net: Always poll at least one device in net_rx_action
[cascardo/linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly;       /* Taps */
151 static struct list_head offload_base __read_mostly;
152
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155                                          struct net_device *dev,
156                                          struct netdev_notifier_info *info);
157
158 /*
159  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base_head list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185
186 static seqcount_t devnet_rename_seq;
187
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190         while (++net->dev_base_seq == 0);
191 }
192
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208         spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215         spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222         struct net *net = dev_net(dev);
223
224         ASSERT_RTNL();
225
226         write_lock_bh(&dev_base_lock);
227         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229         hlist_add_head_rcu(&dev->index_hlist,
230                            dev_index_hash(net, dev->ifindex));
231         write_unlock_bh(&dev_base_lock);
232
233         dev_base_seq_inc(net);
234 }
235
236 /* Device list removal
237  * caller must respect a RCU grace period before freeing/reusing dev
238  */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241         ASSERT_RTNL();
242
243         /* Unlink dev from the device chain */
244         write_lock_bh(&dev_base_lock);
245         list_del_rcu(&dev->dev_list);
246         hlist_del_rcu(&dev->name_hlist);
247         hlist_del_rcu(&dev->index_hlist);
248         write_unlock_bh(&dev_base_lock);
249
250         dev_base_seq_inc(dev_net(dev));
251 }
252
253 /*
254  *      Our notifier list
255  */
256
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258
259 /*
260  *      Device drivers call our routines to queue packets here. We empty the
261  *      queue in the local softnet handler.
262  */
263
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270  * according to dev->type
271  */
272 static const unsigned short netdev_lock_type[] =
273         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *const netdev_lock_name[] =
290         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311         int i;
312
313         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314                 if (netdev_lock_type[i] == dev_type)
315                         return i;
316         /* the last key is used by default */
317         return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321                                                  unsigned short dev_type)
322 {
323         int i;
324
325         i = netdev_lock_pos(dev_type);
326         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327                                    netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332         int i;
333
334         i = netdev_lock_pos(dev->type);
335         lockdep_set_class_and_name(&dev->addr_list_lock,
336                                    &netdev_addr_lock_key[i],
337                                    netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341                                                  unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351                 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356  *      Add a protocol ID to the list. Now that the input handler is
357  *      smarter we can dispense with all the messy stuff that used to be
358  *      here.
359  *
360  *      BEWARE!!! Protocol handlers, mangling input packets,
361  *      MUST BE last in hash buckets and checking protocol handlers
362  *      MUST start from promiscuous ptype_all chain in net_bh.
363  *      It is true now, do not change it.
364  *      Explanation follows: if protocol handler, mangling packet, will
365  *      be the first on list, it is not able to sense, that packet
366  *      is cloned and should be copied-on-write, so that it will
367  *      change it and subsequent readers will get broken packet.
368  *                                                      --ANK (980803)
369  */
370
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373         if (pt->type == htons(ETH_P_ALL))
374                 return &ptype_all;
375         else
376                 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
377 }
378
379 /**
380  *      dev_add_pack - add packet handler
381  *      @pt: packet type declaration
382  *
383  *      Add a protocol handler to the networking stack. The passed &packet_type
384  *      is linked into kernel lists and may not be freed until it has been
385  *      removed from the kernel lists.
386  *
387  *      This call does not sleep therefore it can not
388  *      guarantee all CPU's that are in middle of receiving packets
389  *      will see the new packet type (until the next received packet).
390  */
391
392 void dev_add_pack(struct packet_type *pt)
393 {
394         struct list_head *head = ptype_head(pt);
395
396         spin_lock(&ptype_lock);
397         list_add_rcu(&pt->list, head);
398         spin_unlock(&ptype_lock);
399 }
400 EXPORT_SYMBOL(dev_add_pack);
401
402 /**
403  *      __dev_remove_pack        - remove packet handler
404  *      @pt: packet type declaration
405  *
406  *      Remove a protocol handler that was previously added to the kernel
407  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
408  *      from the kernel lists and can be freed or reused once this function
409  *      returns.
410  *
411  *      The packet type might still be in use by receivers
412  *      and must not be freed until after all the CPU's have gone
413  *      through a quiescent state.
414  */
415 void __dev_remove_pack(struct packet_type *pt)
416 {
417         struct list_head *head = ptype_head(pt);
418         struct packet_type *pt1;
419
420         spin_lock(&ptype_lock);
421
422         list_for_each_entry(pt1, head, list) {
423                 if (pt == pt1) {
424                         list_del_rcu(&pt->list);
425                         goto out;
426                 }
427         }
428
429         pr_warn("dev_remove_pack: %p not found\n", pt);
430 out:
431         spin_unlock(&ptype_lock);
432 }
433 EXPORT_SYMBOL(__dev_remove_pack);
434
435 /**
436  *      dev_remove_pack  - remove packet handler
437  *      @pt: packet type declaration
438  *
439  *      Remove a protocol handler that was previously added to the kernel
440  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
441  *      from the kernel lists and can be freed or reused once this function
442  *      returns.
443  *
444  *      This call sleeps to guarantee that no CPU is looking at the packet
445  *      type after return.
446  */
447 void dev_remove_pack(struct packet_type *pt)
448 {
449         __dev_remove_pack(pt);
450
451         synchronize_net();
452 }
453 EXPORT_SYMBOL(dev_remove_pack);
454
455
456 /**
457  *      dev_add_offload - register offload handlers
458  *      @po: protocol offload declaration
459  *
460  *      Add protocol offload handlers to the networking stack. The passed
461  *      &proto_offload is linked into kernel lists and may not be freed until
462  *      it has been removed from the kernel lists.
463  *
464  *      This call does not sleep therefore it can not
465  *      guarantee all CPU's that are in middle of receiving packets
466  *      will see the new offload handlers (until the next received packet).
467  */
468 void dev_add_offload(struct packet_offload *po)
469 {
470         struct list_head *head = &offload_base;
471
472         spin_lock(&offload_lock);
473         list_add_rcu(&po->list, head);
474         spin_unlock(&offload_lock);
475 }
476 EXPORT_SYMBOL(dev_add_offload);
477
478 /**
479  *      __dev_remove_offload     - remove offload handler
480  *      @po: packet offload declaration
481  *
482  *      Remove a protocol offload handler that was previously added to the
483  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
484  *      is removed from the kernel lists and can be freed or reused once this
485  *      function returns.
486  *
487  *      The packet type might still be in use by receivers
488  *      and must not be freed until after all the CPU's have gone
489  *      through a quiescent state.
490  */
491 static void __dev_remove_offload(struct packet_offload *po)
492 {
493         struct list_head *head = &offload_base;
494         struct packet_offload *po1;
495
496         spin_lock(&offload_lock);
497
498         list_for_each_entry(po1, head, list) {
499                 if (po == po1) {
500                         list_del_rcu(&po->list);
501                         goto out;
502                 }
503         }
504
505         pr_warn("dev_remove_offload: %p not found\n", po);
506 out:
507         spin_unlock(&offload_lock);
508 }
509
510 /**
511  *      dev_remove_offload       - remove packet offload handler
512  *      @po: packet offload declaration
513  *
514  *      Remove a packet offload handler that was previously added to the kernel
515  *      offload handlers by dev_add_offload(). The passed &offload_type is
516  *      removed from the kernel lists and can be freed or reused once this
517  *      function returns.
518  *
519  *      This call sleeps to guarantee that no CPU is looking at the packet
520  *      type after return.
521  */
522 void dev_remove_offload(struct packet_offload *po)
523 {
524         __dev_remove_offload(po);
525
526         synchronize_net();
527 }
528 EXPORT_SYMBOL(dev_remove_offload);
529
530 /******************************************************************************
531
532                       Device Boot-time Settings Routines
533
534 *******************************************************************************/
535
536 /* Boot time configuration table */
537 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
538
539 /**
540  *      netdev_boot_setup_add   - add new setup entry
541  *      @name: name of the device
542  *      @map: configured settings for the device
543  *
544  *      Adds new setup entry to the dev_boot_setup list.  The function
545  *      returns 0 on error and 1 on success.  This is a generic routine to
546  *      all netdevices.
547  */
548 static int netdev_boot_setup_add(char *name, struct ifmap *map)
549 {
550         struct netdev_boot_setup *s;
551         int i;
552
553         s = dev_boot_setup;
554         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
555                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
556                         memset(s[i].name, 0, sizeof(s[i].name));
557                         strlcpy(s[i].name, name, IFNAMSIZ);
558                         memcpy(&s[i].map, map, sizeof(s[i].map));
559                         break;
560                 }
561         }
562
563         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
564 }
565
566 /**
567  *      netdev_boot_setup_check - check boot time settings
568  *      @dev: the netdevice
569  *
570  *      Check boot time settings for the device.
571  *      The found settings are set for the device to be used
572  *      later in the device probing.
573  *      Returns 0 if no settings found, 1 if they are.
574  */
575 int netdev_boot_setup_check(struct net_device *dev)
576 {
577         struct netdev_boot_setup *s = dev_boot_setup;
578         int i;
579
580         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
581                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
582                     !strcmp(dev->name, s[i].name)) {
583                         dev->irq        = s[i].map.irq;
584                         dev->base_addr  = s[i].map.base_addr;
585                         dev->mem_start  = s[i].map.mem_start;
586                         dev->mem_end    = s[i].map.mem_end;
587                         return 1;
588                 }
589         }
590         return 0;
591 }
592 EXPORT_SYMBOL(netdev_boot_setup_check);
593
594
595 /**
596  *      netdev_boot_base        - get address from boot time settings
597  *      @prefix: prefix for network device
598  *      @unit: id for network device
599  *
600  *      Check boot time settings for the base address of device.
601  *      The found settings are set for the device to be used
602  *      later in the device probing.
603  *      Returns 0 if no settings found.
604  */
605 unsigned long netdev_boot_base(const char *prefix, int unit)
606 {
607         const struct netdev_boot_setup *s = dev_boot_setup;
608         char name[IFNAMSIZ];
609         int i;
610
611         sprintf(name, "%s%d", prefix, unit);
612
613         /*
614          * If device already registered then return base of 1
615          * to indicate not to probe for this interface
616          */
617         if (__dev_get_by_name(&init_net, name))
618                 return 1;
619
620         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
621                 if (!strcmp(name, s[i].name))
622                         return s[i].map.base_addr;
623         return 0;
624 }
625
626 /*
627  * Saves at boot time configured settings for any netdevice.
628  */
629 int __init netdev_boot_setup(char *str)
630 {
631         int ints[5];
632         struct ifmap map;
633
634         str = get_options(str, ARRAY_SIZE(ints), ints);
635         if (!str || !*str)
636                 return 0;
637
638         /* Save settings */
639         memset(&map, 0, sizeof(map));
640         if (ints[0] > 0)
641                 map.irq = ints[1];
642         if (ints[0] > 1)
643                 map.base_addr = ints[2];
644         if (ints[0] > 2)
645                 map.mem_start = ints[3];
646         if (ints[0] > 3)
647                 map.mem_end = ints[4];
648
649         /* Add new entry to the list */
650         return netdev_boot_setup_add(str, &map);
651 }
652
653 __setup("netdev=", netdev_boot_setup);
654
655 /*******************************************************************************
656
657                             Device Interface Subroutines
658
659 *******************************************************************************/
660
661 /**
662  *      __dev_get_by_name       - find a device by its name
663  *      @net: the applicable net namespace
664  *      @name: name to find
665  *
666  *      Find an interface by name. Must be called under RTNL semaphore
667  *      or @dev_base_lock. If the name is found a pointer to the device
668  *      is returned. If the name is not found then %NULL is returned. The
669  *      reference counters are not incremented so the caller must be
670  *      careful with locks.
671  */
672
673 struct net_device *__dev_get_by_name(struct net *net, const char *name)
674 {
675         struct net_device *dev;
676         struct hlist_head *head = dev_name_hash(net, name);
677
678         hlist_for_each_entry(dev, head, name_hlist)
679                 if (!strncmp(dev->name, name, IFNAMSIZ))
680                         return dev;
681
682         return NULL;
683 }
684 EXPORT_SYMBOL(__dev_get_by_name);
685
686 /**
687  *      dev_get_by_name_rcu     - find a device by its name
688  *      @net: the applicable net namespace
689  *      @name: name to find
690  *
691  *      Find an interface by name.
692  *      If the name is found a pointer to the device is returned.
693  *      If the name is not found then %NULL is returned.
694  *      The reference counters are not incremented so the caller must be
695  *      careful with locks. The caller must hold RCU lock.
696  */
697
698 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
699 {
700         struct net_device *dev;
701         struct hlist_head *head = dev_name_hash(net, name);
702
703         hlist_for_each_entry_rcu(dev, head, name_hlist)
704                 if (!strncmp(dev->name, name, IFNAMSIZ))
705                         return dev;
706
707         return NULL;
708 }
709 EXPORT_SYMBOL(dev_get_by_name_rcu);
710
711 /**
712  *      dev_get_by_name         - find a device by its name
713  *      @net: the applicable net namespace
714  *      @name: name to find
715  *
716  *      Find an interface by name. This can be called from any
717  *      context and does its own locking. The returned handle has
718  *      the usage count incremented and the caller must use dev_put() to
719  *      release it when it is no longer needed. %NULL is returned if no
720  *      matching device is found.
721  */
722
723 struct net_device *dev_get_by_name(struct net *net, const char *name)
724 {
725         struct net_device *dev;
726
727         rcu_read_lock();
728         dev = dev_get_by_name_rcu(net, name);
729         if (dev)
730                 dev_hold(dev);
731         rcu_read_unlock();
732         return dev;
733 }
734 EXPORT_SYMBOL(dev_get_by_name);
735
736 /**
737  *      __dev_get_by_index - find a device by its ifindex
738  *      @net: the applicable net namespace
739  *      @ifindex: index of device
740  *
741  *      Search for an interface by index. Returns %NULL if the device
742  *      is not found or a pointer to the device. The device has not
743  *      had its reference counter increased so the caller must be careful
744  *      about locking. The caller must hold either the RTNL semaphore
745  *      or @dev_base_lock.
746  */
747
748 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
749 {
750         struct net_device *dev;
751         struct hlist_head *head = dev_index_hash(net, ifindex);
752
753         hlist_for_each_entry(dev, head, index_hlist)
754                 if (dev->ifindex == ifindex)
755                         return dev;
756
757         return NULL;
758 }
759 EXPORT_SYMBOL(__dev_get_by_index);
760
761 /**
762  *      dev_get_by_index_rcu - find a device by its ifindex
763  *      @net: the applicable net namespace
764  *      @ifindex: index of device
765  *
766  *      Search for an interface by index. Returns %NULL if the device
767  *      is not found or a pointer to the device. The device has not
768  *      had its reference counter increased so the caller must be careful
769  *      about locking. The caller must hold RCU lock.
770  */
771
772 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
773 {
774         struct net_device *dev;
775         struct hlist_head *head = dev_index_hash(net, ifindex);
776
777         hlist_for_each_entry_rcu(dev, head, index_hlist)
778                 if (dev->ifindex == ifindex)
779                         return dev;
780
781         return NULL;
782 }
783 EXPORT_SYMBOL(dev_get_by_index_rcu);
784
785
786 /**
787  *      dev_get_by_index - find a device by its ifindex
788  *      @net: the applicable net namespace
789  *      @ifindex: index of device
790  *
791  *      Search for an interface by index. Returns NULL if the device
792  *      is not found or a pointer to the device. The device returned has
793  *      had a reference added and the pointer is safe until the user calls
794  *      dev_put to indicate they have finished with it.
795  */
796
797 struct net_device *dev_get_by_index(struct net *net, int ifindex)
798 {
799         struct net_device *dev;
800
801         rcu_read_lock();
802         dev = dev_get_by_index_rcu(net, ifindex);
803         if (dev)
804                 dev_hold(dev);
805         rcu_read_unlock();
806         return dev;
807 }
808 EXPORT_SYMBOL(dev_get_by_index);
809
810 /**
811  *      netdev_get_name - get a netdevice name, knowing its ifindex.
812  *      @net: network namespace
813  *      @name: a pointer to the buffer where the name will be stored.
814  *      @ifindex: the ifindex of the interface to get the name from.
815  *
816  *      The use of raw_seqcount_begin() and cond_resched() before
817  *      retrying is required as we want to give the writers a chance
818  *      to complete when CONFIG_PREEMPT is not set.
819  */
820 int netdev_get_name(struct net *net, char *name, int ifindex)
821 {
822         struct net_device *dev;
823         unsigned int seq;
824
825 retry:
826         seq = raw_seqcount_begin(&devnet_rename_seq);
827         rcu_read_lock();
828         dev = dev_get_by_index_rcu(net, ifindex);
829         if (!dev) {
830                 rcu_read_unlock();
831                 return -ENODEV;
832         }
833
834         strcpy(name, dev->name);
835         rcu_read_unlock();
836         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
837                 cond_resched();
838                 goto retry;
839         }
840
841         return 0;
842 }
843
844 /**
845  *      dev_getbyhwaddr_rcu - find a device by its hardware address
846  *      @net: the applicable net namespace
847  *      @type: media type of device
848  *      @ha: hardware address
849  *
850  *      Search for an interface by MAC address. Returns NULL if the device
851  *      is not found or a pointer to the device.
852  *      The caller must hold RCU or RTNL.
853  *      The returned device has not had its ref count increased
854  *      and the caller must therefore be careful about locking
855  *
856  */
857
858 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
859                                        const char *ha)
860 {
861         struct net_device *dev;
862
863         for_each_netdev_rcu(net, dev)
864                 if (dev->type == type &&
865                     !memcmp(dev->dev_addr, ha, dev->addr_len))
866                         return dev;
867
868         return NULL;
869 }
870 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
871
872 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
873 {
874         struct net_device *dev;
875
876         ASSERT_RTNL();
877         for_each_netdev(net, dev)
878                 if (dev->type == type)
879                         return dev;
880
881         return NULL;
882 }
883 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
884
885 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
886 {
887         struct net_device *dev, *ret = NULL;
888
889         rcu_read_lock();
890         for_each_netdev_rcu(net, dev)
891                 if (dev->type == type) {
892                         dev_hold(dev);
893                         ret = dev;
894                         break;
895                 }
896         rcu_read_unlock();
897         return ret;
898 }
899 EXPORT_SYMBOL(dev_getfirstbyhwtype);
900
901 /**
902  *      __dev_get_by_flags - find any device with given flags
903  *      @net: the applicable net namespace
904  *      @if_flags: IFF_* values
905  *      @mask: bitmask of bits in if_flags to check
906  *
907  *      Search for any interface with the given flags. Returns NULL if a device
908  *      is not found or a pointer to the device. Must be called inside
909  *      rtnl_lock(), and result refcount is unchanged.
910  */
911
912 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
913                                       unsigned short mask)
914 {
915         struct net_device *dev, *ret;
916
917         ASSERT_RTNL();
918
919         ret = NULL;
920         for_each_netdev(net, dev) {
921                 if (((dev->flags ^ if_flags) & mask) == 0) {
922                         ret = dev;
923                         break;
924                 }
925         }
926         return ret;
927 }
928 EXPORT_SYMBOL(__dev_get_by_flags);
929
930 /**
931  *      dev_valid_name - check if name is okay for network device
932  *      @name: name string
933  *
934  *      Network device names need to be valid file names to
935  *      to allow sysfs to work.  We also disallow any kind of
936  *      whitespace.
937  */
938 bool dev_valid_name(const char *name)
939 {
940         if (*name == '\0')
941                 return false;
942         if (strlen(name) >= IFNAMSIZ)
943                 return false;
944         if (!strcmp(name, ".") || !strcmp(name, ".."))
945                 return false;
946
947         while (*name) {
948                 if (*name == '/' || isspace(*name))
949                         return false;
950                 name++;
951         }
952         return true;
953 }
954 EXPORT_SYMBOL(dev_valid_name);
955
956 /**
957  *      __dev_alloc_name - allocate a name for a device
958  *      @net: network namespace to allocate the device name in
959  *      @name: name format string
960  *      @buf:  scratch buffer and result name string
961  *
962  *      Passed a format string - eg "lt%d" it will try and find a suitable
963  *      id. It scans list of devices to build up a free map, then chooses
964  *      the first empty slot. The caller must hold the dev_base or rtnl lock
965  *      while allocating the name and adding the device in order to avoid
966  *      duplicates.
967  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
968  *      Returns the number of the unit assigned or a negative errno code.
969  */
970
971 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
972 {
973         int i = 0;
974         const char *p;
975         const int max_netdevices = 8*PAGE_SIZE;
976         unsigned long *inuse;
977         struct net_device *d;
978
979         p = strnchr(name, IFNAMSIZ-1, '%');
980         if (p) {
981                 /*
982                  * Verify the string as this thing may have come from
983                  * the user.  There must be either one "%d" and no other "%"
984                  * characters.
985                  */
986                 if (p[1] != 'd' || strchr(p + 2, '%'))
987                         return -EINVAL;
988
989                 /* Use one page as a bit array of possible slots */
990                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
991                 if (!inuse)
992                         return -ENOMEM;
993
994                 for_each_netdev(net, d) {
995                         if (!sscanf(d->name, name, &i))
996                                 continue;
997                         if (i < 0 || i >= max_netdevices)
998                                 continue;
999
1000                         /*  avoid cases where sscanf is not exact inverse of printf */
1001                         snprintf(buf, IFNAMSIZ, name, i);
1002                         if (!strncmp(buf, d->name, IFNAMSIZ))
1003                                 set_bit(i, inuse);
1004                 }
1005
1006                 i = find_first_zero_bit(inuse, max_netdevices);
1007                 free_page((unsigned long) inuse);
1008         }
1009
1010         if (buf != name)
1011                 snprintf(buf, IFNAMSIZ, name, i);
1012         if (!__dev_get_by_name(net, buf))
1013                 return i;
1014
1015         /* It is possible to run out of possible slots
1016          * when the name is long and there isn't enough space left
1017          * for the digits, or if all bits are used.
1018          */
1019         return -ENFILE;
1020 }
1021
1022 /**
1023  *      dev_alloc_name - allocate a name for a device
1024  *      @dev: device
1025  *      @name: name format string
1026  *
1027  *      Passed a format string - eg "lt%d" it will try and find a suitable
1028  *      id. It scans list of devices to build up a free map, then chooses
1029  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1030  *      while allocating the name and adding the device in order to avoid
1031  *      duplicates.
1032  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1033  *      Returns the number of the unit assigned or a negative errno code.
1034  */
1035
1036 int dev_alloc_name(struct net_device *dev, const char *name)
1037 {
1038         char buf[IFNAMSIZ];
1039         struct net *net;
1040         int ret;
1041
1042         BUG_ON(!dev_net(dev));
1043         net = dev_net(dev);
1044         ret = __dev_alloc_name(net, name, buf);
1045         if (ret >= 0)
1046                 strlcpy(dev->name, buf, IFNAMSIZ);
1047         return ret;
1048 }
1049 EXPORT_SYMBOL(dev_alloc_name);
1050
1051 static int dev_alloc_name_ns(struct net *net,
1052                              struct net_device *dev,
1053                              const char *name)
1054 {
1055         char buf[IFNAMSIZ];
1056         int ret;
1057
1058         ret = __dev_alloc_name(net, name, buf);
1059         if (ret >= 0)
1060                 strlcpy(dev->name, buf, IFNAMSIZ);
1061         return ret;
1062 }
1063
1064 static int dev_get_valid_name(struct net *net,
1065                               struct net_device *dev,
1066                               const char *name)
1067 {
1068         BUG_ON(!net);
1069
1070         if (!dev_valid_name(name))
1071                 return -EINVAL;
1072
1073         if (strchr(name, '%'))
1074                 return dev_alloc_name_ns(net, dev, name);
1075         else if (__dev_get_by_name(net, name))
1076                 return -EEXIST;
1077         else if (dev->name != name)
1078                 strlcpy(dev->name, name, IFNAMSIZ);
1079
1080         return 0;
1081 }
1082
1083 /**
1084  *      dev_change_name - change name of a device
1085  *      @dev: device
1086  *      @newname: name (or format string) must be at least IFNAMSIZ
1087  *
1088  *      Change name of a device, can pass format strings "eth%d".
1089  *      for wildcarding.
1090  */
1091 int dev_change_name(struct net_device *dev, const char *newname)
1092 {
1093         unsigned char old_assign_type;
1094         char oldname[IFNAMSIZ];
1095         int err = 0;
1096         int ret;
1097         struct net *net;
1098
1099         ASSERT_RTNL();
1100         BUG_ON(!dev_net(dev));
1101
1102         net = dev_net(dev);
1103         if (dev->flags & IFF_UP)
1104                 return -EBUSY;
1105
1106         write_seqcount_begin(&devnet_rename_seq);
1107
1108         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1109                 write_seqcount_end(&devnet_rename_seq);
1110                 return 0;
1111         }
1112
1113         memcpy(oldname, dev->name, IFNAMSIZ);
1114
1115         err = dev_get_valid_name(net, dev, newname);
1116         if (err < 0) {
1117                 write_seqcount_end(&devnet_rename_seq);
1118                 return err;
1119         }
1120
1121         if (oldname[0] && !strchr(oldname, '%'))
1122                 netdev_info(dev, "renamed from %s\n", oldname);
1123
1124         old_assign_type = dev->name_assign_type;
1125         dev->name_assign_type = NET_NAME_RENAMED;
1126
1127 rollback:
1128         ret = device_rename(&dev->dev, dev->name);
1129         if (ret) {
1130                 memcpy(dev->name, oldname, IFNAMSIZ);
1131                 dev->name_assign_type = old_assign_type;
1132                 write_seqcount_end(&devnet_rename_seq);
1133                 return ret;
1134         }
1135
1136         write_seqcount_end(&devnet_rename_seq);
1137
1138         netdev_adjacent_rename_links(dev, oldname);
1139
1140         write_lock_bh(&dev_base_lock);
1141         hlist_del_rcu(&dev->name_hlist);
1142         write_unlock_bh(&dev_base_lock);
1143
1144         synchronize_rcu();
1145
1146         write_lock_bh(&dev_base_lock);
1147         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1148         write_unlock_bh(&dev_base_lock);
1149
1150         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1151         ret = notifier_to_errno(ret);
1152
1153         if (ret) {
1154                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1155                 if (err >= 0) {
1156                         err = ret;
1157                         write_seqcount_begin(&devnet_rename_seq);
1158                         memcpy(dev->name, oldname, IFNAMSIZ);
1159                         memcpy(oldname, newname, IFNAMSIZ);
1160                         dev->name_assign_type = old_assign_type;
1161                         old_assign_type = NET_NAME_RENAMED;
1162                         goto rollback;
1163                 } else {
1164                         pr_err("%s: name change rollback failed: %d\n",
1165                                dev->name, ret);
1166                 }
1167         }
1168
1169         return err;
1170 }
1171
1172 /**
1173  *      dev_set_alias - change ifalias of a device
1174  *      @dev: device
1175  *      @alias: name up to IFALIASZ
1176  *      @len: limit of bytes to copy from info
1177  *
1178  *      Set ifalias for a device,
1179  */
1180 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1181 {
1182         char *new_ifalias;
1183
1184         ASSERT_RTNL();
1185
1186         if (len >= IFALIASZ)
1187                 return -EINVAL;
1188
1189         if (!len) {
1190                 kfree(dev->ifalias);
1191                 dev->ifalias = NULL;
1192                 return 0;
1193         }
1194
1195         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1196         if (!new_ifalias)
1197                 return -ENOMEM;
1198         dev->ifalias = new_ifalias;
1199
1200         strlcpy(dev->ifalias, alias, len+1);
1201         return len;
1202 }
1203
1204
1205 /**
1206  *      netdev_features_change - device changes features
1207  *      @dev: device to cause notification
1208  *
1209  *      Called to indicate a device has changed features.
1210  */
1211 void netdev_features_change(struct net_device *dev)
1212 {
1213         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1214 }
1215 EXPORT_SYMBOL(netdev_features_change);
1216
1217 /**
1218  *      netdev_state_change - device changes state
1219  *      @dev: device to cause notification
1220  *
1221  *      Called to indicate a device has changed state. This function calls
1222  *      the notifier chains for netdev_chain and sends a NEWLINK message
1223  *      to the routing socket.
1224  */
1225 void netdev_state_change(struct net_device *dev)
1226 {
1227         if (dev->flags & IFF_UP) {
1228                 struct netdev_notifier_change_info change_info;
1229
1230                 change_info.flags_changed = 0;
1231                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1232                                               &change_info.info);
1233                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1234         }
1235 }
1236 EXPORT_SYMBOL(netdev_state_change);
1237
1238 /**
1239  *      netdev_notify_peers - notify network peers about existence of @dev
1240  *      @dev: network device
1241  *
1242  * Generate traffic such that interested network peers are aware of
1243  * @dev, such as by generating a gratuitous ARP. This may be used when
1244  * a device wants to inform the rest of the network about some sort of
1245  * reconfiguration such as a failover event or virtual machine
1246  * migration.
1247  */
1248 void netdev_notify_peers(struct net_device *dev)
1249 {
1250         rtnl_lock();
1251         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1252         rtnl_unlock();
1253 }
1254 EXPORT_SYMBOL(netdev_notify_peers);
1255
1256 static int __dev_open(struct net_device *dev)
1257 {
1258         const struct net_device_ops *ops = dev->netdev_ops;
1259         int ret;
1260
1261         ASSERT_RTNL();
1262
1263         if (!netif_device_present(dev))
1264                 return -ENODEV;
1265
1266         /* Block netpoll from trying to do any rx path servicing.
1267          * If we don't do this there is a chance ndo_poll_controller
1268          * or ndo_poll may be running while we open the device
1269          */
1270         netpoll_poll_disable(dev);
1271
1272         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1273         ret = notifier_to_errno(ret);
1274         if (ret)
1275                 return ret;
1276
1277         set_bit(__LINK_STATE_START, &dev->state);
1278
1279         if (ops->ndo_validate_addr)
1280                 ret = ops->ndo_validate_addr(dev);
1281
1282         if (!ret && ops->ndo_open)
1283                 ret = ops->ndo_open(dev);
1284
1285         netpoll_poll_enable(dev);
1286
1287         if (ret)
1288                 clear_bit(__LINK_STATE_START, &dev->state);
1289         else {
1290                 dev->flags |= IFF_UP;
1291                 dev_set_rx_mode(dev);
1292                 dev_activate(dev);
1293                 add_device_randomness(dev->dev_addr, dev->addr_len);
1294         }
1295
1296         return ret;
1297 }
1298
1299 /**
1300  *      dev_open        - prepare an interface for use.
1301  *      @dev:   device to open
1302  *
1303  *      Takes a device from down to up state. The device's private open
1304  *      function is invoked and then the multicast lists are loaded. Finally
1305  *      the device is moved into the up state and a %NETDEV_UP message is
1306  *      sent to the netdev notifier chain.
1307  *
1308  *      Calling this function on an active interface is a nop. On a failure
1309  *      a negative errno code is returned.
1310  */
1311 int dev_open(struct net_device *dev)
1312 {
1313         int ret;
1314
1315         if (dev->flags & IFF_UP)
1316                 return 0;
1317
1318         ret = __dev_open(dev);
1319         if (ret < 0)
1320                 return ret;
1321
1322         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1323         call_netdevice_notifiers(NETDEV_UP, dev);
1324
1325         return ret;
1326 }
1327 EXPORT_SYMBOL(dev_open);
1328
1329 static int __dev_close_many(struct list_head *head)
1330 {
1331         struct net_device *dev;
1332
1333         ASSERT_RTNL();
1334         might_sleep();
1335
1336         list_for_each_entry(dev, head, close_list) {
1337                 /* Temporarily disable netpoll until the interface is down */
1338                 netpoll_poll_disable(dev);
1339
1340                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1341
1342                 clear_bit(__LINK_STATE_START, &dev->state);
1343
1344                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1345                  * can be even on different cpu. So just clear netif_running().
1346                  *
1347                  * dev->stop() will invoke napi_disable() on all of it's
1348                  * napi_struct instances on this device.
1349                  */
1350                 smp_mb__after_atomic(); /* Commit netif_running(). */
1351         }
1352
1353         dev_deactivate_many(head);
1354
1355         list_for_each_entry(dev, head, close_list) {
1356                 const struct net_device_ops *ops = dev->netdev_ops;
1357
1358                 /*
1359                  *      Call the device specific close. This cannot fail.
1360                  *      Only if device is UP
1361                  *
1362                  *      We allow it to be called even after a DETACH hot-plug
1363                  *      event.
1364                  */
1365                 if (ops->ndo_stop)
1366                         ops->ndo_stop(dev);
1367
1368                 dev->flags &= ~IFF_UP;
1369                 netpoll_poll_enable(dev);
1370         }
1371
1372         return 0;
1373 }
1374
1375 static int __dev_close(struct net_device *dev)
1376 {
1377         int retval;
1378         LIST_HEAD(single);
1379
1380         list_add(&dev->close_list, &single);
1381         retval = __dev_close_many(&single);
1382         list_del(&single);
1383
1384         return retval;
1385 }
1386
1387 static int dev_close_many(struct list_head *head)
1388 {
1389         struct net_device *dev, *tmp;
1390
1391         /* Remove the devices that don't need to be closed */
1392         list_for_each_entry_safe(dev, tmp, head, close_list)
1393                 if (!(dev->flags & IFF_UP))
1394                         list_del_init(&dev->close_list);
1395
1396         __dev_close_many(head);
1397
1398         list_for_each_entry_safe(dev, tmp, head, close_list) {
1399                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1400                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1401                 list_del_init(&dev->close_list);
1402         }
1403
1404         return 0;
1405 }
1406
1407 /**
1408  *      dev_close - shutdown an interface.
1409  *      @dev: device to shutdown
1410  *
1411  *      This function moves an active device into down state. A
1412  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414  *      chain.
1415  */
1416 int dev_close(struct net_device *dev)
1417 {
1418         if (dev->flags & IFF_UP) {
1419                 LIST_HEAD(single);
1420
1421                 list_add(&dev->close_list, &single);
1422                 dev_close_many(&single);
1423                 list_del(&single);
1424         }
1425         return 0;
1426 }
1427 EXPORT_SYMBOL(dev_close);
1428
1429
1430 /**
1431  *      dev_disable_lro - disable Large Receive Offload on a device
1432  *      @dev: device
1433  *
1434  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1435  *      called under RTNL.  This is needed if received packets may be
1436  *      forwarded to another interface.
1437  */
1438 void dev_disable_lro(struct net_device *dev)
1439 {
1440         struct net_device *lower_dev;
1441         struct list_head *iter;
1442
1443         dev->wanted_features &= ~NETIF_F_LRO;
1444         netdev_update_features(dev);
1445
1446         if (unlikely(dev->features & NETIF_F_LRO))
1447                 netdev_WARN(dev, "failed to disable LRO!\n");
1448
1449         netdev_for_each_lower_dev(dev, lower_dev, iter)
1450                 dev_disable_lro(lower_dev);
1451 }
1452 EXPORT_SYMBOL(dev_disable_lro);
1453
1454 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1455                                    struct net_device *dev)
1456 {
1457         struct netdev_notifier_info info;
1458
1459         netdev_notifier_info_init(&info, dev);
1460         return nb->notifier_call(nb, val, &info);
1461 }
1462
1463 static int dev_boot_phase = 1;
1464
1465 /**
1466  *      register_netdevice_notifier - register a network notifier block
1467  *      @nb: notifier
1468  *
1469  *      Register a notifier to be called when network device events occur.
1470  *      The notifier passed is linked into the kernel structures and must
1471  *      not be reused until it has been unregistered. A negative errno code
1472  *      is returned on a failure.
1473  *
1474  *      When registered all registration and up events are replayed
1475  *      to the new notifier to allow device to have a race free
1476  *      view of the network device list.
1477  */
1478
1479 int register_netdevice_notifier(struct notifier_block *nb)
1480 {
1481         struct net_device *dev;
1482         struct net_device *last;
1483         struct net *net;
1484         int err;
1485
1486         rtnl_lock();
1487         err = raw_notifier_chain_register(&netdev_chain, nb);
1488         if (err)
1489                 goto unlock;
1490         if (dev_boot_phase)
1491                 goto unlock;
1492         for_each_net(net) {
1493                 for_each_netdev(net, dev) {
1494                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1495                         err = notifier_to_errno(err);
1496                         if (err)
1497                                 goto rollback;
1498
1499                         if (!(dev->flags & IFF_UP))
1500                                 continue;
1501
1502                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1503                 }
1504         }
1505
1506 unlock:
1507         rtnl_unlock();
1508         return err;
1509
1510 rollback:
1511         last = dev;
1512         for_each_net(net) {
1513                 for_each_netdev(net, dev) {
1514                         if (dev == last)
1515                                 goto outroll;
1516
1517                         if (dev->flags & IFF_UP) {
1518                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1519                                                         dev);
1520                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1521                         }
1522                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1523                 }
1524         }
1525
1526 outroll:
1527         raw_notifier_chain_unregister(&netdev_chain, nb);
1528         goto unlock;
1529 }
1530 EXPORT_SYMBOL(register_netdevice_notifier);
1531
1532 /**
1533  *      unregister_netdevice_notifier - unregister a network notifier block
1534  *      @nb: notifier
1535  *
1536  *      Unregister a notifier previously registered by
1537  *      register_netdevice_notifier(). The notifier is unlinked into the
1538  *      kernel structures and may then be reused. A negative errno code
1539  *      is returned on a failure.
1540  *
1541  *      After unregistering unregister and down device events are synthesized
1542  *      for all devices on the device list to the removed notifier to remove
1543  *      the need for special case cleanup code.
1544  */
1545
1546 int unregister_netdevice_notifier(struct notifier_block *nb)
1547 {
1548         struct net_device *dev;
1549         struct net *net;
1550         int err;
1551
1552         rtnl_lock();
1553         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1554         if (err)
1555                 goto unlock;
1556
1557         for_each_net(net) {
1558                 for_each_netdev(net, dev) {
1559                         if (dev->flags & IFF_UP) {
1560                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1561                                                         dev);
1562                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1563                         }
1564                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1565                 }
1566         }
1567 unlock:
1568         rtnl_unlock();
1569         return err;
1570 }
1571 EXPORT_SYMBOL(unregister_netdevice_notifier);
1572
1573 /**
1574  *      call_netdevice_notifiers_info - call all network notifier blocks
1575  *      @val: value passed unmodified to notifier function
1576  *      @dev: net_device pointer passed unmodified to notifier function
1577  *      @info: notifier information data
1578  *
1579  *      Call all network notifier blocks.  Parameters and return value
1580  *      are as for raw_notifier_call_chain().
1581  */
1582
1583 static int call_netdevice_notifiers_info(unsigned long val,
1584                                          struct net_device *dev,
1585                                          struct netdev_notifier_info *info)
1586 {
1587         ASSERT_RTNL();
1588         netdev_notifier_info_init(info, dev);
1589         return raw_notifier_call_chain(&netdev_chain, val, info);
1590 }
1591
1592 /**
1593  *      call_netdevice_notifiers - call all network notifier blocks
1594  *      @val: value passed unmodified to notifier function
1595  *      @dev: net_device pointer passed unmodified to notifier function
1596  *
1597  *      Call all network notifier blocks.  Parameters and return value
1598  *      are as for raw_notifier_call_chain().
1599  */
1600
1601 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1602 {
1603         struct netdev_notifier_info info;
1604
1605         return call_netdevice_notifiers_info(val, dev, &info);
1606 }
1607 EXPORT_SYMBOL(call_netdevice_notifiers);
1608
1609 static struct static_key netstamp_needed __read_mostly;
1610 #ifdef HAVE_JUMP_LABEL
1611 /* We are not allowed to call static_key_slow_dec() from irq context
1612  * If net_disable_timestamp() is called from irq context, defer the
1613  * static_key_slow_dec() calls.
1614  */
1615 static atomic_t netstamp_needed_deferred;
1616 #endif
1617
1618 void net_enable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1622
1623         if (deferred) {
1624                 while (--deferred)
1625                         static_key_slow_dec(&netstamp_needed);
1626                 return;
1627         }
1628 #endif
1629         static_key_slow_inc(&netstamp_needed);
1630 }
1631 EXPORT_SYMBOL(net_enable_timestamp);
1632
1633 void net_disable_timestamp(void)
1634 {
1635 #ifdef HAVE_JUMP_LABEL
1636         if (in_interrupt()) {
1637                 atomic_inc(&netstamp_needed_deferred);
1638                 return;
1639         }
1640 #endif
1641         static_key_slow_dec(&netstamp_needed);
1642 }
1643 EXPORT_SYMBOL(net_disable_timestamp);
1644
1645 static inline void net_timestamp_set(struct sk_buff *skb)
1646 {
1647         skb->tstamp.tv64 = 0;
1648         if (static_key_false(&netstamp_needed))
1649                 __net_timestamp(skb);
1650 }
1651
1652 #define net_timestamp_check(COND, SKB)                  \
1653         if (static_key_false(&netstamp_needed)) {               \
1654                 if ((COND) && !(SKB)->tstamp.tv64)      \
1655                         __net_timestamp(SKB);           \
1656         }                                               \
1657
1658 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1659 {
1660         unsigned int len;
1661
1662         if (!(dev->flags & IFF_UP))
1663                 return false;
1664
1665         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1666         if (skb->len <= len)
1667                 return true;
1668
1669         /* if TSO is enabled, we don't care about the length as the packet
1670          * could be forwarded without being segmented before
1671          */
1672         if (skb_is_gso(skb))
1673                 return true;
1674
1675         return false;
1676 }
1677 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1678
1679 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680 {
1681         if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682                 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683                         atomic_long_inc(&dev->rx_dropped);
1684                         kfree_skb(skb);
1685                         return NET_RX_DROP;
1686                 }
1687         }
1688
1689         if (unlikely(!is_skb_forwardable(dev, skb))) {
1690                 atomic_long_inc(&dev->rx_dropped);
1691                 kfree_skb(skb);
1692                 return NET_RX_DROP;
1693         }
1694
1695         skb_scrub_packet(skb, true);
1696         skb->protocol = eth_type_trans(skb, dev);
1697
1698         return 0;
1699 }
1700 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1701
1702 /**
1703  * dev_forward_skb - loopback an skb to another netif
1704  *
1705  * @dev: destination network device
1706  * @skb: buffer to forward
1707  *
1708  * return values:
1709  *      NET_RX_SUCCESS  (no congestion)
1710  *      NET_RX_DROP     (packet was dropped, but freed)
1711  *
1712  * dev_forward_skb can be used for injecting an skb from the
1713  * start_xmit function of one device into the receive queue
1714  * of another device.
1715  *
1716  * The receiving device may be in another namespace, so
1717  * we have to clear all information in the skb that could
1718  * impact namespace isolation.
1719  */
1720 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1723 }
1724 EXPORT_SYMBOL_GPL(dev_forward_skb);
1725
1726 static inline int deliver_skb(struct sk_buff *skb,
1727                               struct packet_type *pt_prev,
1728                               struct net_device *orig_dev)
1729 {
1730         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1731                 return -ENOMEM;
1732         atomic_inc(&skb->users);
1733         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1734 }
1735
1736 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1737 {
1738         if (!ptype->af_packet_priv || !skb->sk)
1739                 return false;
1740
1741         if (ptype->id_match)
1742                 return ptype->id_match(ptype, skb->sk);
1743         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1744                 return true;
1745
1746         return false;
1747 }
1748
1749 /*
1750  *      Support routine. Sends outgoing frames to any network
1751  *      taps currently in use.
1752  */
1753
1754 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1755 {
1756         struct packet_type *ptype;
1757         struct sk_buff *skb2 = NULL;
1758         struct packet_type *pt_prev = NULL;
1759
1760         rcu_read_lock();
1761         list_for_each_entry_rcu(ptype, &ptype_all, list) {
1762                 /* Never send packets back to the socket
1763                  * they originated from - MvS (miquels@drinkel.ow.org)
1764                  */
1765                 if ((ptype->dev == dev || !ptype->dev) &&
1766                     (!skb_loop_sk(ptype, skb))) {
1767                         if (pt_prev) {
1768                                 deliver_skb(skb2, pt_prev, skb->dev);
1769                                 pt_prev = ptype;
1770                                 continue;
1771                         }
1772
1773                         skb2 = skb_clone(skb, GFP_ATOMIC);
1774                         if (!skb2)
1775                                 break;
1776
1777                         net_timestamp_set(skb2);
1778
1779                         /* skb->nh should be correctly
1780                            set by sender, so that the second statement is
1781                            just protection against buggy protocols.
1782                          */
1783                         skb_reset_mac_header(skb2);
1784
1785                         if (skb_network_header(skb2) < skb2->data ||
1786                             skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1787                                 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1788                                                      ntohs(skb2->protocol),
1789                                                      dev->name);
1790                                 skb_reset_network_header(skb2);
1791                         }
1792
1793                         skb2->transport_header = skb2->network_header;
1794                         skb2->pkt_type = PACKET_OUTGOING;
1795                         pt_prev = ptype;
1796                 }
1797         }
1798         if (pt_prev)
1799                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1800         rcu_read_unlock();
1801 }
1802
1803 /**
1804  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1805  * @dev: Network device
1806  * @txq: number of queues available
1807  *
1808  * If real_num_tx_queues is changed the tc mappings may no longer be
1809  * valid. To resolve this verify the tc mapping remains valid and if
1810  * not NULL the mapping. With no priorities mapping to this
1811  * offset/count pair it will no longer be used. In the worst case TC0
1812  * is invalid nothing can be done so disable priority mappings. If is
1813  * expected that drivers will fix this mapping if they can before
1814  * calling netif_set_real_num_tx_queues.
1815  */
1816 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1817 {
1818         int i;
1819         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1820
1821         /* If TC0 is invalidated disable TC mapping */
1822         if (tc->offset + tc->count > txq) {
1823                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1824                 dev->num_tc = 0;
1825                 return;
1826         }
1827
1828         /* Invalidated prio to tc mappings set to TC0 */
1829         for (i = 1; i < TC_BITMASK + 1; i++) {
1830                 int q = netdev_get_prio_tc_map(dev, i);
1831
1832                 tc = &dev->tc_to_txq[q];
1833                 if (tc->offset + tc->count > txq) {
1834                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1835                                 i, q);
1836                         netdev_set_prio_tc_map(dev, i, 0);
1837                 }
1838         }
1839 }
1840
1841 #ifdef CONFIG_XPS
1842 static DEFINE_MUTEX(xps_map_mutex);
1843 #define xmap_dereference(P)             \
1844         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1845
1846 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1847                                         int cpu, u16 index)
1848 {
1849         struct xps_map *map = NULL;
1850         int pos;
1851
1852         if (dev_maps)
1853                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1854
1855         for (pos = 0; map && pos < map->len; pos++) {
1856                 if (map->queues[pos] == index) {
1857                         if (map->len > 1) {
1858                                 map->queues[pos] = map->queues[--map->len];
1859                         } else {
1860                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1861                                 kfree_rcu(map, rcu);
1862                                 map = NULL;
1863                         }
1864                         break;
1865                 }
1866         }
1867
1868         return map;
1869 }
1870
1871 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1872 {
1873         struct xps_dev_maps *dev_maps;
1874         int cpu, i;
1875         bool active = false;
1876
1877         mutex_lock(&xps_map_mutex);
1878         dev_maps = xmap_dereference(dev->xps_maps);
1879
1880         if (!dev_maps)
1881                 goto out_no_maps;
1882
1883         for_each_possible_cpu(cpu) {
1884                 for (i = index; i < dev->num_tx_queues; i++) {
1885                         if (!remove_xps_queue(dev_maps, cpu, i))
1886                                 break;
1887                 }
1888                 if (i == dev->num_tx_queues)
1889                         active = true;
1890         }
1891
1892         if (!active) {
1893                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1894                 kfree_rcu(dev_maps, rcu);
1895         }
1896
1897         for (i = index; i < dev->num_tx_queues; i++)
1898                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1899                                              NUMA_NO_NODE);
1900
1901 out_no_maps:
1902         mutex_unlock(&xps_map_mutex);
1903 }
1904
1905 static struct xps_map *expand_xps_map(struct xps_map *map,
1906                                       int cpu, u16 index)
1907 {
1908         struct xps_map *new_map;
1909         int alloc_len = XPS_MIN_MAP_ALLOC;
1910         int i, pos;
1911
1912         for (pos = 0; map && pos < map->len; pos++) {
1913                 if (map->queues[pos] != index)
1914                         continue;
1915                 return map;
1916         }
1917
1918         /* Need to add queue to this CPU's existing map */
1919         if (map) {
1920                 if (pos < map->alloc_len)
1921                         return map;
1922
1923                 alloc_len = map->alloc_len * 2;
1924         }
1925
1926         /* Need to allocate new map to store queue on this CPU's map */
1927         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1928                                cpu_to_node(cpu));
1929         if (!new_map)
1930                 return NULL;
1931
1932         for (i = 0; i < pos; i++)
1933                 new_map->queues[i] = map->queues[i];
1934         new_map->alloc_len = alloc_len;
1935         new_map->len = pos;
1936
1937         return new_map;
1938 }
1939
1940 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1941                         u16 index)
1942 {
1943         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1944         struct xps_map *map, *new_map;
1945         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1946         int cpu, numa_node_id = -2;
1947         bool active = false;
1948
1949         mutex_lock(&xps_map_mutex);
1950
1951         dev_maps = xmap_dereference(dev->xps_maps);
1952
1953         /* allocate memory for queue storage */
1954         for_each_online_cpu(cpu) {
1955                 if (!cpumask_test_cpu(cpu, mask))
1956                         continue;
1957
1958                 if (!new_dev_maps)
1959                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1960                 if (!new_dev_maps) {
1961                         mutex_unlock(&xps_map_mutex);
1962                         return -ENOMEM;
1963                 }
1964
1965                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1966                                  NULL;
1967
1968                 map = expand_xps_map(map, cpu, index);
1969                 if (!map)
1970                         goto error;
1971
1972                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1973         }
1974
1975         if (!new_dev_maps)
1976                 goto out_no_new_maps;
1977
1978         for_each_possible_cpu(cpu) {
1979                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1980                         /* add queue to CPU maps */
1981                         int pos = 0;
1982
1983                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1984                         while ((pos < map->len) && (map->queues[pos] != index))
1985                                 pos++;
1986
1987                         if (pos == map->len)
1988                                 map->queues[map->len++] = index;
1989 #ifdef CONFIG_NUMA
1990                         if (numa_node_id == -2)
1991                                 numa_node_id = cpu_to_node(cpu);
1992                         else if (numa_node_id != cpu_to_node(cpu))
1993                                 numa_node_id = -1;
1994 #endif
1995                 } else if (dev_maps) {
1996                         /* fill in the new device map from the old device map */
1997                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
1998                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1999                 }
2000
2001         }
2002
2003         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2004
2005         /* Cleanup old maps */
2006         if (dev_maps) {
2007                 for_each_possible_cpu(cpu) {
2008                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2009                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2010                         if (map && map != new_map)
2011                                 kfree_rcu(map, rcu);
2012                 }
2013
2014                 kfree_rcu(dev_maps, rcu);
2015         }
2016
2017         dev_maps = new_dev_maps;
2018         active = true;
2019
2020 out_no_new_maps:
2021         /* update Tx queue numa node */
2022         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2023                                      (numa_node_id >= 0) ? numa_node_id :
2024                                      NUMA_NO_NODE);
2025
2026         if (!dev_maps)
2027                 goto out_no_maps;
2028
2029         /* removes queue from unused CPUs */
2030         for_each_possible_cpu(cpu) {
2031                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2032                         continue;
2033
2034                 if (remove_xps_queue(dev_maps, cpu, index))
2035                         active = true;
2036         }
2037
2038         /* free map if not active */
2039         if (!active) {
2040                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2041                 kfree_rcu(dev_maps, rcu);
2042         }
2043
2044 out_no_maps:
2045         mutex_unlock(&xps_map_mutex);
2046
2047         return 0;
2048 error:
2049         /* remove any maps that we added */
2050         for_each_possible_cpu(cpu) {
2051                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2052                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2053                                  NULL;
2054                 if (new_map && new_map != map)
2055                         kfree(new_map);
2056         }
2057
2058         mutex_unlock(&xps_map_mutex);
2059
2060         kfree(new_dev_maps);
2061         return -ENOMEM;
2062 }
2063 EXPORT_SYMBOL(netif_set_xps_queue);
2064
2065 #endif
2066 /*
2067  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2068  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2069  */
2070 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2071 {
2072         int rc;
2073
2074         if (txq < 1 || txq > dev->num_tx_queues)
2075                 return -EINVAL;
2076
2077         if (dev->reg_state == NETREG_REGISTERED ||
2078             dev->reg_state == NETREG_UNREGISTERING) {
2079                 ASSERT_RTNL();
2080
2081                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2082                                                   txq);
2083                 if (rc)
2084                         return rc;
2085
2086                 if (dev->num_tc)
2087                         netif_setup_tc(dev, txq);
2088
2089                 if (txq < dev->real_num_tx_queues) {
2090                         qdisc_reset_all_tx_gt(dev, txq);
2091 #ifdef CONFIG_XPS
2092                         netif_reset_xps_queues_gt(dev, txq);
2093 #endif
2094                 }
2095         }
2096
2097         dev->real_num_tx_queues = txq;
2098         return 0;
2099 }
2100 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2101
2102 #ifdef CONFIG_SYSFS
2103 /**
2104  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2105  *      @dev: Network device
2106  *      @rxq: Actual number of RX queues
2107  *
2108  *      This must be called either with the rtnl_lock held or before
2109  *      registration of the net device.  Returns 0 on success, or a
2110  *      negative error code.  If called before registration, it always
2111  *      succeeds.
2112  */
2113 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2114 {
2115         int rc;
2116
2117         if (rxq < 1 || rxq > dev->num_rx_queues)
2118                 return -EINVAL;
2119
2120         if (dev->reg_state == NETREG_REGISTERED) {
2121                 ASSERT_RTNL();
2122
2123                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2124                                                   rxq);
2125                 if (rc)
2126                         return rc;
2127         }
2128
2129         dev->real_num_rx_queues = rxq;
2130         return 0;
2131 }
2132 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2133 #endif
2134
2135 /**
2136  * netif_get_num_default_rss_queues - default number of RSS queues
2137  *
2138  * This routine should set an upper limit on the number of RSS queues
2139  * used by default by multiqueue devices.
2140  */
2141 int netif_get_num_default_rss_queues(void)
2142 {
2143         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2144 }
2145 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2146
2147 static inline void __netif_reschedule(struct Qdisc *q)
2148 {
2149         struct softnet_data *sd;
2150         unsigned long flags;
2151
2152         local_irq_save(flags);
2153         sd = this_cpu_ptr(&softnet_data);
2154         q->next_sched = NULL;
2155         *sd->output_queue_tailp = q;
2156         sd->output_queue_tailp = &q->next_sched;
2157         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2158         local_irq_restore(flags);
2159 }
2160
2161 void __netif_schedule(struct Qdisc *q)
2162 {
2163         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2164                 __netif_reschedule(q);
2165 }
2166 EXPORT_SYMBOL(__netif_schedule);
2167
2168 struct dev_kfree_skb_cb {
2169         enum skb_free_reason reason;
2170 };
2171
2172 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2173 {
2174         return (struct dev_kfree_skb_cb *)skb->cb;
2175 }
2176
2177 void netif_schedule_queue(struct netdev_queue *txq)
2178 {
2179         rcu_read_lock();
2180         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2181                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2182
2183                 __netif_schedule(q);
2184         }
2185         rcu_read_unlock();
2186 }
2187 EXPORT_SYMBOL(netif_schedule_queue);
2188
2189 /**
2190  *      netif_wake_subqueue - allow sending packets on subqueue
2191  *      @dev: network device
2192  *      @queue_index: sub queue index
2193  *
2194  * Resume individual transmit queue of a device with multiple transmit queues.
2195  */
2196 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2197 {
2198         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2199
2200         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2201                 struct Qdisc *q;
2202
2203                 rcu_read_lock();
2204                 q = rcu_dereference(txq->qdisc);
2205                 __netif_schedule(q);
2206                 rcu_read_unlock();
2207         }
2208 }
2209 EXPORT_SYMBOL(netif_wake_subqueue);
2210
2211 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2212 {
2213         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2214                 struct Qdisc *q;
2215
2216                 rcu_read_lock();
2217                 q = rcu_dereference(dev_queue->qdisc);
2218                 __netif_schedule(q);
2219                 rcu_read_unlock();
2220         }
2221 }
2222 EXPORT_SYMBOL(netif_tx_wake_queue);
2223
2224 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2225 {
2226         unsigned long flags;
2227
2228         if (likely(atomic_read(&skb->users) == 1)) {
2229                 smp_rmb();
2230                 atomic_set(&skb->users, 0);
2231         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2232                 return;
2233         }
2234         get_kfree_skb_cb(skb)->reason = reason;
2235         local_irq_save(flags);
2236         skb->next = __this_cpu_read(softnet_data.completion_queue);
2237         __this_cpu_write(softnet_data.completion_queue, skb);
2238         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2239         local_irq_restore(flags);
2240 }
2241 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2242
2243 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2244 {
2245         if (in_irq() || irqs_disabled())
2246                 __dev_kfree_skb_irq(skb, reason);
2247         else
2248                 dev_kfree_skb(skb);
2249 }
2250 EXPORT_SYMBOL(__dev_kfree_skb_any);
2251
2252
2253 /**
2254  * netif_device_detach - mark device as removed
2255  * @dev: network device
2256  *
2257  * Mark device as removed from system and therefore no longer available.
2258  */
2259 void netif_device_detach(struct net_device *dev)
2260 {
2261         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2262             netif_running(dev)) {
2263                 netif_tx_stop_all_queues(dev);
2264         }
2265 }
2266 EXPORT_SYMBOL(netif_device_detach);
2267
2268 /**
2269  * netif_device_attach - mark device as attached
2270  * @dev: network device
2271  *
2272  * Mark device as attached from system and restart if needed.
2273  */
2274 void netif_device_attach(struct net_device *dev)
2275 {
2276         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2277             netif_running(dev)) {
2278                 netif_tx_wake_all_queues(dev);
2279                 __netdev_watchdog_up(dev);
2280         }
2281 }
2282 EXPORT_SYMBOL(netif_device_attach);
2283
2284 static void skb_warn_bad_offload(const struct sk_buff *skb)
2285 {
2286         static const netdev_features_t null_features = 0;
2287         struct net_device *dev = skb->dev;
2288         const char *driver = "";
2289
2290         if (!net_ratelimit())
2291                 return;
2292
2293         if (dev && dev->dev.parent)
2294                 driver = dev_driver_string(dev->dev.parent);
2295
2296         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2297              "gso_type=%d ip_summed=%d\n",
2298              driver, dev ? &dev->features : &null_features,
2299              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2300              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2301              skb_shinfo(skb)->gso_type, skb->ip_summed);
2302 }
2303
2304 /*
2305  * Invalidate hardware checksum when packet is to be mangled, and
2306  * complete checksum manually on outgoing path.
2307  */
2308 int skb_checksum_help(struct sk_buff *skb)
2309 {
2310         __wsum csum;
2311         int ret = 0, offset;
2312
2313         if (skb->ip_summed == CHECKSUM_COMPLETE)
2314                 goto out_set_summed;
2315
2316         if (unlikely(skb_shinfo(skb)->gso_size)) {
2317                 skb_warn_bad_offload(skb);
2318                 return -EINVAL;
2319         }
2320
2321         /* Before computing a checksum, we should make sure no frag could
2322          * be modified by an external entity : checksum could be wrong.
2323          */
2324         if (skb_has_shared_frag(skb)) {
2325                 ret = __skb_linearize(skb);
2326                 if (ret)
2327                         goto out;
2328         }
2329
2330         offset = skb_checksum_start_offset(skb);
2331         BUG_ON(offset >= skb_headlen(skb));
2332         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2333
2334         offset += skb->csum_offset;
2335         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2336
2337         if (skb_cloned(skb) &&
2338             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2339                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2340                 if (ret)
2341                         goto out;
2342         }
2343
2344         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2345 out_set_summed:
2346         skb->ip_summed = CHECKSUM_NONE;
2347 out:
2348         return ret;
2349 }
2350 EXPORT_SYMBOL(skb_checksum_help);
2351
2352 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2353 {
2354         unsigned int vlan_depth = skb->mac_len;
2355         __be16 type = skb->protocol;
2356
2357         /* Tunnel gso handlers can set protocol to ethernet. */
2358         if (type == htons(ETH_P_TEB)) {
2359                 struct ethhdr *eth;
2360
2361                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2362                         return 0;
2363
2364                 eth = (struct ethhdr *)skb_mac_header(skb);
2365                 type = eth->h_proto;
2366         }
2367
2368         /* if skb->protocol is 802.1Q/AD then the header should already be
2369          * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2370          * ETH_HLEN otherwise
2371          */
2372         if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2373                 if (vlan_depth) {
2374                         if (WARN_ON(vlan_depth < VLAN_HLEN))
2375                                 return 0;
2376                         vlan_depth -= VLAN_HLEN;
2377                 } else {
2378                         vlan_depth = ETH_HLEN;
2379                 }
2380                 do {
2381                         struct vlan_hdr *vh;
2382
2383                         if (unlikely(!pskb_may_pull(skb,
2384                                                     vlan_depth + VLAN_HLEN)))
2385                                 return 0;
2386
2387                         vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2388                         type = vh->h_vlan_encapsulated_proto;
2389                         vlan_depth += VLAN_HLEN;
2390                 } while (type == htons(ETH_P_8021Q) ||
2391                          type == htons(ETH_P_8021AD));
2392         }
2393
2394         *depth = vlan_depth;
2395
2396         return type;
2397 }
2398
2399 /**
2400  *      skb_mac_gso_segment - mac layer segmentation handler.
2401  *      @skb: buffer to segment
2402  *      @features: features for the output path (see dev->features)
2403  */
2404 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2405                                     netdev_features_t features)
2406 {
2407         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2408         struct packet_offload *ptype;
2409         int vlan_depth = skb->mac_len;
2410         __be16 type = skb_network_protocol(skb, &vlan_depth);
2411
2412         if (unlikely(!type))
2413                 return ERR_PTR(-EINVAL);
2414
2415         __skb_pull(skb, vlan_depth);
2416
2417         rcu_read_lock();
2418         list_for_each_entry_rcu(ptype, &offload_base, list) {
2419                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2420                         segs = ptype->callbacks.gso_segment(skb, features);
2421                         break;
2422                 }
2423         }
2424         rcu_read_unlock();
2425
2426         __skb_push(skb, skb->data - skb_mac_header(skb));
2427
2428         return segs;
2429 }
2430 EXPORT_SYMBOL(skb_mac_gso_segment);
2431
2432
2433 /* openvswitch calls this on rx path, so we need a different check.
2434  */
2435 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2436 {
2437         if (tx_path)
2438                 return skb->ip_summed != CHECKSUM_PARTIAL;
2439         else
2440                 return skb->ip_summed == CHECKSUM_NONE;
2441 }
2442
2443 /**
2444  *      __skb_gso_segment - Perform segmentation on skb.
2445  *      @skb: buffer to segment
2446  *      @features: features for the output path (see dev->features)
2447  *      @tx_path: whether it is called in TX path
2448  *
2449  *      This function segments the given skb and returns a list of segments.
2450  *
2451  *      It may return NULL if the skb requires no segmentation.  This is
2452  *      only possible when GSO is used for verifying header integrity.
2453  */
2454 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2455                                   netdev_features_t features, bool tx_path)
2456 {
2457         if (unlikely(skb_needs_check(skb, tx_path))) {
2458                 int err;
2459
2460                 skb_warn_bad_offload(skb);
2461
2462                 err = skb_cow_head(skb, 0);
2463                 if (err < 0)
2464                         return ERR_PTR(err);
2465         }
2466
2467         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2468         SKB_GSO_CB(skb)->encap_level = 0;
2469
2470         skb_reset_mac_header(skb);
2471         skb_reset_mac_len(skb);
2472
2473         return skb_mac_gso_segment(skb, features);
2474 }
2475 EXPORT_SYMBOL(__skb_gso_segment);
2476
2477 /* Take action when hardware reception checksum errors are detected. */
2478 #ifdef CONFIG_BUG
2479 void netdev_rx_csum_fault(struct net_device *dev)
2480 {
2481         if (net_ratelimit()) {
2482                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2483                 dump_stack();
2484         }
2485 }
2486 EXPORT_SYMBOL(netdev_rx_csum_fault);
2487 #endif
2488
2489 /* Actually, we should eliminate this check as soon as we know, that:
2490  * 1. IOMMU is present and allows to map all the memory.
2491  * 2. No high memory really exists on this machine.
2492  */
2493
2494 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2495 {
2496 #ifdef CONFIG_HIGHMEM
2497         int i;
2498         if (!(dev->features & NETIF_F_HIGHDMA)) {
2499                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2500                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2501                         if (PageHighMem(skb_frag_page(frag)))
2502                                 return 1;
2503                 }
2504         }
2505
2506         if (PCI_DMA_BUS_IS_PHYS) {
2507                 struct device *pdev = dev->dev.parent;
2508
2509                 if (!pdev)
2510                         return 0;
2511                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2512                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2513                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2514                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2515                                 return 1;
2516                 }
2517         }
2518 #endif
2519         return 0;
2520 }
2521
2522 /* If MPLS offload request, verify we are testing hardware MPLS features
2523  * instead of standard features for the netdev.
2524  */
2525 #ifdef CONFIG_NET_MPLS_GSO
2526 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2527                                            netdev_features_t features,
2528                                            __be16 type)
2529 {
2530         if (eth_p_mpls(type))
2531                 features &= skb->dev->mpls_features;
2532
2533         return features;
2534 }
2535 #else
2536 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2537                                            netdev_features_t features,
2538                                            __be16 type)
2539 {
2540         return features;
2541 }
2542 #endif
2543
2544 static netdev_features_t harmonize_features(struct sk_buff *skb,
2545         netdev_features_t features)
2546 {
2547         int tmp;
2548         __be16 type;
2549
2550         type = skb_network_protocol(skb, &tmp);
2551         features = net_mpls_features(skb, features, type);
2552
2553         if (skb->ip_summed != CHECKSUM_NONE &&
2554             !can_checksum_protocol(features, type)) {
2555                 features &= ~NETIF_F_ALL_CSUM;
2556         } else if (illegal_highdma(skb->dev, skb)) {
2557                 features &= ~NETIF_F_SG;
2558         }
2559
2560         return features;
2561 }
2562
2563 netdev_features_t netif_skb_features(struct sk_buff *skb)
2564 {
2565         const struct net_device *dev = skb->dev;
2566         netdev_features_t features = dev->features;
2567         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2568         __be16 protocol = skb->protocol;
2569
2570         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2571                 features &= ~NETIF_F_GSO_MASK;
2572
2573         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2574                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2575                 protocol = veh->h_vlan_encapsulated_proto;
2576         } else if (!vlan_tx_tag_present(skb)) {
2577                 return harmonize_features(skb, features);
2578         }
2579
2580         features = netdev_intersect_features(features,
2581                                              dev->vlan_features |
2582                                              NETIF_F_HW_VLAN_CTAG_TX |
2583                                              NETIF_F_HW_VLAN_STAG_TX);
2584
2585         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2586                 features = netdev_intersect_features(features,
2587                                                      NETIF_F_SG |
2588                                                      NETIF_F_HIGHDMA |
2589                                                      NETIF_F_FRAGLIST |
2590                                                      NETIF_F_GEN_CSUM |
2591                                                      NETIF_F_HW_VLAN_CTAG_TX |
2592                                                      NETIF_F_HW_VLAN_STAG_TX);
2593
2594         return harmonize_features(skb, features);
2595 }
2596 EXPORT_SYMBOL(netif_skb_features);
2597
2598 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2599                     struct netdev_queue *txq, bool more)
2600 {
2601         unsigned int len;
2602         int rc;
2603
2604         if (!list_empty(&ptype_all))
2605                 dev_queue_xmit_nit(skb, dev);
2606
2607         len = skb->len;
2608         trace_net_dev_start_xmit(skb, dev);
2609         rc = netdev_start_xmit(skb, dev, txq, more);
2610         trace_net_dev_xmit(skb, rc, dev, len);
2611
2612         return rc;
2613 }
2614
2615 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2616                                     struct netdev_queue *txq, int *ret)
2617 {
2618         struct sk_buff *skb = first;
2619         int rc = NETDEV_TX_OK;
2620
2621         while (skb) {
2622                 struct sk_buff *next = skb->next;
2623
2624                 skb->next = NULL;
2625                 rc = xmit_one(skb, dev, txq, next != NULL);
2626                 if (unlikely(!dev_xmit_complete(rc))) {
2627                         skb->next = next;
2628                         goto out;
2629                 }
2630
2631                 skb = next;
2632                 if (netif_xmit_stopped(txq) && skb) {
2633                         rc = NETDEV_TX_BUSY;
2634                         break;
2635                 }
2636         }
2637
2638 out:
2639         *ret = rc;
2640         return skb;
2641 }
2642
2643 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2644                                           netdev_features_t features)
2645 {
2646         if (vlan_tx_tag_present(skb) &&
2647             !vlan_hw_offload_capable(features, skb->vlan_proto))
2648                 skb = __vlan_hwaccel_push_inside(skb);
2649         return skb;
2650 }
2651
2652 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2653 {
2654         netdev_features_t features;
2655
2656         if (skb->next)
2657                 return skb;
2658
2659         features = netif_skb_features(skb);
2660         skb = validate_xmit_vlan(skb, features);
2661         if (unlikely(!skb))
2662                 goto out_null;
2663
2664         /* If encapsulation offload request, verify we are testing
2665          * hardware encapsulation features instead of standard
2666          * features for the netdev
2667          */
2668         if (skb->encapsulation)
2669                 features &= dev->hw_enc_features;
2670
2671         if (netif_needs_gso(dev, skb, features)) {
2672                 struct sk_buff *segs;
2673
2674                 segs = skb_gso_segment(skb, features);
2675                 if (IS_ERR(segs)) {
2676                         goto out_kfree_skb;
2677                 } else if (segs) {
2678                         consume_skb(skb);
2679                         skb = segs;
2680                 }
2681         } else {
2682                 if (skb_needs_linearize(skb, features) &&
2683                     __skb_linearize(skb))
2684                         goto out_kfree_skb;
2685
2686                 /* If packet is not checksummed and device does not
2687                  * support checksumming for this protocol, complete
2688                  * checksumming here.
2689                  */
2690                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2691                         if (skb->encapsulation)
2692                                 skb_set_inner_transport_header(skb,
2693                                                                skb_checksum_start_offset(skb));
2694                         else
2695                                 skb_set_transport_header(skb,
2696                                                          skb_checksum_start_offset(skb));
2697                         if (!(features & NETIF_F_ALL_CSUM) &&
2698                             skb_checksum_help(skb))
2699                                 goto out_kfree_skb;
2700                 }
2701         }
2702
2703         return skb;
2704
2705 out_kfree_skb:
2706         kfree_skb(skb);
2707 out_null:
2708         return NULL;
2709 }
2710
2711 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2712 {
2713         struct sk_buff *next, *head = NULL, *tail;
2714
2715         for (; skb != NULL; skb = next) {
2716                 next = skb->next;
2717                 skb->next = NULL;
2718
2719                 /* in case skb wont be segmented, point to itself */
2720                 skb->prev = skb;
2721
2722                 skb = validate_xmit_skb(skb, dev);
2723                 if (!skb)
2724                         continue;
2725
2726                 if (!head)
2727                         head = skb;
2728                 else
2729                         tail->next = skb;
2730                 /* If skb was segmented, skb->prev points to
2731                  * the last segment. If not, it still contains skb.
2732                  */
2733                 tail = skb->prev;
2734         }
2735         return head;
2736 }
2737
2738 static void qdisc_pkt_len_init(struct sk_buff *skb)
2739 {
2740         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2741
2742         qdisc_skb_cb(skb)->pkt_len = skb->len;
2743
2744         /* To get more precise estimation of bytes sent on wire,
2745          * we add to pkt_len the headers size of all segments
2746          */
2747         if (shinfo->gso_size)  {
2748                 unsigned int hdr_len;
2749                 u16 gso_segs = shinfo->gso_segs;
2750
2751                 /* mac layer + network layer */
2752                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2753
2754                 /* + transport layer */
2755                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2756                         hdr_len += tcp_hdrlen(skb);
2757                 else
2758                         hdr_len += sizeof(struct udphdr);
2759
2760                 if (shinfo->gso_type & SKB_GSO_DODGY)
2761                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2762                                                 shinfo->gso_size);
2763
2764                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2765         }
2766 }
2767
2768 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2769                                  struct net_device *dev,
2770                                  struct netdev_queue *txq)
2771 {
2772         spinlock_t *root_lock = qdisc_lock(q);
2773         bool contended;
2774         int rc;
2775
2776         qdisc_pkt_len_init(skb);
2777         qdisc_calculate_pkt_len(skb, q);
2778         /*
2779          * Heuristic to force contended enqueues to serialize on a
2780          * separate lock before trying to get qdisc main lock.
2781          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2782          * often and dequeue packets faster.
2783          */
2784         contended = qdisc_is_running(q);
2785         if (unlikely(contended))
2786                 spin_lock(&q->busylock);
2787
2788         spin_lock(root_lock);
2789         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2790                 kfree_skb(skb);
2791                 rc = NET_XMIT_DROP;
2792         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2793                    qdisc_run_begin(q)) {
2794                 /*
2795                  * This is a work-conserving queue; there are no old skbs
2796                  * waiting to be sent out; and the qdisc is not running -
2797                  * xmit the skb directly.
2798                  */
2799
2800                 qdisc_bstats_update(q, skb);
2801
2802                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2803                         if (unlikely(contended)) {
2804                                 spin_unlock(&q->busylock);
2805                                 contended = false;
2806                         }
2807                         __qdisc_run(q);
2808                 } else
2809                         qdisc_run_end(q);
2810
2811                 rc = NET_XMIT_SUCCESS;
2812         } else {
2813                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2814                 if (qdisc_run_begin(q)) {
2815                         if (unlikely(contended)) {
2816                                 spin_unlock(&q->busylock);
2817                                 contended = false;
2818                         }
2819                         __qdisc_run(q);
2820                 }
2821         }
2822         spin_unlock(root_lock);
2823         if (unlikely(contended))
2824                 spin_unlock(&q->busylock);
2825         return rc;
2826 }
2827
2828 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2829 static void skb_update_prio(struct sk_buff *skb)
2830 {
2831         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2832
2833         if (!skb->priority && skb->sk && map) {
2834                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2835
2836                 if (prioidx < map->priomap_len)
2837                         skb->priority = map->priomap[prioidx];
2838         }
2839 }
2840 #else
2841 #define skb_update_prio(skb)
2842 #endif
2843
2844 static DEFINE_PER_CPU(int, xmit_recursion);
2845 #define RECURSION_LIMIT 10
2846
2847 /**
2848  *      dev_loopback_xmit - loop back @skb
2849  *      @skb: buffer to transmit
2850  */
2851 int dev_loopback_xmit(struct sk_buff *skb)
2852 {
2853         skb_reset_mac_header(skb);
2854         __skb_pull(skb, skb_network_offset(skb));
2855         skb->pkt_type = PACKET_LOOPBACK;
2856         skb->ip_summed = CHECKSUM_UNNECESSARY;
2857         WARN_ON(!skb_dst(skb));
2858         skb_dst_force(skb);
2859         netif_rx_ni(skb);
2860         return 0;
2861 }
2862 EXPORT_SYMBOL(dev_loopback_xmit);
2863
2864 /**
2865  *      __dev_queue_xmit - transmit a buffer
2866  *      @skb: buffer to transmit
2867  *      @accel_priv: private data used for L2 forwarding offload
2868  *
2869  *      Queue a buffer for transmission to a network device. The caller must
2870  *      have set the device and priority and built the buffer before calling
2871  *      this function. The function can be called from an interrupt.
2872  *
2873  *      A negative errno code is returned on a failure. A success does not
2874  *      guarantee the frame will be transmitted as it may be dropped due
2875  *      to congestion or traffic shaping.
2876  *
2877  * -----------------------------------------------------------------------------------
2878  *      I notice this method can also return errors from the queue disciplines,
2879  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2880  *      be positive.
2881  *
2882  *      Regardless of the return value, the skb is consumed, so it is currently
2883  *      difficult to retry a send to this method.  (You can bump the ref count
2884  *      before sending to hold a reference for retry if you are careful.)
2885  *
2886  *      When calling this method, interrupts MUST be enabled.  This is because
2887  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2888  *          --BLG
2889  */
2890 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2891 {
2892         struct net_device *dev = skb->dev;
2893         struct netdev_queue *txq;
2894         struct Qdisc *q;
2895         int rc = -ENOMEM;
2896
2897         skb_reset_mac_header(skb);
2898
2899         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2900                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2901
2902         /* Disable soft irqs for various locks below. Also
2903          * stops preemption for RCU.
2904          */
2905         rcu_read_lock_bh();
2906
2907         skb_update_prio(skb);
2908
2909         /* If device/qdisc don't need skb->dst, release it right now while
2910          * its hot in this cpu cache.
2911          */
2912         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2913                 skb_dst_drop(skb);
2914         else
2915                 skb_dst_force(skb);
2916
2917         txq = netdev_pick_tx(dev, skb, accel_priv);
2918         q = rcu_dereference_bh(txq->qdisc);
2919
2920 #ifdef CONFIG_NET_CLS_ACT
2921         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2922 #endif
2923         trace_net_dev_queue(skb);
2924         if (q->enqueue) {
2925                 rc = __dev_xmit_skb(skb, q, dev, txq);
2926                 goto out;
2927         }
2928
2929         /* The device has no queue. Common case for software devices:
2930            loopback, all the sorts of tunnels...
2931
2932            Really, it is unlikely that netif_tx_lock protection is necessary
2933            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2934            counters.)
2935            However, it is possible, that they rely on protection
2936            made by us here.
2937
2938            Check this and shot the lock. It is not prone from deadlocks.
2939            Either shot noqueue qdisc, it is even simpler 8)
2940          */
2941         if (dev->flags & IFF_UP) {
2942                 int cpu = smp_processor_id(); /* ok because BHs are off */
2943
2944                 if (txq->xmit_lock_owner != cpu) {
2945
2946                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2947                                 goto recursion_alert;
2948
2949                         skb = validate_xmit_skb(skb, dev);
2950                         if (!skb)
2951                                 goto drop;
2952
2953                         HARD_TX_LOCK(dev, txq, cpu);
2954
2955                         if (!netif_xmit_stopped(txq)) {
2956                                 __this_cpu_inc(xmit_recursion);
2957                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2958                                 __this_cpu_dec(xmit_recursion);
2959                                 if (dev_xmit_complete(rc)) {
2960                                         HARD_TX_UNLOCK(dev, txq);
2961                                         goto out;
2962                                 }
2963                         }
2964                         HARD_TX_UNLOCK(dev, txq);
2965                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2966                                              dev->name);
2967                 } else {
2968                         /* Recursion is detected! It is possible,
2969                          * unfortunately
2970                          */
2971 recursion_alert:
2972                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2973                                              dev->name);
2974                 }
2975         }
2976
2977         rc = -ENETDOWN;
2978 drop:
2979         rcu_read_unlock_bh();
2980
2981         atomic_long_inc(&dev->tx_dropped);
2982         kfree_skb_list(skb);
2983         return rc;
2984 out:
2985         rcu_read_unlock_bh();
2986         return rc;
2987 }
2988
2989 int dev_queue_xmit(struct sk_buff *skb)
2990 {
2991         return __dev_queue_xmit(skb, NULL);
2992 }
2993 EXPORT_SYMBOL(dev_queue_xmit);
2994
2995 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2996 {
2997         return __dev_queue_xmit(skb, accel_priv);
2998 }
2999 EXPORT_SYMBOL(dev_queue_xmit_accel);
3000
3001
3002 /*=======================================================================
3003                         Receiver routines
3004   =======================================================================*/
3005
3006 int netdev_max_backlog __read_mostly = 1000;
3007 EXPORT_SYMBOL(netdev_max_backlog);
3008
3009 int netdev_tstamp_prequeue __read_mostly = 1;
3010 int netdev_budget __read_mostly = 300;
3011 int weight_p __read_mostly = 64;            /* old backlog weight */
3012
3013 /* Called with irq disabled */
3014 static inline void ____napi_schedule(struct softnet_data *sd,
3015                                      struct napi_struct *napi)
3016 {
3017         list_add_tail(&napi->poll_list, &sd->poll_list);
3018         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3019 }
3020
3021 #ifdef CONFIG_RPS
3022
3023 /* One global table that all flow-based protocols share. */
3024 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3025 EXPORT_SYMBOL(rps_sock_flow_table);
3026
3027 struct static_key rps_needed __read_mostly;
3028
3029 static struct rps_dev_flow *
3030 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3031             struct rps_dev_flow *rflow, u16 next_cpu)
3032 {
3033         if (next_cpu != RPS_NO_CPU) {
3034 #ifdef CONFIG_RFS_ACCEL
3035                 struct netdev_rx_queue *rxqueue;
3036                 struct rps_dev_flow_table *flow_table;
3037                 struct rps_dev_flow *old_rflow;
3038                 u32 flow_id;
3039                 u16 rxq_index;
3040                 int rc;
3041
3042                 /* Should we steer this flow to a different hardware queue? */
3043                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3044                     !(dev->features & NETIF_F_NTUPLE))
3045                         goto out;
3046                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3047                 if (rxq_index == skb_get_rx_queue(skb))
3048                         goto out;
3049
3050                 rxqueue = dev->_rx + rxq_index;
3051                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3052                 if (!flow_table)
3053                         goto out;
3054                 flow_id = skb_get_hash(skb) & flow_table->mask;
3055                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3056                                                         rxq_index, flow_id);
3057                 if (rc < 0)
3058                         goto out;
3059                 old_rflow = rflow;
3060                 rflow = &flow_table->flows[flow_id];
3061                 rflow->filter = rc;
3062                 if (old_rflow->filter == rflow->filter)
3063                         old_rflow->filter = RPS_NO_FILTER;
3064         out:
3065 #endif
3066                 rflow->last_qtail =
3067                         per_cpu(softnet_data, next_cpu).input_queue_head;
3068         }
3069
3070         rflow->cpu = next_cpu;
3071         return rflow;
3072 }
3073
3074 /*
3075  * get_rps_cpu is called from netif_receive_skb and returns the target
3076  * CPU from the RPS map of the receiving queue for a given skb.
3077  * rcu_read_lock must be held on entry.
3078  */
3079 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3080                        struct rps_dev_flow **rflowp)
3081 {
3082         struct netdev_rx_queue *rxqueue;
3083         struct rps_map *map;
3084         struct rps_dev_flow_table *flow_table;
3085         struct rps_sock_flow_table *sock_flow_table;
3086         int cpu = -1;
3087         u16 tcpu;
3088         u32 hash;
3089
3090         if (skb_rx_queue_recorded(skb)) {
3091                 u16 index = skb_get_rx_queue(skb);
3092                 if (unlikely(index >= dev->real_num_rx_queues)) {
3093                         WARN_ONCE(dev->real_num_rx_queues > 1,
3094                                   "%s received packet on queue %u, but number "
3095                                   "of RX queues is %u\n",
3096                                   dev->name, index, dev->real_num_rx_queues);
3097                         goto done;
3098                 }
3099                 rxqueue = dev->_rx + index;
3100         } else
3101                 rxqueue = dev->_rx;
3102
3103         map = rcu_dereference(rxqueue->rps_map);
3104         if (map) {
3105                 if (map->len == 1 &&
3106                     !rcu_access_pointer(rxqueue->rps_flow_table)) {
3107                         tcpu = map->cpus[0];
3108                         if (cpu_online(tcpu))
3109                                 cpu = tcpu;
3110                         goto done;
3111                 }
3112         } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3113                 goto done;
3114         }
3115
3116         skb_reset_network_header(skb);
3117         hash = skb_get_hash(skb);
3118         if (!hash)
3119                 goto done;
3120
3121         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3122         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3123         if (flow_table && sock_flow_table) {
3124                 u16 next_cpu;
3125                 struct rps_dev_flow *rflow;
3126
3127                 rflow = &flow_table->flows[hash & flow_table->mask];
3128                 tcpu = rflow->cpu;
3129
3130                 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3131
3132                 /*
3133                  * If the desired CPU (where last recvmsg was done) is
3134                  * different from current CPU (one in the rx-queue flow
3135                  * table entry), switch if one of the following holds:
3136                  *   - Current CPU is unset (equal to RPS_NO_CPU).
3137                  *   - Current CPU is offline.
3138                  *   - The current CPU's queue tail has advanced beyond the
3139                  *     last packet that was enqueued using this table entry.
3140                  *     This guarantees that all previous packets for the flow
3141                  *     have been dequeued, thus preserving in order delivery.
3142                  */
3143                 if (unlikely(tcpu != next_cpu) &&
3144                     (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3145                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3146                       rflow->last_qtail)) >= 0)) {
3147                         tcpu = next_cpu;
3148                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3149                 }
3150
3151                 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3152                         *rflowp = rflow;
3153                         cpu = tcpu;
3154                         goto done;
3155                 }
3156         }
3157
3158         if (map) {
3159                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3160                 if (cpu_online(tcpu)) {
3161                         cpu = tcpu;
3162                         goto done;
3163                 }
3164         }
3165
3166 done:
3167         return cpu;
3168 }
3169
3170 #ifdef CONFIG_RFS_ACCEL
3171
3172 /**
3173  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3174  * @dev: Device on which the filter was set
3175  * @rxq_index: RX queue index
3176  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3177  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3178  *
3179  * Drivers that implement ndo_rx_flow_steer() should periodically call
3180  * this function for each installed filter and remove the filters for
3181  * which it returns %true.
3182  */
3183 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3184                          u32 flow_id, u16 filter_id)
3185 {
3186         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3187         struct rps_dev_flow_table *flow_table;
3188         struct rps_dev_flow *rflow;
3189         bool expire = true;
3190         int cpu;
3191
3192         rcu_read_lock();
3193         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3194         if (flow_table && flow_id <= flow_table->mask) {
3195                 rflow = &flow_table->flows[flow_id];
3196                 cpu = ACCESS_ONCE(rflow->cpu);
3197                 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3198                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3199                            rflow->last_qtail) <
3200                      (int)(10 * flow_table->mask)))
3201                         expire = false;
3202         }
3203         rcu_read_unlock();
3204         return expire;
3205 }
3206 EXPORT_SYMBOL(rps_may_expire_flow);
3207
3208 #endif /* CONFIG_RFS_ACCEL */
3209
3210 /* Called from hardirq (IPI) context */
3211 static void rps_trigger_softirq(void *data)
3212 {
3213         struct softnet_data *sd = data;
3214
3215         ____napi_schedule(sd, &sd->backlog);
3216         sd->received_rps++;
3217 }
3218
3219 #endif /* CONFIG_RPS */
3220
3221 /*
3222  * Check if this softnet_data structure is another cpu one
3223  * If yes, queue it to our IPI list and return 1
3224  * If no, return 0
3225  */
3226 static int rps_ipi_queued(struct softnet_data *sd)
3227 {
3228 #ifdef CONFIG_RPS
3229         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3230
3231         if (sd != mysd) {
3232                 sd->rps_ipi_next = mysd->rps_ipi_list;
3233                 mysd->rps_ipi_list = sd;
3234
3235                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3236                 return 1;
3237         }
3238 #endif /* CONFIG_RPS */
3239         return 0;
3240 }
3241
3242 #ifdef CONFIG_NET_FLOW_LIMIT
3243 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3244 #endif
3245
3246 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3247 {
3248 #ifdef CONFIG_NET_FLOW_LIMIT
3249         struct sd_flow_limit *fl;
3250         struct softnet_data *sd;
3251         unsigned int old_flow, new_flow;
3252
3253         if (qlen < (netdev_max_backlog >> 1))
3254                 return false;
3255
3256         sd = this_cpu_ptr(&softnet_data);
3257
3258         rcu_read_lock();
3259         fl = rcu_dereference(sd->flow_limit);
3260         if (fl) {
3261                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3262                 old_flow = fl->history[fl->history_head];
3263                 fl->history[fl->history_head] = new_flow;
3264
3265                 fl->history_head++;
3266                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3267
3268                 if (likely(fl->buckets[old_flow]))
3269                         fl->buckets[old_flow]--;
3270
3271                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3272                         fl->count++;
3273                         rcu_read_unlock();
3274                         return true;
3275                 }
3276         }
3277         rcu_read_unlock();
3278 #endif
3279         return false;
3280 }
3281
3282 /*
3283  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3284  * queue (may be a remote CPU queue).
3285  */
3286 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3287                               unsigned int *qtail)
3288 {
3289         struct softnet_data *sd;
3290         unsigned long flags;
3291         unsigned int qlen;
3292
3293         sd = &per_cpu(softnet_data, cpu);
3294
3295         local_irq_save(flags);
3296
3297         rps_lock(sd);
3298         qlen = skb_queue_len(&sd->input_pkt_queue);
3299         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3300                 if (qlen) {
3301 enqueue:
3302                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3303                         input_queue_tail_incr_save(sd, qtail);
3304                         rps_unlock(sd);
3305                         local_irq_restore(flags);
3306                         return NET_RX_SUCCESS;
3307                 }
3308
3309                 /* Schedule NAPI for backlog device
3310                  * We can use non atomic operation since we own the queue lock
3311                  */
3312                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3313                         if (!rps_ipi_queued(sd))
3314                                 ____napi_schedule(sd, &sd->backlog);
3315                 }
3316                 goto enqueue;
3317         }
3318
3319         sd->dropped++;
3320         rps_unlock(sd);
3321
3322         local_irq_restore(flags);
3323
3324         atomic_long_inc(&skb->dev->rx_dropped);
3325         kfree_skb(skb);
3326         return NET_RX_DROP;
3327 }
3328
3329 static int netif_rx_internal(struct sk_buff *skb)
3330 {
3331         int ret;
3332
3333         net_timestamp_check(netdev_tstamp_prequeue, skb);
3334
3335         trace_netif_rx(skb);
3336 #ifdef CONFIG_RPS
3337         if (static_key_false(&rps_needed)) {
3338                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3339                 int cpu;
3340
3341                 preempt_disable();
3342                 rcu_read_lock();
3343
3344                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3345                 if (cpu < 0)
3346                         cpu = smp_processor_id();
3347
3348                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3349
3350                 rcu_read_unlock();
3351                 preempt_enable();
3352         } else
3353 #endif
3354         {
3355                 unsigned int qtail;
3356                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3357                 put_cpu();
3358         }
3359         return ret;
3360 }
3361
3362 /**
3363  *      netif_rx        -       post buffer to the network code
3364  *      @skb: buffer to post
3365  *
3366  *      This function receives a packet from a device driver and queues it for
3367  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3368  *      may be dropped during processing for congestion control or by the
3369  *      protocol layers.
3370  *
3371  *      return values:
3372  *      NET_RX_SUCCESS  (no congestion)
3373  *      NET_RX_DROP     (packet was dropped)
3374  *
3375  */
3376
3377 int netif_rx(struct sk_buff *skb)
3378 {
3379         trace_netif_rx_entry(skb);
3380
3381         return netif_rx_internal(skb);
3382 }
3383 EXPORT_SYMBOL(netif_rx);
3384
3385 int netif_rx_ni(struct sk_buff *skb)
3386 {
3387         int err;
3388
3389         trace_netif_rx_ni_entry(skb);
3390
3391         preempt_disable();
3392         err = netif_rx_internal(skb);
3393         if (local_softirq_pending())
3394                 do_softirq();
3395         preempt_enable();
3396
3397         return err;
3398 }
3399 EXPORT_SYMBOL(netif_rx_ni);
3400
3401 static void net_tx_action(struct softirq_action *h)
3402 {
3403         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3404
3405         if (sd->completion_queue) {
3406                 struct sk_buff *clist;
3407
3408                 local_irq_disable();
3409                 clist = sd->completion_queue;
3410                 sd->completion_queue = NULL;
3411                 local_irq_enable();
3412
3413                 while (clist) {
3414                         struct sk_buff *skb = clist;
3415                         clist = clist->next;
3416
3417                         WARN_ON(atomic_read(&skb->users));
3418                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3419                                 trace_consume_skb(skb);
3420                         else
3421                                 trace_kfree_skb(skb, net_tx_action);
3422                         __kfree_skb(skb);
3423                 }
3424         }
3425
3426         if (sd->output_queue) {
3427                 struct Qdisc *head;
3428
3429                 local_irq_disable();
3430                 head = sd->output_queue;
3431                 sd->output_queue = NULL;
3432                 sd->output_queue_tailp = &sd->output_queue;
3433                 local_irq_enable();
3434
3435                 while (head) {
3436                         struct Qdisc *q = head;
3437                         spinlock_t *root_lock;
3438
3439                         head = head->next_sched;
3440
3441                         root_lock = qdisc_lock(q);
3442                         if (spin_trylock(root_lock)) {
3443                                 smp_mb__before_atomic();
3444                                 clear_bit(__QDISC_STATE_SCHED,
3445                                           &q->state);
3446                                 qdisc_run(q);
3447                                 spin_unlock(root_lock);
3448                         } else {
3449                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3450                                               &q->state)) {
3451                                         __netif_reschedule(q);
3452                                 } else {
3453                                         smp_mb__before_atomic();
3454                                         clear_bit(__QDISC_STATE_SCHED,
3455                                                   &q->state);
3456                                 }
3457                         }
3458                 }
3459         }
3460 }
3461
3462 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3463     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3464 /* This hook is defined here for ATM LANE */
3465 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3466                              unsigned char *addr) __read_mostly;
3467 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3468 #endif
3469
3470 #ifdef CONFIG_NET_CLS_ACT
3471 /* TODO: Maybe we should just force sch_ingress to be compiled in
3472  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3473  * a compare and 2 stores extra right now if we dont have it on
3474  * but have CONFIG_NET_CLS_ACT
3475  * NOTE: This doesn't stop any functionality; if you dont have
3476  * the ingress scheduler, you just can't add policies on ingress.
3477  *
3478  */
3479 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3480 {
3481         struct net_device *dev = skb->dev;
3482         u32 ttl = G_TC_RTTL(skb->tc_verd);
3483         int result = TC_ACT_OK;
3484         struct Qdisc *q;
3485
3486         if (unlikely(MAX_RED_LOOP < ttl++)) {
3487                 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3488                                      skb->skb_iif, dev->ifindex);
3489                 return TC_ACT_SHOT;
3490         }
3491
3492         skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3493         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3494
3495         q = rcu_dereference(rxq->qdisc);
3496         if (q != &noop_qdisc) {
3497                 spin_lock(qdisc_lock(q));
3498                 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3499                         result = qdisc_enqueue_root(skb, q);
3500                 spin_unlock(qdisc_lock(q));
3501         }
3502
3503         return result;
3504 }
3505
3506 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3507                                          struct packet_type **pt_prev,
3508                                          int *ret, struct net_device *orig_dev)
3509 {
3510         struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3511
3512         if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3513                 goto out;
3514
3515         if (*pt_prev) {
3516                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3517                 *pt_prev = NULL;
3518         }
3519
3520         switch (ing_filter(skb, rxq)) {
3521         case TC_ACT_SHOT:
3522         case TC_ACT_STOLEN:
3523                 kfree_skb(skb);
3524                 return NULL;
3525         }
3526
3527 out:
3528         skb->tc_verd = 0;
3529         return skb;
3530 }
3531 #endif
3532
3533 /**
3534  *      netdev_rx_handler_register - register receive handler
3535  *      @dev: device to register a handler for
3536  *      @rx_handler: receive handler to register
3537  *      @rx_handler_data: data pointer that is used by rx handler
3538  *
3539  *      Register a receive handler for a device. This handler will then be
3540  *      called from __netif_receive_skb. A negative errno code is returned
3541  *      on a failure.
3542  *
3543  *      The caller must hold the rtnl_mutex.
3544  *
3545  *      For a general description of rx_handler, see enum rx_handler_result.
3546  */
3547 int netdev_rx_handler_register(struct net_device *dev,
3548                                rx_handler_func_t *rx_handler,
3549                                void *rx_handler_data)
3550 {
3551         ASSERT_RTNL();
3552
3553         if (dev->rx_handler)
3554                 return -EBUSY;
3555
3556         /* Note: rx_handler_data must be set before rx_handler */
3557         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3558         rcu_assign_pointer(dev->rx_handler, rx_handler);
3559
3560         return 0;
3561 }
3562 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3563
3564 /**
3565  *      netdev_rx_handler_unregister - unregister receive handler
3566  *      @dev: device to unregister a handler from
3567  *
3568  *      Unregister a receive handler from a device.
3569  *
3570  *      The caller must hold the rtnl_mutex.
3571  */
3572 void netdev_rx_handler_unregister(struct net_device *dev)
3573 {
3574
3575         ASSERT_RTNL();
3576         RCU_INIT_POINTER(dev->rx_handler, NULL);
3577         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3578          * section has a guarantee to see a non NULL rx_handler_data
3579          * as well.
3580          */
3581         synchronize_net();
3582         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3583 }
3584 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3585
3586 /*
3587  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3588  * the special handling of PFMEMALLOC skbs.
3589  */
3590 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3591 {
3592         switch (skb->protocol) {
3593         case htons(ETH_P_ARP):
3594         case htons(ETH_P_IP):
3595         case htons(ETH_P_IPV6):
3596         case htons(ETH_P_8021Q):
3597         case htons(ETH_P_8021AD):
3598                 return true;
3599         default:
3600                 return false;
3601         }
3602 }
3603
3604 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3605 {
3606         struct packet_type *ptype, *pt_prev;
3607         rx_handler_func_t *rx_handler;
3608         struct net_device *orig_dev;
3609         struct net_device *null_or_dev;
3610         bool deliver_exact = false;
3611         int ret = NET_RX_DROP;
3612         __be16 type;
3613
3614         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3615
3616         trace_netif_receive_skb(skb);
3617
3618         orig_dev = skb->dev;
3619
3620         skb_reset_network_header(skb);
3621         if (!skb_transport_header_was_set(skb))
3622                 skb_reset_transport_header(skb);
3623         skb_reset_mac_len(skb);
3624
3625         pt_prev = NULL;
3626
3627         rcu_read_lock();
3628
3629 another_round:
3630         skb->skb_iif = skb->dev->ifindex;
3631
3632         __this_cpu_inc(softnet_data.processed);
3633
3634         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3635             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3636                 skb = skb_vlan_untag(skb);
3637                 if (unlikely(!skb))
3638                         goto unlock;
3639         }
3640
3641 #ifdef CONFIG_NET_CLS_ACT
3642         if (skb->tc_verd & TC_NCLS) {
3643                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3644                 goto ncls;
3645         }
3646 #endif
3647
3648         if (pfmemalloc)
3649                 goto skip_taps;
3650
3651         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3652                 if (!ptype->dev || ptype->dev == skb->dev) {
3653                         if (pt_prev)
3654                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3655                         pt_prev = ptype;
3656                 }
3657         }
3658
3659 skip_taps:
3660 #ifdef CONFIG_NET_CLS_ACT
3661         skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3662         if (!skb)
3663                 goto unlock;
3664 ncls:
3665 #endif
3666
3667         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3668                 goto drop;
3669
3670         if (vlan_tx_tag_present(skb)) {
3671                 if (pt_prev) {
3672                         ret = deliver_skb(skb, pt_prev, orig_dev);
3673                         pt_prev = NULL;
3674                 }
3675                 if (vlan_do_receive(&skb))
3676                         goto another_round;
3677                 else if (unlikely(!skb))
3678                         goto unlock;
3679         }
3680
3681         rx_handler = rcu_dereference(skb->dev->rx_handler);
3682         if (rx_handler) {
3683                 if (pt_prev) {
3684                         ret = deliver_skb(skb, pt_prev, orig_dev);
3685                         pt_prev = NULL;
3686                 }
3687                 switch (rx_handler(&skb)) {
3688                 case RX_HANDLER_CONSUMED:
3689                         ret = NET_RX_SUCCESS;
3690                         goto unlock;
3691                 case RX_HANDLER_ANOTHER:
3692                         goto another_round;
3693                 case RX_HANDLER_EXACT:
3694                         deliver_exact = true;
3695                 case RX_HANDLER_PASS:
3696                         break;
3697                 default:
3698                         BUG();
3699                 }
3700         }
3701
3702         if (unlikely(vlan_tx_tag_present(skb))) {
3703                 if (vlan_tx_tag_get_id(skb))
3704                         skb->pkt_type = PACKET_OTHERHOST;
3705                 /* Note: we might in the future use prio bits
3706                  * and set skb->priority like in vlan_do_receive()
3707                  * For the time being, just ignore Priority Code Point
3708                  */
3709                 skb->vlan_tci = 0;
3710         }
3711
3712         /* deliver only exact match when indicated */
3713         null_or_dev = deliver_exact ? skb->dev : NULL;
3714
3715         type = skb->protocol;
3716         list_for_each_entry_rcu(ptype,
3717                         &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3718                 if (ptype->type == type &&
3719                     (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3720                      ptype->dev == orig_dev)) {
3721                         if (pt_prev)
3722                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3723                         pt_prev = ptype;
3724                 }
3725         }
3726
3727         if (pt_prev) {
3728                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3729                         goto drop;
3730                 else
3731                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3732         } else {
3733 drop:
3734                 atomic_long_inc(&skb->dev->rx_dropped);
3735                 kfree_skb(skb);
3736                 /* Jamal, now you will not able to escape explaining
3737                  * me how you were going to use this. :-)
3738                  */
3739                 ret = NET_RX_DROP;
3740         }
3741
3742 unlock:
3743         rcu_read_unlock();
3744         return ret;
3745 }
3746
3747 static int __netif_receive_skb(struct sk_buff *skb)
3748 {
3749         int ret;
3750
3751         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3752                 unsigned long pflags = current->flags;
3753
3754                 /*
3755                  * PFMEMALLOC skbs are special, they should
3756                  * - be delivered to SOCK_MEMALLOC sockets only
3757                  * - stay away from userspace
3758                  * - have bounded memory usage
3759                  *
3760                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3761                  * context down to all allocation sites.
3762                  */
3763                 current->flags |= PF_MEMALLOC;
3764                 ret = __netif_receive_skb_core(skb, true);
3765                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3766         } else
3767                 ret = __netif_receive_skb_core(skb, false);
3768
3769         return ret;
3770 }
3771
3772 static int netif_receive_skb_internal(struct sk_buff *skb)
3773 {
3774         net_timestamp_check(netdev_tstamp_prequeue, skb);
3775
3776         if (skb_defer_rx_timestamp(skb))
3777                 return NET_RX_SUCCESS;
3778
3779 #ifdef CONFIG_RPS
3780         if (static_key_false(&rps_needed)) {
3781                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3782                 int cpu, ret;
3783
3784                 rcu_read_lock();
3785
3786                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3787
3788                 if (cpu >= 0) {
3789                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3790                         rcu_read_unlock();
3791                         return ret;
3792                 }
3793                 rcu_read_unlock();
3794         }
3795 #endif
3796         return __netif_receive_skb(skb);
3797 }
3798
3799 /**
3800  *      netif_receive_skb - process receive buffer from network
3801  *      @skb: buffer to process
3802  *
3803  *      netif_receive_skb() is the main receive data processing function.
3804  *      It always succeeds. The buffer may be dropped during processing
3805  *      for congestion control or by the protocol layers.
3806  *
3807  *      This function may only be called from softirq context and interrupts
3808  *      should be enabled.
3809  *
3810  *      Return values (usually ignored):
3811  *      NET_RX_SUCCESS: no congestion
3812  *      NET_RX_DROP: packet was dropped
3813  */
3814 int netif_receive_skb(struct sk_buff *skb)
3815 {
3816         trace_netif_receive_skb_entry(skb);
3817
3818         return netif_receive_skb_internal(skb);
3819 }
3820 EXPORT_SYMBOL(netif_receive_skb);
3821
3822 /* Network device is going away, flush any packets still pending
3823  * Called with irqs disabled.
3824  */
3825 static void flush_backlog(void *arg)
3826 {
3827         struct net_device *dev = arg;
3828         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3829         struct sk_buff *skb, *tmp;
3830
3831         rps_lock(sd);
3832         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3833                 if (skb->dev == dev) {
3834                         __skb_unlink(skb, &sd->input_pkt_queue);
3835                         kfree_skb(skb);
3836                         input_queue_head_incr(sd);
3837                 }
3838         }
3839         rps_unlock(sd);
3840
3841         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3842                 if (skb->dev == dev) {
3843                         __skb_unlink(skb, &sd->process_queue);
3844                         kfree_skb(skb);
3845                         input_queue_head_incr(sd);
3846                 }
3847         }
3848 }
3849
3850 static int napi_gro_complete(struct sk_buff *skb)
3851 {
3852         struct packet_offload *ptype;
3853         __be16 type = skb->protocol;
3854         struct list_head *head = &offload_base;
3855         int err = -ENOENT;
3856
3857         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3858
3859         if (NAPI_GRO_CB(skb)->count == 1) {
3860                 skb_shinfo(skb)->gso_size = 0;
3861                 goto out;
3862         }
3863
3864         rcu_read_lock();
3865         list_for_each_entry_rcu(ptype, head, list) {
3866                 if (ptype->type != type || !ptype->callbacks.gro_complete)
3867                         continue;
3868
3869                 err = ptype->callbacks.gro_complete(skb, 0);
3870                 break;
3871         }
3872         rcu_read_unlock();
3873
3874         if (err) {
3875                 WARN_ON(&ptype->list == head);
3876                 kfree_skb(skb);
3877                 return NET_RX_SUCCESS;
3878         }
3879
3880 out:
3881         return netif_receive_skb_internal(skb);
3882 }
3883
3884 /* napi->gro_list contains packets ordered by age.
3885  * youngest packets at the head of it.
3886  * Complete skbs in reverse order to reduce latencies.
3887  */
3888 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3889 {
3890         struct sk_buff *skb, *prev = NULL;
3891
3892         /* scan list and build reverse chain */
3893         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3894                 skb->prev = prev;
3895                 prev = skb;
3896         }
3897
3898         for (skb = prev; skb; skb = prev) {
3899                 skb->next = NULL;
3900
3901                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3902                         return;
3903
3904                 prev = skb->prev;
3905                 napi_gro_complete(skb);
3906                 napi->gro_count--;
3907         }
3908
3909         napi->gro_list = NULL;
3910 }
3911 EXPORT_SYMBOL(napi_gro_flush);
3912
3913 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3914 {
3915         struct sk_buff *p;
3916         unsigned int maclen = skb->dev->hard_header_len;
3917         u32 hash = skb_get_hash_raw(skb);
3918
3919         for (p = napi->gro_list; p; p = p->next) {
3920                 unsigned long diffs;
3921
3922                 NAPI_GRO_CB(p)->flush = 0;
3923
3924                 if (hash != skb_get_hash_raw(p)) {
3925                         NAPI_GRO_CB(p)->same_flow = 0;
3926                         continue;
3927                 }
3928
3929                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3930                 diffs |= p->vlan_tci ^ skb->vlan_tci;
3931                 if (maclen == ETH_HLEN)
3932                         diffs |= compare_ether_header(skb_mac_header(p),
3933                                                       skb_mac_header(skb));
3934                 else if (!diffs)
3935                         diffs = memcmp(skb_mac_header(p),
3936                                        skb_mac_header(skb),
3937                                        maclen);
3938                 NAPI_GRO_CB(p)->same_flow = !diffs;
3939         }
3940 }
3941
3942 static void skb_gro_reset_offset(struct sk_buff *skb)
3943 {
3944         const struct skb_shared_info *pinfo = skb_shinfo(skb);
3945         const skb_frag_t *frag0 = &pinfo->frags[0];
3946
3947         NAPI_GRO_CB(skb)->data_offset = 0;
3948         NAPI_GRO_CB(skb)->frag0 = NULL;
3949         NAPI_GRO_CB(skb)->frag0_len = 0;
3950
3951         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3952             pinfo->nr_frags &&
3953             !PageHighMem(skb_frag_page(frag0))) {
3954                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3955                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3956         }
3957 }
3958
3959 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3960 {
3961         struct skb_shared_info *pinfo = skb_shinfo(skb);
3962
3963         BUG_ON(skb->end - skb->tail < grow);
3964
3965         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3966
3967         skb->data_len -= grow;
3968         skb->tail += grow;
3969
3970         pinfo->frags[0].page_offset += grow;
3971         skb_frag_size_sub(&pinfo->frags[0], grow);
3972
3973         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3974                 skb_frag_unref(skb, 0);
3975                 memmove(pinfo->frags, pinfo->frags + 1,
3976                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3977         }
3978 }
3979
3980 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3981 {
3982         struct sk_buff **pp = NULL;
3983         struct packet_offload *ptype;
3984         __be16 type = skb->protocol;
3985         struct list_head *head = &offload_base;
3986         int same_flow;
3987         enum gro_result ret;
3988         int grow;
3989
3990         if (!(skb->dev->features & NETIF_F_GRO))
3991                 goto normal;
3992
3993         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
3994                 goto normal;
3995
3996         gro_list_prepare(napi, skb);
3997
3998         rcu_read_lock();
3999         list_for_each_entry_rcu(ptype, head, list) {
4000                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4001                         continue;
4002
4003                 skb_set_network_header(skb, skb_gro_offset(skb));
4004                 skb_reset_mac_len(skb);
4005                 NAPI_GRO_CB(skb)->same_flow = 0;
4006                 NAPI_GRO_CB(skb)->flush = 0;
4007                 NAPI_GRO_CB(skb)->free = 0;
4008                 NAPI_GRO_CB(skb)->udp_mark = 0;
4009
4010                 /* Setup for GRO checksum validation */
4011                 switch (skb->ip_summed) {
4012                 case CHECKSUM_COMPLETE:
4013                         NAPI_GRO_CB(skb)->csum = skb->csum;
4014                         NAPI_GRO_CB(skb)->csum_valid = 1;
4015                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4016                         break;
4017                 case CHECKSUM_UNNECESSARY:
4018                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4019                         NAPI_GRO_CB(skb)->csum_valid = 0;
4020                         break;
4021                 default:
4022                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4023                         NAPI_GRO_CB(skb)->csum_valid = 0;
4024                 }
4025
4026                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4027                 break;
4028         }
4029         rcu_read_unlock();
4030
4031         if (&ptype->list == head)
4032                 goto normal;
4033
4034         same_flow = NAPI_GRO_CB(skb)->same_flow;
4035         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4036
4037         if (pp) {
4038                 struct sk_buff *nskb = *pp;
4039
4040                 *pp = nskb->next;
4041                 nskb->next = NULL;
4042                 napi_gro_complete(nskb);
4043                 napi->gro_count--;
4044         }
4045
4046         if (same_flow)
4047                 goto ok;
4048
4049         if (NAPI_GRO_CB(skb)->flush)
4050                 goto normal;
4051
4052         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4053                 struct sk_buff *nskb = napi->gro_list;
4054
4055                 /* locate the end of the list to select the 'oldest' flow */
4056                 while (nskb->next) {
4057                         pp = &nskb->next;
4058                         nskb = *pp;
4059                 }
4060                 *pp = NULL;
4061                 nskb->next = NULL;
4062                 napi_gro_complete(nskb);
4063         } else {
4064                 napi->gro_count++;
4065         }
4066         NAPI_GRO_CB(skb)->count = 1;
4067         NAPI_GRO_CB(skb)->age = jiffies;
4068         NAPI_GRO_CB(skb)->last = skb;
4069         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4070         skb->next = napi->gro_list;
4071         napi->gro_list = skb;
4072         ret = GRO_HELD;
4073
4074 pull:
4075         grow = skb_gro_offset(skb) - skb_headlen(skb);
4076         if (grow > 0)
4077                 gro_pull_from_frag0(skb, grow);
4078 ok:
4079         return ret;
4080
4081 normal:
4082         ret = GRO_NORMAL;
4083         goto pull;
4084 }
4085
4086 struct packet_offload *gro_find_receive_by_type(__be16 type)
4087 {
4088         struct list_head *offload_head = &offload_base;
4089         struct packet_offload *ptype;
4090
4091         list_for_each_entry_rcu(ptype, offload_head, list) {
4092                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4093                         continue;
4094                 return ptype;
4095         }
4096         return NULL;
4097 }
4098 EXPORT_SYMBOL(gro_find_receive_by_type);
4099
4100 struct packet_offload *gro_find_complete_by_type(__be16 type)
4101 {
4102         struct list_head *offload_head = &offload_base;
4103         struct packet_offload *ptype;
4104
4105         list_for_each_entry_rcu(ptype, offload_head, list) {
4106                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4107                         continue;
4108                 return ptype;
4109         }
4110         return NULL;
4111 }
4112 EXPORT_SYMBOL(gro_find_complete_by_type);
4113
4114 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4115 {
4116         switch (ret) {
4117         case GRO_NORMAL:
4118                 if (netif_receive_skb_internal(skb))
4119                         ret = GRO_DROP;
4120                 break;
4121
4122         case GRO_DROP:
4123                 kfree_skb(skb);
4124                 break;
4125
4126         case GRO_MERGED_FREE:
4127                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4128                         kmem_cache_free(skbuff_head_cache, skb);
4129                 else
4130                         __kfree_skb(skb);
4131                 break;
4132
4133         case GRO_HELD:
4134         case GRO_MERGED:
4135                 break;
4136         }
4137
4138         return ret;
4139 }
4140
4141 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4142 {
4143         trace_napi_gro_receive_entry(skb);
4144
4145         skb_gro_reset_offset(skb);
4146
4147         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4148 }
4149 EXPORT_SYMBOL(napi_gro_receive);
4150
4151 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4152 {
4153         if (unlikely(skb->pfmemalloc)) {
4154                 consume_skb(skb);
4155                 return;
4156         }
4157         __skb_pull(skb, skb_headlen(skb));
4158         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4159         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4160         skb->vlan_tci = 0;
4161         skb->dev = napi->dev;
4162         skb->skb_iif = 0;
4163         skb->encapsulation = 0;
4164         skb_shinfo(skb)->gso_type = 0;
4165         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4166
4167         napi->skb = skb;
4168 }
4169
4170 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4171 {
4172         struct sk_buff *skb = napi->skb;
4173
4174         if (!skb) {
4175                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4176                 napi->skb = skb;
4177         }
4178         return skb;
4179 }
4180 EXPORT_SYMBOL(napi_get_frags);
4181
4182 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4183                                       struct sk_buff *skb,
4184                                       gro_result_t ret)
4185 {
4186         switch (ret) {
4187         case GRO_NORMAL:
4188         case GRO_HELD:
4189                 __skb_push(skb, ETH_HLEN);
4190                 skb->protocol = eth_type_trans(skb, skb->dev);
4191                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4192                         ret = GRO_DROP;
4193                 break;
4194
4195         case GRO_DROP:
4196         case GRO_MERGED_FREE:
4197                 napi_reuse_skb(napi, skb);
4198                 break;
4199
4200         case GRO_MERGED:
4201                 break;
4202         }
4203
4204         return ret;
4205 }
4206
4207 /* Upper GRO stack assumes network header starts at gro_offset=0
4208  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4209  * We copy ethernet header into skb->data to have a common layout.
4210  */
4211 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4212 {
4213         struct sk_buff *skb = napi->skb;
4214         const struct ethhdr *eth;
4215         unsigned int hlen = sizeof(*eth);
4216
4217         napi->skb = NULL;
4218
4219         skb_reset_mac_header(skb);
4220         skb_gro_reset_offset(skb);
4221
4222         eth = skb_gro_header_fast(skb, 0);
4223         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4224                 eth = skb_gro_header_slow(skb, hlen, 0);
4225                 if (unlikely(!eth)) {
4226                         napi_reuse_skb(napi, skb);
4227                         return NULL;
4228                 }
4229         } else {
4230                 gro_pull_from_frag0(skb, hlen);
4231                 NAPI_GRO_CB(skb)->frag0 += hlen;
4232                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4233         }
4234         __skb_pull(skb, hlen);
4235
4236         /*
4237          * This works because the only protocols we care about don't require
4238          * special handling.
4239          * We'll fix it up properly in napi_frags_finish()
4240          */
4241         skb->protocol = eth->h_proto;
4242
4243         return skb;
4244 }
4245
4246 gro_result_t napi_gro_frags(struct napi_struct *napi)
4247 {
4248         struct sk_buff *skb = napi_frags_skb(napi);
4249
4250         if (!skb)
4251                 return GRO_DROP;
4252
4253         trace_napi_gro_frags_entry(skb);
4254
4255         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4256 }
4257 EXPORT_SYMBOL(napi_gro_frags);
4258
4259 /* Compute the checksum from gro_offset and return the folded value
4260  * after adding in any pseudo checksum.
4261  */
4262 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4263 {
4264         __wsum wsum;
4265         __sum16 sum;
4266
4267         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4268
4269         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4270         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4271         if (likely(!sum)) {
4272                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4273                     !skb->csum_complete_sw)
4274                         netdev_rx_csum_fault(skb->dev);
4275         }
4276
4277         NAPI_GRO_CB(skb)->csum = wsum;
4278         NAPI_GRO_CB(skb)->csum_valid = 1;
4279
4280         return sum;
4281 }
4282 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4283
4284 /*
4285  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4286  * Note: called with local irq disabled, but exits with local irq enabled.
4287  */
4288 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4289 {
4290 #ifdef CONFIG_RPS
4291         struct softnet_data *remsd = sd->rps_ipi_list;
4292
4293         if (remsd) {
4294                 sd->rps_ipi_list = NULL;
4295
4296                 local_irq_enable();
4297
4298                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4299                 while (remsd) {
4300                         struct softnet_data *next = remsd->rps_ipi_next;
4301
4302                         if (cpu_online(remsd->cpu))
4303                                 smp_call_function_single_async(remsd->cpu,
4304                                                            &remsd->csd);
4305                         remsd = next;
4306                 }
4307         } else
4308 #endif
4309                 local_irq_enable();
4310 }
4311
4312 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4313 {
4314 #ifdef CONFIG_RPS
4315         return sd->rps_ipi_list != NULL;
4316 #else
4317         return false;
4318 #endif
4319 }
4320
4321 static int process_backlog(struct napi_struct *napi, int quota)
4322 {
4323         int work = 0;
4324         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4325
4326         /* Check if we have pending ipi, its better to send them now,
4327          * not waiting net_rx_action() end.
4328          */
4329         if (sd_has_rps_ipi_waiting(sd)) {
4330                 local_irq_disable();
4331                 net_rps_action_and_irq_enable(sd);
4332         }
4333
4334         napi->weight = weight_p;
4335         local_irq_disable();
4336         while (1) {
4337                 struct sk_buff *skb;
4338
4339                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4340                         local_irq_enable();
4341                         __netif_receive_skb(skb);
4342                         local_irq_disable();
4343                         input_queue_head_incr(sd);
4344                         if (++work >= quota) {
4345                                 local_irq_enable();
4346                                 return work;
4347                         }
4348                 }
4349
4350                 rps_lock(sd);
4351                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4352                         /*
4353                          * Inline a custom version of __napi_complete().
4354                          * only current cpu owns and manipulates this napi,
4355                          * and NAPI_STATE_SCHED is the only possible flag set
4356                          * on backlog.
4357                          * We can use a plain write instead of clear_bit(),
4358                          * and we dont need an smp_mb() memory barrier.
4359                          */
4360                         napi->state = 0;
4361                         rps_unlock(sd);
4362
4363                         break;
4364                 }
4365
4366                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4367                                            &sd->process_queue);
4368                 rps_unlock(sd);
4369         }
4370         local_irq_enable();
4371
4372         return work;
4373 }
4374
4375 /**
4376  * __napi_schedule - schedule for receive
4377  * @n: entry to schedule
4378  *
4379  * The entry's receive function will be scheduled to run.
4380  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4381  */
4382 void __napi_schedule(struct napi_struct *n)
4383 {
4384         unsigned long flags;
4385
4386         local_irq_save(flags);
4387         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4388         local_irq_restore(flags);
4389 }
4390 EXPORT_SYMBOL(__napi_schedule);
4391
4392 /**
4393  * __napi_schedule_irqoff - schedule for receive
4394  * @n: entry to schedule
4395  *
4396  * Variant of __napi_schedule() assuming hard irqs are masked
4397  */
4398 void __napi_schedule_irqoff(struct napi_struct *n)
4399 {
4400         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4401 }
4402 EXPORT_SYMBOL(__napi_schedule_irqoff);
4403
4404 void __napi_complete(struct napi_struct *n)
4405 {
4406         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4407
4408         list_del_init(&n->poll_list);
4409         smp_mb__before_atomic();
4410         clear_bit(NAPI_STATE_SCHED, &n->state);
4411 }
4412 EXPORT_SYMBOL(__napi_complete);
4413
4414 void napi_complete_done(struct napi_struct *n, int work_done)
4415 {
4416         unsigned long flags;
4417
4418         /*
4419          * don't let napi dequeue from the cpu poll list
4420          * just in case its running on a different cpu
4421          */
4422         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4423                 return;
4424
4425         if (n->gro_list) {
4426                 unsigned long timeout = 0;
4427
4428                 if (work_done)
4429                         timeout = n->dev->gro_flush_timeout;
4430
4431                 if (timeout)
4432                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4433                                       HRTIMER_MODE_REL_PINNED);
4434                 else
4435                         napi_gro_flush(n, false);
4436         }
4437         if (likely(list_empty(&n->poll_list))) {
4438                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4439         } else {
4440                 /* If n->poll_list is not empty, we need to mask irqs */
4441                 local_irq_save(flags);
4442                 __napi_complete(n);
4443                 local_irq_restore(flags);
4444         }
4445 }
4446 EXPORT_SYMBOL(napi_complete_done);
4447
4448 /* must be called under rcu_read_lock(), as we dont take a reference */
4449 struct napi_struct *napi_by_id(unsigned int napi_id)
4450 {
4451         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4452         struct napi_struct *napi;
4453
4454         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4455                 if (napi->napi_id == napi_id)
4456                         return napi;
4457
4458         return NULL;
4459 }
4460 EXPORT_SYMBOL_GPL(napi_by_id);
4461
4462 void napi_hash_add(struct napi_struct *napi)
4463 {
4464         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4465
4466                 spin_lock(&napi_hash_lock);
4467
4468                 /* 0 is not a valid id, we also skip an id that is taken
4469                  * we expect both events to be extremely rare
4470                  */
4471                 napi->napi_id = 0;
4472                 while (!napi->napi_id) {
4473                         napi->napi_id = ++napi_gen_id;
4474                         if (napi_by_id(napi->napi_id))
4475                                 napi->napi_id = 0;
4476                 }
4477
4478                 hlist_add_head_rcu(&napi->napi_hash_node,
4479                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4480
4481                 spin_unlock(&napi_hash_lock);
4482         }
4483 }
4484 EXPORT_SYMBOL_GPL(napi_hash_add);
4485
4486 /* Warning : caller is responsible to make sure rcu grace period
4487  * is respected before freeing memory containing @napi
4488  */
4489 void napi_hash_del(struct napi_struct *napi)
4490 {
4491         spin_lock(&napi_hash_lock);
4492
4493         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4494                 hlist_del_rcu(&napi->napi_hash_node);
4495
4496         spin_unlock(&napi_hash_lock);
4497 }
4498 EXPORT_SYMBOL_GPL(napi_hash_del);
4499
4500 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4501 {
4502         struct napi_struct *napi;
4503
4504         napi = container_of(timer, struct napi_struct, timer);
4505         if (napi->gro_list)
4506                 napi_schedule(napi);
4507
4508         return HRTIMER_NORESTART;
4509 }
4510
4511 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4512                     int (*poll)(struct napi_struct *, int), int weight)
4513 {
4514         INIT_LIST_HEAD(&napi->poll_list);
4515         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4516         napi->timer.function = napi_watchdog;
4517         napi->gro_count = 0;
4518         napi->gro_list = NULL;
4519         napi->skb = NULL;
4520         napi->poll = poll;
4521         if (weight > NAPI_POLL_WEIGHT)
4522                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4523                             weight, dev->name);
4524         napi->weight = weight;
4525         list_add(&napi->dev_list, &dev->napi_list);
4526         napi->dev = dev;
4527 #ifdef CONFIG_NETPOLL
4528         spin_lock_init(&napi->poll_lock);
4529         napi->poll_owner = -1;
4530 #endif
4531         set_bit(NAPI_STATE_SCHED, &napi->state);
4532 }
4533 EXPORT_SYMBOL(netif_napi_add);
4534
4535 void napi_disable(struct napi_struct *n)
4536 {
4537         might_sleep();
4538         set_bit(NAPI_STATE_DISABLE, &n->state);
4539
4540         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4541                 msleep(1);
4542
4543         hrtimer_cancel(&n->timer);
4544
4545         clear_bit(NAPI_STATE_DISABLE, &n->state);
4546 }
4547 EXPORT_SYMBOL(napi_disable);
4548
4549 void netif_napi_del(struct napi_struct *napi)
4550 {
4551         list_del_init(&napi->dev_list);
4552         napi_free_frags(napi);
4553
4554         kfree_skb_list(napi->gro_list);
4555         napi->gro_list = NULL;
4556         napi->gro_count = 0;
4557 }
4558 EXPORT_SYMBOL(netif_napi_del);
4559
4560 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4561 {
4562         void *have;
4563         int work, weight;
4564
4565         list_del_init(&n->poll_list);
4566
4567         have = netpoll_poll_lock(n);
4568
4569         weight = n->weight;
4570
4571         /* This NAPI_STATE_SCHED test is for avoiding a race
4572          * with netpoll's poll_napi().  Only the entity which
4573          * obtains the lock and sees NAPI_STATE_SCHED set will
4574          * actually make the ->poll() call.  Therefore we avoid
4575          * accidentally calling ->poll() when NAPI is not scheduled.
4576          */
4577         work = 0;
4578         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4579                 work = n->poll(n, weight);
4580                 trace_napi_poll(n);
4581         }
4582
4583         WARN_ON_ONCE(work > weight);
4584
4585         if (likely(work < weight))
4586                 goto out_unlock;
4587
4588         /* Drivers must not modify the NAPI state if they
4589          * consume the entire weight.  In such cases this code
4590          * still "owns" the NAPI instance and therefore can
4591          * move the instance around on the list at-will.
4592          */
4593         if (unlikely(napi_disable_pending(n))) {
4594                 napi_complete(n);
4595                 goto out_unlock;
4596         }
4597
4598         if (n->gro_list) {
4599                 /* flush too old packets
4600                  * If HZ < 1000, flush all packets.
4601                  */
4602                 napi_gro_flush(n, HZ >= 1000);
4603         }
4604
4605         /* Some drivers may have called napi_schedule
4606          * prior to exhausting their budget.
4607          */
4608         if (unlikely(!list_empty(&n->poll_list))) {
4609                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4610                              n->dev ? n->dev->name : "backlog");
4611                 goto out_unlock;
4612         }
4613
4614         list_add_tail(&n->poll_list, repoll);
4615
4616 out_unlock:
4617         netpoll_poll_unlock(have);
4618
4619         return work;
4620 }
4621
4622 static void net_rx_action(struct softirq_action *h)
4623 {
4624         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4625         unsigned long time_limit = jiffies + 2;
4626         int budget = netdev_budget;
4627         LIST_HEAD(list);
4628         LIST_HEAD(repoll);
4629
4630         local_irq_disable();
4631         list_splice_init(&sd->poll_list, &list);
4632         local_irq_enable();
4633
4634         while (!list_empty(&list)) {
4635                 struct napi_struct *n;
4636
4637                 n = list_first_entry(&list, struct napi_struct, poll_list);
4638                 budget -= napi_poll(n, &repoll);
4639
4640                 /* If softirq window is exhausted then punt.
4641                  * Allow this to run for 2 jiffies since which will allow
4642                  * an average latency of 1.5/HZ.
4643                  */
4644                 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4645                         goto softnet_break;
4646         }
4647
4648         if (!sd_has_rps_ipi_waiting(sd) &&
4649             list_empty(&list) &&
4650             list_empty(&repoll))
4651                 return;
4652 out:
4653         local_irq_disable();
4654
4655         list_splice_tail_init(&sd->poll_list, &list);
4656         list_splice_tail(&repoll, &list);
4657         list_splice(&list, &sd->poll_list);
4658         if (!list_empty(&sd->poll_list))
4659                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4660
4661         net_rps_action_and_irq_enable(sd);
4662
4663         return;
4664
4665 softnet_break:
4666         sd->time_squeeze++;
4667         goto out;
4668 }
4669
4670 struct netdev_adjacent {
4671         struct net_device *dev;
4672
4673         /* upper master flag, there can only be one master device per list */
4674         bool master;
4675
4676         /* counter for the number of times this device was added to us */
4677         u16 ref_nr;
4678
4679         /* private field for the users */
4680         void *private;
4681
4682         struct list_head list;
4683         struct rcu_head rcu;
4684 };
4685
4686 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4687                                                  struct net_device *adj_dev,
4688                                                  struct list_head *adj_list)
4689 {
4690         struct netdev_adjacent *adj;
4691
4692         list_for_each_entry(adj, adj_list, list) {
4693                 if (adj->dev == adj_dev)
4694                         return adj;
4695         }
4696         return NULL;
4697 }
4698
4699 /**
4700  * netdev_has_upper_dev - Check if device is linked to an upper device
4701  * @dev: device
4702  * @upper_dev: upper device to check
4703  *
4704  * Find out if a device is linked to specified upper device and return true
4705  * in case it is. Note that this checks only immediate upper device,
4706  * not through a complete stack of devices. The caller must hold the RTNL lock.
4707  */
4708 bool netdev_has_upper_dev(struct net_device *dev,
4709                           struct net_device *upper_dev)
4710 {
4711         ASSERT_RTNL();
4712
4713         return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4714 }
4715 EXPORT_SYMBOL(netdev_has_upper_dev);
4716
4717 /**
4718  * netdev_has_any_upper_dev - Check if device is linked to some device
4719  * @dev: device
4720  *
4721  * Find out if a device is linked to an upper device and return true in case
4722  * it is. The caller must hold the RTNL lock.
4723  */
4724 static bool netdev_has_any_upper_dev(struct net_device *dev)
4725 {
4726         ASSERT_RTNL();
4727
4728         return !list_empty(&dev->all_adj_list.upper);
4729 }
4730
4731 /**
4732  * netdev_master_upper_dev_get - Get master upper device
4733  * @dev: device
4734  *
4735  * Find a master upper device and return pointer to it or NULL in case
4736  * it's not there. The caller must hold the RTNL lock.
4737  */
4738 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4739 {
4740         struct netdev_adjacent *upper;
4741
4742         ASSERT_RTNL();
4743
4744         if (list_empty(&dev->adj_list.upper))
4745                 return NULL;
4746
4747         upper = list_first_entry(&dev->adj_list.upper,
4748                                  struct netdev_adjacent, list);
4749         if (likely(upper->master))
4750                 return upper->dev;
4751         return NULL;
4752 }
4753 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4754
4755 void *netdev_adjacent_get_private(struct list_head *adj_list)
4756 {
4757         struct netdev_adjacent *adj;
4758
4759         adj = list_entry(adj_list, struct netdev_adjacent, list);
4760
4761         return adj->private;
4762 }
4763 EXPORT_SYMBOL(netdev_adjacent_get_private);
4764
4765 /**
4766  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4767  * @dev: device
4768  * @iter: list_head ** of the current position
4769  *
4770  * Gets the next device from the dev's upper list, starting from iter
4771  * position. The caller must hold RCU read lock.
4772  */
4773 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4774                                                  struct list_head **iter)
4775 {
4776         struct netdev_adjacent *upper;
4777
4778         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4779
4780         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4781
4782         if (&upper->list == &dev->adj_list.upper)
4783                 return NULL;
4784
4785         *iter = &upper->list;
4786
4787         return upper->dev;
4788 }
4789 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4790
4791 /**
4792  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4793  * @dev: device
4794  * @iter: list_head ** of the current position
4795  *
4796  * Gets the next device from the dev's upper list, starting from iter
4797  * position. The caller must hold RCU read lock.
4798  */
4799 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4800                                                      struct list_head **iter)
4801 {
4802         struct netdev_adjacent *upper;
4803
4804         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4805
4806         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4807
4808         if (&upper->list == &dev->all_adj_list.upper)
4809                 return NULL;
4810
4811         *iter = &upper->list;
4812
4813         return upper->dev;
4814 }
4815 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4816
4817 /**
4818  * netdev_lower_get_next_private - Get the next ->private from the
4819  *                                 lower neighbour list
4820  * @dev: device
4821  * @iter: list_head ** of the current position
4822  *
4823  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4824  * list, starting from iter position. The caller must hold either hold the
4825  * RTNL lock or its own locking that guarantees that the neighbour lower
4826  * list will remain unchainged.
4827  */
4828 void *netdev_lower_get_next_private(struct net_device *dev,
4829                                     struct list_head **iter)
4830 {
4831         struct netdev_adjacent *lower;
4832
4833         lower = list_entry(*iter, struct netdev_adjacent, list);
4834
4835         if (&lower->list == &dev->adj_list.lower)
4836                 return NULL;
4837
4838         *iter = lower->list.next;
4839
4840         return lower->private;
4841 }
4842 EXPORT_SYMBOL(netdev_lower_get_next_private);
4843
4844 /**
4845  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4846  *                                     lower neighbour list, RCU
4847  *                                     variant
4848  * @dev: device
4849  * @iter: list_head ** of the current position
4850  *
4851  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4852  * list, starting from iter position. The caller must hold RCU read lock.
4853  */
4854 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4855                                         struct list_head **iter)
4856 {
4857         struct netdev_adjacent *lower;
4858
4859         WARN_ON_ONCE(!rcu_read_lock_held());
4860
4861         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4862
4863         if (&lower->list == &dev->adj_list.lower)
4864                 return NULL;
4865
4866         *iter = &lower->list;
4867
4868         return lower->private;
4869 }
4870 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4871
4872 /**
4873  * netdev_lower_get_next - Get the next device from the lower neighbour
4874  *                         list
4875  * @dev: device
4876  * @iter: list_head ** of the current position
4877  *
4878  * Gets the next netdev_adjacent from the dev's lower neighbour
4879  * list, starting from iter position. The caller must hold RTNL lock or
4880  * its own locking that guarantees that the neighbour lower
4881  * list will remain unchainged.
4882  */
4883 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4884 {
4885         struct netdev_adjacent *lower;
4886
4887         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4888
4889         if (&lower->list == &dev->adj_list.lower)
4890                 return NULL;
4891
4892         *iter = &lower->list;
4893
4894         return lower->dev;
4895 }
4896 EXPORT_SYMBOL(netdev_lower_get_next);
4897
4898 /**
4899  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4900  *                                     lower neighbour list, RCU
4901  *                                     variant
4902  * @dev: device
4903  *
4904  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4905  * list. The caller must hold RCU read lock.
4906  */
4907 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4908 {
4909         struct netdev_adjacent *lower;
4910
4911         lower = list_first_or_null_rcu(&dev->adj_list.lower,
4912                         struct netdev_adjacent, list);
4913         if (lower)
4914                 return lower->private;
4915         return NULL;
4916 }
4917 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4918
4919 /**
4920  * netdev_master_upper_dev_get_rcu - Get master upper device
4921  * @dev: device
4922  *
4923  * Find a master upper device and return pointer to it or NULL in case
4924  * it's not there. The caller must hold the RCU read lock.
4925  */
4926 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4927 {
4928         struct netdev_adjacent *upper;
4929
4930         upper = list_first_or_null_rcu(&dev->adj_list.upper,
4931                                        struct netdev_adjacent, list);
4932         if (upper && likely(upper->master))
4933                 return upper->dev;
4934         return NULL;
4935 }
4936 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4937
4938 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4939                               struct net_device *adj_dev,
4940                               struct list_head *dev_list)
4941 {
4942         char linkname[IFNAMSIZ+7];
4943         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4944                 "upper_%s" : "lower_%s", adj_dev->name);
4945         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4946                                  linkname);
4947 }
4948 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4949                                char *name,
4950                                struct list_head *dev_list)
4951 {
4952         char linkname[IFNAMSIZ+7];
4953         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4954                 "upper_%s" : "lower_%s", name);
4955         sysfs_remove_link(&(dev->dev.kobj), linkname);
4956 }
4957
4958 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4959                                                  struct net_device *adj_dev,
4960                                                  struct list_head *dev_list)
4961 {
4962         return (dev_list == &dev->adj_list.upper ||
4963                 dev_list == &dev->adj_list.lower) &&
4964                 net_eq(dev_net(dev), dev_net(adj_dev));
4965 }
4966
4967 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4968                                         struct net_device *adj_dev,
4969                                         struct list_head *dev_list,
4970                                         void *private, bool master)
4971 {
4972         struct netdev_adjacent *adj;
4973         int ret;
4974
4975         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4976
4977         if (adj) {
4978                 adj->ref_nr++;
4979                 return 0;
4980         }
4981
4982         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4983         if (!adj)
4984                 return -ENOMEM;
4985
4986         adj->dev = adj_dev;
4987         adj->master = master;
4988         adj->ref_nr = 1;
4989         adj->private = private;
4990         dev_hold(adj_dev);
4991
4992         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4993                  adj_dev->name, dev->name, adj_dev->name);
4994
4995         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4996                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4997                 if (ret)
4998                         goto free_adj;
4999         }
5000
5001         /* Ensure that master link is always the first item in list. */
5002         if (master) {
5003                 ret = sysfs_create_link(&(dev->dev.kobj),
5004                                         &(adj_dev->dev.kobj), "master");
5005                 if (ret)
5006                         goto remove_symlinks;
5007
5008                 list_add_rcu(&adj->list, dev_list);
5009         } else {
5010                 list_add_tail_rcu(&adj->list, dev_list);
5011         }
5012
5013         return 0;
5014
5015 remove_symlinks:
5016         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5017                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5018 free_adj:
5019         kfree(adj);
5020         dev_put(adj_dev);
5021
5022         return ret;
5023 }
5024
5025 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5026                                          struct net_device *adj_dev,
5027                                          struct list_head *dev_list)
5028 {
5029         struct netdev_adjacent *adj;
5030
5031         adj = __netdev_find_adj(dev, adj_dev, dev_list);
5032
5033         if (!adj) {
5034                 pr_err("tried to remove device %s from %s\n",
5035                        dev->name, adj_dev->name);
5036                 BUG();
5037         }
5038
5039         if (adj->ref_nr > 1) {
5040                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5041                          adj->ref_nr-1);
5042                 adj->ref_nr--;
5043                 return;
5044         }
5045
5046         if (adj->master)
5047                 sysfs_remove_link(&(dev->dev.kobj), "master");
5048
5049         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5050                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5051
5052         list_del_rcu(&adj->list);
5053         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5054                  adj_dev->name, dev->name, adj_dev->name);
5055         dev_put(adj_dev);
5056         kfree_rcu(adj, rcu);
5057 }
5058
5059 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5060                                             struct net_device *upper_dev,
5061                                             struct list_head *up_list,
5062                                             struct list_head *down_list,
5063                                             void *private, bool master)
5064 {
5065         int ret;
5066
5067         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5068                                            master);
5069         if (ret)
5070                 return ret;
5071
5072         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5073                                            false);
5074         if (ret) {
5075                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5076                 return ret;
5077         }
5078
5079         return 0;
5080 }
5081
5082 static int __netdev_adjacent_dev_link(struct net_device *dev,
5083                                       struct net_device *upper_dev)
5084 {
5085         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5086                                                 &dev->all_adj_list.upper,
5087                                                 &upper_dev->all_adj_list.lower,
5088                                                 NULL, false);
5089 }
5090
5091 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5092                                                struct net_device *upper_dev,
5093                                                struct list_head *up_list,
5094                                                struct list_head *down_list)
5095 {
5096         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5097         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5098 }
5099
5100 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5101                                          struct net_device *upper_dev)
5102 {
5103         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5104                                            &dev->all_adj_list.upper,
5105                                            &upper_dev->all_adj_list.lower);
5106 }
5107
5108 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5109                                                 struct net_device *upper_dev,
5110                                                 void *private, bool master)
5111 {
5112         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5113
5114         if (ret)
5115                 return ret;
5116
5117         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5118                                                &dev->adj_list.upper,
5119                                                &upper_dev->adj_list.lower,
5120                                                private, master);
5121         if (ret) {
5122                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5123                 return ret;
5124         }
5125
5126         return 0;
5127 }
5128
5129 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5130                                                    struct net_device *upper_dev)
5131 {
5132         __netdev_adjacent_dev_unlink(dev, upper_dev);
5133         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5134                                            &dev->adj_list.upper,
5135                                            &upper_dev->adj_list.lower);
5136 }
5137
5138 static int __netdev_upper_dev_link(struct net_device *dev,
5139                                    struct net_device *upper_dev, bool master,
5140                                    void *private)
5141 {
5142         struct netdev_adjacent *i, *j, *to_i, *to_j;
5143         int ret = 0;
5144
5145         ASSERT_RTNL();
5146
5147         if (dev == upper_dev)
5148                 return -EBUSY;
5149
5150         /* To prevent loops, check if dev is not upper device to upper_dev. */
5151         if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5152                 return -EBUSY;
5153
5154         if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5155                 return -EEXIST;
5156
5157         if (master && netdev_master_upper_dev_get(dev))
5158                 return -EBUSY;
5159
5160         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5161                                                    master);
5162         if (ret)
5163                 return ret;
5164
5165         /* Now that we linked these devs, make all the upper_dev's
5166          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5167          * versa, and don't forget the devices itself. All of these
5168          * links are non-neighbours.
5169          */
5170         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5171                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5172                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5173                                  i->dev->name, j->dev->name);
5174                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5175                         if (ret)
5176                                 goto rollback_mesh;
5177                 }
5178         }
5179
5180         /* add dev to every upper_dev's upper device */
5181         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5182                 pr_debug("linking %s's upper device %s with %s\n",
5183                          upper_dev->name, i->dev->name, dev->name);
5184                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5185                 if (ret)
5186                         goto rollback_upper_mesh;
5187         }
5188
5189         /* add upper_dev to every dev's lower device */
5190         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5191                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5192                          i->dev->name, upper_dev->name);
5193                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5194                 if (ret)
5195                         goto rollback_lower_mesh;
5196         }
5197
5198         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5199         return 0;
5200
5201 rollback_lower_mesh:
5202         to_i = i;
5203         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5204                 if (i == to_i)
5205                         break;
5206                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5207         }
5208
5209         i = NULL;
5210
5211 rollback_upper_mesh:
5212         to_i = i;
5213         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5214                 if (i == to_i)
5215                         break;
5216                 __netdev_adjacent_dev_unlink(dev, i->dev);
5217         }
5218
5219         i = j = NULL;
5220
5221 rollback_mesh:
5222         to_i = i;
5223         to_j = j;
5224         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5225                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5226                         if (i == to_i && j == to_j)
5227                                 break;
5228                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5229                 }
5230                 if (i == to_i)
5231                         break;
5232         }
5233
5234         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5235
5236         return ret;
5237 }
5238
5239 /**
5240  * netdev_upper_dev_link - Add a link to the upper device
5241  * @dev: device
5242  * @upper_dev: new upper device
5243  *
5244  * Adds a link to device which is upper to this one. The caller must hold
5245  * the RTNL lock. On a failure a negative errno code is returned.
5246  * On success the reference counts are adjusted and the function
5247  * returns zero.
5248  */
5249 int netdev_upper_dev_link(struct net_device *dev,
5250                           struct net_device *upper_dev)
5251 {
5252         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5253 }
5254 EXPORT_SYMBOL(netdev_upper_dev_link);
5255
5256 /**
5257  * netdev_master_upper_dev_link - Add a master link to the upper device
5258  * @dev: device
5259  * @upper_dev: new upper device
5260  *
5261  * Adds a link to device which is upper to this one. In this case, only
5262  * one master upper device can be linked, although other non-master devices
5263  * might be linked as well. The caller must hold the RTNL lock.
5264  * On a failure a negative errno code is returned. On success the reference
5265  * counts are adjusted and the function returns zero.
5266  */
5267 int netdev_master_upper_dev_link(struct net_device *dev,
5268                                  struct net_device *upper_dev)
5269 {
5270         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5271 }
5272 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5273
5274 int netdev_master_upper_dev_link_private(struct net_device *dev,
5275                                          struct net_device *upper_dev,
5276                                          void *private)
5277 {
5278         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5279 }
5280 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5281
5282 /**
5283  * netdev_upper_dev_unlink - Removes a link to upper device
5284  * @dev: device
5285  * @upper_dev: new upper device
5286  *
5287  * Removes a link to device which is upper to this one. The caller must hold
5288  * the RTNL lock.
5289  */
5290 void netdev_upper_dev_unlink(struct net_device *dev,
5291                              struct net_device *upper_dev)
5292 {
5293         struct netdev_adjacent *i, *j;
5294         ASSERT_RTNL();
5295
5296         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5297
5298         /* Here is the tricky part. We must remove all dev's lower
5299          * devices from all upper_dev's upper devices and vice
5300          * versa, to maintain the graph relationship.
5301          */
5302         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5303                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5304                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5305
5306         /* remove also the devices itself from lower/upper device
5307          * list
5308          */
5309         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5310                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5311
5312         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5313                 __netdev_adjacent_dev_unlink(dev, i->dev);
5314
5315         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5316 }
5317 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5318
5319 void netdev_adjacent_add_links(struct net_device *dev)
5320 {
5321         struct netdev_adjacent *iter;
5322
5323         struct net *net = dev_net(dev);
5324
5325         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5326                 if (!net_eq(net,dev_net(iter->dev)))
5327                         continue;
5328                 netdev_adjacent_sysfs_add(iter->dev, dev,
5329                                           &iter->dev->adj_list.lower);
5330                 netdev_adjacent_sysfs_add(dev, iter->dev,
5331                                           &dev->adj_list.upper);
5332         }
5333
5334         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5335                 if (!net_eq(net,dev_net(iter->dev)))
5336                         continue;
5337                 netdev_adjacent_sysfs_add(iter->dev, dev,
5338                                           &iter->dev->adj_list.upper);
5339                 netdev_adjacent_sysfs_add(dev, iter->dev,
5340                                           &dev->adj_list.lower);
5341         }
5342 }
5343
5344 void netdev_adjacent_del_links(struct net_device *dev)
5345 {
5346         struct netdev_adjacent *iter;
5347
5348         struct net *net = dev_net(dev);
5349
5350         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5351                 if (!net_eq(net,dev_net(iter->dev)))
5352                         continue;
5353                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5354                                           &iter->dev->adj_list.lower);
5355                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5356                                           &dev->adj_list.upper);
5357         }
5358
5359         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5360                 if (!net_eq(net,dev_net(iter->dev)))
5361                         continue;
5362                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5363                                           &iter->dev->adj_list.upper);
5364                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5365                                           &dev->adj_list.lower);
5366         }
5367 }
5368
5369 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5370 {
5371         struct netdev_adjacent *iter;
5372
5373         struct net *net = dev_net(dev);
5374
5375         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5376                 if (!net_eq(net,dev_net(iter->dev)))
5377                         continue;
5378                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5379                                           &iter->dev->adj_list.lower);
5380                 netdev_adjacent_sysfs_add(iter->dev, dev,
5381                                           &iter->dev->adj_list.lower);
5382         }
5383
5384         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5385                 if (!net_eq(net,dev_net(iter->dev)))
5386                         continue;
5387                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5388                                           &iter->dev->adj_list.upper);
5389                 netdev_adjacent_sysfs_add(iter->dev, dev,
5390                                           &iter->dev->adj_list.upper);
5391         }
5392 }
5393
5394 void *netdev_lower_dev_get_private(struct net_device *dev,
5395                                    struct net_device *lower_dev)
5396 {
5397         struct netdev_adjacent *lower;
5398
5399         if (!lower_dev)
5400                 return NULL;
5401         lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5402         if (!lower)
5403                 return NULL;
5404
5405         return lower->private;
5406 }
5407 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5408
5409
5410 int dev_get_nest_level(struct net_device *dev,
5411                        bool (*type_check)(struct net_device *dev))
5412 {
5413         struct net_device *lower = NULL;
5414         struct list_head *iter;
5415         int max_nest = -1;
5416         int nest;
5417
5418         ASSERT_RTNL();
5419
5420         netdev_for_each_lower_dev(dev, lower, iter) {
5421                 nest = dev_get_nest_level(lower, type_check);
5422                 if (max_nest < nest)
5423                         max_nest = nest;
5424         }
5425
5426         if (type_check(dev))
5427                 max_nest++;
5428
5429         return max_nest;
5430 }
5431 EXPORT_SYMBOL(dev_get_nest_level);
5432
5433 static void dev_change_rx_flags(struct net_device *dev, int flags)
5434 {
5435         const struct net_device_ops *ops = dev->netdev_ops;
5436
5437         if (ops->ndo_change_rx_flags)
5438                 ops->ndo_change_rx_flags(dev, flags);
5439 }
5440
5441 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5442 {
5443         unsigned int old_flags = dev->flags;
5444         kuid_t uid;
5445         kgid_t gid;
5446
5447         ASSERT_RTNL();
5448
5449         dev->flags |= IFF_PROMISC;
5450         dev->promiscuity += inc;
5451         if (dev->promiscuity == 0) {
5452                 /*
5453                  * Avoid overflow.
5454                  * If inc causes overflow, untouch promisc and return error.
5455                  */
5456                 if (inc < 0)
5457                         dev->flags &= ~IFF_PROMISC;
5458                 else {
5459                         dev->promiscuity -= inc;
5460                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5461                                 dev->name);
5462                         return -EOVERFLOW;
5463                 }
5464         }
5465         if (dev->flags != old_flags) {
5466                 pr_info("device %s %s promiscuous mode\n",
5467                         dev->name,
5468                         dev->flags & IFF_PROMISC ? "entered" : "left");
5469                 if (audit_enabled) {
5470                         current_uid_gid(&uid, &gid);
5471                         audit_log(current->audit_context, GFP_ATOMIC,
5472                                 AUDIT_ANOM_PROMISCUOUS,
5473                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5474                                 dev->name, (dev->flags & IFF_PROMISC),
5475                                 (old_flags & IFF_PROMISC),
5476                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5477                                 from_kuid(&init_user_ns, uid),
5478                                 from_kgid(&init_user_ns, gid),
5479                                 audit_get_sessionid(current));
5480                 }
5481
5482                 dev_change_rx_flags(dev, IFF_PROMISC);
5483         }
5484         if (notify)
5485                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5486         return 0;
5487 }
5488
5489 /**
5490  *      dev_set_promiscuity     - update promiscuity count on a device
5491  *      @dev: device
5492  *      @inc: modifier
5493  *
5494  *      Add or remove promiscuity from a device. While the count in the device
5495  *      remains above zero the interface remains promiscuous. Once it hits zero
5496  *      the device reverts back to normal filtering operation. A negative inc
5497  *      value is used to drop promiscuity on the device.
5498  *      Return 0 if successful or a negative errno code on error.
5499  */
5500 int dev_set_promiscuity(struct net_device *dev, int inc)
5501 {
5502         unsigned int old_flags = dev->flags;
5503         int err;
5504
5505         err = __dev_set_promiscuity(dev, inc, true);
5506         if (err < 0)
5507                 return err;
5508         if (dev->flags != old_flags)
5509                 dev_set_rx_mode(dev);
5510         return err;
5511 }
5512 EXPORT_SYMBOL(dev_set_promiscuity);
5513
5514 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5515 {
5516         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5517
5518         ASSERT_RTNL();
5519
5520         dev->flags |= IFF_ALLMULTI;
5521         dev->allmulti += inc;
5522         if (dev->allmulti == 0) {
5523                 /*
5524                  * Avoid overflow.
5525                  * If inc causes overflow, untouch allmulti and return error.
5526                  */
5527                 if (inc < 0)
5528                         dev->flags &= ~IFF_ALLMULTI;
5529                 else {
5530                         dev->allmulti -= inc;
5531                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5532                                 dev->name);
5533                         return -EOVERFLOW;
5534                 }
5535         }
5536         if (dev->flags ^ old_flags) {
5537                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5538                 dev_set_rx_mode(dev);
5539                 if (notify)
5540                         __dev_notify_flags(dev, old_flags,
5541                                            dev->gflags ^ old_gflags);
5542         }
5543         return 0;
5544 }
5545
5546 /**
5547  *      dev_set_allmulti        - update allmulti count on a device
5548  *      @dev: device
5549  *      @inc: modifier
5550  *
5551  *      Add or remove reception of all multicast frames to a device. While the
5552  *      count in the device remains above zero the interface remains listening
5553  *      to all interfaces. Once it hits zero the device reverts back to normal
5554  *      filtering operation. A negative @inc value is used to drop the counter
5555  *      when releasing a resource needing all multicasts.
5556  *      Return 0 if successful or a negative errno code on error.
5557  */
5558
5559 int dev_set_allmulti(struct net_device *dev, int inc)
5560 {
5561         return __dev_set_allmulti(dev, inc, true);
5562 }
5563 EXPORT_SYMBOL(dev_set_allmulti);
5564
5565 /*
5566  *      Upload unicast and multicast address lists to device and
5567  *      configure RX filtering. When the device doesn't support unicast
5568  *      filtering it is put in promiscuous mode while unicast addresses
5569  *      are present.
5570  */
5571 void __dev_set_rx_mode(struct net_device *dev)
5572 {
5573         const struct net_device_ops *ops = dev->netdev_ops;
5574
5575         /* dev_open will call this function so the list will stay sane. */
5576         if (!(dev->flags&IFF_UP))
5577                 return;
5578
5579         if (!netif_device_present(dev))
5580                 return;
5581
5582         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5583                 /* Unicast addresses changes may only happen under the rtnl,
5584                  * therefore calling __dev_set_promiscuity here is safe.
5585                  */
5586                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5587                         __dev_set_promiscuity(dev, 1, false);
5588                         dev->uc_promisc = true;
5589                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5590                         __dev_set_promiscuity(dev, -1, false);
5591                         dev->uc_promisc = false;
5592                 }
5593         }
5594
5595         if (ops->ndo_set_rx_mode)
5596                 ops->ndo_set_rx_mode(dev);
5597 }
5598
5599 void dev_set_rx_mode(struct net_device *dev)
5600 {
5601         netif_addr_lock_bh(dev);
5602         __dev_set_rx_mode(dev);
5603         netif_addr_unlock_bh(dev);
5604 }
5605
5606 /**
5607  *      dev_get_flags - get flags reported to userspace
5608  *      @dev: device
5609  *
5610  *      Get the combination of flag bits exported through APIs to userspace.
5611  */
5612 unsigned int dev_get_flags(const struct net_device *dev)
5613 {
5614         unsigned int flags;
5615
5616         flags = (dev->flags & ~(IFF_PROMISC |
5617                                 IFF_ALLMULTI |
5618                                 IFF_RUNNING |
5619                                 IFF_LOWER_UP |
5620                                 IFF_DORMANT)) |
5621                 (dev->gflags & (IFF_PROMISC |
5622                                 IFF_ALLMULTI));
5623
5624         if (netif_running(dev)) {
5625                 if (netif_oper_up(dev))
5626                         flags |= IFF_RUNNING;
5627                 if (netif_carrier_ok(dev))
5628                         flags |= IFF_LOWER_UP;
5629                 if (netif_dormant(dev))
5630                         flags |= IFF_DORMANT;
5631         }
5632
5633         return flags;
5634 }
5635 EXPORT_SYMBOL(dev_get_flags);
5636
5637 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5638 {
5639         unsigned int old_flags = dev->flags;
5640         int ret;
5641
5642         ASSERT_RTNL();
5643
5644         /*
5645          *      Set the flags on our device.
5646          */
5647
5648         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5649                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5650                                IFF_AUTOMEDIA)) |
5651                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5652                                     IFF_ALLMULTI));
5653
5654         /*
5655          *      Load in the correct multicast list now the flags have changed.
5656          */
5657
5658         if ((old_flags ^ flags) & IFF_MULTICAST)
5659                 dev_change_rx_flags(dev, IFF_MULTICAST);
5660
5661         dev_set_rx_mode(dev);
5662
5663         /*
5664          *      Have we downed the interface. We handle IFF_UP ourselves
5665          *      according to user attempts to set it, rather than blindly
5666          *      setting it.
5667          */
5668
5669         ret = 0;
5670         if ((old_flags ^ flags) & IFF_UP)
5671                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5672
5673         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5674                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5675                 unsigned int old_flags = dev->flags;
5676
5677                 dev->gflags ^= IFF_PROMISC;
5678
5679                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5680                         if (dev->flags != old_flags)
5681                                 dev_set_rx_mode(dev);
5682         }
5683
5684         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5685            is important. Some (broken) drivers set IFF_PROMISC, when
5686            IFF_ALLMULTI is requested not asking us and not reporting.
5687          */
5688         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5689                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5690
5691                 dev->gflags ^= IFF_ALLMULTI;
5692                 __dev_set_allmulti(dev, inc, false);
5693         }
5694
5695         return ret;
5696 }
5697
5698 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5699                         unsigned int gchanges)
5700 {
5701         unsigned int changes = dev->flags ^ old_flags;
5702
5703         if (gchanges)
5704                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5705
5706         if (changes & IFF_UP) {
5707                 if (dev->flags & IFF_UP)
5708                         call_netdevice_notifiers(NETDEV_UP, dev);
5709                 else
5710                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5711         }
5712
5713         if (dev->flags & IFF_UP &&
5714             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5715                 struct netdev_notifier_change_info change_info;
5716
5717                 change_info.flags_changed = changes;
5718                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5719                                               &change_info.info);
5720         }
5721 }
5722
5723 /**
5724  *      dev_change_flags - change device settings
5725  *      @dev: device
5726  *      @flags: device state flags
5727  *
5728  *      Change settings on device based state flags. The flags are
5729  *      in the userspace exported format.
5730  */
5731 int dev_change_flags(struct net_device *dev, unsigned int flags)
5732 {
5733         int ret;
5734         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5735
5736         ret = __dev_change_flags(dev, flags);
5737         if (ret < 0)
5738                 return ret;
5739
5740         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5741         __dev_notify_flags(dev, old_flags, changes);
5742         return ret;
5743 }
5744 EXPORT_SYMBOL(dev_change_flags);
5745
5746 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5747 {
5748         const struct net_device_ops *ops = dev->netdev_ops;
5749
5750         if (ops->ndo_change_mtu)
5751                 return ops->ndo_change_mtu(dev, new_mtu);
5752
5753         dev->mtu = new_mtu;
5754         return 0;
5755 }
5756
5757 /**
5758  *      dev_set_mtu - Change maximum transfer unit
5759  *      @dev: device
5760  *      @new_mtu: new transfer unit
5761  *
5762  *      Change the maximum transfer size of the network device.
5763  */
5764 int dev_set_mtu(struct net_device *dev, int new_mtu)
5765 {
5766         int err, orig_mtu;
5767
5768         if (new_mtu == dev->mtu)
5769                 return 0;
5770
5771         /*      MTU must be positive.    */
5772         if (new_mtu < 0)
5773                 return -EINVAL;
5774
5775         if (!netif_device_present(dev))
5776                 return -ENODEV;
5777
5778         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5779         err = notifier_to_errno(err);
5780         if (err)
5781                 return err;
5782
5783         orig_mtu = dev->mtu;
5784         err = __dev_set_mtu(dev, new_mtu);
5785
5786         if (!err) {
5787                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5788                 err = notifier_to_errno(err);
5789                 if (err) {
5790                         /* setting mtu back and notifying everyone again,
5791                          * so that they have a chance to revert changes.
5792                          */
5793                         __dev_set_mtu(dev, orig_mtu);
5794                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5795                 }
5796         }
5797         return err;
5798 }
5799 EXPORT_SYMBOL(dev_set_mtu);
5800
5801 /**
5802  *      dev_set_group - Change group this device belongs to
5803  *      @dev: device
5804  *      @new_group: group this device should belong to
5805  */
5806 void dev_set_group(struct net_device *dev, int new_group)
5807 {
5808         dev->group = new_group;
5809 }
5810 EXPORT_SYMBOL(dev_set_group);
5811
5812 /**
5813  *      dev_set_mac_address - Change Media Access Control Address
5814  *      @dev: device
5815  *      @sa: new address
5816  *
5817  *      Change the hardware (MAC) address of the device
5818  */
5819 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5820 {
5821         const struct net_device_ops *ops = dev->netdev_ops;
5822         int err;
5823
5824         if (!ops->ndo_set_mac_address)
5825                 return -EOPNOTSUPP;
5826         if (sa->sa_family != dev->type)
5827                 return -EINVAL;
5828         if (!netif_device_present(dev))
5829                 return -ENODEV;
5830         err = ops->ndo_set_mac_address(dev, sa);
5831         if (err)
5832                 return err;
5833         dev->addr_assign_type = NET_ADDR_SET;
5834         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5835         add_device_randomness(dev->dev_addr, dev->addr_len);
5836         return 0;
5837 }
5838 EXPORT_SYMBOL(dev_set_mac_address);
5839
5840 /**
5841  *      dev_change_carrier - Change device carrier
5842  *      @dev: device
5843  *      @new_carrier: new value
5844  *
5845  *      Change device carrier
5846  */
5847 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5848 {
5849         const struct net_device_ops *ops = dev->netdev_ops;
5850
5851         if (!ops->ndo_change_carrier)
5852                 return -EOPNOTSUPP;
5853         if (!netif_device_present(dev))
5854                 return -ENODEV;
5855         return ops->ndo_change_carrier(dev, new_carrier);
5856 }
5857 EXPORT_SYMBOL(dev_change_carrier);
5858
5859 /**
5860  *      dev_get_phys_port_id - Get device physical port ID
5861  *      @dev: device
5862  *      @ppid: port ID
5863  *
5864  *      Get device physical port ID
5865  */
5866 int dev_get_phys_port_id(struct net_device *dev,
5867                          struct netdev_phys_item_id *ppid)
5868 {
5869         const struct net_device_ops *ops = dev->netdev_ops;
5870
5871         if (!ops->ndo_get_phys_port_id)
5872                 return -EOPNOTSUPP;
5873         return ops->ndo_get_phys_port_id(dev, ppid);
5874 }
5875 EXPORT_SYMBOL(dev_get_phys_port_id);
5876
5877 /**
5878  *      dev_new_index   -       allocate an ifindex
5879  *      @net: the applicable net namespace
5880  *
5881  *      Returns a suitable unique value for a new device interface
5882  *      number.  The caller must hold the rtnl semaphore or the
5883  *      dev_base_lock to be sure it remains unique.
5884  */
5885 static int dev_new_index(struct net *net)
5886 {
5887         int ifindex = net->ifindex;
5888         for (;;) {
5889                 if (++ifindex <= 0)
5890                         ifindex = 1;
5891                 if (!__dev_get_by_index(net, ifindex))
5892                         return net->ifindex = ifindex;
5893         }
5894 }
5895
5896 /* Delayed registration/unregisteration */
5897 static LIST_HEAD(net_todo_list);
5898 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5899
5900 static void net_set_todo(struct net_device *dev)
5901 {
5902         list_add_tail(&dev->todo_list, &net_todo_list);
5903         dev_net(dev)->dev_unreg_count++;
5904 }
5905
5906 static void rollback_registered_many(struct list_head *head)
5907 {
5908         struct net_device *dev, *tmp;
5909         LIST_HEAD(close_head);
5910
5911         BUG_ON(dev_boot_phase);
5912         ASSERT_RTNL();
5913
5914         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5915                 /* Some devices call without registering
5916                  * for initialization unwind. Remove those
5917                  * devices and proceed with the remaining.
5918                  */
5919                 if (dev->reg_state == NETREG_UNINITIALIZED) {
5920                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5921                                  dev->name, dev);
5922
5923                         WARN_ON(1);
5924                         list_del(&dev->unreg_list);
5925                         continue;
5926                 }
5927                 dev->dismantle = true;
5928                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5929         }
5930
5931         /* If device is running, close it first. */
5932         list_for_each_entry(dev, head, unreg_list)
5933                 list_add_tail(&dev->close_list, &close_head);
5934         dev_close_many(&close_head);
5935
5936         list_for_each_entry(dev, head, unreg_list) {
5937                 /* And unlink it from device chain. */
5938                 unlist_netdevice(dev);
5939
5940                 dev->reg_state = NETREG_UNREGISTERING;
5941         }
5942
5943         synchronize_net();
5944
5945         list_for_each_entry(dev, head, unreg_list) {
5946                 struct sk_buff *skb = NULL;
5947
5948                 /* Shutdown queueing discipline. */
5949                 dev_shutdown(dev);
5950
5951
5952                 /* Notify protocols, that we are about to destroy
5953                    this device. They should clean all the things.
5954                 */
5955                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5956
5957                 if (!dev->rtnl_link_ops ||
5958                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5959                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5960                                                      GFP_KERNEL);
5961
5962                 /*
5963                  *      Flush the unicast and multicast chains
5964                  */
5965                 dev_uc_flush(dev);
5966                 dev_mc_flush(dev);
5967
5968                 if (dev->netdev_ops->ndo_uninit)
5969                         dev->netdev_ops->ndo_uninit(dev);
5970
5971                 if (skb)
5972                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
5973
5974                 /* Notifier chain MUST detach us all upper devices. */
5975                 WARN_ON(netdev_has_any_upper_dev(dev));
5976
5977                 /* Remove entries from kobject tree */
5978                 netdev_unregister_kobject(dev);
5979 #ifdef CONFIG_XPS
5980                 /* Remove XPS queueing entries */
5981                 netif_reset_xps_queues_gt(dev, 0);
5982 #endif
5983         }
5984
5985         synchronize_net();
5986
5987         list_for_each_entry(dev, head, unreg_list)
5988                 dev_put(dev);
5989 }
5990
5991 static void rollback_registered(struct net_device *dev)
5992 {
5993         LIST_HEAD(single);
5994
5995         list_add(&dev->unreg_list, &single);
5996         rollback_registered_many(&single);
5997         list_del(&single);
5998 }
5999
6000 static netdev_features_t netdev_fix_features(struct net_device *dev,
6001         netdev_features_t features)
6002 {
6003         /* Fix illegal checksum combinations */
6004         if ((features & NETIF_F_HW_CSUM) &&
6005             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6006                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6007                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6008         }
6009
6010         /* TSO requires that SG is present as well. */
6011         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6012                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6013                 features &= ~NETIF_F_ALL_TSO;
6014         }
6015
6016         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6017                                         !(features & NETIF_F_IP_CSUM)) {
6018                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6019                 features &= ~NETIF_F_TSO;
6020                 features &= ~NETIF_F_TSO_ECN;
6021         }
6022
6023         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6024                                          !(features & NETIF_F_IPV6_CSUM)) {
6025                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6026                 features &= ~NETIF_F_TSO6;
6027         }
6028
6029         /* TSO ECN requires that TSO is present as well. */
6030         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6031                 features &= ~NETIF_F_TSO_ECN;
6032
6033         /* Software GSO depends on SG. */
6034         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6035                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6036                 features &= ~NETIF_F_GSO;
6037         }
6038
6039         /* UFO needs SG and checksumming */
6040         if (features & NETIF_F_UFO) {
6041                 /* maybe split UFO into V4 and V6? */
6042                 if (!((features & NETIF_F_GEN_CSUM) ||
6043                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6044                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6045                         netdev_dbg(dev,
6046                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6047                         features &= ~NETIF_F_UFO;
6048                 }
6049
6050                 if (!(features & NETIF_F_SG)) {
6051                         netdev_dbg(dev,
6052                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6053                         features &= ~NETIF_F_UFO;
6054                 }
6055         }
6056
6057 #ifdef CONFIG_NET_RX_BUSY_POLL
6058         if (dev->netdev_ops->ndo_busy_poll)
6059                 features |= NETIF_F_BUSY_POLL;
6060         else
6061 #endif
6062                 features &= ~NETIF_F_BUSY_POLL;
6063
6064         return features;
6065 }
6066
6067 int __netdev_update_features(struct net_device *dev)
6068 {
6069         netdev_features_t features;
6070         int err = 0;
6071
6072         ASSERT_RTNL();
6073
6074         features = netdev_get_wanted_features(dev);
6075
6076         if (dev->netdev_ops->ndo_fix_features)
6077                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6078
6079         /* driver might be less strict about feature dependencies */
6080         features = netdev_fix_features(dev, features);
6081
6082         if (dev->features == features)
6083                 return 0;
6084
6085         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6086                 &dev->features, &features);
6087
6088         if (dev->netdev_ops->ndo_set_features)
6089                 err = dev->netdev_ops->ndo_set_features(dev, features);
6090
6091         if (unlikely(err < 0)) {
6092                 netdev_err(dev,
6093                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6094                         err, &features, &dev->features);
6095                 return -1;
6096         }
6097
6098         if (!err)
6099                 dev->features = features;
6100
6101         return 1;
6102 }
6103
6104 /**
6105  *      netdev_update_features - recalculate device features
6106  *      @dev: the device to check
6107  *
6108  *      Recalculate dev->features set and send notifications if it
6109  *      has changed. Should be called after driver or hardware dependent
6110  *      conditions might have changed that influence the features.
6111  */
6112 void netdev_update_features(struct net_device *dev)
6113 {
6114         if (__netdev_update_features(dev))
6115                 netdev_features_change(dev);
6116 }
6117 EXPORT_SYMBOL(netdev_update_features);
6118
6119 /**
6120  *      netdev_change_features - recalculate device features
6121  *      @dev: the device to check
6122  *
6123  *      Recalculate dev->features set and send notifications even
6124  *      if they have not changed. Should be called instead of
6125  *      netdev_update_features() if also dev->vlan_features might
6126  *      have changed to allow the changes to be propagated to stacked
6127  *      VLAN devices.
6128  */
6129 void netdev_change_features(struct net_device *dev)
6130 {
6131         __netdev_update_features(dev);
6132         netdev_features_change(dev);
6133 }
6134 EXPORT_SYMBOL(netdev_change_features);
6135
6136 /**
6137  *      netif_stacked_transfer_operstate -      transfer operstate
6138  *      @rootdev: the root or lower level device to transfer state from
6139  *      @dev: the device to transfer operstate to
6140  *
6141  *      Transfer operational state from root to device. This is normally
6142  *      called when a stacking relationship exists between the root
6143  *      device and the device(a leaf device).
6144  */
6145 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6146                                         struct net_device *dev)
6147 {
6148         if (rootdev->operstate == IF_OPER_DORMANT)
6149                 netif_dormant_on(dev);
6150         else
6151                 netif_dormant_off(dev);
6152
6153         if (netif_carrier_ok(rootdev)) {
6154                 if (!netif_carrier_ok(dev))
6155                         netif_carrier_on(dev);
6156         } else {
6157                 if (netif_carrier_ok(dev))
6158                         netif_carrier_off(dev);
6159         }
6160 }
6161 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6162
6163 #ifdef CONFIG_SYSFS
6164 static int netif_alloc_rx_queues(struct net_device *dev)
6165 {
6166         unsigned int i, count = dev->num_rx_queues;
6167         struct netdev_rx_queue *rx;
6168
6169         BUG_ON(count < 1);
6170
6171         rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6172         if (!rx)
6173                 return -ENOMEM;
6174
6175         dev->_rx = rx;
6176
6177         for (i = 0; i < count; i++)
6178                 rx[i].dev = dev;
6179         return 0;
6180 }
6181 #endif
6182
6183 static void netdev_init_one_queue(struct net_device *dev,
6184                                   struct netdev_queue *queue, void *_unused)
6185 {
6186         /* Initialize queue lock */
6187         spin_lock_init(&queue->_xmit_lock);
6188         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6189         queue->xmit_lock_owner = -1;
6190         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6191         queue->dev = dev;
6192 #ifdef CONFIG_BQL
6193         dql_init(&queue->dql, HZ);
6194 #endif
6195 }
6196
6197 static void netif_free_tx_queues(struct net_device *dev)
6198 {
6199         kvfree(dev->_tx);
6200 }
6201
6202 static int netif_alloc_netdev_queues(struct net_device *dev)
6203 {
6204         unsigned int count = dev->num_tx_queues;
6205         struct netdev_queue *tx;
6206         size_t sz = count * sizeof(*tx);
6207
6208         BUG_ON(count < 1 || count > 0xffff);
6209
6210         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6211         if (!tx) {
6212                 tx = vzalloc(sz);
6213                 if (!tx)
6214                         return -ENOMEM;
6215         }
6216         dev->_tx = tx;
6217
6218         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6219         spin_lock_init(&dev->tx_global_lock);
6220
6221         return 0;
6222 }
6223
6224 /**
6225  *      register_netdevice      - register a network device
6226  *      @dev: device to register
6227  *
6228  *      Take a completed network device structure and add it to the kernel
6229  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6230  *      chain. 0 is returned on success. A negative errno code is returned
6231  *      on a failure to set up the device, or if the name is a duplicate.
6232  *
6233  *      Callers must hold the rtnl semaphore. You may want
6234  *      register_netdev() instead of this.
6235  *
6236  *      BUGS:
6237  *      The locking appears insufficient to guarantee two parallel registers
6238  *      will not get the same name.
6239  */
6240
6241 int register_netdevice(struct net_device *dev)
6242 {
6243         int ret;
6244         struct net *net = dev_net(dev);
6245
6246         BUG_ON(dev_boot_phase);
6247         ASSERT_RTNL();
6248
6249         might_sleep();
6250
6251         /* When net_device's are persistent, this will be fatal. */
6252         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6253         BUG_ON(!net);
6254
6255         spin_lock_init(&dev->addr_list_lock);
6256         netdev_set_addr_lockdep_class(dev);
6257
6258         dev->iflink = -1;
6259
6260         ret = dev_get_valid_name(net, dev, dev->name);
6261         if (ret < 0)
6262                 goto out;
6263
6264         /* Init, if this function is available */
6265         if (dev->netdev_ops->ndo_init) {
6266                 ret = dev->netdev_ops->ndo_init(dev);
6267                 if (ret) {
6268                         if (ret > 0)
6269                                 ret = -EIO;
6270                         goto out;
6271                 }
6272         }
6273
6274         if (((dev->hw_features | dev->features) &
6275              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6276             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6277              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6278                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6279                 ret = -EINVAL;
6280                 goto err_uninit;
6281         }
6282
6283         ret = -EBUSY;
6284         if (!dev->ifindex)
6285                 dev->ifindex = dev_new_index(net);
6286         else if (__dev_get_by_index(net, dev->ifindex))
6287                 goto err_uninit;
6288
6289         if (dev->iflink == -1)
6290                 dev->iflink = dev->ifindex;
6291
6292         /* Transfer changeable features to wanted_features and enable
6293          * software offloads (GSO and GRO).
6294          */
6295         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6296         dev->features |= NETIF_F_SOFT_FEATURES;
6297         dev->wanted_features = dev->features & dev->hw_features;
6298
6299         if (!(dev->flags & IFF_LOOPBACK)) {
6300                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6301         }
6302
6303         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6304          */
6305         dev->vlan_features |= NETIF_F_HIGHDMA;
6306
6307         /* Make NETIF_F_SG inheritable to tunnel devices.
6308          */
6309         dev->hw_enc_features |= NETIF_F_SG;
6310
6311         /* Make NETIF_F_SG inheritable to MPLS.
6312          */
6313         dev->mpls_features |= NETIF_F_SG;
6314
6315         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6316         ret = notifier_to_errno(ret);
6317         if (ret)
6318                 goto err_uninit;
6319
6320         ret = netdev_register_kobject(dev);
6321         if (ret)
6322                 goto err_uninit;
6323         dev->reg_state = NETREG_REGISTERED;
6324
6325         __netdev_update_features(dev);
6326
6327         /*
6328          *      Default initial state at registry is that the
6329          *      device is present.
6330          */
6331
6332         set_bit(__LINK_STATE_PRESENT, &dev->state);
6333
6334         linkwatch_init_dev(dev);
6335
6336         dev_init_scheduler(dev);
6337         dev_hold(dev);
6338         list_netdevice(dev);
6339         add_device_randomness(dev->dev_addr, dev->addr_len);
6340
6341         /* If the device has permanent device address, driver should
6342          * set dev_addr and also addr_assign_type should be set to
6343          * NET_ADDR_PERM (default value).
6344          */
6345         if (dev->addr_assign_type == NET_ADDR_PERM)
6346                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6347
6348         /* Notify protocols, that a new device appeared. */
6349         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6350         ret = notifier_to_errno(ret);
6351         if (ret) {
6352                 rollback_registered(dev);
6353                 dev->reg_state = NETREG_UNREGISTERED;
6354         }
6355         /*
6356          *      Prevent userspace races by waiting until the network
6357          *      device is fully setup before sending notifications.
6358          */
6359         if (!dev->rtnl_link_ops ||
6360             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6361                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6362
6363 out:
6364         return ret;
6365
6366 err_uninit:
6367         if (dev->netdev_ops->ndo_uninit)
6368                 dev->netdev_ops->ndo_uninit(dev);
6369         goto out;
6370 }
6371 EXPORT_SYMBOL(register_netdevice);
6372
6373 /**
6374  *      init_dummy_netdev       - init a dummy network device for NAPI
6375  *      @dev: device to init
6376  *
6377  *      This takes a network device structure and initialize the minimum
6378  *      amount of fields so it can be used to schedule NAPI polls without
6379  *      registering a full blown interface. This is to be used by drivers
6380  *      that need to tie several hardware interfaces to a single NAPI
6381  *      poll scheduler due to HW limitations.
6382  */
6383 int init_dummy_netdev(struct net_device *dev)
6384 {
6385         /* Clear everything. Note we don't initialize spinlocks
6386          * are they aren't supposed to be taken by any of the
6387          * NAPI code and this dummy netdev is supposed to be
6388          * only ever used for NAPI polls
6389          */
6390         memset(dev, 0, sizeof(struct net_device));
6391
6392         /* make sure we BUG if trying to hit standard
6393          * register/unregister code path
6394          */
6395         dev->reg_state = NETREG_DUMMY;
6396
6397         /* NAPI wants this */
6398         INIT_LIST_HEAD(&dev->napi_list);
6399
6400         /* a dummy interface is started by default */
6401         set_bit(__LINK_STATE_PRESENT, &dev->state);
6402         set_bit(__LINK_STATE_START, &dev->state);
6403
6404         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6405          * because users of this 'device' dont need to change
6406          * its refcount.
6407          */
6408
6409         return 0;
6410 }
6411 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6412
6413
6414 /**
6415  *      register_netdev - register a network device
6416  *      @dev: device to register
6417  *
6418  *      Take a completed network device structure and add it to the kernel
6419  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6420  *      chain. 0 is returned on success. A negative errno code is returned
6421  *      on a failure to set up the device, or if the name is a duplicate.
6422  *
6423  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6424  *      and expands the device name if you passed a format string to
6425  *      alloc_netdev.
6426  */
6427 int register_netdev(struct net_device *dev)
6428 {
6429         int err;
6430
6431         rtnl_lock();
6432         err = register_netdevice(dev);
6433         rtnl_unlock();
6434         return err;
6435 }
6436 EXPORT_SYMBOL(register_netdev);
6437
6438 int netdev_refcnt_read(const struct net_device *dev)
6439 {
6440         int i, refcnt = 0;
6441
6442         for_each_possible_cpu(i)
6443                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6444         return refcnt;
6445 }
6446 EXPORT_SYMBOL(netdev_refcnt_read);
6447
6448 /**
6449  * netdev_wait_allrefs - wait until all references are gone.
6450  * @dev: target net_device
6451  *
6452  * This is called when unregistering network devices.
6453  *
6454  * Any protocol or device that holds a reference should register
6455  * for netdevice notification, and cleanup and put back the
6456  * reference if they receive an UNREGISTER event.
6457  * We can get stuck here if buggy protocols don't correctly
6458  * call dev_put.
6459  */
6460 static void netdev_wait_allrefs(struct net_device *dev)
6461 {
6462         unsigned long rebroadcast_time, warning_time;
6463         int refcnt;
6464
6465         linkwatch_forget_dev(dev);
6466
6467         rebroadcast_time = warning_time = jiffies;
6468         refcnt = netdev_refcnt_read(dev);
6469
6470         while (refcnt != 0) {
6471                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6472                         rtnl_lock();
6473
6474                         /* Rebroadcast unregister notification */
6475                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6476
6477                         __rtnl_unlock();
6478                         rcu_barrier();
6479                         rtnl_lock();
6480
6481                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6482                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6483                                      &dev->state)) {
6484                                 /* We must not have linkwatch events
6485                                  * pending on unregister. If this
6486                                  * happens, we simply run the queue
6487                                  * unscheduled, resulting in a noop
6488                                  * for this device.
6489                                  */
6490                                 linkwatch_run_queue();
6491                         }
6492
6493                         __rtnl_unlock();
6494
6495                         rebroadcast_time = jiffies;
6496                 }
6497
6498                 msleep(250);
6499
6500                 refcnt = netdev_refcnt_read(dev);
6501
6502                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6503                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6504                                  dev->name, refcnt);
6505                         warning_time = jiffies;
6506                 }
6507         }
6508 }
6509
6510 /* The sequence is:
6511  *
6512  *      rtnl_lock();
6513  *      ...
6514  *      register_netdevice(x1);
6515  *      register_netdevice(x2);
6516  *      ...
6517  *      unregister_netdevice(y1);
6518  *      unregister_netdevice(y2);
6519  *      ...
6520  *      rtnl_unlock();
6521  *      free_netdev(y1);
6522  *      free_netdev(y2);
6523  *
6524  * We are invoked by rtnl_unlock().
6525  * This allows us to deal with problems:
6526  * 1) We can delete sysfs objects which invoke hotplug
6527  *    without deadlocking with linkwatch via keventd.
6528  * 2) Since we run with the RTNL semaphore not held, we can sleep
6529  *    safely in order to wait for the netdev refcnt to drop to zero.
6530  *
6531  * We must not return until all unregister events added during
6532  * the interval the lock was held have been completed.
6533  */
6534 void netdev_run_todo(void)
6535 {
6536         struct list_head list;
6537
6538         /* Snapshot list, allow later requests */
6539         list_replace_init(&net_todo_list, &list);
6540
6541         __rtnl_unlock();
6542
6543
6544         /* Wait for rcu callbacks to finish before next phase */
6545         if (!list_empty(&list))
6546                 rcu_barrier();
6547
6548         while (!list_empty(&list)) {
6549                 struct net_device *dev
6550                         = list_first_entry(&list, struct net_device, todo_list);
6551                 list_del(&dev->todo_list);
6552
6553                 rtnl_lock();
6554                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6555                 __rtnl_unlock();
6556
6557                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6558                         pr_err("network todo '%s' but state %d\n",
6559                                dev->name, dev->reg_state);
6560                         dump_stack();
6561                         continue;
6562                 }
6563
6564                 dev->reg_state = NETREG_UNREGISTERED;
6565
6566                 on_each_cpu(flush_backlog, dev, 1);
6567
6568                 netdev_wait_allrefs(dev);
6569
6570                 /* paranoia */
6571                 BUG_ON(netdev_refcnt_read(dev));
6572                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6573                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6574                 WARN_ON(dev->dn_ptr);
6575
6576                 if (dev->destructor)
6577                         dev->destructor(dev);
6578
6579                 /* Report a network device has been unregistered */
6580                 rtnl_lock();
6581                 dev_net(dev)->dev_unreg_count--;
6582                 __rtnl_unlock();
6583                 wake_up(&netdev_unregistering_wq);
6584
6585                 /* Free network device */
6586                 kobject_put(&dev->dev.kobj);
6587         }
6588 }
6589
6590 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6591  * fields in the same order, with only the type differing.
6592  */
6593 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6594                              const struct net_device_stats *netdev_stats)
6595 {
6596 #if BITS_PER_LONG == 64
6597         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6598         memcpy(stats64, netdev_stats, sizeof(*stats64));
6599 #else
6600         size_t i, n = sizeof(*stats64) / sizeof(u64);
6601         const unsigned long *src = (const unsigned long *)netdev_stats;
6602         u64 *dst = (u64 *)stats64;
6603
6604         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6605                      sizeof(*stats64) / sizeof(u64));
6606         for (i = 0; i < n; i++)
6607                 dst[i] = src[i];
6608 #endif
6609 }
6610 EXPORT_SYMBOL(netdev_stats_to_stats64);
6611
6612 /**
6613  *      dev_get_stats   - get network device statistics
6614  *      @dev: device to get statistics from
6615  *      @storage: place to store stats
6616  *
6617  *      Get network statistics from device. Return @storage.
6618  *      The device driver may provide its own method by setting
6619  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6620  *      otherwise the internal statistics structure is used.
6621  */
6622 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6623                                         struct rtnl_link_stats64 *storage)
6624 {
6625         const struct net_device_ops *ops = dev->netdev_ops;
6626
6627         if (ops->ndo_get_stats64) {
6628                 memset(storage, 0, sizeof(*storage));
6629                 ops->ndo_get_stats64(dev, storage);
6630         } else if (ops->ndo_get_stats) {
6631                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6632         } else {
6633                 netdev_stats_to_stats64(storage, &dev->stats);
6634         }
6635         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6636         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6637         return storage;
6638 }
6639 EXPORT_SYMBOL(dev_get_stats);
6640
6641 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6642 {
6643         struct netdev_queue *queue = dev_ingress_queue(dev);
6644
6645 #ifdef CONFIG_NET_CLS_ACT
6646         if (queue)
6647                 return queue;
6648         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6649         if (!queue)
6650                 return NULL;
6651         netdev_init_one_queue(dev, queue, NULL);
6652         queue->qdisc = &noop_qdisc;
6653         queue->qdisc_sleeping = &noop_qdisc;
6654         rcu_assign_pointer(dev->ingress_queue, queue);
6655 #endif
6656         return queue;
6657 }
6658
6659 static const struct ethtool_ops default_ethtool_ops;
6660
6661 void netdev_set_default_ethtool_ops(struct net_device *dev,
6662                                     const struct ethtool_ops *ops)
6663 {
6664         if (dev->ethtool_ops == &default_ethtool_ops)
6665                 dev->ethtool_ops = ops;
6666 }
6667 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6668
6669 void netdev_freemem(struct net_device *dev)
6670 {
6671         char *addr = (char *)dev - dev->padded;
6672
6673         kvfree(addr);
6674 }
6675
6676 /**
6677  *      alloc_netdev_mqs - allocate network device
6678  *      @sizeof_priv:           size of private data to allocate space for
6679  *      @name:                  device name format string
6680  *      @name_assign_type:      origin of device name
6681  *      @setup:                 callback to initialize device
6682  *      @txqs:                  the number of TX subqueues to allocate
6683  *      @rxqs:                  the number of RX subqueues to allocate
6684  *
6685  *      Allocates a struct net_device with private data area for driver use
6686  *      and performs basic initialization.  Also allocates subqueue structs
6687  *      for each queue on the device.
6688  */
6689 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6690                 unsigned char name_assign_type,
6691                 void (*setup)(struct net_device *),
6692                 unsigned int txqs, unsigned int rxqs)
6693 {
6694         struct net_device *dev;
6695         size_t alloc_size;
6696         struct net_device *p;
6697
6698         BUG_ON(strlen(name) >= sizeof(dev->name));
6699
6700         if (txqs < 1) {
6701                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6702                 return NULL;
6703         }
6704
6705 #ifdef CONFIG_SYSFS
6706         if (rxqs < 1) {
6707                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6708                 return NULL;
6709         }
6710 #endif
6711
6712         alloc_size = sizeof(struct net_device);
6713         if (sizeof_priv) {
6714                 /* ensure 32-byte alignment of private area */
6715                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6716                 alloc_size += sizeof_priv;
6717         }
6718         /* ensure 32-byte alignment of whole construct */
6719         alloc_size += NETDEV_ALIGN - 1;
6720
6721         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6722         if (!p)
6723                 p = vzalloc(alloc_size);
6724         if (!p)
6725                 return NULL;
6726
6727         dev = PTR_ALIGN(p, NETDEV_ALIGN);
6728         dev->padded = (char *)dev - (char *)p;
6729
6730         dev->pcpu_refcnt = alloc_percpu(int);
6731         if (!dev->pcpu_refcnt)
6732                 goto free_dev;
6733
6734         if (dev_addr_init(dev))
6735                 goto free_pcpu;
6736
6737         dev_mc_init(dev);
6738         dev_uc_init(dev);
6739
6740         dev_net_set(dev, &init_net);
6741
6742         dev->gso_max_size = GSO_MAX_SIZE;
6743         dev->gso_max_segs = GSO_MAX_SEGS;
6744         dev->gso_min_segs = 0;
6745
6746         INIT_LIST_HEAD(&dev->napi_list);
6747         INIT_LIST_HEAD(&dev->unreg_list);
6748         INIT_LIST_HEAD(&dev->close_list);
6749         INIT_LIST_HEAD(&dev->link_watch_list);
6750         INIT_LIST_HEAD(&dev->adj_list.upper);
6751         INIT_LIST_HEAD(&dev->adj_list.lower);
6752         INIT_LIST_HEAD(&dev->all_adj_list.upper);
6753         INIT_LIST_HEAD(&dev->all_adj_list.lower);
6754         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6755         setup(dev);
6756
6757         dev->num_tx_queues = txqs;
6758         dev->real_num_tx_queues = txqs;
6759         if (netif_alloc_netdev_queues(dev))
6760                 goto free_all;
6761
6762 #ifdef CONFIG_SYSFS
6763         dev->num_rx_queues = rxqs;
6764         dev->real_num_rx_queues = rxqs;
6765         if (netif_alloc_rx_queues(dev))
6766                 goto free_all;
6767 #endif
6768
6769         strcpy(dev->name, name);
6770         dev->name_assign_type = name_assign_type;
6771         dev->group = INIT_NETDEV_GROUP;
6772         if (!dev->ethtool_ops)
6773                 dev->ethtool_ops = &default_ethtool_ops;
6774         return dev;
6775
6776 free_all:
6777         free_netdev(dev);
6778         return NULL;
6779
6780 free_pcpu:
6781         free_percpu(dev->pcpu_refcnt);
6782 free_dev:
6783         netdev_freemem(dev);
6784         return NULL;
6785 }
6786 EXPORT_SYMBOL(alloc_netdev_mqs);
6787
6788 /**
6789  *      free_netdev - free network device
6790  *      @dev: device
6791  *
6792  *      This function does the last stage of destroying an allocated device
6793  *      interface. The reference to the device object is released.
6794  *      If this is the last reference then it will be freed.
6795  */
6796 void free_netdev(struct net_device *dev)
6797 {
6798         struct napi_struct *p, *n;
6799
6800         release_net(dev_net(dev));
6801
6802         netif_free_tx_queues(dev);
6803 #ifdef CONFIG_SYSFS
6804         kfree(dev->_rx);
6805 #endif
6806
6807         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6808
6809         /* Flush device addresses */
6810         dev_addr_flush(dev);
6811
6812         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6813                 netif_napi_del(p);
6814
6815         free_percpu(dev->pcpu_refcnt);
6816         dev->pcpu_refcnt = NULL;
6817
6818         /*  Compatibility with error handling in drivers */
6819         if (dev->reg_state == NETREG_UNINITIALIZED) {
6820                 netdev_freemem(dev);
6821                 return;
6822         }
6823
6824         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6825         dev->reg_state = NETREG_RELEASED;
6826
6827         /* will free via device release */
6828         put_device(&dev->dev);
6829 }
6830 EXPORT_SYMBOL(free_netdev);
6831
6832 /**
6833  *      synchronize_net -  Synchronize with packet receive processing
6834  *
6835  *      Wait for packets currently being received to be done.
6836  *      Does not block later packets from starting.
6837  */
6838 void synchronize_net(void)
6839 {
6840         might_sleep();
6841         if (rtnl_is_locked())
6842                 synchronize_rcu_expedited();
6843         else
6844                 synchronize_rcu();
6845 }
6846 EXPORT_SYMBOL(synchronize_net);
6847
6848 /**
6849  *      unregister_netdevice_queue - remove device from the kernel
6850  *      @dev: device
6851  *      @head: list
6852  *
6853  *      This function shuts down a device interface and removes it
6854  *      from the kernel tables.
6855  *      If head not NULL, device is queued to be unregistered later.
6856  *
6857  *      Callers must hold the rtnl semaphore.  You may want
6858  *      unregister_netdev() instead of this.
6859  */
6860
6861 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6862 {
6863         ASSERT_RTNL();
6864
6865         if (head) {
6866                 list_move_tail(&dev->unreg_list, head);
6867         } else {
6868                 rollback_registered(dev);
6869                 /* Finish processing unregister after unlock */
6870                 net_set_todo(dev);
6871         }
6872 }
6873 EXPORT_SYMBOL(unregister_netdevice_queue);
6874
6875 /**
6876  *      unregister_netdevice_many - unregister many devices
6877  *      @head: list of devices
6878  *
6879  *  Note: As most callers use a stack allocated list_head,
6880  *  we force a list_del() to make sure stack wont be corrupted later.
6881  */
6882 void unregister_netdevice_many(struct list_head *head)
6883 {
6884         struct net_device *dev;
6885
6886         if (!list_empty(head)) {
6887                 rollback_registered_many(head);
6888                 list_for_each_entry(dev, head, unreg_list)
6889                         net_set_todo(dev);
6890                 list_del(head);
6891         }
6892 }
6893 EXPORT_SYMBOL(unregister_netdevice_many);
6894
6895 /**
6896  *      unregister_netdev - remove device from the kernel
6897  *      @dev: device
6898  *
6899  *      This function shuts down a device interface and removes it
6900  *      from the kernel tables.
6901  *
6902  *      This is just a wrapper for unregister_netdevice that takes
6903  *      the rtnl semaphore.  In general you want to use this and not
6904  *      unregister_netdevice.
6905  */
6906 void unregister_netdev(struct net_device *dev)
6907 {
6908         rtnl_lock();
6909         unregister_netdevice(dev);
6910         rtnl_unlock();
6911 }
6912 EXPORT_SYMBOL(unregister_netdev);
6913
6914 /**
6915  *      dev_change_net_namespace - move device to different nethost namespace
6916  *      @dev: device
6917  *      @net: network namespace
6918  *      @pat: If not NULL name pattern to try if the current device name
6919  *            is already taken in the destination network namespace.
6920  *
6921  *      This function shuts down a device interface and moves it
6922  *      to a new network namespace. On success 0 is returned, on
6923  *      a failure a netagive errno code is returned.
6924  *
6925  *      Callers must hold the rtnl semaphore.
6926  */
6927
6928 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6929 {
6930         int err;
6931
6932         ASSERT_RTNL();
6933
6934         /* Don't allow namespace local devices to be moved. */
6935         err = -EINVAL;
6936         if (dev->features & NETIF_F_NETNS_LOCAL)
6937                 goto out;
6938
6939         /* Ensure the device has been registrered */
6940         if (dev->reg_state != NETREG_REGISTERED)
6941                 goto out;
6942
6943         /* Get out if there is nothing todo */
6944         err = 0;
6945         if (net_eq(dev_net(dev), net))
6946                 goto out;
6947
6948         /* Pick the destination device name, and ensure
6949          * we can use it in the destination network namespace.
6950          */
6951         err = -EEXIST;
6952         if (__dev_get_by_name(net, dev->name)) {
6953                 /* We get here if we can't use the current device name */
6954                 if (!pat)
6955                         goto out;
6956                 if (dev_get_valid_name(net, dev, pat) < 0)
6957                         goto out;
6958         }
6959
6960         /*
6961          * And now a mini version of register_netdevice unregister_netdevice.
6962          */
6963
6964         /* If device is running close it first. */
6965         dev_close(dev);
6966
6967         /* And unlink it from device chain */
6968         err = -ENODEV;
6969         unlist_netdevice(dev);
6970
6971         synchronize_net();
6972
6973         /* Shutdown queueing discipline. */
6974         dev_shutdown(dev);
6975
6976         /* Notify protocols, that we are about to destroy
6977            this device. They should clean all the things.
6978
6979            Note that dev->reg_state stays at NETREG_REGISTERED.
6980            This is wanted because this way 8021q and macvlan know
6981            the device is just moving and can keep their slaves up.
6982         */
6983         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6984         rcu_barrier();
6985         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6986         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6987
6988         /*
6989          *      Flush the unicast and multicast chains
6990          */
6991         dev_uc_flush(dev);
6992         dev_mc_flush(dev);
6993
6994         /* Send a netdev-removed uevent to the old namespace */
6995         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6996         netdev_adjacent_del_links(dev);
6997
6998         /* Actually switch the network namespace */
6999         dev_net_set(dev, net);
7000
7001         /* If there is an ifindex conflict assign a new one */
7002         if (__dev_get_by_index(net, dev->ifindex)) {
7003                 int iflink = (dev->iflink == dev->ifindex);
7004                 dev->ifindex = dev_new_index(net);
7005                 if (iflink)
7006                         dev->iflink = dev->ifindex;
7007         }
7008
7009         /* Send a netdev-add uevent to the new namespace */
7010         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7011         netdev_adjacent_add_links(dev);
7012
7013         /* Fixup kobjects */
7014         err = device_rename(&dev->dev, dev->name);
7015         WARN_ON(err);
7016
7017         /* Add the device back in the hashes */
7018         list_netdevice(dev);
7019
7020         /* Notify protocols, that a new device appeared. */
7021         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7022
7023         /*
7024          *      Prevent userspace races by waiting until the network
7025          *      device is fully setup before sending notifications.
7026          */
7027         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7028
7029         synchronize_net();
7030         err = 0;
7031 out:
7032         return err;
7033 }
7034 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7035
7036 static int dev_cpu_callback(struct notifier_block *nfb,
7037                             unsigned long action,
7038                             void *ocpu)
7039 {
7040         struct sk_buff **list_skb;
7041         struct sk_buff *skb;
7042         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7043         struct softnet_data *sd, *oldsd;
7044
7045         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7046                 return NOTIFY_OK;
7047
7048         local_irq_disable();
7049         cpu = smp_processor_id();
7050         sd = &per_cpu(softnet_data, cpu);
7051         oldsd = &per_cpu(softnet_data, oldcpu);
7052
7053         /* Find end of our completion_queue. */
7054         list_skb = &sd->completion_queue;
7055         while (*list_skb)
7056                 list_skb = &(*list_skb)->next;
7057         /* Append completion queue from offline CPU. */
7058         *list_skb = oldsd->completion_queue;
7059         oldsd->completion_queue = NULL;
7060
7061         /* Append output queue from offline CPU. */
7062         if (oldsd->output_queue) {
7063                 *sd->output_queue_tailp = oldsd->output_queue;
7064                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7065                 oldsd->output_queue = NULL;
7066                 oldsd->output_queue_tailp = &oldsd->output_queue;
7067         }
7068         /* Append NAPI poll list from offline CPU. */
7069         if (!list_empty(&oldsd->poll_list)) {
7070                 list_splice_init(&oldsd->poll_list, &sd->poll_list);
7071                 raise_softirq_irqoff(NET_RX_SOFTIRQ);
7072         }
7073
7074         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7075         local_irq_enable();
7076
7077         /* Process offline CPU's input_pkt_queue */
7078         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7079                 netif_rx_internal(skb);
7080                 input_queue_head_incr(oldsd);
7081         }
7082         while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
7083                 netif_rx_internal(skb);
7084                 input_queue_head_incr(oldsd);
7085         }
7086
7087         return NOTIFY_OK;
7088 }
7089
7090
7091 /**
7092  *      netdev_increment_features - increment feature set by one
7093  *      @all: current feature set
7094  *      @one: new feature set
7095  *      @mask: mask feature set
7096  *
7097  *      Computes a new feature set after adding a device with feature set
7098  *      @one to the master device with current feature set @all.  Will not
7099  *      enable anything that is off in @mask. Returns the new feature set.
7100  */
7101 netdev_features_t netdev_increment_features(netdev_features_t all,
7102         netdev_features_t one, netdev_features_t mask)
7103 {
7104         if (mask & NETIF_F_GEN_CSUM)
7105                 mask |= NETIF_F_ALL_CSUM;
7106         mask |= NETIF_F_VLAN_CHALLENGED;
7107
7108         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7109         all &= one | ~NETIF_F_ALL_FOR_ALL;
7110
7111         /* If one device supports hw checksumming, set for all. */
7112         if (all & NETIF_F_GEN_CSUM)
7113                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7114
7115         return all;
7116 }
7117 EXPORT_SYMBOL(netdev_increment_features);
7118
7119 static struct hlist_head * __net_init netdev_create_hash(void)
7120 {
7121         int i;
7122         struct hlist_head *hash;
7123
7124         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7125         if (hash != NULL)
7126                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7127                         INIT_HLIST_HEAD(&hash[i]);
7128
7129         return hash;
7130 }
7131
7132 /* Initialize per network namespace state */
7133 static int __net_init netdev_init(struct net *net)
7134 {
7135         if (net != &init_net)
7136                 INIT_LIST_HEAD(&net->dev_base_head);
7137
7138         net->dev_name_head = netdev_create_hash();
7139         if (net->dev_name_head == NULL)
7140                 goto err_name;
7141
7142         net->dev_index_head = netdev_create_hash();
7143         if (net->dev_index_head == NULL)
7144                 goto err_idx;
7145
7146         return 0;
7147
7148 err_idx:
7149         kfree(net->dev_name_head);
7150 err_name:
7151         return -ENOMEM;
7152 }
7153
7154 /**
7155  *      netdev_drivername - network driver for the device
7156  *      @dev: network device
7157  *
7158  *      Determine network driver for device.
7159  */
7160 const char *netdev_drivername(const struct net_device *dev)
7161 {
7162         const struct device_driver *driver;
7163         const struct device *parent;
7164         const char *empty = "";
7165
7166         parent = dev->dev.parent;
7167         if (!parent)
7168                 return empty;
7169
7170         driver = parent->driver;
7171         if (driver && driver->name)
7172                 return driver->name;
7173         return empty;
7174 }
7175
7176 static void __netdev_printk(const char *level, const struct net_device *dev,
7177                             struct va_format *vaf)
7178 {
7179         if (dev && dev->dev.parent) {
7180                 dev_printk_emit(level[1] - '0',
7181                                 dev->dev.parent,
7182                                 "%s %s %s%s: %pV",
7183                                 dev_driver_string(dev->dev.parent),
7184                                 dev_name(dev->dev.parent),
7185                                 netdev_name(dev), netdev_reg_state(dev),
7186                                 vaf);
7187         } else if (dev) {
7188                 printk("%s%s%s: %pV",
7189                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7190         } else {
7191                 printk("%s(NULL net_device): %pV", level, vaf);
7192         }
7193 }
7194
7195 void netdev_printk(const char *level, const struct net_device *dev,
7196                    const char *format, ...)
7197 {
7198         struct va_format vaf;
7199         va_list args;
7200
7201         va_start(args, format);
7202
7203         vaf.fmt = format;
7204         vaf.va = &args;
7205
7206         __netdev_printk(level, dev, &vaf);
7207
7208         va_end(args);
7209 }
7210 EXPORT_SYMBOL(netdev_printk);
7211
7212 #define define_netdev_printk_level(func, level)                 \
7213 void func(const struct net_device *dev, const char *fmt, ...)   \
7214 {                                                               \
7215         struct va_format vaf;                                   \
7216         va_list args;                                           \
7217                                                                 \
7218         va_start(args, fmt);                                    \
7219                                                                 \
7220         vaf.fmt = fmt;                                          \
7221         vaf.va = &args;                                         \
7222                                                                 \
7223         __netdev_printk(level, dev, &vaf);                      \
7224                                                                 \
7225         va_end(args);                                           \
7226 }                                                               \
7227 EXPORT_SYMBOL(func);
7228
7229 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7230 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7231 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7232 define_netdev_printk_level(netdev_err, KERN_ERR);
7233 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7234 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7235 define_netdev_printk_level(netdev_info, KERN_INFO);
7236
7237 static void __net_exit netdev_exit(struct net *net)
7238 {
7239         kfree(net->dev_name_head);
7240         kfree(net->dev_index_head);
7241 }
7242
7243 static struct pernet_operations __net_initdata netdev_net_ops = {
7244         .init = netdev_init,
7245         .exit = netdev_exit,
7246 };
7247
7248 static void __net_exit default_device_exit(struct net *net)
7249 {
7250         struct net_device *dev, *aux;
7251         /*
7252          * Push all migratable network devices back to the
7253          * initial network namespace
7254          */
7255         rtnl_lock();
7256         for_each_netdev_safe(net, dev, aux) {
7257                 int err;
7258                 char fb_name[IFNAMSIZ];
7259
7260                 /* Ignore unmoveable devices (i.e. loopback) */
7261                 if (dev->features & NETIF_F_NETNS_LOCAL)
7262                         continue;
7263
7264                 /* Leave virtual devices for the generic cleanup */
7265                 if (dev->rtnl_link_ops)
7266                         continue;
7267
7268                 /* Push remaining network devices to init_net */
7269                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7270                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7271                 if (err) {
7272                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7273                                  __func__, dev->name, err);
7274                         BUG();
7275                 }
7276         }
7277         rtnl_unlock();
7278 }
7279
7280 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7281 {
7282         /* Return with the rtnl_lock held when there are no network
7283          * devices unregistering in any network namespace in net_list.
7284          */
7285         struct net *net;
7286         bool unregistering;
7287         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7288
7289         add_wait_queue(&netdev_unregistering_wq, &wait);
7290         for (;;) {
7291                 unregistering = false;
7292                 rtnl_lock();
7293                 list_for_each_entry(net, net_list, exit_list) {
7294                         if (net->dev_unreg_count > 0) {
7295                                 unregistering = true;
7296                                 break;
7297                         }
7298                 }
7299                 if (!unregistering)
7300                         break;
7301                 __rtnl_unlock();
7302
7303                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7304         }
7305         remove_wait_queue(&netdev_unregistering_wq, &wait);
7306 }
7307
7308 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7309 {
7310         /* At exit all network devices most be removed from a network
7311          * namespace.  Do this in the reverse order of registration.
7312          * Do this across as many network namespaces as possible to
7313          * improve batching efficiency.
7314          */
7315         struct net_device *dev;
7316         struct net *net;
7317         LIST_HEAD(dev_kill_list);
7318
7319         /* To prevent network device cleanup code from dereferencing
7320          * loopback devices or network devices that have been freed
7321          * wait here for all pending unregistrations to complete,
7322          * before unregistring the loopback device and allowing the
7323          * network namespace be freed.
7324          *
7325          * The netdev todo list containing all network devices
7326          * unregistrations that happen in default_device_exit_batch
7327          * will run in the rtnl_unlock() at the end of
7328          * default_device_exit_batch.
7329          */
7330         rtnl_lock_unregistering(net_list);
7331         list_for_each_entry(net, net_list, exit_list) {
7332                 for_each_netdev_reverse(net, dev) {
7333                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7334                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7335                         else
7336                                 unregister_netdevice_queue(dev, &dev_kill_list);
7337                 }
7338         }
7339         unregister_netdevice_many(&dev_kill_list);
7340         rtnl_unlock();
7341 }
7342
7343 static struct pernet_operations __net_initdata default_device_ops = {
7344         .exit = default_device_exit,
7345         .exit_batch = default_device_exit_batch,
7346 };
7347
7348 /*
7349  *      Initialize the DEV module. At boot time this walks the device list and
7350  *      unhooks any devices that fail to initialise (normally hardware not
7351  *      present) and leaves us with a valid list of present and active devices.
7352  *
7353  */
7354
7355 /*
7356  *       This is called single threaded during boot, so no need
7357  *       to take the rtnl semaphore.
7358  */
7359 static int __init net_dev_init(void)
7360 {
7361         int i, rc = -ENOMEM;
7362
7363         BUG_ON(!dev_boot_phase);
7364
7365         if (dev_proc_init())
7366                 goto out;
7367
7368         if (netdev_kobject_init())
7369                 goto out;
7370
7371         INIT_LIST_HEAD(&ptype_all);
7372         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7373                 INIT_LIST_HEAD(&ptype_base[i]);
7374
7375         INIT_LIST_HEAD(&offload_base);
7376
7377         if (register_pernet_subsys(&netdev_net_ops))
7378                 goto out;
7379
7380         /*
7381          *      Initialise the packet receive queues.
7382          */
7383
7384         for_each_possible_cpu(i) {
7385                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7386
7387                 skb_queue_head_init(&sd->input_pkt_queue);
7388                 skb_queue_head_init(&sd->process_queue);
7389                 INIT_LIST_HEAD(&sd->poll_list);
7390                 sd->output_queue_tailp = &sd->output_queue;
7391 #ifdef CONFIG_RPS
7392                 sd->csd.func = rps_trigger_softirq;
7393                 sd->csd.info = sd;
7394                 sd->cpu = i;
7395 #endif
7396
7397                 sd->backlog.poll = process_backlog;
7398                 sd->backlog.weight = weight_p;
7399         }
7400
7401         dev_boot_phase = 0;
7402
7403         /* The loopback device is special if any other network devices
7404          * is present in a network namespace the loopback device must
7405          * be present. Since we now dynamically allocate and free the
7406          * loopback device ensure this invariant is maintained by
7407          * keeping the loopback device as the first device on the
7408          * list of network devices.  Ensuring the loopback devices
7409          * is the first device that appears and the last network device
7410          * that disappears.
7411          */
7412         if (register_pernet_device(&loopback_net_ops))
7413                 goto out;
7414
7415         if (register_pernet_device(&default_device_ops))
7416                 goto out;
7417
7418         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7419         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7420
7421         hotcpu_notifier(dev_cpu_callback, 0);
7422         dst_init();
7423         rc = 0;
7424 out:
7425         return rc;
7426 }
7427
7428 subsys_initcall(net_dev_init);