hdev->le_def_tx_time = 0x0148;
2958         hdev->le_max_tx_len = 0x001b;
2959         hdev->le_max_tx_time = 0x0148;
2960         hdev->le_max_rx_len = 0x001b;
2961         hdev->le_max_rx_time = 0x0148;
2962
2963         hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2964         hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2965         hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2966         hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2967
2968         mutex_init(&hdev->lock);
2969         mutex_init(&hdev->req_lock);
2970
2971         INIT_LIST_HEAD(&hdev->mgmt_pending);
2972         INIT_LIST_HEAD(&hdev->blacklist);
2973         INIT_LIST_HEAD(&hdev->whitelist);
2974         INIT_LIST_HEAD(&hdev->uuids);
2975         INIT_LIST_HEAD(&hdev->link_keys);
2976         INIT_LIST_HEAD(&hdev->long_term_keys);
2977         INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2978         INIT_LIST_HEAD(&hdev->remote_oob_data);
2979         INIT_LIST_HEAD(&hdev->le_white_list);
2980         INIT_LIST_HEAD(&hdev->le_conn_params);
2981         INIT_LIST_HEAD(&hdev->pend_le_conns);
2982         INIT_LIST_HEAD(&hdev->pend_le_reports);
2983         INIT_LIST_HEAD(&hdev->conn_hash.list);
2984         INIT_LIST_HEAD(&hdev->adv_instances);
2985
2986         INIT_WORK(&hdev->rx_work, hci_rx_work);
2987         INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2988         INIT_WORK(&hdev->tx_work, hci_tx_work);
2989         INIT_WORK(&hdev->power_on, hci_power_on);
2990         INIT_WORK(&hdev->error_reset, hci_error_reset);
2991
2992         INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2993
2994         skb_queue_head_init(&hdev->rx_q);
2995         skb_queue_head_init(&hdev->cmd_q);
2996         skb_queue_head_init(&hdev->raw_q);
2997
2998         init_waitqueue_head(&hdev->req_wait_q);
2999
3000         INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3001
3002         hci_request_setup(hdev);
3003
3004         hci_init_sysfs(hdev);
3005         discovery_init(hdev);
3006
3007         return hdev;
3008 }
3009 EXPORT_SYMBOL(hci_alloc_dev);
3010
3011 /* Free HCI device */
3012 void hci_free_dev(struct hci_dev *hdev)
3013 {
3014         /* will free via device release */
3015         put_device(&hdev->dev);
3016 }
3017 EXPORT_SYMBOL(hci_free_dev);
3018
3019 /* Register HCI device */
3020 int hci_register_dev(struct hci_dev *hdev)
3021 {
3022         int id, error;
3023
3024         if (!hdev->open || !hdev->close || !hdev->send)
3025                 return -EINVAL;
3026
3027         /* Do not allow HCI_AMP devices to register at index 0,
3028          * so the index can be used as the AMP controller ID.
3029          */
3030         switch (hdev->dev_type) {
3031         case HCI_PRIMARY:
3032                 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3033                 break;
3034         case HCI_AMP:
3035                 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3036                 break;
3037         default:
3038                 return -EINVAL;
3039         }
3040
3041         if (id < 0)
3042                 return id;
3043
3044         sprintf(hdev->name, "hci%d", id);
3045         hdev->id = id;
3046
3047         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3048
3049         hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3050                                           WQ_MEM_RECLAIM, 1, hdev->name);
3051         if (!hdev->workqueue) {
3052                 error = -ENOMEM;
3053                 goto err;
3054         }
3055
3056         hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3057                                               WQ_MEM_RECLAIM, 1, hdev->name);
3058         if (!hdev->req_workqueue) {
3059                 destroy_workqueue(hdev->workqueue);
3060                 error = -ENOMEM;
3061                 goto err;
3062         }
3063
3064         if (!IS_ERR_OR_NULL(bt_debugfs))
3065                 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3066
3067         dev_set_name(&hdev->dev, "%s", hdev->name);
3068
3069         error = device_add(&hdev->dev);
3070         if (error < 0)
3071                 goto err_wqueue;
3072
3073         hci_leds_init(hdev);
3074
3075         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3076                                     RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3077                                     hdev);
3078         if (hdev->rfkill) {
3079                 if (rfkill_register(hdev->rfkill) < 0) {
3080                         rfkill_destroy(hdev->rfkill);
3081                         hdev->rfkill = NULL;
3082                 }
3083         }
3084
3085         if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3086                 hci_dev_set_flag(hdev, HCI_RFKILLED);
3087
3088         hci_dev_set_flag(hdev, HCI_SETUP);
3089         hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3090
3091         if (hdev->dev_type == HCI_PRIMARY) {
3092                 /* Assume BR/EDR support until proven otherwise (such as
3093                  * through reading supported features during init.
3094                  */
3095                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3096         }
3097
3098         write_lock(&hci_dev_list_lock);
3099         list_add(&hdev->list, &hci_dev_list);
3100         write_unlock(&hci_dev_list_lock);
3101
3102         /* Devices that are marked for raw-only usage are unconfigured
3103          * and should not be included in normal operation.
3104          */
3105         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3106                 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3107
3108         hci_sock_dev_event(hdev, HCI_DEV_REG);
3109         hci_dev_hold(hdev);
3110
3111         queue_work(hdev->req_workqueue, &hdev->power_on);
3112
3113         return id;
3114
3115 err_wqueue:
3116         destroy_workqueue(hdev->workqueue);
3117         destroy_workqueue(hdev->req_workqueue);
3118 err:
3119         ida_simple_remove(&hci_index_ida, hdev->id);
3120
3121         return error;
3122 }
3123 EXPORT_SYMBOL(hci_register_dev);
3124
3125 /* Unregister HCI device */
3126 void hci_unregister_dev(struct hci_dev *hdev)
3127 {
3128         int id;
3129
3130         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3131
3132         hci_dev_set_flag(hdev, HCI_UNREGISTER);
3133
3134         id = hdev->id;
3135
3136         write_lock(&hci_dev_list_lock);
3137         list_del(&hdev->list);
3138         write_unlock(&hci_dev_list_lock);
3139
3140         cancel_work_sync(&hdev->power_on);
3141
3142         hci_dev_do_close(hdev);
3143
3144         if (!test_bit(HCI_INIT, &hdev->flags) &&
3145             !hci_dev_test_flag(hdev, HCI_SETUP) &&
3146             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3147                 hci_dev_lock(hdev);
3148                 mgmt_index_removed(hdev);
3149                 hci_dev_unlock(hdev);
3150         }
3151
3152         /* mgmt_index_removed should take care of emptying the
3153          * pending list */
3154         BUG_ON(!list_empty(&hdev->mgmt_pending));
3155
3156         hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3157
3158         if (hdev->rfkill) {
3159                 rfkill_unregister(hdev->rfkill);
3160                 rfkill_destroy(hdev->rfkill);
3161         }
3162
3163         device_del(&hdev->dev);
3164
3165         debugfs_remove_recursive(hdev->debugfs);
3166         kfree_const(hdev->hw_info);
3167         kfree_const(hdev->fw_info);
3168
3169         destroy_workqueue(hdev->workqueue);
3170         destroy_workqueue(hdev->req_workqueue);
3171
3172         hci_dev_lock(hdev);
3173         hci_bdaddr_list_clear(&hdev->blacklist);
3174         hci_bdaddr_list_clear(&hdev->whitelist);
3175         hci_uuids_clear(hdev);
3176         hci_link_keys_clear(hdev);
3177         hci_smp_ltks_clear(hdev);
3178         hci_smp_irks_clear(hdev);
3179         hci_remote_oob_data_clear(hdev);
3180         hci_adv_instances_clear(hdev);
3181         hci_bdaddr_list_clear(&hdev->le_white_list);
3182         hci_conn_params_clear_all(hdev);
3183         hci_discovery_filter_clear(hdev);
3184         hci_dev_unlock(hdev);
3185
3186         hci_dev_put(hdev);
3187
3188         ida_simple_remove(&hci_index_ida, id);
3189 }
3190 EXPORT_SYMBOL(hci_unregister_dev);
3191
3192 /* Suspend HCI device */
3193 int hci_suspend_dev(struct hci_dev *hdev)
3194 {
3195         hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3196         return 0;
3197 }
3198 EXPORT_SYMBOL(hci_suspend_dev);
3199
3200 /* Resume HCI device */
3201 int hci_resume_dev(struct hci_dev *hdev)
3202 {
3203         hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3204         return 0;
3205 }
3206 EXPORT_SYMBOL(hci_resume_dev);
3207
3208 /* Reset HCI device */
3209 int hci_reset_dev(struct hci_dev *hdev)
3210 {
3211         const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3212         struct sk_buff *skb;
3213
3214         skb = bt_skb_alloc(3, GFP_ATOMIC);
3215         if (!skb)
3216                 return -ENOMEM;
3217
3218         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3219         memcpy(skb_put(skb, 3), hw_err, 3);
3220
3221         /* Send Hardware Error to upper stack */
3222         return hci_recv_frame(hdev, skb);
3223 }
3224 EXPORT_SYMBOL(hci_reset_dev);
3225
3226 /* Receive frame from HCI drivers */
3227 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3228 {
3229         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3230                       && !test_bit(HCI_INIT, &hdev->flags))) {
3231                 kfree_skb(skb);
3232                 return -ENXIO;
3233         }
3234
3235         if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3236             hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3237             hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3238                 kfree_skb(skb);
3239                 return -EINVAL;
3240         }
3241
3242         /* Incoming skb */
3243         bt_cb(skb)->incoming = 1;
3244
3245         /* Time stamp */
3246         __net_timestamp(skb);
3247
3248         skb_queue_tail(&hdev->rx_q, skb);
3249         queue_work(hdev->workqueue, &hdev->rx_work);
3250
3251         return 0;
3252 }
3253 EXPORT_SYMBOL(hci_recv_frame);
3254
3255 /* Receive diagnostic message from HCI drivers */
3256 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3257 {
3258         /* Mark as diagnostic packet */
3259         hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3260
3261         /* Time stamp */
3262         __net_timestamp(skb);
3263
3264         skb_queue_tail(&hdev->rx_q, skb);
3265         queue_work(hdev->workqueue, &hdev->rx_work);
3266
3267         return 0;
3268 }
3269 EXPORT_SYMBOL(hci_recv_diag);
3270
3271 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3272 {
3273         va_list vargs;
3274
3275         va_start(vargs, fmt);
3276         kfree_const(hdev->hw_info);
3277         hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3278         va_end(vargs);
3279 }
3280 EXPORT_SYMBOL(hci_set_hw_info);
3281
3282 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3283 {
3284         va_list vargs;
3285
3286         va_start(vargs, fmt);
3287         kfree_const(hdev->fw_info);
3288         hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3289         va_end(vargs);
3290 }
3291 EXPORT_SYMBOL(hci_set_fw_info);
3292
3293 /* ---- Interface to upper protocols ---- */
3294
3295 int hci_register_cb(struct hci_cb *cb)
3296 {
3297         BT_DBG("%p name %s", cb, cb->name);
3298
3299         mutex_lock(&hci_cb_list_lock);
3300         list_add_tail(&cb->list, &hci_cb_list);
3301         mutex_unlock(&hci_cb_list_lock);
3302
3303         return 0;
3304 }
3305 EXPORT_SYMBOL(hci_register_cb);
3306
3307 int hci_unregister_cb(struct hci_cb *cb)
3308 {
3309         BT_DBG("%p name %s", cb, cb->name);
3310
3311         mutex_lock(&hci_cb_list_lock);
3312         list_del(&cb->list);
3313         mutex_unlock(&hci_cb_list_lock);
3314
3315         return 0;
3316 }
3317 EXPORT_SYMBOL(hci_unregister_cb);
3318
3319 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3320 {
3321         int err;
3322
3323         BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3324                skb->len);
3325
3326         /* Time stamp */
3327         __net_timestamp(skb);
3328
3329         /* Send copy to monitor */
3330         hci_send_to_monitor(hdev, skb);
3331
3332         if (atomic_read(&hdev->promisc)) {
3333                 /* Send copy to the sockets */
3334                 hci_send_to_sock(hdev, skb);
3335         }
3336
3337         /* Get rid of skb owner, prior to sending to the driver. */
3338         skb_orphan(skb);
3339
3340         if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3341                 kfree_skb(skb);
3342                 return;
3343         }
3344
3345         err = hdev->send(hdev, skb);
3346         if (err < 0) {
3347                 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3348                 kfree_skb(skb);
3349         }
3350 }
3351
3352 /* Send HCI command */
3353 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3354                  const void *param)
3355 {
3356         struct sk_buff *skb;
3357
3358         BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3359
3360         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3361         if (!skb) {
3362                 BT_ERR("%s no memory for command", hdev->name);
3363                 return -ENOMEM;
3364         }
3365
3366         /* Stand-alone HCI commands must be flagged as
3367          * single-command requests.
3368          */
3369         bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3370
3371         skb_queue_tail(&hdev->cmd_q, skb);
3372         queue_work(hdev->workqueue, &hdev->cmd_work);
3373
3374         return 0;
3375 }
3376
3377 /* Get data from the previously sent command */
3378 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3379 {
3380         struct hci_command_hdr *hdr;
3381
3382         if (!hdev->sent_cmd)
3383                 return NULL;
3384
3385         hdr = (void *) hdev->sent_cmd->data;
3386
3387         if (hdr->opcode != cpu_to_le16(opcode))
3388                 return NULL;
3389
3390         BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3391
3392         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3393 }
3394
3395 /* Send HCI command and wait for command commplete event */
3396 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3397                              const void *param, u32 timeout)
3398 {
3399         struct sk_buff *skb;
3400
3401         if (!test_bit(HCI_UP, &hdev->flags))
3402                 return ERR_PTR(-ENETDOWN);
3403
3404         bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3405
3406         hci_req_sync_lock(hdev);
3407         skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3408         hci_req_sync_unlock(hdev);
3409
3410         return skb;
3411 }
3412 EXPORT_SYMBOL(hci_cmd_sync);
3413
3414 /* Send ACL data */
3415 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3416 {
3417         struct hci_acl_hdr *hdr;
3418         int len = skb->len;
3419
3420         skb_push(skb, HCI_ACL_HDR_SIZE);
3421         skb_reset_transport_header(skb);
3422         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3423         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3424         hdr->dlen   = cpu_to_le16(len);
3425 }
3426
3427 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3428                           struct sk_buff *skb, __u16 flags)
3429 {
3430         struct hci_conn *conn = chan->conn;
3431         struct hci_dev *hdev = conn->hdev;
3432         struct sk_buff *list;
3433
3434         skb->len = skb_headlen(skb);
3435         skb->data_len = 0;
3436
3437         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3438
3439         switch (hdev->dev_type) {
3440         case HCI_PRIMARY:
3441                 hci_add_acl_hdr(skb, conn->handle, flags);
3442                 break;
3443         case HCI_AMP:
3444                 hci_add_acl_hdr(skb, chan->handle, flags);
3445                 break;
3446         default:
3447                 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3448                 return;
3449         }
3450
3451         list = skb_shinfo(skb)->frag_list;
3452         if (!list) {
3453                 /* Non fragmented */
3454                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3455
3456                 skb_queue_tail(queue, skb);
3457         } else {
3458                 /* Fragmented */
3459                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3460
3461                 skb_shinfo(skb)->frag_list = NULL;
3462
3463                 /* Queue all fragments atomically. We need to use spin_lock_bh
3464                  * here because of 6LoWPAN links, as there this function is
3465                  * called from softirq and using normal spin lock could cause
3466                  * deadlocks.
3467                  */
3468                 spin_lock_bh(&queue->lock);
3469
3470                 __skb_queue_tail(queue, skb);
3471
3472                 flags &= ~ACL_START;
3473                 flags |= ACL_CONT;
3474                 do {
3475                         skb = list; list = list->next;
3476
3477                         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3478                         hci_add_acl_hdr(skb, conn->handle, flags);
3479
3480                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3481
3482                         __skb_queue_tail(queue, skb);
3483                 } while (list);
3484
3485                 spin_unlock_bh(&queue->lock);
3486         }
3487 }
3488
3489 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3490 {
3491         struct hci_dev *hdev = chan->conn->hdev;
3492
3493         BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3494
3495         hci_queue_acl(chan, &chan->data_q, skb, flags);
3496
3497         queue_work(hdev->workqueue, &hdev->tx_work);
3498 }
3499
3500 /* Send SCO data */
3501 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3502 {
3503         struct hci_dev *hdev = conn->hdev;
3504         struct hci_sco_hdr hdr;
3505
3506         BT_DBG("%s len %d", hdev->name, skb->len);
3507
3508         hdr.handle = cpu_to_le16(conn->handle);
3509         hdr.dlen   = skb->len;
3510
3511         skb_push(skb, HCI_SCO_HDR_SIZE);
3512         skb_reset_transport_header(skb);
3513         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3514
3515         hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3516
3517         skb_queue_tail(&conn->data_q, skb);
3518         queue_work(hdev->workqueue, &hdev->tx_work);
3519 }
3520
3521 /* ---- HCI TX task (outgoing data) ---- */
3522
3523 /* HCI Connection scheduler */
3524 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3525                                      int *quote)
3526 {
3527         struct hci_conn_hash *h = &hdev->conn_hash;
3528         struct hci_conn *conn = NULL, *c;
3529         unsigned int num = 0, min = ~0;
3530
3531         /* We don't have to lock device here. Connections are always
3532          * added and removed with TX task disabled. */
3533
3534         rcu_read_lock();
3535
3536         list_for_each_entry_rcu(c, &h->list, list) {
3537                 if (c->type != type || skb_queue_empty(&c->data_q))
3538                         continue;
3539
3540                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3541                         continue;
3542
3543                 num++;
3544
3545                 if (c->sent < min) {
3546                         min  = c->sent;
3547                         conn = c;
3548                 }
3549
3550                 if (hci_conn_num(hdev, type) == num)
3551                         break;
3552         }
3553
3554         rcu_read_unlock();
3555
3556         if (conn) {
3557                 int cnt, q;
3558
3559                 switch (conn->type) {
3560                 case ACL_LINK:
3561                         cnt = hdev->acl_cnt;
3562                         break;
3563                 case SCO_LINK:
3564                 case ESCO_LINK:
3565                         cnt = hdev->sco_cnt;
3566                         break;
3567                 case LE_LINK:
3568                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3569                         break;
3570                 default:
3571                         cnt = 0;
3572                         BT_ERR("Unknown link type");
3573                 }
3574
3575                 q = cnt / num;
3576                 *quote = q ? q : 1;
3577         } else
3578                 *quote = 0;
3579
3580         BT_DBG("conn %p quote %d", conn, *quote);
3581         return conn;
3582 }
3583
3584 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3585 {
3586         struct hci_conn_hash *h = &hdev->conn_hash;
3587         struct hci_conn *c;
3588
3589         BT_ERR("%s link tx timeout", hdev->name);
3590
3591         rcu_read_lock();
3592
3593         /* Kill stalled connections */
3594         list_for_each_entry_rcu(c, &h->list, list) {
3595                 if (c->type == type && c->sent) {
3596                         BT_ERR("%s killing stalled connection %pMR",
3597                                hdev->name, &c->dst);
3598                         hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3599                 }
3600         }
3601
3602         rcu_read_unlock();
3603 }
3604
3605 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3606                                       int *quote)
3607 {
3608         struct hci_conn_hash *h = &hdev->conn_hash;
3609         struct hci_chan *chan = NULL;
3610         unsigned int num = 0, min = ~0, cur_prio = 0;
3611         struct hci_conn *conn;
3612         int cnt, q, conn_num = 0;
3613
3614         BT_DBG("%s", hdev->name);
3615
3616         rcu_read_lock();
3617
3618         list_for_each_entry_rcu(conn, &h->list, list) {
3619                 struct hci_chan *tmp;
3620
3621                 if (conn->type != type)
3622                         continue;
3623
3624                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3625                         continue;
3626
3627                 conn_num++;
3628
3629                 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3630                         struct sk_buff *skb;
3631
3632                         if (skb_queue_empty(&tmp->data_q))
3633                                 continue;
3634
3635                         skb = skb_peek(&tmp->data_q);
3636                         if (skb->priority < cur_prio)
3637                                 continue;
3638
3639                         if (skb->priority > cur_prio) {
3640                                 num = 0;
3641                                 min = ~0;
3642                                 cur_prio = skb->priority;
3643                         }
3644
3645                         num++;
3646
3647                         if (conn->sent < min) {
3648                                 min  = conn->sent;
3649                                 chan = tmp;
3650                         }
3651                 }
3652
3653                 if (hci_conn_num(hdev, type) == conn_num)
3654                         break;
3655         }
3656
3657         rcu_read_unlock();
3658
3659         if (!chan)
3660                 return NULL;
3661
3662         switch (chan->conn->type) {
3663         case ACL_LINK:
3664                 cnt = hdev->acl_cnt;
3665                 break;
3666         case AMP_LINK:
3667                 cnt = hdev->block_cnt;
3668                 break;
3669         case SCO_LINK:
3670         case ESCO_LINK:
3671                 cnt = hdev->sco_cnt;
3672                 break;
3673         case LE_LINK:
3674                 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3675                 break;
3676         default:
3677                 cnt = 0;
3678                 BT_ERR("Unknown link type");
3679         }
3680
3681         q = cnt / num;
3682         *quote = q ? q : 1;
3683         BT_DBG("chan %p quote %d", chan, *quote);
3684         return chan;
3685 }
3686
3687 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3688 {
3689         struct hci_conn_hash *h = &hdev->conn_hash;
3690         struct hci_conn *conn;
3691         int num = 0;
3692
3693         BT_DBG("%s", hdev->name);
3694
3695         rcu_read_lock();
3696
3697         list_for_each_entry_rcu(conn, &h->list, list) {
3698                 struct hci_chan *chan;
3699
3700                 if (conn->type != type)
3701                         continue;
3702
3703                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3704                         continue;
3705
3706                 num++;
3707
3708                 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3709                         struct sk_buff *skb;
3710
3711                         if (chan->sent) {
3712                                 chan->sent = 0;
3713                                 continue;
3714                         }
3715
3716                         if (skb_queue_empty(&chan->data_q))
3717                                 continue;
3718
3719                         skb = skb_peek(&chan->data_q);
3720                         if (skb->priority >= HCI_PRIO_MAX - 1)
3721                                 continue;
3722
3723                         skb->priority = HCI_PRIO_MAX - 1;
3724
3725                         BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3726                                skb->priority);
3727                 }
3728
3729                 if (hci_conn_num(hdev, type) == num)
3730                         break;
3731         }
3732
3733         rcu_read_unlock();
3734
3735 }
3736
3737 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3738 {
3739         /* Calculate count of blocks used by this packet */
3740         return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3741 }
3742
3743 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3744 {
3745         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3746                 /* ACL tx timeout must be longer than maximum
3747                  * link supervision timeout (40.9 seconds) */
3748                 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3749                                        HCI_ACL_TX_TIMEOUT))
3750                         hci_link_tx_to(hdev, ACL_LINK);
3751         }
3752 }
3753
3754 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3755 {
3756         unsigned int cnt = hdev->acl_cnt;
3757         struct hci_chan *chan;
3758         struct sk_buff *skb;
3759         int quote;
3760
3761         __check_timeout(hdev, cnt);
3762
3763         while (hdev->acl_cnt &&
3764                (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3765                 u32 priority = (skb_peek(&chan->data_q))->priority;
3766                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3767                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3768                                skb->len, skb->priority);
3769
3770                         /* Stop if priority has changed */
3771                         if (skb->priority < priority)
3772                                 break;
3773
3774                         skb = skb_dequeue(&chan->data_q);
3775
3776                         hci_conn_enter_active_mode(chan->conn,
3777                                                    bt_cb(skb)->force_active);
3778
3779                         hci_send_frame(hdev, skb);
3780                         hdev->acl_last_tx = jiffies;
3781
3782                         hdev->acl_cnt--;
3783                         chan->sent++;
3784                         chan->conn->sent++;
3785                 }
3786         }
3787
3788         if (cnt != hdev->acl_cnt)
3789                 hci_prio_recalculate(hdev, ACL_LINK);
3790 }
3791
3792 static void hci_sched_acl_blk(struct hci_dev *hdev)
3793 {
3794         unsigned int cnt = hdev->block_cnt;
3795         struct hci_chan *chan;
3796         struct sk_buff *skb;
3797         int quote;
3798         u8 type;
3799
3800         __check_timeout(hdev, cnt);
3801
3802         BT_DBG("%s", hdev->name);
3803
3804         if (hdev->dev_type == HCI_AMP)
3805                 type = AMP_LINK;
3806         else
3807                 type = ACL_LINK;
3808
3809         while (hdev->block_cnt > 0 &&
3810                (chan = hci_chan_sent(hdev, type, &quote))) {
3811                 u32 priority = (skb_peek(&chan->data_q))->priority;
3812                 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3813                         int blocks;
3814
3815                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3816                                skb->len, skb->priority);
3817
3818                         /* Stop if priority has changed */
3819                         if (skb->priority < priority)
3820                                 break;
3821
3822                         skb = skb_dequeue(&chan->data_q);
3823
3824                         blocks = __get_blocks(hdev, skb);
3825                         if (blocks > hdev->block_cnt)
3826                                 return;
3827
3828                         hci_conn_enter_active_mode(chan->conn,
3829                                                    bt_cb(skb)->force_active);
3830
3831                         hci_send_frame(hdev, skb);
3832                         hdev->acl_last_tx = jiffies;
3833
3834                         hdev->block_cnt -= blocks;
3835                         quote -= blocks;
3836
3837                         chan->sent += blocks;
3838                         chan->conn->sent += blocks;
3839                 }
3840         }
3841
3842         if (cnt != hdev->block_cnt)
3843                 hci_prio_recalculate(hdev, type);
3844 }
3845
3846 static void hci_sched_acl(struct hci_dev *hdev)
3847 {
3848         BT_DBG("%s", hdev->name);
3849
3850         /* No ACL link over BR/EDR controller */
3851         if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3852                 return;
3853
3854         /* No AMP link over AMP controller */
3855         if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3856                 return;
3857
3858         switch (hdev->flow_ctl_mode) {
3859         case HCI_FLOW_CTL_MODE_PACKET_BASED:
3860                 hci_sched_acl_pkt(hdev);
3861                 break;
3862
3863         case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3864                 hci_sched_acl_blk(hdev);
3865                 break;
3866         }
3867 }
3868
3869 /* Schedule SCO */
3870 static void hci_sched_sco(struct hci_dev *hdev)
3871 {
3872         struct hci_conn *conn;
3873         struct sk_buff *skb;
3874         int quote;
3875
3876         BT_DBG("%s", hdev->name);
3877
3878         if (!hci_conn_num(hdev, SCO_LINK))
3879                 return;
3880
3881         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3882                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3883                         BT_DBG("skb %p len %d", skb, skb->len);
3884                         hci_send_frame(hdev, skb);
3885
3886                         conn->sent++;
3887                         if (conn->sent == ~0)
3888                                 conn->sent = 0;
3889                 }
3890         }
3891 }
3892
3893 static void hci_sched_esco(struct hci_dev *hdev)
3894 {
3895         struct hci_conn *conn;
3896         struct sk_buff *skb;
3897         int quote;
3898
3899         BT_DBG("%s", hdev->name);
3900
3901         if (!hci_conn_num(hdev, ESCO_LINK))
3902                 return;
3903
3904         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3905                                                      &quote))) {
3906                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3907                         BT_DBG("skb %p len %d", skb, skb->len);
3908                         hci_send_frame(hdev, skb);
3909
3910                         conn->sent++;
3911                         if (conn->sent == ~0)
3912                                 conn->sent = 0;
3913                 }
3914         }
3915 }
3916
3917 static void hci_sched_le(struct hci_dev *hdev)
3918 {
3919         struct hci_chan *chan;
3920         struct sk_buff *skb;
3921         int quote, cnt, tmp;
3922
3923         BT_DBG("%s", hdev->name);
3924
3925         if (!hci_conn_num(hdev, LE_LINK))
3926                 return;
3927
3928         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3929                 /* LE tx timeout must be longer than maximum
3930                  * link supervision timeout (40.9 seconds) */
3931                 if (!hdev->le_cnt && hdev->le_pkts &&
3932                     time_after(jiffies, hdev->le_last_tx + HZ * 45))
3933                         hci_link_tx_to(hdev, LE_LINK);
3934         }
3935
3936         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3937         tmp = cnt;
3938         while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3939                 u32 priority = (skb_peek(&chan->data_q))->priority;
3940                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3941                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3942                                skb->len, skb->priority);
3943
3944                         /* Stop if priority has changed */
3945                         if (skb->priority < priority)
3946                                 break;
3947
3948                         skb = skb_dequeue(&chan->data_q);
3949
3950                         hci_send_frame(hdev, skb);
3951                         hdev->le_last_tx = jiffies;
3952
3953                         cnt--;
3954                         chan->sent++;
3955                         chan->conn->sent++;
3956                 }
3957         }
3958
3959         if (hdev->le_pkts)
3960                 hdev->le_cnt = cnt;
3961         else
3962                 hdev->acl_cnt = cnt;
3963
3964         if (cnt != tmp)
3965                 hci_prio_recalculate(hdev, LE_LINK);
3966 }
3967
3968 static void hci_tx_work(struct work_struct *work)
3969 {
3970         struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3971         struct sk_buff *skb;
3972
3973         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3974                hdev->sco_cnt, hdev->le_cnt);
3975
3976         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3977                 /* Schedule queues and send stuff to HCI driver */
3978                 hci_sched_acl(hdev);
3979                 hci_sched_sco(hdev);
3980                 hci_sched_esco(hdev);
3981                 hci_sched_le(hdev);
3982         }
3983
3984         /* Send next queued raw (unknown type) packet */
3985         while ((skb = skb_dequeue(&hdev->raw_q)))
3986                 hci_send_frame(hdev, skb);
3987 }
3988
3989 /* ----- HCI RX task (incoming data processing) ----- */
3990
3991 /* ACL data packet */
3992 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3993 {
3994         struct hci_acl_hdr *hdr = (void *) skb->data;
3995         struct hci_conn *conn;
3996         __u16 handle, flags;
3997
3998         skb_pull(skb, HCI_ACL_HDR_SIZE);
3999
4000         handle = __le16_to_cpu(hdr->handle);
4001         flags  = hci_flags(handle);
4002         handle = hci_handle(handle);
4003
4004         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4005                handle, flags);
4006
4007         hdev->stat.acl_rx++;
4008
4009         hci_dev_lock(hdev);
4010         conn = hci_conn_hash_lookup_handle(hdev, handle);
4011         hci_dev_unlock(hdev);
4012
4013         if (conn) {
4014                 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4015
4016                 /* Send to upper protocol */
4017                 l2cap_recv_acldata(conn, skb, flags);
4018                 return;
4019         } else {
4020                 BT_ERR("%s ACL packet for unknown connection handle %d",
4021                        hdev->name, handle);
4022         }
4023
4024         kfree_skb(skb);
4025 }
4026
4027 /* SCO data packet */
4028 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4029 {
4030         struct hci_sco_hdr *hdr = (void *) skb->data;
4031         struct hci_conn *conn;
4032         __u16 handle;
4033
4034         skb_pull(skb, HCI_SCO_HDR_SIZE);
4035
4036         handle = __le16_to_cpu(hdr->handle);
4037
4038         BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4039
4040         hdev->stat.sco_rx++;
4041
4042         hci_dev_lock(hdev);
4043         conn = hci_conn_hash_lookup_handle(hdev, handle);
4044         hci_dev_unlock(hdev);
4045
4046         if (conn) {
4047                 /* Send to upper protocol */
4048                 sco_recv_scodata(conn, skb);
4049                 return;
4050         } else {
4051                 BT_ERR("%s SCO packet for unknown connection handle %d",
4052                        hdev->name, handle);
4053         }
4054
4055         kfree_skb(skb);
4056 }
4057
4058 static bool hci_req_is_complete(struct hci_dev *hdev)
4059 {
4060         struct sk_buff *skb;
4061
4062         skb = skb_peek(&hdev->cmd_q);
4063         if (!skb)
4064                 return true;
4065
4066         return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4067 }
4068
4069 static void hci_resend_last(struct hci_dev *hdev)
4070 {
4071         struct hci_command_hdr *sent;
4072         struct sk_buff *skb;
4073         u16 opcode;
4074
4075         if (!hdev->sent_cmd)
4076                 return;
4077
4078         sent = (void *) hdev->sent_cmd->data;
4079         opcode = __le16_to_cpu(sent->opcode);
4080         if (opcode == HCI_OP_RESET)
4081                 return;
4082
4083         skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4084         if (!skb)
4085                 return;
4086
4087         skb_queue_head(&hdev->cmd_q, skb);
4088         queue_work(hdev->workqueue, &hdev->cmd_work);
4089 }
4090
4091 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4092                           hci_req_complete_t *req_complete,
4093                           hci_req_complete_skb_t *req_complete_skb)
4094 {
4095         struct sk_buff *skb;
4096         unsigned long flags;
4097
4098         BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4099
4100         /* If the completed command doesn't match the last one that was
4101          * sent we need to do special handling of it.
4102          */
4103         if (!hci_sent_cmd_data(hdev, opcode)) {
4104                 /* Some CSR based controllers generate a spontaneous
4105                  * reset complete event during init and any pending
4106                  * command will never be completed. In such a case we
4107                  * need to resend whatever was the last sent
4108                  * command.
4109                  */
4110                 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4111                         hci_resend_last(hdev);
4112
4113                 return;
4114         }
4115
4116         /* If the command succeeded and there's still more commands in
4117          * this request the request is not yet complete.
4118          */
4119         if (!status && !hci_req_is_complete(hdev))
4120                 return;
4121
4122         /* If this was the last command in a request the complete
4123          * callback would be found in hdev->sent_cmd instead of the
4124          * command queue (hdev->cmd_q).
4125          */
4126         if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4127                 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4128                 return;
4129         }
4130
4131         if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4132                 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4133                 return;
4134         }
4135
4136         /* Remove all pending commands belonging to this request */
4137         spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4138         while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4139                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4140                         __skb_queue_head(&hdev->cmd_q, skb);
4141                         break;
4142                 }
4143
4144                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4145                         *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4146                 else
4147                         *req_complete = bt_cb(skb)->hci.req_complete;
4148                 kfree_skb(skb);
4149         }
4150         spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4151 }
4152
4153 static void hci_rx_work(struct work_struct *work)
4154 {
4155         struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4156         struct sk_buff *skb;
4157
4158         BT_DBG("%s", hdev->name);
4159
4160         while ((skb = skb_dequeue(&hdev->rx_q))) {
4161                 /* Send copy to monitor */
4162                 hci_send_to_monitor(hdev, skb);
4163
4164                 if (atomic_read(&hdev->promisc)) {
4165                         /* Send copy to the sockets */
4166                         hci_send_to_sock(hdev, skb);
4167                 }
4168
4169                 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4170                         kfree_skb(skb);
4171                         continue;
4172                 }
4173
4174                 if (test_bit(HCI_INIT, &hdev->flags)) {
4175                         /* Don't process data packets in this states. */
4176                         switch (hci_skb_pkt_type(skb)) {
4177                         case HCI_ACLDATA_PKT:
4178                         case HCI_SCODATA_PKT:
4179                                 kfree_skb(skb);
4180                                 continue;
4181                         }
4182                 }
4183
4184                 /* Process frame */
4185                 switch (hci_skb_pkt_type(skb)) {
4186                 case HCI_EVENT_PKT:
4187                         BT_DBG("%s Event packet", hdev->name);
4188                         hci_event_packet(hdev, skb);
4189                         break;
4190
4191                 case HCI_ACLDATA_PKT:
4192                         BT_DBG("%s ACL data packet", hdev->name);
4193                         hci_acldata_packet(hdev, skb);
4194                         break;
4195
4196                 case HCI_SCODATA_PKT:
4197                         BT_DBG("%s SCO data packet", hdev->name);
4198                         hci_scodata_packet(hdev, skb);
4199                         break;
4200
4201                 default:
4202                         kfree_skb(skb);
4203                         break;
4204                 }
4205         }
4206 }
4207
4208 static void hci_cmd_work(struct work_struct *work)
4209 {
4210         struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4211         struct sk_buff *skb;
4212
4213         BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4214                atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4215
4216         /* Send queued commands */
4217         if (atomic_read(&hdev->cmd_cnt)) {
4218                 skb = skb_dequeue(&hdev->cmd_q);
4219                 if (!skb)
4220                         return;
4221
4222                 kfree_skb(hdev->sent_cmd);
4223
4224                 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4225                 if (hdev->sent_cmd) {
4226                         atomic_dec(&hdev->cmd_cnt);
4227                         hci_send_frame(hdev, skb);
4228                         if (test_bit(HCI_RESET, &hdev->flags))
4229                                 cancel_delayed_work(&hdev->cmd_timer);
4230                         else
4231                                 schedule_delayed_work(&hdev->cmd_timer,
4232                                                       HCI_CMD_TIMEOUT);
4233                 } else {
4234                         skb_queue_head(&hdev->cmd_q, skb);
4235                         queue_work(hdev->workqueue, &hdev->cmd_work);
4236                 }
4237         }
4238 }