net: ipmr: fix setsockopt error return
[cascardo/linux.git] / net / ipv4 / ipmr.c
1 /*
2  *      IP multicast routing support for mrouted 3.6/3.8
3  *
4  *              (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *        Linux Consultancy and Custom Driver Development
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  *
12  *      Fixes:
13  *      Michael Chastain        :       Incorrect size of copying.
14  *      Alan Cox                :       Added the cache manager code
15  *      Alan Cox                :       Fixed the clone/copy bug and device race.
16  *      Mike McLagan            :       Routing by source
17  *      Malcolm Beattie         :       Buffer handling fixes.
18  *      Alexey Kuznetsov        :       Double buffer free and other fixes.
19  *      SVR Anand               :       Fixed several multicast bugs and problems.
20  *      Alexey Kuznetsov        :       Status, optimisations and more.
21  *      Brad Parker             :       Better behaviour on mrouted upcall
22  *                                      overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *      Pavlin Ivanov Radoslavov:       PIMv2 Registers must checksum only PIM header
25  *                                      Relax this requirement to work with older peers.
26  *
27  */
28
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69
70 struct ipmr_rule {
71         struct fib_rule         common;
72 };
73
74 struct ipmr_result {
75         struct mr_table         *mrt;
76 };
77
78 /* Big lock, protecting vif table, mrt cache and mroute socket state.
79  * Note that the changes are semaphored via rtnl_lock.
80  */
81
82 static DEFINE_RWLOCK(mrt_lock);
83
84 /* Multicast router control variables */
85
86 /* Special spinlock for queue of unresolved entries */
87 static DEFINE_SPINLOCK(mfc_unres_lock);
88
89 /* We return to original Alan's scheme. Hash table of resolved
90  * entries is changed only in process context and protected
91  * with weak lock mrt_lock. Queue of unresolved entries is protected
92  * with strong spinlock mfc_unres_lock.
93  *
94  * In this case data path is free of exclusive locks at all.
95  */
96
97 static struct kmem_cache *mrt_cachep __read_mostly;
98
99 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
100 static void ipmr_free_table(struct mr_table *mrt);
101
102 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
103                           struct sk_buff *skb, struct mfc_cache *cache,
104                           int local);
105 static int ipmr_cache_report(struct mr_table *mrt,
106                              struct sk_buff *pkt, vifi_t vifi, int assert);
107 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
108                               struct mfc_cache *c, struct rtmsg *rtm);
109 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
110                                  int cmd);
111 static void mroute_clean_tables(struct mr_table *mrt);
112 static void ipmr_expire_process(unsigned long arg);
113
114 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
115 #define ipmr_for_each_table(mrt, net) \
116         list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
117
118 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
119 {
120         struct mr_table *mrt;
121
122         ipmr_for_each_table(mrt, net) {
123                 if (mrt->id == id)
124                         return mrt;
125         }
126         return NULL;
127 }
128
129 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
130                            struct mr_table **mrt)
131 {
132         int err;
133         struct ipmr_result res;
134         struct fib_lookup_arg arg = {
135                 .result = &res,
136                 .flags = FIB_LOOKUP_NOREF,
137         };
138
139         err = fib_rules_lookup(net->ipv4.mr_rules_ops,
140                                flowi4_to_flowi(flp4), 0, &arg);
141         if (err < 0)
142                 return err;
143         *mrt = res.mrt;
144         return 0;
145 }
146
147 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
148                             int flags, struct fib_lookup_arg *arg)
149 {
150         struct ipmr_result *res = arg->result;
151         struct mr_table *mrt;
152
153         switch (rule->action) {
154         case FR_ACT_TO_TBL:
155                 break;
156         case FR_ACT_UNREACHABLE:
157                 return -ENETUNREACH;
158         case FR_ACT_PROHIBIT:
159                 return -EACCES;
160         case FR_ACT_BLACKHOLE:
161         default:
162                 return -EINVAL;
163         }
164
165         mrt = ipmr_get_table(rule->fr_net, rule->table);
166         if (!mrt)
167                 return -EAGAIN;
168         res->mrt = mrt;
169         return 0;
170 }
171
172 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
173 {
174         return 1;
175 }
176
177 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
178         FRA_GENERIC_POLICY,
179 };
180
181 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
182                                struct fib_rule_hdr *frh, struct nlattr **tb)
183 {
184         return 0;
185 }
186
187 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
188                              struct nlattr **tb)
189 {
190         return 1;
191 }
192
193 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
194                           struct fib_rule_hdr *frh)
195 {
196         frh->dst_len = 0;
197         frh->src_len = 0;
198         frh->tos     = 0;
199         return 0;
200 }
201
202 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
203         .family         = RTNL_FAMILY_IPMR,
204         .rule_size      = sizeof(struct ipmr_rule),
205         .addr_size      = sizeof(u32),
206         .action         = ipmr_rule_action,
207         .match          = ipmr_rule_match,
208         .configure      = ipmr_rule_configure,
209         .compare        = ipmr_rule_compare,
210         .fill           = ipmr_rule_fill,
211         .nlgroup        = RTNLGRP_IPV4_RULE,
212         .policy         = ipmr_rule_policy,
213         .owner          = THIS_MODULE,
214 };
215
216 static int __net_init ipmr_rules_init(struct net *net)
217 {
218         struct fib_rules_ops *ops;
219         struct mr_table *mrt;
220         int err;
221
222         ops = fib_rules_register(&ipmr_rules_ops_template, net);
223         if (IS_ERR(ops))
224                 return PTR_ERR(ops);
225
226         INIT_LIST_HEAD(&net->ipv4.mr_tables);
227
228         mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
229         if (IS_ERR(mrt)) {
230                 err = PTR_ERR(mrt);
231                 goto err1;
232         }
233
234         err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
235         if (err < 0)
236                 goto err2;
237
238         net->ipv4.mr_rules_ops = ops;
239         return 0;
240
241 err2:
242         ipmr_free_table(mrt);
243 err1:
244         fib_rules_unregister(ops);
245         return err;
246 }
247
248 static void __net_exit ipmr_rules_exit(struct net *net)
249 {
250         struct mr_table *mrt, *next;
251
252         rtnl_lock();
253         list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
254                 list_del(&mrt->list);
255                 ipmr_free_table(mrt);
256         }
257         fib_rules_unregister(net->ipv4.mr_rules_ops);
258         rtnl_unlock();
259 }
260 #else
261 #define ipmr_for_each_table(mrt, net) \
262         for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
263
264 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
265 {
266         return net->ipv4.mrt;
267 }
268
269 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
270                            struct mr_table **mrt)
271 {
272         *mrt = net->ipv4.mrt;
273         return 0;
274 }
275
276 static int __net_init ipmr_rules_init(struct net *net)
277 {
278         struct mr_table *mrt;
279
280         mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
281         if (IS_ERR(mrt))
282                 return PTR_ERR(mrt);
283         net->ipv4.mrt = mrt;
284         return 0;
285 }
286
287 static void __net_exit ipmr_rules_exit(struct net *net)
288 {
289         rtnl_lock();
290         ipmr_free_table(net->ipv4.mrt);
291         net->ipv4.mrt = NULL;
292         rtnl_unlock();
293 }
294 #endif
295
296 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
297 {
298         struct mr_table *mrt;
299         unsigned int i;
300
301         /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
302         if (id != RT_TABLE_DEFAULT && id >= 1000000000)
303                 return ERR_PTR(-EINVAL);
304
305         mrt = ipmr_get_table(net, id);
306         if (mrt)
307                 return mrt;
308
309         mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
310         if (!mrt)
311                 return ERR_PTR(-ENOMEM);
312         write_pnet(&mrt->net, net);
313         mrt->id = id;
314
315         /* Forwarding cache */
316         for (i = 0; i < MFC_LINES; i++)
317                 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
318
319         INIT_LIST_HEAD(&mrt->mfc_unres_queue);
320
321         setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
322                     (unsigned long)mrt);
323
324         mrt->mroute_reg_vif_num = -1;
325 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
326         list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
327 #endif
328         return mrt;
329 }
330
331 static void ipmr_free_table(struct mr_table *mrt)
332 {
333         del_timer_sync(&mrt->ipmr_expire_timer);
334         mroute_clean_tables(mrt);
335         kfree(mrt);
336 }
337
338 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
339
340 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
341 {
342         struct net *net = dev_net(dev);
343
344         dev_close(dev);
345
346         dev = __dev_get_by_name(net, "tunl0");
347         if (dev) {
348                 const struct net_device_ops *ops = dev->netdev_ops;
349                 struct ifreq ifr;
350                 struct ip_tunnel_parm p;
351
352                 memset(&p, 0, sizeof(p));
353                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
354                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
355                 p.iph.version = 4;
356                 p.iph.ihl = 5;
357                 p.iph.protocol = IPPROTO_IPIP;
358                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
359                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
360
361                 if (ops->ndo_do_ioctl) {
362                         mm_segment_t oldfs = get_fs();
363
364                         set_fs(KERNEL_DS);
365                         ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
366                         set_fs(oldfs);
367                 }
368         }
369 }
370
371 /* Initialize ipmr pimreg/tunnel in_device */
372 static bool ipmr_init_vif_indev(const struct net_device *dev)
373 {
374         struct in_device *in_dev;
375
376         ASSERT_RTNL();
377
378         in_dev = __in_dev_get_rtnl(dev);
379         if (!in_dev)
380                 return false;
381         ipv4_devconf_setall(in_dev);
382         neigh_parms_data_state_setall(in_dev->arp_parms);
383         IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
384
385         return true;
386 }
387
388 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
389 {
390         struct net_device  *dev;
391
392         dev = __dev_get_by_name(net, "tunl0");
393
394         if (dev) {
395                 const struct net_device_ops *ops = dev->netdev_ops;
396                 int err;
397                 struct ifreq ifr;
398                 struct ip_tunnel_parm p;
399
400                 memset(&p, 0, sizeof(p));
401                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
402                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
403                 p.iph.version = 4;
404                 p.iph.ihl = 5;
405                 p.iph.protocol = IPPROTO_IPIP;
406                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
407                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
408
409                 if (ops->ndo_do_ioctl) {
410                         mm_segment_t oldfs = get_fs();
411
412                         set_fs(KERNEL_DS);
413                         err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
414                         set_fs(oldfs);
415                 } else {
416                         err = -EOPNOTSUPP;
417                 }
418                 dev = NULL;
419
420                 if (err == 0 &&
421                     (dev = __dev_get_by_name(net, p.name)) != NULL) {
422                         dev->flags |= IFF_MULTICAST;
423                         if (!ipmr_init_vif_indev(dev))
424                                 goto failure;
425                         if (dev_open(dev))
426                                 goto failure;
427                         dev_hold(dev);
428                 }
429         }
430         return dev;
431
432 failure:
433         /* allow the register to be completed before unregistering. */
434         rtnl_unlock();
435         rtnl_lock();
436
437         unregister_netdevice(dev);
438         return NULL;
439 }
440
441 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
442 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
443 {
444         struct net *net = dev_net(dev);
445         struct mr_table *mrt;
446         struct flowi4 fl4 = {
447                 .flowi4_oif     = dev->ifindex,
448                 .flowi4_iif     = skb->skb_iif ? : LOOPBACK_IFINDEX,
449                 .flowi4_mark    = skb->mark,
450         };
451         int err;
452
453         err = ipmr_fib_lookup(net, &fl4, &mrt);
454         if (err < 0) {
455                 kfree_skb(skb);
456                 return err;
457         }
458
459         read_lock(&mrt_lock);
460         dev->stats.tx_bytes += skb->len;
461         dev->stats.tx_packets++;
462         ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
463         read_unlock(&mrt_lock);
464         kfree_skb(skb);
465         return NETDEV_TX_OK;
466 }
467
468 static int reg_vif_get_iflink(const struct net_device *dev)
469 {
470         return 0;
471 }
472
473 static const struct net_device_ops reg_vif_netdev_ops = {
474         .ndo_start_xmit = reg_vif_xmit,
475         .ndo_get_iflink = reg_vif_get_iflink,
476 };
477
478 static void reg_vif_setup(struct net_device *dev)
479 {
480         dev->type               = ARPHRD_PIMREG;
481         dev->mtu                = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
482         dev->flags              = IFF_NOARP;
483         dev->netdev_ops         = &reg_vif_netdev_ops;
484         dev->destructor         = free_netdev;
485         dev->features           |= NETIF_F_NETNS_LOCAL;
486 }
487
488 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
489 {
490         struct net_device *dev;
491         char name[IFNAMSIZ];
492
493         if (mrt->id == RT_TABLE_DEFAULT)
494                 sprintf(name, "pimreg");
495         else
496                 sprintf(name, "pimreg%u", mrt->id);
497
498         dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
499
500         if (!dev)
501                 return NULL;
502
503         dev_net_set(dev, net);
504
505         if (register_netdevice(dev)) {
506                 free_netdev(dev);
507                 return NULL;
508         }
509
510         if (!ipmr_init_vif_indev(dev))
511                 goto failure;
512         if (dev_open(dev))
513                 goto failure;
514
515         dev_hold(dev);
516
517         return dev;
518
519 failure:
520         /* allow the register to be completed before unregistering. */
521         rtnl_unlock();
522         rtnl_lock();
523
524         unregister_netdevice(dev);
525         return NULL;
526 }
527
528 /* called with rcu_read_lock() */
529 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
530                      unsigned int pimlen)
531 {
532         struct net_device *reg_dev = NULL;
533         struct iphdr *encap;
534
535         encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
536         /* Check that:
537          * a. packet is really sent to a multicast group
538          * b. packet is not a NULL-REGISTER
539          * c. packet is not truncated
540          */
541         if (!ipv4_is_multicast(encap->daddr) ||
542             encap->tot_len == 0 ||
543             ntohs(encap->tot_len) + pimlen > skb->len)
544                 return 1;
545
546         read_lock(&mrt_lock);
547         if (mrt->mroute_reg_vif_num >= 0)
548                 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
549         read_unlock(&mrt_lock);
550
551         if (!reg_dev)
552                 return 1;
553
554         skb->mac_header = skb->network_header;
555         skb_pull(skb, (u8 *)encap - skb->data);
556         skb_reset_network_header(skb);
557         skb->protocol = htons(ETH_P_IP);
558         skb->ip_summed = CHECKSUM_NONE;
559
560         skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
561
562         netif_rx(skb);
563
564         return NET_RX_SUCCESS;
565 }
566 #else
567 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
568 {
569         return NULL;
570 }
571 #endif
572
573 /**
574  *      vif_delete - Delete a VIF entry
575  *      @notify: Set to 1, if the caller is a notifier_call
576  */
577 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
578                       struct list_head *head)
579 {
580         struct vif_device *v;
581         struct net_device *dev;
582         struct in_device *in_dev;
583
584         if (vifi < 0 || vifi >= mrt->maxvif)
585                 return -EADDRNOTAVAIL;
586
587         v = &mrt->vif_table[vifi];
588
589         write_lock_bh(&mrt_lock);
590         dev = v->dev;
591         v->dev = NULL;
592
593         if (!dev) {
594                 write_unlock_bh(&mrt_lock);
595                 return -EADDRNOTAVAIL;
596         }
597
598         if (vifi == mrt->mroute_reg_vif_num)
599                 mrt->mroute_reg_vif_num = -1;
600
601         if (vifi + 1 == mrt->maxvif) {
602                 int tmp;
603
604                 for (tmp = vifi - 1; tmp >= 0; tmp--) {
605                         if (VIF_EXISTS(mrt, tmp))
606                                 break;
607                 }
608                 mrt->maxvif = tmp+1;
609         }
610
611         write_unlock_bh(&mrt_lock);
612
613         dev_set_allmulti(dev, -1);
614
615         in_dev = __in_dev_get_rtnl(dev);
616         if (in_dev) {
617                 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
618                 inet_netconf_notify_devconf(dev_net(dev),
619                                             NETCONFA_MC_FORWARDING,
620                                             dev->ifindex, &in_dev->cnf);
621                 ip_rt_multicast_event(in_dev);
622         }
623
624         if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
625                 unregister_netdevice_queue(dev, head);
626
627         dev_put(dev);
628         return 0;
629 }
630
631 static void ipmr_cache_free_rcu(struct rcu_head *head)
632 {
633         struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
634
635         kmem_cache_free(mrt_cachep, c);
636 }
637
638 static inline void ipmr_cache_free(struct mfc_cache *c)
639 {
640         call_rcu(&c->rcu, ipmr_cache_free_rcu);
641 }
642
643 /* Destroy an unresolved cache entry, killing queued skbs
644  * and reporting error to netlink readers.
645  */
646 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
647 {
648         struct net *net = read_pnet(&mrt->net);
649         struct sk_buff *skb;
650         struct nlmsgerr *e;
651
652         atomic_dec(&mrt->cache_resolve_queue_len);
653
654         while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
655                 if (ip_hdr(skb)->version == 0) {
656                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
657                         nlh->nlmsg_type = NLMSG_ERROR;
658                         nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
659                         skb_trim(skb, nlh->nlmsg_len);
660                         e = nlmsg_data(nlh);
661                         e->error = -ETIMEDOUT;
662                         memset(&e->msg, 0, sizeof(e->msg));
663
664                         rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
665                 } else {
666                         kfree_skb(skb);
667                 }
668         }
669
670         ipmr_cache_free(c);
671 }
672
673 /* Timer process for the unresolved queue. */
674 static void ipmr_expire_process(unsigned long arg)
675 {
676         struct mr_table *mrt = (struct mr_table *)arg;
677         unsigned long now;
678         unsigned long expires;
679         struct mfc_cache *c, *next;
680
681         if (!spin_trylock(&mfc_unres_lock)) {
682                 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
683                 return;
684         }
685
686         if (list_empty(&mrt->mfc_unres_queue))
687                 goto out;
688
689         now = jiffies;
690         expires = 10*HZ;
691
692         list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
693                 if (time_after(c->mfc_un.unres.expires, now)) {
694                         unsigned long interval = c->mfc_un.unres.expires - now;
695                         if (interval < expires)
696                                 expires = interval;
697                         continue;
698                 }
699
700                 list_del(&c->list);
701                 mroute_netlink_event(mrt, c, RTM_DELROUTE);
702                 ipmr_destroy_unres(mrt, c);
703         }
704
705         if (!list_empty(&mrt->mfc_unres_queue))
706                 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
707
708 out:
709         spin_unlock(&mfc_unres_lock);
710 }
711
712 /* Fill oifs list. It is called under write locked mrt_lock. */
713 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
714                                    unsigned char *ttls)
715 {
716         int vifi;
717
718         cache->mfc_un.res.minvif = MAXVIFS;
719         cache->mfc_un.res.maxvif = 0;
720         memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
721
722         for (vifi = 0; vifi < mrt->maxvif; vifi++) {
723                 if (VIF_EXISTS(mrt, vifi) &&
724                     ttls[vifi] && ttls[vifi] < 255) {
725                         cache->mfc_un.res.ttls[vifi] = ttls[vifi];
726                         if (cache->mfc_un.res.minvif > vifi)
727                                 cache->mfc_un.res.minvif = vifi;
728                         if (cache->mfc_un.res.maxvif <= vifi)
729                                 cache->mfc_un.res.maxvif = vifi + 1;
730                 }
731         }
732 }
733
734 static int vif_add(struct net *net, struct mr_table *mrt,
735                    struct vifctl *vifc, int mrtsock)
736 {
737         int vifi = vifc->vifc_vifi;
738         struct vif_device *v = &mrt->vif_table[vifi];
739         struct net_device *dev;
740         struct in_device *in_dev;
741         int err;
742
743         /* Is vif busy ? */
744         if (VIF_EXISTS(mrt, vifi))
745                 return -EADDRINUSE;
746
747         switch (vifc->vifc_flags) {
748         case VIFF_REGISTER:
749                 if (!ipmr_pimsm_enabled())
750                         return -EINVAL;
751                 /* Special Purpose VIF in PIM
752                  * All the packets will be sent to the daemon
753                  */
754                 if (mrt->mroute_reg_vif_num >= 0)
755                         return -EADDRINUSE;
756                 dev = ipmr_reg_vif(net, mrt);
757                 if (!dev)
758                         return -ENOBUFS;
759                 err = dev_set_allmulti(dev, 1);
760                 if (err) {
761                         unregister_netdevice(dev);
762                         dev_put(dev);
763                         return err;
764                 }
765                 break;
766         case VIFF_TUNNEL:
767                 dev = ipmr_new_tunnel(net, vifc);
768                 if (!dev)
769                         return -ENOBUFS;
770                 err = dev_set_allmulti(dev, 1);
771                 if (err) {
772                         ipmr_del_tunnel(dev, vifc);
773                         dev_put(dev);
774                         return err;
775                 }
776                 break;
777         case VIFF_USE_IFINDEX:
778         case 0:
779                 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
780                         dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
781                         if (dev && !__in_dev_get_rtnl(dev)) {
782                                 dev_put(dev);
783                                 return -EADDRNOTAVAIL;
784                         }
785                 } else {
786                         dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
787                 }
788                 if (!dev)
789                         return -EADDRNOTAVAIL;
790                 err = dev_set_allmulti(dev, 1);
791                 if (err) {
792                         dev_put(dev);
793                         return err;
794                 }
795                 break;
796         default:
797                 return -EINVAL;
798         }
799
800         in_dev = __in_dev_get_rtnl(dev);
801         if (!in_dev) {
802                 dev_put(dev);
803                 return -EADDRNOTAVAIL;
804         }
805         IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
806         inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
807                                     &in_dev->cnf);
808         ip_rt_multicast_event(in_dev);
809
810         /* Fill in the VIF structures */
811
812         v->rate_limit = vifc->vifc_rate_limit;
813         v->local = vifc->vifc_lcl_addr.s_addr;
814         v->remote = vifc->vifc_rmt_addr.s_addr;
815         v->flags = vifc->vifc_flags;
816         if (!mrtsock)
817                 v->flags |= VIFF_STATIC;
818         v->threshold = vifc->vifc_threshold;
819         v->bytes_in = 0;
820         v->bytes_out = 0;
821         v->pkt_in = 0;
822         v->pkt_out = 0;
823         v->link = dev->ifindex;
824         if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
825                 v->link = dev_get_iflink(dev);
826
827         /* And finish update writing critical data */
828         write_lock_bh(&mrt_lock);
829         v->dev = dev;
830         if (v->flags & VIFF_REGISTER)
831                 mrt->mroute_reg_vif_num = vifi;
832         if (vifi+1 > mrt->maxvif)
833                 mrt->maxvif = vifi+1;
834         write_unlock_bh(&mrt_lock);
835         return 0;
836 }
837
838 /* called with rcu_read_lock() */
839 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
840                                          __be32 origin,
841                                          __be32 mcastgrp)
842 {
843         int line = MFC_HASH(mcastgrp, origin);
844         struct mfc_cache *c;
845
846         list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
847                 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
848                         return c;
849         }
850         return NULL;
851 }
852
853 /* Look for a (*,*,oif) entry */
854 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
855                                                     int vifi)
856 {
857         int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
858         struct mfc_cache *c;
859
860         list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
861                 if (c->mfc_origin == htonl(INADDR_ANY) &&
862                     c->mfc_mcastgrp == htonl(INADDR_ANY) &&
863                     c->mfc_un.res.ttls[vifi] < 255)
864                         return c;
865
866         return NULL;
867 }
868
869 /* Look for a (*,G) entry */
870 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
871                                              __be32 mcastgrp, int vifi)
872 {
873         int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
874         struct mfc_cache *c, *proxy;
875
876         if (mcastgrp == htonl(INADDR_ANY))
877                 goto skip;
878
879         list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
880                 if (c->mfc_origin == htonl(INADDR_ANY) &&
881                     c->mfc_mcastgrp == mcastgrp) {
882                         if (c->mfc_un.res.ttls[vifi] < 255)
883                                 return c;
884
885                         /* It's ok if the vifi is part of the static tree */
886                         proxy = ipmr_cache_find_any_parent(mrt,
887                                                            c->mfc_parent);
888                         if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
889                                 return c;
890                 }
891
892 skip:
893         return ipmr_cache_find_any_parent(mrt, vifi);
894 }
895
896 /* Allocate a multicast cache entry */
897 static struct mfc_cache *ipmr_cache_alloc(void)
898 {
899         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
900
901         if (c)
902                 c->mfc_un.res.minvif = MAXVIFS;
903         return c;
904 }
905
906 static struct mfc_cache *ipmr_cache_alloc_unres(void)
907 {
908         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
909
910         if (c) {
911                 skb_queue_head_init(&c->mfc_un.unres.unresolved);
912                 c->mfc_un.unres.expires = jiffies + 10*HZ;
913         }
914         return c;
915 }
916
917 /* A cache entry has gone into a resolved state from queued */
918 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
919                                struct mfc_cache *uc, struct mfc_cache *c)
920 {
921         struct sk_buff *skb;
922         struct nlmsgerr *e;
923
924         /* Play the pending entries through our router */
925         while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
926                 if (ip_hdr(skb)->version == 0) {
927                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
928
929                         if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
930                                 nlh->nlmsg_len = skb_tail_pointer(skb) -
931                                                  (u8 *)nlh;
932                         } else {
933                                 nlh->nlmsg_type = NLMSG_ERROR;
934                                 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
935                                 skb_trim(skb, nlh->nlmsg_len);
936                                 e = nlmsg_data(nlh);
937                                 e->error = -EMSGSIZE;
938                                 memset(&e->msg, 0, sizeof(e->msg));
939                         }
940
941                         rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
942                 } else {
943                         ip_mr_forward(net, mrt, skb, c, 0);
944                 }
945         }
946 }
947
948 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
949  * expects the following bizarre scheme.
950  *
951  * Called under mrt_lock.
952  */
953 static int ipmr_cache_report(struct mr_table *mrt,
954                              struct sk_buff *pkt, vifi_t vifi, int assert)
955 {
956         const int ihl = ip_hdrlen(pkt);
957         struct sock *mroute_sk;
958         struct igmphdr *igmp;
959         struct igmpmsg *msg;
960         struct sk_buff *skb;
961         int ret;
962
963         if (assert == IGMPMSG_WHOLEPKT)
964                 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
965         else
966                 skb = alloc_skb(128, GFP_ATOMIC);
967
968         if (!skb)
969                 return -ENOBUFS;
970
971         if (assert == IGMPMSG_WHOLEPKT) {
972                 /* Ugly, but we have no choice with this interface.
973                  * Duplicate old header, fix ihl, length etc.
974                  * And all this only to mangle msg->im_msgtype and
975                  * to set msg->im_mbz to "mbz" :-)
976                  */
977                 skb_push(skb, sizeof(struct iphdr));
978                 skb_reset_network_header(skb);
979                 skb_reset_transport_header(skb);
980                 msg = (struct igmpmsg *)skb_network_header(skb);
981                 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
982                 msg->im_msgtype = IGMPMSG_WHOLEPKT;
983                 msg->im_mbz = 0;
984                 msg->im_vif = mrt->mroute_reg_vif_num;
985                 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
986                 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
987                                              sizeof(struct iphdr));
988         } else {
989                 /* Copy the IP header */
990                 skb_set_network_header(skb, skb->len);
991                 skb_put(skb, ihl);
992                 skb_copy_to_linear_data(skb, pkt->data, ihl);
993                 /* Flag to the kernel this is a route add */
994                 ip_hdr(skb)->protocol = 0;
995                 msg = (struct igmpmsg *)skb_network_header(skb);
996                 msg->im_vif = vifi;
997                 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
998                 /* Add our header */
999                 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
1000                 igmp->type = assert;
1001                 msg->im_msgtype = assert;
1002                 igmp->code = 0;
1003                 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1004                 skb->transport_header = skb->network_header;
1005         }
1006
1007         rcu_read_lock();
1008         mroute_sk = rcu_dereference(mrt->mroute_sk);
1009         if (!mroute_sk) {
1010                 rcu_read_unlock();
1011                 kfree_skb(skb);
1012                 return -EINVAL;
1013         }
1014
1015         /* Deliver to mrouted */
1016         ret = sock_queue_rcv_skb(mroute_sk, skb);
1017         rcu_read_unlock();
1018         if (ret < 0) {
1019                 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1020                 kfree_skb(skb);
1021         }
1022
1023         return ret;
1024 }
1025
1026 /* Queue a packet for resolution. It gets locked cache entry! */
1027 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1028                                  struct sk_buff *skb)
1029 {
1030         bool found = false;
1031         int err;
1032         struct mfc_cache *c;
1033         const struct iphdr *iph = ip_hdr(skb);
1034
1035         spin_lock_bh(&mfc_unres_lock);
1036         list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1037                 if (c->mfc_mcastgrp == iph->daddr &&
1038                     c->mfc_origin == iph->saddr) {
1039                         found = true;
1040                         break;
1041                 }
1042         }
1043
1044         if (!found) {
1045                 /* Create a new entry if allowable */
1046                 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1047                     (c = ipmr_cache_alloc_unres()) == NULL) {
1048                         spin_unlock_bh(&mfc_unres_lock);
1049
1050                         kfree_skb(skb);
1051                         return -ENOBUFS;
1052                 }
1053
1054                 /* Fill in the new cache entry */
1055                 c->mfc_parent   = -1;
1056                 c->mfc_origin   = iph->saddr;
1057                 c->mfc_mcastgrp = iph->daddr;
1058
1059                 /* Reflect first query at mrouted. */
1060                 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1061                 if (err < 0) {
1062                         /* If the report failed throw the cache entry
1063                            out - Brad Parker
1064                          */
1065                         spin_unlock_bh(&mfc_unres_lock);
1066
1067                         ipmr_cache_free(c);
1068                         kfree_skb(skb);
1069                         return err;
1070                 }
1071
1072                 atomic_inc(&mrt->cache_resolve_queue_len);
1073                 list_add(&c->list, &mrt->mfc_unres_queue);
1074                 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1075
1076                 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1077                         mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1078         }
1079
1080         /* See if we can append the packet */
1081         if (c->mfc_un.unres.unresolved.qlen > 3) {
1082                 kfree_skb(skb);
1083                 err = -ENOBUFS;
1084         } else {
1085                 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1086                 err = 0;
1087         }
1088
1089         spin_unlock_bh(&mfc_unres_lock);
1090         return err;
1091 }
1092
1093 /* MFC cache manipulation by user space mroute daemon */
1094
1095 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1096 {
1097         int line;
1098         struct mfc_cache *c, *next;
1099
1100         line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1101
1102         list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1103                 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1104                     c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1105                     (parent == -1 || parent == c->mfc_parent)) {
1106                         list_del_rcu(&c->list);
1107                         mroute_netlink_event(mrt, c, RTM_DELROUTE);
1108                         ipmr_cache_free(c);
1109                         return 0;
1110                 }
1111         }
1112         return -ENOENT;
1113 }
1114
1115 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1116                         struct mfcctl *mfc, int mrtsock, int parent)
1117 {
1118         bool found = false;
1119         int line;
1120         struct mfc_cache *uc, *c;
1121
1122         if (mfc->mfcc_parent >= MAXVIFS)
1123                 return -ENFILE;
1124
1125         line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1126
1127         list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1128                 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1129                     c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1130                     (parent == -1 || parent == c->mfc_parent)) {
1131                         found = true;
1132                         break;
1133                 }
1134         }
1135
1136         if (found) {
1137                 write_lock_bh(&mrt_lock);
1138                 c->mfc_parent = mfc->mfcc_parent;
1139                 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1140                 if (!mrtsock)
1141                         c->mfc_flags |= MFC_STATIC;
1142                 write_unlock_bh(&mrt_lock);
1143                 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1144                 return 0;
1145         }
1146
1147         if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1148             !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1149                 return -EINVAL;
1150
1151         c = ipmr_cache_alloc();
1152         if (!c)
1153                 return -ENOMEM;
1154
1155         c->mfc_origin = mfc->mfcc_origin.s_addr;
1156         c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1157         c->mfc_parent = mfc->mfcc_parent;
1158         ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1159         if (!mrtsock)
1160                 c->mfc_flags |= MFC_STATIC;
1161
1162         list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1163
1164         /* Check to see if we resolved a queued list. If so we
1165          * need to send on the frames and tidy up.
1166          */
1167         found = false;
1168         spin_lock_bh(&mfc_unres_lock);
1169         list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1170                 if (uc->mfc_origin == c->mfc_origin &&
1171                     uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1172                         list_del(&uc->list);
1173                         atomic_dec(&mrt->cache_resolve_queue_len);
1174                         found = true;
1175                         break;
1176                 }
1177         }
1178         if (list_empty(&mrt->mfc_unres_queue))
1179                 del_timer(&mrt->ipmr_expire_timer);
1180         spin_unlock_bh(&mfc_unres_lock);
1181
1182         if (found) {
1183                 ipmr_cache_resolve(net, mrt, uc, c);
1184                 ipmr_cache_free(uc);
1185         }
1186         mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1187         return 0;
1188 }
1189
1190 /* Close the multicast socket, and clear the vif tables etc */
1191 static void mroute_clean_tables(struct mr_table *mrt)
1192 {
1193         int i;
1194         LIST_HEAD(list);
1195         struct mfc_cache *c, *next;
1196
1197         /* Shut down all active vif entries */
1198         for (i = 0; i < mrt->maxvif; i++) {
1199                 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1200                         vif_delete(mrt, i, 0, &list);
1201         }
1202         unregister_netdevice_many(&list);
1203
1204         /* Wipe the cache */
1205         for (i = 0; i < MFC_LINES; i++) {
1206                 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1207                         if (c->mfc_flags & MFC_STATIC)
1208                                 continue;
1209                         list_del_rcu(&c->list);
1210                         mroute_netlink_event(mrt, c, RTM_DELROUTE);
1211                         ipmr_cache_free(c);
1212                 }
1213         }
1214
1215         if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1216                 spin_lock_bh(&mfc_unres_lock);
1217                 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1218                         list_del(&c->list);
1219                         mroute_netlink_event(mrt, c, RTM_DELROUTE);
1220                         ipmr_destroy_unres(mrt, c);
1221                 }
1222                 spin_unlock_bh(&mfc_unres_lock);
1223         }
1224 }
1225
1226 /* called from ip_ra_control(), before an RCU grace period,
1227  * we dont need to call synchronize_rcu() here
1228  */
1229 static void mrtsock_destruct(struct sock *sk)
1230 {
1231         struct net *net = sock_net(sk);
1232         struct mr_table *mrt;
1233
1234         rtnl_lock();
1235         ipmr_for_each_table(mrt, net) {
1236                 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1237                         IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1238                         inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1239                                                     NETCONFA_IFINDEX_ALL,
1240                                                     net->ipv4.devconf_all);
1241                         RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1242                         mroute_clean_tables(mrt);
1243                 }
1244         }
1245         rtnl_unlock();
1246 }
1247
1248 /* Socket options and virtual interface manipulation. The whole
1249  * virtual interface system is a complete heap, but unfortunately
1250  * that's how BSD mrouted happens to think. Maybe one day with a proper
1251  * MOSPF/PIM router set up we can clean this up.
1252  */
1253
1254 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1255                          unsigned int optlen)
1256 {
1257         struct net *net = sock_net(sk);
1258         int val, ret = 0, parent = 0;
1259         struct mr_table *mrt;
1260         struct vifctl vif;
1261         struct mfcctl mfc;
1262         u32 uval;
1263
1264         /* There's one exception to the lock - MRT_DONE which needs to unlock */
1265         rtnl_lock();
1266         if (sk->sk_type != SOCK_RAW ||
1267             inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1268                 ret = -EOPNOTSUPP;
1269                 goto out_unlock;
1270         }
1271
1272         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1273         if (!mrt) {
1274                 ret = -ENOENT;
1275                 goto out_unlock;
1276         }
1277         if (optname != MRT_INIT) {
1278                 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1279                     !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1280                         ret = -EACCES;
1281                         goto out_unlock;
1282                 }
1283         }
1284
1285         switch (optname) {
1286         case MRT_INIT:
1287                 if (optlen != sizeof(int)) {
1288                         ret = -EINVAL;
1289                         break;
1290                 }
1291                 if (rtnl_dereference(mrt->mroute_sk)) {
1292                         ret = -EADDRINUSE;
1293                         break;
1294                 }
1295
1296                 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1297                 if (ret == 0) {
1298                         rcu_assign_pointer(mrt->mroute_sk, sk);
1299                         IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1300                         inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1301                                                     NETCONFA_IFINDEX_ALL,
1302                                                     net->ipv4.devconf_all);
1303                 }
1304                 break;
1305         case MRT_DONE:
1306                 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1307                         ret = -EACCES;
1308                 } else {
1309                         /* We need to unlock here because mrtsock_destruct takes
1310                          * care of rtnl itself and we can't change that due to
1311                          * the IP_ROUTER_ALERT setsockopt which runs without it.
1312                          */
1313                         rtnl_unlock();
1314                         ret = ip_ra_control(sk, 0, NULL);
1315                         goto out;
1316                 }
1317                 break;
1318         case MRT_ADD_VIF:
1319         case MRT_DEL_VIF:
1320                 if (optlen != sizeof(vif)) {
1321                         ret = -EINVAL;
1322                         break;
1323                 }
1324                 if (copy_from_user(&vif, optval, sizeof(vif))) {
1325                         ret = -EFAULT;
1326                         break;
1327                 }
1328                 if (vif.vifc_vifi >= MAXVIFS) {
1329                         ret = -ENFILE;
1330                         break;
1331                 }
1332                 if (optname == MRT_ADD_VIF) {
1333                         ret = vif_add(net, mrt, &vif,
1334                                       sk == rtnl_dereference(mrt->mroute_sk));
1335                 } else {
1336                         ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1337                 }
1338                 break;
1339         /* Manipulate the forwarding caches. These live
1340          * in a sort of kernel/user symbiosis.
1341          */
1342         case MRT_ADD_MFC:
1343         case MRT_DEL_MFC:
1344                 parent = -1;
1345         case MRT_ADD_MFC_PROXY:
1346         case MRT_DEL_MFC_PROXY:
1347                 if (optlen != sizeof(mfc)) {
1348                         ret = -EINVAL;
1349                         break;
1350                 }
1351                 if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1352                         ret = -EFAULT;
1353                         break;
1354                 }
1355                 if (parent == 0)
1356                         parent = mfc.mfcc_parent;
1357                 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1358                         ret = ipmr_mfc_delete(mrt, &mfc, parent);
1359                 else
1360                         ret = ipmr_mfc_add(net, mrt, &mfc,
1361                                            sk == rtnl_dereference(mrt->mroute_sk),
1362                                            parent);
1363                 break;
1364         /* Control PIM assert. */
1365         case MRT_ASSERT:
1366                 if (optlen != sizeof(val)) {
1367                         ret = -EINVAL;
1368                         break;
1369                 }
1370                 if (get_user(val, (int __user *)optval)) {
1371                         ret = -EFAULT;
1372                         break;
1373                 }
1374                 mrt->mroute_do_assert = val;
1375                 break;
1376         case MRT_PIM:
1377                 if (!ipmr_pimsm_enabled()) {
1378                         ret = -ENOPROTOOPT;
1379                         break;
1380                 }
1381                 if (optlen != sizeof(val)) {
1382                         ret = -EINVAL;
1383                         break;
1384                 }
1385                 if (get_user(val, (int __user *)optval)) {
1386                         ret = -EFAULT;
1387                         break;
1388                 }
1389
1390                 val = !!val;
1391                 if (val != mrt->mroute_do_pim) {
1392                         mrt->mroute_do_pim = val;
1393                         mrt->mroute_do_assert = val;
1394                 }
1395                 break;
1396         case MRT_TABLE:
1397                 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1398                         ret = -ENOPROTOOPT;
1399                         break;
1400                 }
1401                 if (optlen != sizeof(uval)) {
1402                         ret = -EINVAL;
1403                         break;
1404                 }
1405                 if (get_user(uval, (u32 __user *)optval)) {
1406                         ret = -EFAULT;
1407                         break;
1408                 }
1409
1410                 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1411                         ret = -EBUSY;
1412                 } else {
1413                         mrt = ipmr_new_table(net, uval);
1414                         if (IS_ERR(mrt))
1415                                 ret = PTR_ERR(mrt);
1416                         else
1417                                 raw_sk(sk)->ipmr_table = uval;
1418                 }
1419                 break;
1420         /* Spurious command, or MRT_VERSION which you cannot set. */
1421         default:
1422                 ret = -ENOPROTOOPT;
1423         }
1424 out_unlock:
1425         rtnl_unlock();
1426 out:
1427         return ret;
1428 }
1429
1430 /* Getsock opt support for the multicast routing system. */
1431 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1432 {
1433         int olr;
1434         int val;
1435         struct net *net = sock_net(sk);
1436         struct mr_table *mrt;
1437
1438         if (sk->sk_type != SOCK_RAW ||
1439             inet_sk(sk)->inet_num != IPPROTO_IGMP)
1440                 return -EOPNOTSUPP;
1441
1442         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1443         if (!mrt)
1444                 return -ENOENT;
1445
1446         switch (optname) {
1447         case MRT_VERSION:
1448                 val = 0x0305;
1449                 break;
1450         case MRT_PIM:
1451                 if (!ipmr_pimsm_enabled())
1452                         return -ENOPROTOOPT;
1453                 val = mrt->mroute_do_pim;
1454                 break;
1455         case MRT_ASSERT:
1456                 val = mrt->mroute_do_assert;
1457                 break;
1458         default:
1459                 return -ENOPROTOOPT;
1460         }
1461
1462         if (get_user(olr, optlen))
1463                 return -EFAULT;
1464         olr = min_t(unsigned int, olr, sizeof(int));
1465         if (olr < 0)
1466                 return -EINVAL;
1467         if (put_user(olr, optlen))
1468                 return -EFAULT;
1469         if (copy_to_user(optval, &val, olr))
1470                 return -EFAULT;
1471         return 0;
1472 }
1473
1474 /* The IP multicast ioctl support routines. */
1475 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1476 {
1477         struct sioc_sg_req sr;
1478         struct sioc_vif_req vr;
1479         struct vif_device *vif;
1480         struct mfc_cache *c;
1481         struct net *net = sock_net(sk);
1482         struct mr_table *mrt;
1483
1484         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1485         if (!mrt)
1486                 return -ENOENT;
1487
1488         switch (cmd) {
1489         case SIOCGETVIFCNT:
1490                 if (copy_from_user(&vr, arg, sizeof(vr)))
1491                         return -EFAULT;
1492                 if (vr.vifi >= mrt->maxvif)
1493                         return -EINVAL;
1494                 read_lock(&mrt_lock);
1495                 vif = &mrt->vif_table[vr.vifi];
1496                 if (VIF_EXISTS(mrt, vr.vifi)) {
1497                         vr.icount = vif->pkt_in;
1498                         vr.ocount = vif->pkt_out;
1499                         vr.ibytes = vif->bytes_in;
1500                         vr.obytes = vif->bytes_out;
1501                         read_unlock(&mrt_lock);
1502
1503                         if (copy_to_user(arg, &vr, sizeof(vr)))
1504                                 return -EFAULT;
1505                         return 0;
1506                 }
1507                 read_unlock(&mrt_lock);
1508                 return -EADDRNOTAVAIL;
1509         case SIOCGETSGCNT:
1510                 if (copy_from_user(&sr, arg, sizeof(sr)))
1511                         return -EFAULT;
1512
1513                 rcu_read_lock();
1514                 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1515                 if (c) {
1516                         sr.pktcnt = c->mfc_un.res.pkt;
1517                         sr.bytecnt = c->mfc_un.res.bytes;
1518                         sr.wrong_if = c->mfc_un.res.wrong_if;
1519                         rcu_read_unlock();
1520
1521                         if (copy_to_user(arg, &sr, sizeof(sr)))
1522                                 return -EFAULT;
1523                         return 0;
1524                 }
1525                 rcu_read_unlock();
1526                 return -EADDRNOTAVAIL;
1527         default:
1528                 return -ENOIOCTLCMD;
1529         }
1530 }
1531
1532 #ifdef CONFIG_COMPAT
1533 struct compat_sioc_sg_req {
1534         struct in_addr src;
1535         struct in_addr grp;
1536         compat_ulong_t pktcnt;
1537         compat_ulong_t bytecnt;
1538         compat_ulong_t wrong_if;
1539 };
1540
1541 struct compat_sioc_vif_req {
1542         vifi_t  vifi;           /* Which iface */
1543         compat_ulong_t icount;
1544         compat_ulong_t ocount;
1545         compat_ulong_t ibytes;
1546         compat_ulong_t obytes;
1547 };
1548
1549 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1550 {
1551         struct compat_sioc_sg_req sr;
1552         struct compat_sioc_vif_req vr;
1553         struct vif_device *vif;
1554         struct mfc_cache *c;
1555         struct net *net = sock_net(sk);
1556         struct mr_table *mrt;
1557
1558         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1559         if (!mrt)
1560                 return -ENOENT;
1561
1562         switch (cmd) {
1563         case SIOCGETVIFCNT:
1564                 if (copy_from_user(&vr, arg, sizeof(vr)))
1565                         return -EFAULT;
1566                 if (vr.vifi >= mrt->maxvif)
1567                         return -EINVAL;
1568                 read_lock(&mrt_lock);
1569                 vif = &mrt->vif_table[vr.vifi];
1570                 if (VIF_EXISTS(mrt, vr.vifi)) {
1571                         vr.icount = vif->pkt_in;
1572                         vr.ocount = vif->pkt_out;
1573                         vr.ibytes = vif->bytes_in;
1574                         vr.obytes = vif->bytes_out;
1575                         read_unlock(&mrt_lock);
1576
1577                         if (copy_to_user(arg, &vr, sizeof(vr)))
1578                                 return -EFAULT;
1579                         return 0;
1580                 }
1581                 read_unlock(&mrt_lock);
1582                 return -EADDRNOTAVAIL;
1583         case SIOCGETSGCNT:
1584                 if (copy_from_user(&sr, arg, sizeof(sr)))
1585                         return -EFAULT;
1586
1587                 rcu_read_lock();
1588                 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1589                 if (c) {
1590                         sr.pktcnt = c->mfc_un.res.pkt;
1591                         sr.bytecnt = c->mfc_un.res.bytes;
1592                         sr.wrong_if = c->mfc_un.res.wrong_if;
1593                         rcu_read_unlock();
1594
1595                         if (copy_to_user(arg, &sr, sizeof(sr)))
1596                                 return -EFAULT;
1597                         return 0;
1598                 }
1599                 rcu_read_unlock();
1600                 return -EADDRNOTAVAIL;
1601         default:
1602                 return -ENOIOCTLCMD;
1603         }
1604 }
1605 #endif
1606
1607 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1608 {
1609         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1610         struct net *net = dev_net(dev);
1611         struct mr_table *mrt;
1612         struct vif_device *v;
1613         int ct;
1614
1615         if (event != NETDEV_UNREGISTER)
1616                 return NOTIFY_DONE;
1617
1618         ipmr_for_each_table(mrt, net) {
1619                 v = &mrt->vif_table[0];
1620                 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1621                         if (v->dev == dev)
1622                                 vif_delete(mrt, ct, 1, NULL);
1623                 }
1624         }
1625         return NOTIFY_DONE;
1626 }
1627
1628 static struct notifier_block ip_mr_notifier = {
1629         .notifier_call = ipmr_device_event,
1630 };
1631
1632 /* Encapsulate a packet by attaching a valid IPIP header to it.
1633  * This avoids tunnel drivers and other mess and gives us the speed so
1634  * important for multicast video.
1635  */
1636 static void ip_encap(struct net *net, struct sk_buff *skb,
1637                      __be32 saddr, __be32 daddr)
1638 {
1639         struct iphdr *iph;
1640         const struct iphdr *old_iph = ip_hdr(skb);
1641
1642         skb_push(skb, sizeof(struct iphdr));
1643         skb->transport_header = skb->network_header;
1644         skb_reset_network_header(skb);
1645         iph = ip_hdr(skb);
1646
1647         iph->version    =       4;
1648         iph->tos        =       old_iph->tos;
1649         iph->ttl        =       old_iph->ttl;
1650         iph->frag_off   =       0;
1651         iph->daddr      =       daddr;
1652         iph->saddr      =       saddr;
1653         iph->protocol   =       IPPROTO_IPIP;
1654         iph->ihl        =       5;
1655         iph->tot_len    =       htons(skb->len);
1656         ip_select_ident(net, skb, NULL);
1657         ip_send_check(iph);
1658
1659         memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1660         nf_reset(skb);
1661 }
1662
1663 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1664                                       struct sk_buff *skb)
1665 {
1666         struct ip_options *opt = &(IPCB(skb)->opt);
1667
1668         IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1669         IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1670
1671         if (unlikely(opt->optlen))
1672                 ip_forward_options(skb);
1673
1674         return dst_output(net, sk, skb);
1675 }
1676
1677 /* Processing handlers for ipmr_forward */
1678
1679 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1680                             struct sk_buff *skb, struct mfc_cache *c, int vifi)
1681 {
1682         const struct iphdr *iph = ip_hdr(skb);
1683         struct vif_device *vif = &mrt->vif_table[vifi];
1684         struct net_device *dev;
1685         struct rtable *rt;
1686         struct flowi4 fl4;
1687         int    encap = 0;
1688
1689         if (!vif->dev)
1690                 goto out_free;
1691
1692         if (vif->flags & VIFF_REGISTER) {
1693                 vif->pkt_out++;
1694                 vif->bytes_out += skb->len;
1695                 vif->dev->stats.tx_bytes += skb->len;
1696                 vif->dev->stats.tx_packets++;
1697                 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1698                 goto out_free;
1699         }
1700
1701         if (vif->flags & VIFF_TUNNEL) {
1702                 rt = ip_route_output_ports(net, &fl4, NULL,
1703                                            vif->remote, vif->local,
1704                                            0, 0,
1705                                            IPPROTO_IPIP,
1706                                            RT_TOS(iph->tos), vif->link);
1707                 if (IS_ERR(rt))
1708                         goto out_free;
1709                 encap = sizeof(struct iphdr);
1710         } else {
1711                 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1712                                            0, 0,
1713                                            IPPROTO_IPIP,
1714                                            RT_TOS(iph->tos), vif->link);
1715                 if (IS_ERR(rt))
1716                         goto out_free;
1717         }
1718
1719         dev = rt->dst.dev;
1720
1721         if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1722                 /* Do not fragment multicasts. Alas, IPv4 does not
1723                  * allow to send ICMP, so that packets will disappear
1724                  * to blackhole.
1725                  */
1726                 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1727                 ip_rt_put(rt);
1728                 goto out_free;
1729         }
1730
1731         encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1732
1733         if (skb_cow(skb, encap)) {
1734                 ip_rt_put(rt);
1735                 goto out_free;
1736         }
1737
1738         vif->pkt_out++;
1739         vif->bytes_out += skb->len;
1740
1741         skb_dst_drop(skb);
1742         skb_dst_set(skb, &rt->dst);
1743         ip_decrease_ttl(ip_hdr(skb));
1744
1745         /* FIXME: forward and output firewalls used to be called here.
1746          * What do we do with netfilter? -- RR
1747          */
1748         if (vif->flags & VIFF_TUNNEL) {
1749                 ip_encap(net, skb, vif->local, vif->remote);
1750                 /* FIXME: extra output firewall step used to be here. --RR */
1751                 vif->dev->stats.tx_packets++;
1752                 vif->dev->stats.tx_bytes += skb->len;
1753         }
1754
1755         IPCB(skb)->flags |= IPSKB_FORWARDED;
1756
1757         /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1758          * not only before forwarding, but after forwarding on all output
1759          * interfaces. It is clear, if mrouter runs a multicasting
1760          * program, it should receive packets not depending to what interface
1761          * program is joined.
1762          * If we will not make it, the program will have to join on all
1763          * interfaces. On the other hand, multihoming host (or router, but
1764          * not mrouter) cannot join to more than one interface - it will
1765          * result in receiving multiple packets.
1766          */
1767         NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1768                 net, NULL, skb, skb->dev, dev,
1769                 ipmr_forward_finish);
1770         return;
1771
1772 out_free:
1773         kfree_skb(skb);
1774 }
1775
1776 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1777 {
1778         int ct;
1779
1780         for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1781                 if (mrt->vif_table[ct].dev == dev)
1782                         break;
1783         }
1784         return ct;
1785 }
1786
1787 /* "local" means that we should preserve one skb (for local delivery) */
1788 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1789                           struct sk_buff *skb, struct mfc_cache *cache,
1790                           int local)
1791 {
1792         int psend = -1;
1793         int vif, ct;
1794         int true_vifi = ipmr_find_vif(mrt, skb->dev);
1795
1796         vif = cache->mfc_parent;
1797         cache->mfc_un.res.pkt++;
1798         cache->mfc_un.res.bytes += skb->len;
1799
1800         if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1801                 struct mfc_cache *cache_proxy;
1802
1803                 /* For an (*,G) entry, we only check that the incomming
1804                  * interface is part of the static tree.
1805                  */
1806                 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1807                 if (cache_proxy &&
1808                     cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1809                         goto forward;
1810         }
1811
1812         /* Wrong interface: drop packet and (maybe) send PIM assert. */
1813         if (mrt->vif_table[vif].dev != skb->dev) {
1814                 if (rt_is_output_route(skb_rtable(skb))) {
1815                         /* It is our own packet, looped back.
1816                          * Very complicated situation...
1817                          *
1818                          * The best workaround until routing daemons will be
1819                          * fixed is not to redistribute packet, if it was
1820                          * send through wrong interface. It means, that
1821                          * multicast applications WILL NOT work for
1822                          * (S,G), which have default multicast route pointing
1823                          * to wrong oif. In any case, it is not a good
1824                          * idea to use multicasting applications on router.
1825                          */
1826                         goto dont_forward;
1827                 }
1828
1829                 cache->mfc_un.res.wrong_if++;
1830
1831                 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1832                     /* pimsm uses asserts, when switching from RPT to SPT,
1833                      * so that we cannot check that packet arrived on an oif.
1834                      * It is bad, but otherwise we would need to move pretty
1835                      * large chunk of pimd to kernel. Ough... --ANK
1836                      */
1837                     (mrt->mroute_do_pim ||
1838                      cache->mfc_un.res.ttls[true_vifi] < 255) &&
1839                     time_after(jiffies,
1840                                cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1841                         cache->mfc_un.res.last_assert = jiffies;
1842                         ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1843                 }
1844                 goto dont_forward;
1845         }
1846
1847 forward:
1848         mrt->vif_table[vif].pkt_in++;
1849         mrt->vif_table[vif].bytes_in += skb->len;
1850
1851         /* Forward the frame */
1852         if (cache->mfc_origin == htonl(INADDR_ANY) &&
1853             cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1854                 if (true_vifi >= 0 &&
1855                     true_vifi != cache->mfc_parent &&
1856                     ip_hdr(skb)->ttl >
1857                                 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1858                         /* It's an (*,*) entry and the packet is not coming from
1859                          * the upstream: forward the packet to the upstream
1860                          * only.
1861                          */
1862                         psend = cache->mfc_parent;
1863                         goto last_forward;
1864                 }
1865                 goto dont_forward;
1866         }
1867         for (ct = cache->mfc_un.res.maxvif - 1;
1868              ct >= cache->mfc_un.res.minvif; ct--) {
1869                 /* For (*,G) entry, don't forward to the incoming interface */
1870                 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1871                      ct != true_vifi) &&
1872                     ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1873                         if (psend != -1) {
1874                                 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1875
1876                                 if (skb2)
1877                                         ipmr_queue_xmit(net, mrt, skb2, cache,
1878                                                         psend);
1879                         }
1880                         psend = ct;
1881                 }
1882         }
1883 last_forward:
1884         if (psend != -1) {
1885                 if (local) {
1886                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1887
1888                         if (skb2)
1889                                 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1890                 } else {
1891                         ipmr_queue_xmit(net, mrt, skb, cache, psend);
1892                         return;
1893                 }
1894         }
1895
1896 dont_forward:
1897         if (!local)
1898                 kfree_skb(skb);
1899 }
1900
1901 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1902 {
1903         struct rtable *rt = skb_rtable(skb);
1904         struct iphdr *iph = ip_hdr(skb);
1905         struct flowi4 fl4 = {
1906                 .daddr = iph->daddr,
1907                 .saddr = iph->saddr,
1908                 .flowi4_tos = RT_TOS(iph->tos),
1909                 .flowi4_oif = (rt_is_output_route(rt) ?
1910                                skb->dev->ifindex : 0),
1911                 .flowi4_iif = (rt_is_output_route(rt) ?
1912                                LOOPBACK_IFINDEX :
1913                                skb->dev->ifindex),
1914                 .flowi4_mark = skb->mark,
1915         };
1916         struct mr_table *mrt;
1917         int err;
1918
1919         err = ipmr_fib_lookup(net, &fl4, &mrt);
1920         if (err)
1921                 return ERR_PTR(err);
1922         return mrt;
1923 }
1924
1925 /* Multicast packets for forwarding arrive here
1926  * Called with rcu_read_lock();
1927  */
1928 int ip_mr_input(struct sk_buff *skb)
1929 {
1930         struct mfc_cache *cache;
1931         struct net *net = dev_net(skb->dev);
1932         int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1933         struct mr_table *mrt;
1934
1935         /* Packet is looped back after forward, it should not be
1936          * forwarded second time, but still can be delivered locally.
1937          */
1938         if (IPCB(skb)->flags & IPSKB_FORWARDED)
1939                 goto dont_forward;
1940
1941         mrt = ipmr_rt_fib_lookup(net, skb);
1942         if (IS_ERR(mrt)) {
1943                 kfree_skb(skb);
1944                 return PTR_ERR(mrt);
1945         }
1946         if (!local) {
1947                 if (IPCB(skb)->opt.router_alert) {
1948                         if (ip_call_ra_chain(skb))
1949                                 return 0;
1950                 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1951                         /* IGMPv1 (and broken IGMPv2 implementations sort of
1952                          * Cisco IOS <= 11.2(8)) do not put router alert
1953                          * option to IGMP packets destined to routable
1954                          * groups. It is very bad, because it means
1955                          * that we can forward NO IGMP messages.
1956                          */
1957                         struct sock *mroute_sk;
1958
1959                         mroute_sk = rcu_dereference(mrt->mroute_sk);
1960                         if (mroute_sk) {
1961                                 nf_reset(skb);
1962                                 raw_rcv(mroute_sk, skb);
1963                                 return 0;
1964                         }
1965                     }
1966         }
1967
1968         /* already under rcu_read_lock() */
1969         cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1970         if (!cache) {
1971                 int vif = ipmr_find_vif(mrt, skb->dev);
1972
1973                 if (vif >= 0)
1974                         cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1975                                                     vif);
1976         }
1977
1978         /* No usable cache entry */
1979         if (!cache) {
1980                 int vif;
1981
1982                 if (local) {
1983                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1984                         ip_local_deliver(skb);
1985                         if (!skb2)
1986                                 return -ENOBUFS;
1987                         skb = skb2;
1988                 }
1989
1990                 read_lock(&mrt_lock);
1991                 vif = ipmr_find_vif(mrt, skb->dev);
1992                 if (vif >= 0) {
1993                         int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1994                         read_unlock(&mrt_lock);
1995
1996                         return err2;
1997                 }
1998                 read_unlock(&mrt_lock);
1999                 kfree_skb(skb);
2000                 return -ENODEV;
2001         }
2002
2003         read_lock(&mrt_lock);
2004         ip_mr_forward(net, mrt, skb, cache, local);
2005         read_unlock(&mrt_lock);
2006
2007         if (local)
2008                 return ip_local_deliver(skb);
2009
2010         return 0;
2011
2012 dont_forward:
2013         if (local)
2014                 return ip_local_deliver(skb);
2015         kfree_skb(skb);
2016         return 0;
2017 }
2018
2019 #ifdef CONFIG_IP_PIMSM_V1
2020 /* Handle IGMP messages of PIMv1 */
2021 int pim_rcv_v1(struct sk_buff *skb)
2022 {
2023         struct igmphdr *pim;
2024         struct net *net = dev_net(skb->dev);
2025         struct mr_table *mrt;
2026
2027         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2028                 goto drop;
2029
2030         pim = igmp_hdr(skb);
2031
2032         mrt = ipmr_rt_fib_lookup(net, skb);
2033         if (IS_ERR(mrt))
2034                 goto drop;
2035         if (!mrt->mroute_do_pim ||
2036             pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2037                 goto drop;
2038
2039         if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2040 drop:
2041                 kfree_skb(skb);
2042         }
2043         return 0;
2044 }
2045 #endif
2046
2047 #ifdef CONFIG_IP_PIMSM_V2
2048 static int pim_rcv(struct sk_buff *skb)
2049 {
2050         struct pimreghdr *pim;
2051         struct net *net = dev_net(skb->dev);
2052         struct mr_table *mrt;
2053
2054         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2055                 goto drop;
2056
2057         pim = (struct pimreghdr *)skb_transport_header(skb);
2058         if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2059             (pim->flags & PIM_NULL_REGISTER) ||
2060             (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2061              csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2062                 goto drop;
2063
2064         mrt = ipmr_rt_fib_lookup(net, skb);
2065         if (IS_ERR(mrt))
2066                 goto drop;
2067         if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2068 drop:
2069                 kfree_skb(skb);
2070         }
2071         return 0;
2072 }
2073 #endif
2074
2075 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2076                               struct mfc_cache *c, struct rtmsg *rtm)
2077 {
2078         int ct;
2079         struct rtnexthop *nhp;
2080         struct nlattr *mp_attr;
2081         struct rta_mfc_stats mfcs;
2082
2083         /* If cache is unresolved, don't try to parse IIF and OIF */
2084         if (c->mfc_parent >= MAXVIFS)
2085                 return -ENOENT;
2086
2087         if (VIF_EXISTS(mrt, c->mfc_parent) &&
2088             nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2089                 return -EMSGSIZE;
2090
2091         if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2092                 return -EMSGSIZE;
2093
2094         for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2095                 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2096                         if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2097                                 nla_nest_cancel(skb, mp_attr);
2098                                 return -EMSGSIZE;
2099                         }
2100
2101                         nhp->rtnh_flags = 0;
2102                         nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2103                         nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2104                         nhp->rtnh_len = sizeof(*nhp);
2105                 }
2106         }
2107
2108         nla_nest_end(skb, mp_attr);
2109
2110         mfcs.mfcs_packets = c->mfc_un.res.pkt;
2111         mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2112         mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2113         if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2114                 return -EMSGSIZE;
2115
2116         rtm->rtm_type = RTN_MULTICAST;
2117         return 1;
2118 }
2119
2120 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2121                    __be32 saddr, __be32 daddr,
2122                    struct rtmsg *rtm, int nowait)
2123 {
2124         struct mfc_cache *cache;
2125         struct mr_table *mrt;
2126         int err;
2127
2128         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2129         if (!mrt)
2130                 return -ENOENT;
2131
2132         rcu_read_lock();
2133         cache = ipmr_cache_find(mrt, saddr, daddr);
2134         if (!cache && skb->dev) {
2135                 int vif = ipmr_find_vif(mrt, skb->dev);
2136
2137                 if (vif >= 0)
2138                         cache = ipmr_cache_find_any(mrt, daddr, vif);
2139         }
2140         if (!cache) {
2141                 struct sk_buff *skb2;
2142                 struct iphdr *iph;
2143                 struct net_device *dev;
2144                 int vif = -1;
2145
2146                 if (nowait) {
2147                         rcu_read_unlock();
2148                         return -EAGAIN;
2149                 }
2150
2151                 dev = skb->dev;
2152                 read_lock(&mrt_lock);
2153                 if (dev)
2154                         vif = ipmr_find_vif(mrt, dev);
2155                 if (vif < 0) {
2156                         read_unlock(&mrt_lock);
2157                         rcu_read_unlock();
2158                         return -ENODEV;
2159                 }
2160                 skb2 = skb_clone(skb, GFP_ATOMIC);
2161                 if (!skb2) {
2162                         read_unlock(&mrt_lock);
2163                         rcu_read_unlock();
2164                         return -ENOMEM;
2165                 }
2166
2167                 skb_push(skb2, sizeof(struct iphdr));
2168                 skb_reset_network_header(skb2);
2169                 iph = ip_hdr(skb2);
2170                 iph->ihl = sizeof(struct iphdr) >> 2;
2171                 iph->saddr = saddr;
2172                 iph->daddr = daddr;
2173                 iph->version = 0;
2174                 err = ipmr_cache_unresolved(mrt, vif, skb2);
2175                 read_unlock(&mrt_lock);
2176                 rcu_read_unlock();
2177                 return err;
2178         }
2179
2180         read_lock(&mrt_lock);
2181         err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2182         read_unlock(&mrt_lock);
2183         rcu_read_unlock();
2184         return err;
2185 }
2186
2187 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2188                             u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2189                             int flags)
2190 {
2191         struct nlmsghdr *nlh;
2192         struct rtmsg *rtm;
2193         int err;
2194
2195         nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2196         if (!nlh)
2197                 return -EMSGSIZE;
2198
2199         rtm = nlmsg_data(nlh);
2200         rtm->rtm_family   = RTNL_FAMILY_IPMR;
2201         rtm->rtm_dst_len  = 32;
2202         rtm->rtm_src_len  = 32;
2203         rtm->rtm_tos      = 0;
2204         rtm->rtm_table    = mrt->id;
2205         if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2206                 goto nla_put_failure;
2207         rtm->rtm_type     = RTN_MULTICAST;
2208         rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2209         if (c->mfc_flags & MFC_STATIC)
2210                 rtm->rtm_protocol = RTPROT_STATIC;
2211         else
2212                 rtm->rtm_protocol = RTPROT_MROUTED;
2213         rtm->rtm_flags    = 0;
2214
2215         if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2216             nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2217                 goto nla_put_failure;
2218         err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2219         /* do not break the dump if cache is unresolved */
2220         if (err < 0 && err != -ENOENT)
2221                 goto nla_put_failure;
2222
2223         nlmsg_end(skb, nlh);
2224         return 0;
2225
2226 nla_put_failure:
2227         nlmsg_cancel(skb, nlh);
2228         return -EMSGSIZE;
2229 }
2230
2231 static size_t mroute_msgsize(bool unresolved, int maxvif)
2232 {
2233         size_t len =
2234                 NLMSG_ALIGN(sizeof(struct rtmsg))
2235                 + nla_total_size(4)     /* RTA_TABLE */
2236                 + nla_total_size(4)     /* RTA_SRC */
2237                 + nla_total_size(4)     /* RTA_DST */
2238                 ;
2239
2240         if (!unresolved)
2241                 len = len
2242                       + nla_total_size(4)       /* RTA_IIF */
2243                       + nla_total_size(0)       /* RTA_MULTIPATH */
2244                       + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2245                                                 /* RTA_MFC_STATS */
2246                       + nla_total_size(sizeof(struct rta_mfc_stats))
2247                 ;
2248
2249         return len;
2250 }
2251
2252 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2253                                  int cmd)
2254 {
2255         struct net *net = read_pnet(&mrt->net);
2256         struct sk_buff *skb;
2257         int err = -ENOBUFS;
2258
2259         skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2260                         GFP_ATOMIC);
2261         if (!skb)
2262                 goto errout;
2263
2264         err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2265         if (err < 0)
2266                 goto errout;
2267
2268         rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2269         return;
2270
2271 errout:
2272         kfree_skb(skb);
2273         if (err < 0)
2274                 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2275 }
2276
2277 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2278 {
2279         struct net *net = sock_net(skb->sk);
2280         struct mr_table *mrt;
2281         struct mfc_cache *mfc;
2282         unsigned int t = 0, s_t;
2283         unsigned int h = 0, s_h;
2284         unsigned int e = 0, s_e;
2285
2286         s_t = cb->args[0];
2287         s_h = cb->args[1];
2288         s_e = cb->args[2];
2289
2290         rcu_read_lock();
2291         ipmr_for_each_table(mrt, net) {
2292                 if (t < s_t)
2293                         goto next_table;
2294                 if (t > s_t)
2295                         s_h = 0;
2296                 for (h = s_h; h < MFC_LINES; h++) {
2297                         list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2298                                 if (e < s_e)
2299                                         goto next_entry;
2300                                 if (ipmr_fill_mroute(mrt, skb,
2301                                                      NETLINK_CB(cb->skb).portid,
2302                                                      cb->nlh->nlmsg_seq,
2303                                                      mfc, RTM_NEWROUTE,
2304                                                      NLM_F_MULTI) < 0)
2305                                         goto done;
2306 next_entry:
2307                                 e++;
2308                         }
2309                         e = s_e = 0;
2310                 }
2311                 spin_lock_bh(&mfc_unres_lock);
2312                 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2313                         if (e < s_e)
2314                                 goto next_entry2;
2315                         if (ipmr_fill_mroute(mrt, skb,
2316                                              NETLINK_CB(cb->skb).portid,
2317                                              cb->nlh->nlmsg_seq,
2318                                              mfc, RTM_NEWROUTE,
2319                                              NLM_F_MULTI) < 0) {
2320                                 spin_unlock_bh(&mfc_unres_lock);
2321                                 goto done;
2322                         }
2323 next_entry2:
2324                         e++;
2325                 }
2326                 spin_unlock_bh(&mfc_unres_lock);
2327                 e = s_e = 0;
2328                 s_h = 0;
2329 next_table:
2330                 t++;
2331         }
2332 done:
2333         rcu_read_unlock();
2334
2335         cb->args[2] = e;
2336         cb->args[1] = h;
2337         cb->args[0] = t;
2338
2339         return skb->len;
2340 }
2341
2342 #ifdef CONFIG_PROC_FS
2343 /* The /proc interfaces to multicast routing :
2344  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2345  */
2346 struct ipmr_vif_iter {
2347         struct seq_net_private p;
2348         struct mr_table *mrt;
2349         int ct;
2350 };
2351
2352 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2353                                            struct ipmr_vif_iter *iter,
2354                                            loff_t pos)
2355 {
2356         struct mr_table *mrt = iter->mrt;
2357
2358         for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2359                 if (!VIF_EXISTS(mrt, iter->ct))
2360                         continue;
2361                 if (pos-- == 0)
2362                         return &mrt->vif_table[iter->ct];
2363         }
2364         return NULL;
2365 }
2366
2367 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2368         __acquires(mrt_lock)
2369 {
2370         struct ipmr_vif_iter *iter = seq->private;
2371         struct net *net = seq_file_net(seq);
2372         struct mr_table *mrt;
2373
2374         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2375         if (!mrt)
2376                 return ERR_PTR(-ENOENT);
2377
2378         iter->mrt = mrt;
2379
2380         read_lock(&mrt_lock);
2381         return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2382                 : SEQ_START_TOKEN;
2383 }
2384
2385 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2386 {
2387         struct ipmr_vif_iter *iter = seq->private;
2388         struct net *net = seq_file_net(seq);
2389         struct mr_table *mrt = iter->mrt;
2390
2391         ++*pos;
2392         if (v == SEQ_START_TOKEN)
2393                 return ipmr_vif_seq_idx(net, iter, 0);
2394
2395         while (++iter->ct < mrt->maxvif) {
2396                 if (!VIF_EXISTS(mrt, iter->ct))
2397                         continue;
2398                 return &mrt->vif_table[iter->ct];
2399         }
2400         return NULL;
2401 }
2402
2403 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2404         __releases(mrt_lock)
2405 {
2406         read_unlock(&mrt_lock);
2407 }
2408
2409 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2410 {
2411         struct ipmr_vif_iter *iter = seq->private;
2412         struct mr_table *mrt = iter->mrt;
2413
2414         if (v == SEQ_START_TOKEN) {
2415                 seq_puts(seq,
2416                          "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2417         } else {
2418                 const struct vif_device *vif = v;
2419                 const char *name =  vif->dev ? vif->dev->name : "none";
2420
2421                 seq_printf(seq,
2422                            "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2423                            vif - mrt->vif_table,
2424                            name, vif->bytes_in, vif->pkt_in,
2425                            vif->bytes_out, vif->pkt_out,
2426                            vif->flags, vif->local, vif->remote);
2427         }
2428         return 0;
2429 }
2430
2431 static const struct seq_operations ipmr_vif_seq_ops = {
2432         .start = ipmr_vif_seq_start,
2433         .next  = ipmr_vif_seq_next,
2434         .stop  = ipmr_vif_seq_stop,
2435         .show  = ipmr_vif_seq_show,
2436 };
2437
2438 static int ipmr_vif_open(struct inode *inode, struct file *file)
2439 {
2440         return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2441                             sizeof(struct ipmr_vif_iter));
2442 }
2443
2444 static const struct file_operations ipmr_vif_fops = {
2445         .owner   = THIS_MODULE,
2446         .open    = ipmr_vif_open,
2447         .read    = seq_read,
2448         .llseek  = seq_lseek,
2449         .release = seq_release_net,
2450 };
2451
2452 struct ipmr_mfc_iter {
2453         struct seq_net_private p;
2454         struct mr_table *mrt;
2455         struct list_head *cache;
2456         int ct;
2457 };
2458
2459
2460 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2461                                           struct ipmr_mfc_iter *it, loff_t pos)
2462 {
2463         struct mr_table *mrt = it->mrt;
2464         struct mfc_cache *mfc;
2465
2466         rcu_read_lock();
2467         for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2468                 it->cache = &mrt->mfc_cache_array[it->ct];
2469                 list_for_each_entry_rcu(mfc, it->cache, list)
2470                         if (pos-- == 0)
2471                                 return mfc;
2472         }
2473         rcu_read_unlock();
2474
2475         spin_lock_bh(&mfc_unres_lock);
2476         it->cache = &mrt->mfc_unres_queue;
2477         list_for_each_entry(mfc, it->cache, list)
2478                 if (pos-- == 0)
2479                         return mfc;
2480         spin_unlock_bh(&mfc_unres_lock);
2481
2482         it->cache = NULL;
2483         return NULL;
2484 }
2485
2486
2487 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2488 {
2489         struct ipmr_mfc_iter *it = seq->private;
2490         struct net *net = seq_file_net(seq);
2491         struct mr_table *mrt;
2492
2493         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2494         if (!mrt)
2495                 return ERR_PTR(-ENOENT);
2496
2497         it->mrt = mrt;
2498         it->cache = NULL;
2499         it->ct = 0;
2500         return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2501                 : SEQ_START_TOKEN;
2502 }
2503
2504 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2505 {
2506         struct mfc_cache *mfc = v;
2507         struct ipmr_mfc_iter *it = seq->private;
2508         struct net *net = seq_file_net(seq);
2509         struct mr_table *mrt = it->mrt;
2510
2511         ++*pos;
2512
2513         if (v == SEQ_START_TOKEN)
2514                 return ipmr_mfc_seq_idx(net, seq->private, 0);
2515
2516         if (mfc->list.next != it->cache)
2517                 return list_entry(mfc->list.next, struct mfc_cache, list);
2518
2519         if (it->cache == &mrt->mfc_unres_queue)
2520                 goto end_of_list;
2521
2522         BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2523
2524         while (++it->ct < MFC_LINES) {
2525                 it->cache = &mrt->mfc_cache_array[it->ct];
2526                 if (list_empty(it->cache))
2527                         continue;
2528                 return list_first_entry(it->cache, struct mfc_cache, list);
2529         }
2530
2531         /* exhausted cache_array, show unresolved */
2532         rcu_read_unlock();
2533         it->cache = &mrt->mfc_unres_queue;
2534         it->ct = 0;
2535
2536         spin_lock_bh(&mfc_unres_lock);
2537         if (!list_empty(it->cache))
2538                 return list_first_entry(it->cache, struct mfc_cache, list);
2539
2540 end_of_list:
2541         spin_unlock_bh(&mfc_unres_lock);
2542         it->cache = NULL;
2543
2544         return NULL;
2545 }
2546
2547 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2548 {
2549         struct ipmr_mfc_iter *it = seq->private;
2550         struct mr_table *mrt = it->mrt;
2551
2552         if (it->cache == &mrt->mfc_unres_queue)
2553                 spin_unlock_bh(&mfc_unres_lock);
2554         else if (it->cache == &mrt->mfc_cache_array[it->ct])
2555                 rcu_read_unlock();
2556 }
2557
2558 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2559 {
2560         int n;
2561
2562         if (v == SEQ_START_TOKEN) {
2563                 seq_puts(seq,
2564                  "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2565         } else {
2566                 const struct mfc_cache *mfc = v;
2567                 const struct ipmr_mfc_iter *it = seq->private;
2568                 const struct mr_table *mrt = it->mrt;
2569
2570                 seq_printf(seq, "%08X %08X %-3hd",
2571                            (__force u32) mfc->mfc_mcastgrp,
2572                            (__force u32) mfc->mfc_origin,
2573                            mfc->mfc_parent);
2574
2575                 if (it->cache != &mrt->mfc_unres_queue) {
2576                         seq_printf(seq, " %8lu %8lu %8lu",
2577                                    mfc->mfc_un.res.pkt,
2578                                    mfc->mfc_un.res.bytes,
2579                                    mfc->mfc_un.res.wrong_if);
2580                         for (n = mfc->mfc_un.res.minvif;
2581                              n < mfc->mfc_un.res.maxvif; n++) {
2582                                 if (VIF_EXISTS(mrt, n) &&
2583                                     mfc->mfc_un.res.ttls[n] < 255)
2584                                         seq_printf(seq,
2585                                            " %2d:%-3d",
2586                                            n, mfc->mfc_un.res.ttls[n]);
2587                         }
2588                 } else {
2589                         /* unresolved mfc_caches don't contain
2590                          * pkt, bytes and wrong_if values
2591                          */
2592                         seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2593                 }
2594                 seq_putc(seq, '\n');
2595         }
2596         return 0;
2597 }
2598
2599 static const struct seq_operations ipmr_mfc_seq_ops = {
2600         .start = ipmr_mfc_seq_start,
2601         .next  = ipmr_mfc_seq_next,
2602         .stop  = ipmr_mfc_seq_stop,
2603         .show  = ipmr_mfc_seq_show,
2604 };
2605
2606 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2607 {
2608         return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2609                             sizeof(struct ipmr_mfc_iter));
2610 }
2611
2612 static const struct file_operations ipmr_mfc_fops = {
2613         .owner   = THIS_MODULE,
2614         .open    = ipmr_mfc_open,
2615         .read    = seq_read,
2616         .llseek  = seq_lseek,
2617         .release = seq_release_net,
2618 };
2619 #endif
2620
2621 #ifdef CONFIG_IP_PIMSM_V2
2622 static const struct net_protocol pim_protocol = {
2623         .handler        =       pim_rcv,
2624         .netns_ok       =       1,
2625 };
2626 #endif
2627
2628 /* Setup for IP multicast routing */
2629 static int __net_init ipmr_net_init(struct net *net)
2630 {
2631         int err;
2632
2633         err = ipmr_rules_init(net);
2634         if (err < 0)
2635                 goto fail;
2636
2637 #ifdef CONFIG_PROC_FS
2638         err = -ENOMEM;
2639         if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2640                 goto proc_vif_fail;
2641         if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2642                 goto proc_cache_fail;
2643 #endif
2644         return 0;
2645
2646 #ifdef CONFIG_PROC_FS
2647 proc_cache_fail:
2648         remove_proc_entry("ip_mr_vif", net->proc_net);
2649 proc_vif_fail:
2650         ipmr_rules_exit(net);
2651 #endif
2652 fail:
2653         return err;
2654 }
2655
2656 static void __net_exit ipmr_net_exit(struct net *net)
2657 {
2658 #ifdef CONFIG_PROC_FS
2659         remove_proc_entry("ip_mr_cache", net->proc_net);
2660         remove_proc_entry("ip_mr_vif", net->proc_net);
2661 #endif
2662         ipmr_rules_exit(net);
2663 }
2664
2665 static struct pernet_operations ipmr_net_ops = {
2666         .init = ipmr_net_init,
2667         .exit = ipmr_net_exit,
2668 };
2669
2670 int __init ip_mr_init(void)
2671 {
2672         int err;
2673
2674         mrt_cachep = kmem_cache_create("ip_mrt_cache",
2675                                        sizeof(struct mfc_cache),
2676                                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2677                                        NULL);
2678
2679         err = register_pernet_subsys(&ipmr_net_ops);
2680         if (err)
2681                 goto reg_pernet_fail;
2682
2683         err = register_netdevice_notifier(&ip_mr_notifier);
2684         if (err)
2685                 goto reg_notif_fail;
2686 #ifdef CONFIG_IP_PIMSM_V2
2687         if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2688                 pr_err("%s: can't add PIM protocol\n", __func__);
2689                 err = -EAGAIN;
2690                 goto add_proto_fail;
2691         }
2692 #endif
2693         rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2694                       NULL, ipmr_rtm_dumproute, NULL);
2695         return 0;
2696
2697 #ifdef CONFIG_IP_PIMSM_V2
2698 add_proto_fail:
2699         unregister_netdevice_notifier(&ip_mr_notifier);
2700 #endif
2701 reg_notif_fail:
2702         unregister_pernet_subsys(&ipmr_net_ops);
2703 reg_pernet_fail:
2704         kmem_cache_destroy(mrt_cachep);
2705         return err;
2706 }