Merge remote-tracking branch 'upstream' into next
[cascardo/linux.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Author:
5  *     Jay Schulist <jschlst@samba.org>
6  *
7  * Based on the design of:
8  *     - The Berkeley Packet Filter
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Andi Kleen - Fix a few bad bugs and races.
16  * Kris Katterjohn - Added many additional checks in sk_chk_filter()
17  */
18
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/mm.h>
22 #include <linux/fcntl.h>
23 #include <linux/socket.h>
24 #include <linux/in.h>
25 #include <linux/inet.h>
26 #include <linux/netdevice.h>
27 #include <linux/if_packet.h>
28 #include <linux/gfp.h>
29 #include <net/ip.h>
30 #include <net/protocol.h>
31 #include <net/netlink.h>
32 #include <linux/skbuff.h>
33 #include <net/sock.h>
34 #include <linux/errno.h>
35 #include <linux/timer.h>
36 #include <asm/uaccess.h>
37 #include <asm/unaligned.h>
38 #include <linux/filter.h>
39 #include <linux/reciprocal_div.h>
40 #include <linux/ratelimit.h>
41 #include <linux/seccomp.h>
42
43 /* No hurry in this branch
44  *
45  * Exported for the bpf jit load helper.
46  */
47 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
48 {
49         u8 *ptr = NULL;
50
51         if (k >= SKF_NET_OFF)
52                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
53         else if (k >= SKF_LL_OFF)
54                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
55
56         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
57                 return ptr;
58         return NULL;
59 }
60
61 static inline void *load_pointer(const struct sk_buff *skb, int k,
62                                  unsigned int size, void *buffer)
63 {
64         if (k >= 0)
65                 return skb_header_pointer(skb, k, size, buffer);
66         return bpf_internal_load_pointer_neg_helper(skb, k, size);
67 }
68
69 /**
70  *      sk_filter - run a packet through a socket filter
71  *      @sk: sock associated with &sk_buff
72  *      @skb: buffer to filter
73  *
74  * Run the filter code and then cut skb->data to correct size returned by
75  * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
76  * than pkt_len we keep whole skb->data. This is the socket level
77  * wrapper to sk_run_filter. It returns 0 if the packet should
78  * be accepted or -EPERM if the packet should be tossed.
79  *
80  */
81 int sk_filter(struct sock *sk, struct sk_buff *skb)
82 {
83         int err;
84         struct sk_filter *filter;
85
86         /*
87          * If the skb was allocated from pfmemalloc reserves, only
88          * allow SOCK_MEMALLOC sockets to use it as this socket is
89          * helping free memory
90          */
91         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
92                 return -ENOMEM;
93
94         err = security_sock_rcv_skb(sk, skb);
95         if (err)
96                 return err;
97
98         rcu_read_lock();
99         filter = rcu_dereference(sk->sk_filter);
100         if (filter) {
101                 unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
102
103                 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
104         }
105         rcu_read_unlock();
106
107         return err;
108 }
109 EXPORT_SYMBOL(sk_filter);
110
111 /**
112  *      sk_run_filter - run a filter on a socket
113  *      @skb: buffer to run the filter on
114  *      @fentry: filter to apply
115  *
116  * Decode and apply filter instructions to the skb->data.
117  * Return length to keep, 0 for none. @skb is the data we are
118  * filtering, @filter is the array of filter instructions.
119  * Because all jumps are guaranteed to be before last instruction,
120  * and last instruction guaranteed to be a RET, we dont need to check
121  * flen. (We used to pass to this function the length of filter)
122  */
123 unsigned int sk_run_filter(const struct sk_buff *skb,
124                            const struct sock_filter *fentry)
125 {
126         void *ptr;
127         u32 A = 0;                      /* Accumulator */
128         u32 X = 0;                      /* Index Register */
129         u32 mem[BPF_MEMWORDS];          /* Scratch Memory Store */
130         u32 tmp;
131         int k;
132
133         /*
134          * Process array of filter instructions.
135          */
136         for (;; fentry++) {
137 #if defined(CONFIG_X86_32)
138 #define K (fentry->k)
139 #else
140                 const u32 K = fentry->k;
141 #endif
142
143                 switch (fentry->code) {
144                 case BPF_S_ALU_ADD_X:
145                         A += X;
146                         continue;
147                 case BPF_S_ALU_ADD_K:
148                         A += K;
149                         continue;
150                 case BPF_S_ALU_SUB_X:
151                         A -= X;
152                         continue;
153                 case BPF_S_ALU_SUB_K:
154                         A -= K;
155                         continue;
156                 case BPF_S_ALU_MUL_X:
157                         A *= X;
158                         continue;
159                 case BPF_S_ALU_MUL_K:
160                         A *= K;
161                         continue;
162                 case BPF_S_ALU_DIV_X:
163                         if (X == 0)
164                                 return 0;
165                         A /= X;
166                         continue;
167                 case BPF_S_ALU_DIV_K:
168                         A = reciprocal_divide(A, K);
169                         continue;
170                 case BPF_S_ALU_AND_X:
171                         A &= X;
172                         continue;
173                 case BPF_S_ALU_AND_K:
174                         A &= K;
175                         continue;
176                 case BPF_S_ALU_OR_X:
177                         A |= X;
178                         continue;
179                 case BPF_S_ALU_OR_K:
180                         A |= K;
181                         continue;
182                 case BPF_S_ALU_LSH_X:
183                         A <<= X;
184                         continue;
185                 case BPF_S_ALU_LSH_K:
186                         A <<= K;
187                         continue;
188                 case BPF_S_ALU_RSH_X:
189                         A >>= X;
190                         continue;
191                 case BPF_S_ALU_RSH_K:
192                         A >>= K;
193                         continue;
194                 case BPF_S_ALU_NEG:
195                         A = -A;
196                         continue;
197                 case BPF_S_JMP_JA:
198                         fentry += K;
199                         continue;
200                 case BPF_S_JMP_JGT_K:
201                         fentry += (A > K) ? fentry->jt : fentry->jf;
202                         continue;
203                 case BPF_S_JMP_JGE_K:
204                         fentry += (A >= K) ? fentry->jt : fentry->jf;
205                         continue;
206                 case BPF_S_JMP_JEQ_K:
207                         fentry += (A == K) ? fentry->jt : fentry->jf;
208                         continue;
209                 case BPF_S_JMP_JSET_K:
210                         fentry += (A & K) ? fentry->jt : fentry->jf;
211                         continue;
212                 case BPF_S_JMP_JGT_X:
213                         fentry += (A > X) ? fentry->jt : fentry->jf;
214                         continue;
215                 case BPF_S_JMP_JGE_X:
216                         fentry += (A >= X) ? fentry->jt : fentry->jf;
217                         continue;
218                 case BPF_S_JMP_JEQ_X:
219                         fentry += (A == X) ? fentry->jt : fentry->jf;
220                         continue;
221                 case BPF_S_JMP_JSET_X:
222                         fentry += (A & X) ? fentry->jt : fentry->jf;
223                         continue;
224                 case BPF_S_LD_W_ABS:
225                         k = K;
226 load_w:
227                         ptr = load_pointer(skb, k, 4, &tmp);
228                         if (ptr != NULL) {
229                                 A = get_unaligned_be32(ptr);
230                                 continue;
231                         }
232                         return 0;
233                 case BPF_S_LD_H_ABS:
234                         k = K;
235 load_h:
236                         ptr = load_pointer(skb, k, 2, &tmp);
237                         if (ptr != NULL) {
238                                 A = get_unaligned_be16(ptr);
239                                 continue;
240                         }
241                         return 0;
242                 case BPF_S_LD_B_ABS:
243                         k = K;
244 load_b:
245                         ptr = load_pointer(skb, k, 1, &tmp);
246                         if (ptr != NULL) {
247                                 A = *(u8 *)ptr;
248                                 continue;
249                         }
250                         return 0;
251                 case BPF_S_LD_W_LEN:
252                         A = skb->len;
253                         continue;
254                 case BPF_S_LDX_W_LEN:
255                         X = skb->len;
256                         continue;
257                 case BPF_S_LD_W_IND:
258                         k = X + K;
259                         goto load_w;
260                 case BPF_S_LD_H_IND:
261                         k = X + K;
262                         goto load_h;
263                 case BPF_S_LD_B_IND:
264                         k = X + K;
265                         goto load_b;
266                 case BPF_S_LDX_B_MSH:
267                         ptr = load_pointer(skb, K, 1, &tmp);
268                         if (ptr != NULL) {
269                                 X = (*(u8 *)ptr & 0xf) << 2;
270                                 continue;
271                         }
272                         return 0;
273                 case BPF_S_LD_IMM:
274                         A = K;
275                         continue;
276                 case BPF_S_LDX_IMM:
277                         X = K;
278                         continue;
279                 case BPF_S_LD_MEM:
280                         A = mem[K];
281                         continue;
282                 case BPF_S_LDX_MEM:
283                         X = mem[K];
284                         continue;
285                 case BPF_S_MISC_TAX:
286                         X = A;
287                         continue;
288                 case BPF_S_MISC_TXA:
289                         A = X;
290                         continue;
291                 case BPF_S_RET_K:
292                         return K;
293                 case BPF_S_RET_A:
294                         return A;
295                 case BPF_S_ST:
296                         mem[K] = A;
297                         continue;
298                 case BPF_S_STX:
299                         mem[K] = X;
300                         continue;
301                 case BPF_S_ANC_PROTOCOL:
302                         A = ntohs(skb->protocol);
303                         continue;
304                 case BPF_S_ANC_PKTTYPE:
305                         A = skb->pkt_type;
306                         continue;
307                 case BPF_S_ANC_IFINDEX:
308                         if (!skb->dev)
309                                 return 0;
310                         A = skb->dev->ifindex;
311                         continue;
312                 case BPF_S_ANC_MARK:
313                         A = skb->mark;
314                         continue;
315                 case BPF_S_ANC_QUEUE:
316                         A = skb->queue_mapping;
317                         continue;
318                 case BPF_S_ANC_HATYPE:
319                         if (!skb->dev)
320                                 return 0;
321                         A = skb->dev->type;
322                         continue;
323                 case BPF_S_ANC_RXHASH:
324                         A = skb->rxhash;
325                         continue;
326                 case BPF_S_ANC_CPU:
327                         A = raw_smp_processor_id();
328                         continue;
329                 case BPF_S_ANC_ALU_XOR_X:
330                         A ^= X;
331                         continue;
332                 case BPF_S_ANC_NLATTR: {
333                         struct nlattr *nla;
334
335                         if (skb_is_nonlinear(skb))
336                                 return 0;
337                         if (A > skb->len - sizeof(struct nlattr))
338                                 return 0;
339
340                         nla = nla_find((struct nlattr *)&skb->data[A],
341                                        skb->len - A, X);
342                         if (nla)
343                                 A = (void *)nla - (void *)skb->data;
344                         else
345                                 A = 0;
346                         continue;
347                 }
348                 case BPF_S_ANC_NLATTR_NEST: {
349                         struct nlattr *nla;
350
351                         if (skb_is_nonlinear(skb))
352                                 return 0;
353                         if (A > skb->len - sizeof(struct nlattr))
354                                 return 0;
355
356                         nla = (struct nlattr *)&skb->data[A];
357                         if (nla->nla_len > A - skb->len)
358                                 return 0;
359
360                         nla = nla_find_nested(nla, X);
361                         if (nla)
362                                 A = (void *)nla - (void *)skb->data;
363                         else
364                                 A = 0;
365                         continue;
366                 }
367 #ifdef CONFIG_SECCOMP_FILTER
368                 case BPF_S_ANC_SECCOMP_LD_W:
369                         A = seccomp_bpf_load(fentry->k);
370                         continue;
371 #endif
372                 default:
373                         WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n",
374                                        fentry->code, fentry->jt,
375                                        fentry->jf, fentry->k);
376                         return 0;
377                 }
378         }
379
380         return 0;
381 }
382 EXPORT_SYMBOL(sk_run_filter);
383
384 /*
385  * Security :
386  * A BPF program is able to use 16 cells of memory to store intermediate
387  * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter())
388  * As we dont want to clear mem[] array for each packet going through
389  * sk_run_filter(), we check that filter loaded by user never try to read
390  * a cell if not previously written, and we check all branches to be sure
391  * a malicious user doesn't try to abuse us.
392  */
393 static int check_load_and_stores(struct sock_filter *filter, int flen)
394 {
395         u16 *masks, memvalid = 0; /* one bit per cell, 16 cells */
396         int pc, ret = 0;
397
398         BUILD_BUG_ON(BPF_MEMWORDS > 16);
399         masks = kmalloc(flen * sizeof(*masks), GFP_KERNEL);
400         if (!masks)
401                 return -ENOMEM;
402         memset(masks, 0xff, flen * sizeof(*masks));
403
404         for (pc = 0; pc < flen; pc++) {
405                 memvalid &= masks[pc];
406
407                 switch (filter[pc].code) {
408                 case BPF_S_ST:
409                 case BPF_S_STX:
410                         memvalid |= (1 << filter[pc].k);
411                         break;
412                 case BPF_S_LD_MEM:
413                 case BPF_S_LDX_MEM:
414                         if (!(memvalid & (1 << filter[pc].k))) {
415                                 ret = -EINVAL;
416                                 goto error;
417                         }
418                         break;
419                 case BPF_S_JMP_JA:
420                         /* a jump must set masks on target */
421                         masks[pc + 1 + filter[pc].k] &= memvalid;
422                         memvalid = ~0;
423                         break;
424                 case BPF_S_JMP_JEQ_K:
425                 case BPF_S_JMP_JEQ_X:
426                 case BPF_S_JMP_JGE_K:
427                 case BPF_S_JMP_JGE_X:
428                 case BPF_S_JMP_JGT_K:
429                 case BPF_S_JMP_JGT_X:
430                 case BPF_S_JMP_JSET_X:
431                 case BPF_S_JMP_JSET_K:
432                         /* a jump must set masks on targets */
433                         masks[pc + 1 + filter[pc].jt] &= memvalid;
434                         masks[pc + 1 + filter[pc].jf] &= memvalid;
435                         memvalid = ~0;
436                         break;
437                 }
438         }
439 error:
440         kfree(masks);
441         return ret;
442 }
443
444 /**
445  *      sk_chk_filter - verify socket filter code
446  *      @filter: filter to verify
447  *      @flen: length of filter
448  *
449  * Check the user's filter code. If we let some ugly
450  * filter code slip through kaboom! The filter must contain
451  * no references or jumps that are out of range, no illegal
452  * instructions, and must end with a RET instruction.
453  *
454  * All jumps are forward as they are not signed.
455  *
456  * Returns 0 if the rule set is legal or -EINVAL if not.
457  */
458 int sk_chk_filter(struct sock_filter *filter, unsigned int flen)
459 {
460         /*
461          * Valid instructions are initialized to non-0.
462          * Invalid instructions are initialized to 0.
463          */
464         static const u8 codes[] = {
465                 [BPF_ALU|BPF_ADD|BPF_K]  = BPF_S_ALU_ADD_K,
466                 [BPF_ALU|BPF_ADD|BPF_X]  = BPF_S_ALU_ADD_X,
467                 [BPF_ALU|BPF_SUB|BPF_K]  = BPF_S_ALU_SUB_K,
468                 [BPF_ALU|BPF_SUB|BPF_X]  = BPF_S_ALU_SUB_X,
469                 [BPF_ALU|BPF_MUL|BPF_K]  = BPF_S_ALU_MUL_K,
470                 [BPF_ALU|BPF_MUL|BPF_X]  = BPF_S_ALU_MUL_X,
471                 [BPF_ALU|BPF_DIV|BPF_X]  = BPF_S_ALU_DIV_X,
472                 [BPF_ALU|BPF_AND|BPF_K]  = BPF_S_ALU_AND_K,
473                 [BPF_ALU|BPF_AND|BPF_X]  = BPF_S_ALU_AND_X,
474                 [BPF_ALU|BPF_OR|BPF_K]   = BPF_S_ALU_OR_K,
475                 [BPF_ALU|BPF_OR|BPF_X]   = BPF_S_ALU_OR_X,
476                 [BPF_ALU|BPF_LSH|BPF_K]  = BPF_S_ALU_LSH_K,
477                 [BPF_ALU|BPF_LSH|BPF_X]  = BPF_S_ALU_LSH_X,
478                 [BPF_ALU|BPF_RSH|BPF_K]  = BPF_S_ALU_RSH_K,
479                 [BPF_ALU|BPF_RSH|BPF_X]  = BPF_S_ALU_RSH_X,
480                 [BPF_ALU|BPF_NEG]        = BPF_S_ALU_NEG,
481                 [BPF_LD|BPF_W|BPF_ABS]   = BPF_S_LD_W_ABS,
482                 [BPF_LD|BPF_H|BPF_ABS]   = BPF_S_LD_H_ABS,
483                 [BPF_LD|BPF_B|BPF_ABS]   = BPF_S_LD_B_ABS,
484                 [BPF_LD|BPF_W|BPF_LEN]   = BPF_S_LD_W_LEN,
485                 [BPF_LD|BPF_W|BPF_IND]   = BPF_S_LD_W_IND,
486                 [BPF_LD|BPF_H|BPF_IND]   = BPF_S_LD_H_IND,
487                 [BPF_LD|BPF_B|BPF_IND]   = BPF_S_LD_B_IND,
488                 [BPF_LD|BPF_IMM]         = BPF_S_LD_IMM,
489                 [BPF_LDX|BPF_W|BPF_LEN]  = BPF_S_LDX_W_LEN,
490                 [BPF_LDX|BPF_B|BPF_MSH]  = BPF_S_LDX_B_MSH,
491                 [BPF_LDX|BPF_IMM]        = BPF_S_LDX_IMM,
492                 [BPF_MISC|BPF_TAX]       = BPF_S_MISC_TAX,
493                 [BPF_MISC|BPF_TXA]       = BPF_S_MISC_TXA,
494                 [BPF_RET|BPF_K]          = BPF_S_RET_K,
495                 [BPF_RET|BPF_A]          = BPF_S_RET_A,
496                 [BPF_ALU|BPF_DIV|BPF_K]  = BPF_S_ALU_DIV_K,
497                 [BPF_LD|BPF_MEM]         = BPF_S_LD_MEM,
498                 [BPF_LDX|BPF_MEM]        = BPF_S_LDX_MEM,
499                 [BPF_ST]                 = BPF_S_ST,
500                 [BPF_STX]                = BPF_S_STX,
501                 [BPF_JMP|BPF_JA]         = BPF_S_JMP_JA,
502                 [BPF_JMP|BPF_JEQ|BPF_K]  = BPF_S_JMP_JEQ_K,
503                 [BPF_JMP|BPF_JEQ|BPF_X]  = BPF_S_JMP_JEQ_X,
504                 [BPF_JMP|BPF_JGE|BPF_K]  = BPF_S_JMP_JGE_K,
505                 [BPF_JMP|BPF_JGE|BPF_X]  = BPF_S_JMP_JGE_X,
506                 [BPF_JMP|BPF_JGT|BPF_K]  = BPF_S_JMP_JGT_K,
507                 [BPF_JMP|BPF_JGT|BPF_X]  = BPF_S_JMP_JGT_X,
508                 [BPF_JMP|BPF_JSET|BPF_K] = BPF_S_JMP_JSET_K,
509                 [BPF_JMP|BPF_JSET|BPF_X] = BPF_S_JMP_JSET_X,
510         };
511         int pc;
512
513         if (flen == 0 || flen > BPF_MAXINSNS)
514                 return -EINVAL;
515
516         /* check the filter code now */
517         for (pc = 0; pc < flen; pc++) {
518                 struct sock_filter *ftest = &filter[pc];
519                 u16 code = ftest->code;
520
521                 if (code >= ARRAY_SIZE(codes))
522                         return -EINVAL;
523                 code = codes[code];
524                 if (!code)
525                         return -EINVAL;
526                 /* Some instructions need special checks */
527                 switch (code) {
528                 case BPF_S_ALU_DIV_K:
529                         /* check for division by zero */
530                         if (ftest->k == 0)
531                                 return -EINVAL;
532                         ftest->k = reciprocal_value(ftest->k);
533                         break;
534                 case BPF_S_LD_MEM:
535                 case BPF_S_LDX_MEM:
536                 case BPF_S_ST:
537                 case BPF_S_STX:
538                         /* check for invalid memory addresses */
539                         if (ftest->k >= BPF_MEMWORDS)
540                                 return -EINVAL;
541                         break;
542                 case BPF_S_JMP_JA:
543                         /*
544                          * Note, the large ftest->k might cause loops.
545                          * Compare this with conditional jumps below,
546                          * where offsets are limited. --ANK (981016)
547                          */
548                         if (ftest->k >= (unsigned int)(flen-pc-1))
549                                 return -EINVAL;
550                         break;
551                 case BPF_S_JMP_JEQ_K:
552                 case BPF_S_JMP_JEQ_X:
553                 case BPF_S_JMP_JGE_K:
554                 case BPF_S_JMP_JGE_X:
555                 case BPF_S_JMP_JGT_K:
556                 case BPF_S_JMP_JGT_X:
557                 case BPF_S_JMP_JSET_X:
558                 case BPF_S_JMP_JSET_K:
559                         /* for conditionals both must be safe */
560                         if (pc + ftest->jt + 1 >= flen ||
561                             pc + ftest->jf + 1 >= flen)
562                                 return -EINVAL;
563                         break;
564                 case BPF_S_LD_W_ABS:
565                 case BPF_S_LD_H_ABS:
566                 case BPF_S_LD_B_ABS:
567 #define ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE:        \
568                                 code = BPF_S_ANC_##CODE;        \
569                                 break
570                         switch (ftest->k) {
571                         ANCILLARY(PROTOCOL);
572                         ANCILLARY(PKTTYPE);
573                         ANCILLARY(IFINDEX);
574                         ANCILLARY(NLATTR);
575                         ANCILLARY(NLATTR_NEST);
576                         ANCILLARY(MARK);
577                         ANCILLARY(QUEUE);
578                         ANCILLARY(HATYPE);
579                         ANCILLARY(RXHASH);
580                         ANCILLARY(CPU);
581                         ANCILLARY(ALU_XOR_X);
582                         }
583                 }
584                 ftest->code = code;
585         }
586
587         /* last instruction must be a RET code */
588         switch (filter[flen - 1].code) {
589         case BPF_S_RET_K:
590         case BPF_S_RET_A:
591                 return check_load_and_stores(filter, flen);
592         }
593         return -EINVAL;
594 }
595 EXPORT_SYMBOL(sk_chk_filter);
596
597 /**
598  *      sk_filter_release_rcu - Release a socket filter by rcu_head
599  *      @rcu: rcu_head that contains the sk_filter to free
600  */
601 void sk_filter_release_rcu(struct rcu_head *rcu)
602 {
603         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
604
605         bpf_jit_free(fp);
606         kfree(fp);
607 }
608 EXPORT_SYMBOL(sk_filter_release_rcu);
609
610 static int __sk_prepare_filter(struct sk_filter *fp)
611 {
612         int err;
613
614         fp->bpf_func = sk_run_filter;
615
616         err = sk_chk_filter(fp->insns, fp->len);
617         if (err)
618                 return err;
619
620         bpf_jit_compile(fp);
621         return 0;
622 }
623
624 /**
625  *      sk_unattached_filter_create - create an unattached filter
626  *      @fprog: the filter program
627  *      @pfp: the unattached filter that is created
628  *
629  * Create a filter independent of any socket. We first run some
630  * sanity checks on it to make sure it does not explode on us later.
631  * If an error occurs or there is insufficient memory for the filter
632  * a negative errno code is returned. On success the return is zero.
633  */
634 int sk_unattached_filter_create(struct sk_filter **pfp,
635                                 struct sock_fprog *fprog)
636 {
637         struct sk_filter *fp;
638         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
639         int err;
640
641         /* Make sure new filter is there and in the right amounts. */
642         if (fprog->filter == NULL)
643                 return -EINVAL;
644
645         fp = kmalloc(fsize + sizeof(*fp), GFP_KERNEL);
646         if (!fp)
647                 return -ENOMEM;
648         memcpy(fp->insns, fprog->filter, fsize);
649
650         atomic_set(&fp->refcnt, 1);
651         fp->len = fprog->len;
652
653         err = __sk_prepare_filter(fp);
654         if (err)
655                 goto free_mem;
656
657         *pfp = fp;
658         return 0;
659 free_mem:
660         kfree(fp);
661         return err;
662 }
663 EXPORT_SYMBOL_GPL(sk_unattached_filter_create);
664
665 void sk_unattached_filter_destroy(struct sk_filter *fp)
666 {
667         sk_filter_release(fp);
668 }
669 EXPORT_SYMBOL_GPL(sk_unattached_filter_destroy);
670
671 /**
672  *      sk_attach_filter - attach a socket filter
673  *      @fprog: the filter program
674  *      @sk: the socket to use
675  *
676  * Attach the user's filter code. We first run some sanity checks on
677  * it to make sure it does not explode on us later. If an error
678  * occurs or there is insufficient memory for the filter a negative
679  * errno code is returned. On success the return is zero.
680  */
681 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
682 {
683         struct sk_filter *fp, *old_fp;
684         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
685         int err;
686
687         /* Make sure new filter is there and in the right amounts. */
688         if (fprog->filter == NULL)
689                 return -EINVAL;
690
691         fp = sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL);
692         if (!fp)
693                 return -ENOMEM;
694         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
695                 sock_kfree_s(sk, fp, fsize+sizeof(*fp));
696                 return -EFAULT;
697         }
698
699         atomic_set(&fp->refcnt, 1);
700         fp->len = fprog->len;
701
702         err = __sk_prepare_filter(fp);
703         if (err) {
704                 sk_filter_uncharge(sk, fp);
705                 return err;
706         }
707
708         old_fp = rcu_dereference_protected(sk->sk_filter,
709                                            sock_owned_by_user(sk));
710         rcu_assign_pointer(sk->sk_filter, fp);
711
712         if (old_fp)
713                 sk_filter_uncharge(sk, old_fp);
714         return 0;
715 }
716 EXPORT_SYMBOL_GPL(sk_attach_filter);
717
718 int sk_detach_filter(struct sock *sk)
719 {
720         int ret = -ENOENT;
721         struct sk_filter *filter;
722
723         filter = rcu_dereference_protected(sk->sk_filter,
724                                            sock_owned_by_user(sk));
725         if (filter) {
726                 RCU_INIT_POINTER(sk->sk_filter, NULL);
727                 sk_filter_uncharge(sk, filter);
728                 ret = 0;
729         }
730         return ret;
731 }
732 EXPORT_SYMBOL_GPL(sk_detach_filter);