net: rename ll methods to busy-poll
[cascardo/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78 #include <net/busy_poll.h>
79
80 #include <linux/inet.h>
81 #include <linux/ipv6.h>
82 #include <linux/stddef.h>
83 #include <linux/proc_fs.h>
84 #include <linux/seq_file.h>
85
86 #include <linux/crypto.h>
87 #include <linux/scatterlist.h>
88
89 int sysctl_tcp_tw_reuse __read_mostly;
90 int sysctl_tcp_low_latency __read_mostly;
91 EXPORT_SYMBOL(sysctl_tcp_low_latency);
92
93
94 #ifdef CONFIG_TCP_MD5SIG
95 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
96                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
97 #endif
98
99 struct inet_hashinfo tcp_hashinfo;
100 EXPORT_SYMBOL(tcp_hashinfo);
101
102 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
103 {
104         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
105                                           ip_hdr(skb)->saddr,
106                                           tcp_hdr(skb)->dest,
107                                           tcp_hdr(skb)->source);
108 }
109
110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 {
112         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
113         struct tcp_sock *tp = tcp_sk(sk);
114
115         /* With PAWS, it is safe from the viewpoint
116            of data integrity. Even without PAWS it is safe provided sequence
117            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
118
119            Actually, the idea is close to VJ's one, only timestamp cache is
120            held not per host, but per port pair and TW bucket is used as state
121            holder.
122
123            If TW bucket has been already destroyed we fall back to VJ's scheme
124            and use initial timestamp retrieved from peer table.
125          */
126         if (tcptw->tw_ts_recent_stamp &&
127             (twp == NULL || (sysctl_tcp_tw_reuse &&
128                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
129                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
130                 if (tp->write_seq == 0)
131                         tp->write_seq = 1;
132                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
133                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
134                 sock_hold(sktw);
135                 return 1;
136         }
137
138         return 0;
139 }
140 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
141
142 /* This will initiate an outgoing connection. */
143 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
144 {
145         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
146         struct inet_sock *inet = inet_sk(sk);
147         struct tcp_sock *tp = tcp_sk(sk);
148         __be16 orig_sport, orig_dport;
149         __be32 daddr, nexthop;
150         struct flowi4 *fl4;
151         struct rtable *rt;
152         int err;
153         struct ip_options_rcu *inet_opt;
154
155         if (addr_len < sizeof(struct sockaddr_in))
156                 return -EINVAL;
157
158         if (usin->sin_family != AF_INET)
159                 return -EAFNOSUPPORT;
160
161         nexthop = daddr = usin->sin_addr.s_addr;
162         inet_opt = rcu_dereference_protected(inet->inet_opt,
163                                              sock_owned_by_user(sk));
164         if (inet_opt && inet_opt->opt.srr) {
165                 if (!daddr)
166                         return -EINVAL;
167                 nexthop = inet_opt->opt.faddr;
168         }
169
170         orig_sport = inet->inet_sport;
171         orig_dport = usin->sin_port;
172         fl4 = &inet->cork.fl.u.ip4;
173         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
174                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
175                               IPPROTO_TCP,
176                               orig_sport, orig_dport, sk, true);
177         if (IS_ERR(rt)) {
178                 err = PTR_ERR(rt);
179                 if (err == -ENETUNREACH)
180                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
181                 return err;
182         }
183
184         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
185                 ip_rt_put(rt);
186                 return -ENETUNREACH;
187         }
188
189         if (!inet_opt || !inet_opt->opt.srr)
190                 daddr = fl4->daddr;
191
192         if (!inet->inet_saddr)
193                 inet->inet_saddr = fl4->saddr;
194         inet->inet_rcv_saddr = inet->inet_saddr;
195
196         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
197                 /* Reset inherited state */
198                 tp->rx_opt.ts_recent       = 0;
199                 tp->rx_opt.ts_recent_stamp = 0;
200                 if (likely(!tp->repair))
201                         tp->write_seq      = 0;
202         }
203
204         if (tcp_death_row.sysctl_tw_recycle &&
205             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
206                 tcp_fetch_timewait_stamp(sk, &rt->dst);
207
208         inet->inet_dport = usin->sin_port;
209         inet->inet_daddr = daddr;
210
211         inet_csk(sk)->icsk_ext_hdr_len = 0;
212         if (inet_opt)
213                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
214
215         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
216
217         /* Socket identity is still unknown (sport may be zero).
218          * However we set state to SYN-SENT and not releasing socket
219          * lock select source port, enter ourselves into the hash tables and
220          * complete initialization after this.
221          */
222         tcp_set_state(sk, TCP_SYN_SENT);
223         err = inet_hash_connect(&tcp_death_row, sk);
224         if (err)
225                 goto failure;
226
227         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228                                inet->inet_sport, inet->inet_dport, sk);
229         if (IS_ERR(rt)) {
230                 err = PTR_ERR(rt);
231                 rt = NULL;
232                 goto failure;
233         }
234         /* OK, now commit destination to socket.  */
235         sk->sk_gso_type = SKB_GSO_TCPV4;
236         sk_setup_caps(sk, &rt->dst);
237
238         if (!tp->write_seq && likely(!tp->repair))
239                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240                                                            inet->inet_daddr,
241                                                            inet->inet_sport,
242                                                            usin->sin_port);
243
244         inet->inet_id = tp->write_seq ^ jiffies;
245
246         err = tcp_connect(sk);
247
248         rt = NULL;
249         if (err)
250                 goto failure;
251
252         return 0;
253
254 failure:
255         /*
256          * This unhashes the socket and releases the local port,
257          * if necessary.
258          */
259         tcp_set_state(sk, TCP_CLOSE);
260         ip_rt_put(rt);
261         sk->sk_route_caps = 0;
262         inet->inet_dport = 0;
263         return err;
264 }
265 EXPORT_SYMBOL(tcp_v4_connect);
266
267 /*
268  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269  * It can be called through tcp_release_cb() if socket was owned by user
270  * at the time tcp_v4_err() was called to handle ICMP message.
271  */
272 static void tcp_v4_mtu_reduced(struct sock *sk)
273 {
274         struct dst_entry *dst;
275         struct inet_sock *inet = inet_sk(sk);
276         u32 mtu = tcp_sk(sk)->mtu_info;
277
278         dst = inet_csk_update_pmtu(sk, mtu);
279         if (!dst)
280                 return;
281
282         /* Something is about to be wrong... Remember soft error
283          * for the case, if this connection will not able to recover.
284          */
285         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286                 sk->sk_err_soft = EMSGSIZE;
287
288         mtu = dst_mtu(dst);
289
290         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
292                 tcp_sync_mss(sk, mtu);
293
294                 /* Resend the TCP packet because it's
295                  * clear that the old packet has been
296                  * dropped. This is the new "fast" path mtu
297                  * discovery.
298                  */
299                 tcp_simple_retransmit(sk);
300         } /* else let the usual retransmit timer handle it */
301 }
302
303 static void do_redirect(struct sk_buff *skb, struct sock *sk)
304 {
305         struct dst_entry *dst = __sk_dst_check(sk, 0);
306
307         if (dst)
308                 dst->ops->redirect(dst, sk, skb);
309 }
310
311 /*
312  * This routine is called by the ICMP module when it gets some
313  * sort of error condition.  If err < 0 then the socket should
314  * be closed and the error returned to the user.  If err > 0
315  * it's just the icmp type << 8 | icmp code.  After adjustment
316  * header points to the first 8 bytes of the tcp header.  We need
317  * to find the appropriate port.
318  *
319  * The locking strategy used here is very "optimistic". When
320  * someone else accesses the socket the ICMP is just dropped
321  * and for some paths there is no check at all.
322  * A more general error queue to queue errors for later handling
323  * is probably better.
324  *
325  */
326
327 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
328 {
329         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
330         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
331         struct inet_connection_sock *icsk;
332         struct tcp_sock *tp;
333         struct inet_sock *inet;
334         const int type = icmp_hdr(icmp_skb)->type;
335         const int code = icmp_hdr(icmp_skb)->code;
336         struct sock *sk;
337         struct sk_buff *skb;
338         struct request_sock *req;
339         __u32 seq;
340         __u32 remaining;
341         int err;
342         struct net *net = dev_net(icmp_skb->dev);
343
344         if (icmp_skb->len < (iph->ihl << 2) + 8) {
345                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
346                 return;
347         }
348
349         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
350                         iph->saddr, th->source, inet_iif(icmp_skb));
351         if (!sk) {
352                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
353                 return;
354         }
355         if (sk->sk_state == TCP_TIME_WAIT) {
356                 inet_twsk_put(inet_twsk(sk));
357                 return;
358         }
359
360         bh_lock_sock(sk);
361         /* If too many ICMPs get dropped on busy
362          * servers this needs to be solved differently.
363          * We do take care of PMTU discovery (RFC1191) special case :
364          * we can receive locally generated ICMP messages while socket is held.
365          */
366         if (sock_owned_by_user(sk)) {
367                 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
368                         NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
369         }
370         if (sk->sk_state == TCP_CLOSE)
371                 goto out;
372
373         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
374                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
375                 goto out;
376         }
377
378         icsk = inet_csk(sk);
379         tp = tcp_sk(sk);
380         req = tp->fastopen_rsk;
381         seq = ntohl(th->seq);
382         if (sk->sk_state != TCP_LISTEN &&
383             !between(seq, tp->snd_una, tp->snd_nxt) &&
384             (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
385                 /* For a Fast Open socket, allow seq to be snt_isn. */
386                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
387                 goto out;
388         }
389
390         switch (type) {
391         case ICMP_REDIRECT:
392                 do_redirect(icmp_skb, sk);
393                 goto out;
394         case ICMP_SOURCE_QUENCH:
395                 /* Just silently ignore these. */
396                 goto out;
397         case ICMP_PARAMETERPROB:
398                 err = EPROTO;
399                 break;
400         case ICMP_DEST_UNREACH:
401                 if (code > NR_ICMP_UNREACH)
402                         goto out;
403
404                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
405                         /* We are not interested in TCP_LISTEN and open_requests
406                          * (SYN-ACKs send out by Linux are always <576bytes so
407                          * they should go through unfragmented).
408                          */
409                         if (sk->sk_state == TCP_LISTEN)
410                                 goto out;
411
412                         tp->mtu_info = info;
413                         if (!sock_owned_by_user(sk)) {
414                                 tcp_v4_mtu_reduced(sk);
415                         } else {
416                                 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
417                                         sock_hold(sk);
418                         }
419                         goto out;
420                 }
421
422                 err = icmp_err_convert[code].errno;
423                 /* check if icmp_skb allows revert of backoff
424                  * (see draft-zimmermann-tcp-lcd) */
425                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
426                         break;
427                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
428                     !icsk->icsk_backoff)
429                         break;
430
431                 /* XXX (TFO) - revisit the following logic for TFO */
432
433                 if (sock_owned_by_user(sk))
434                         break;
435
436                 icsk->icsk_backoff--;
437                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
438                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
439                 tcp_bound_rto(sk);
440
441                 skb = tcp_write_queue_head(sk);
442                 BUG_ON(!skb);
443
444                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
445                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
446
447                 if (remaining) {
448                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449                                                   remaining, TCP_RTO_MAX);
450                 } else {
451                         /* RTO revert clocked out retransmission.
452                          * Will retransmit now */
453                         tcp_retransmit_timer(sk);
454                 }
455
456                 break;
457         case ICMP_TIME_EXCEEDED:
458                 err = EHOSTUNREACH;
459                 break;
460         default:
461                 goto out;
462         }
463
464         /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
465          * than following the TCP_SYN_RECV case and closing the socket,
466          * we ignore the ICMP error and keep trying like a fully established
467          * socket. Is this the right thing to do?
468          */
469         if (req && req->sk == NULL)
470                 goto out;
471
472         switch (sk->sk_state) {
473                 struct request_sock *req, **prev;
474         case TCP_LISTEN:
475                 if (sock_owned_by_user(sk))
476                         goto out;
477
478                 req = inet_csk_search_req(sk, &prev, th->dest,
479                                           iph->daddr, iph->saddr);
480                 if (!req)
481                         goto out;
482
483                 /* ICMPs are not backlogged, hence we cannot get
484                    an established socket here.
485                  */
486                 WARN_ON(req->sk);
487
488                 if (seq != tcp_rsk(req)->snt_isn) {
489                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
490                         goto out;
491                 }
492
493                 /*
494                  * Still in SYN_RECV, just remove it silently.
495                  * There is no good way to pass the error to the newly
496                  * created socket, and POSIX does not want network
497                  * errors returned from accept().
498                  */
499                 inet_csk_reqsk_queue_drop(sk, req, prev);
500                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
501                 goto out;
502
503         case TCP_SYN_SENT:
504         case TCP_SYN_RECV:  /* Cannot happen.
505                                It can f.e. if SYNs crossed,
506                                or Fast Open.
507                              */
508                 if (!sock_owned_by_user(sk)) {
509                         sk->sk_err = err;
510
511                         sk->sk_error_report(sk);
512
513                         tcp_done(sk);
514                 } else {
515                         sk->sk_err_soft = err;
516                 }
517                 goto out;
518         }
519
520         /* If we've already connected we will keep trying
521          * until we time out, or the user gives up.
522          *
523          * rfc1122 4.2.3.9 allows to consider as hard errors
524          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
525          * but it is obsoleted by pmtu discovery).
526          *
527          * Note, that in modern internet, where routing is unreliable
528          * and in each dark corner broken firewalls sit, sending random
529          * errors ordered by their masters even this two messages finally lose
530          * their original sense (even Linux sends invalid PORT_UNREACHs)
531          *
532          * Now we are in compliance with RFCs.
533          *                                                      --ANK (980905)
534          */
535
536         inet = inet_sk(sk);
537         if (!sock_owned_by_user(sk) && inet->recverr) {
538                 sk->sk_err = err;
539                 sk->sk_error_report(sk);
540         } else  { /* Only an error on timeout */
541                 sk->sk_err_soft = err;
542         }
543
544 out:
545         bh_unlock_sock(sk);
546         sock_put(sk);
547 }
548
549 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
550 {
551         struct tcphdr *th = tcp_hdr(skb);
552
553         if (skb->ip_summed == CHECKSUM_PARTIAL) {
554                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555                 skb->csum_start = skb_transport_header(skb) - skb->head;
556                 skb->csum_offset = offsetof(struct tcphdr, check);
557         } else {
558                 th->check = tcp_v4_check(skb->len, saddr, daddr,
559                                          csum_partial(th,
560                                                       th->doff << 2,
561                                                       skb->csum));
562         }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568         const struct inet_sock *inet = inet_sk(sk);
569
570         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 /*
575  *      This routine will send an RST to the other tcp.
576  *
577  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
578  *                    for reset.
579  *      Answer: if a packet caused RST, it is not for a socket
580  *              existing in our system, if it is matched to a socket,
581  *              it is just duplicate segment or bug in other side's TCP.
582  *              So that we build reply only basing on parameters
583  *              arrived with segment.
584  *      Exception: precedence violation. We do not implement it in any case.
585  */
586
587 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
588 {
589         const struct tcphdr *th = tcp_hdr(skb);
590         struct {
591                 struct tcphdr th;
592 #ifdef CONFIG_TCP_MD5SIG
593                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
594 #endif
595         } rep;
596         struct ip_reply_arg arg;
597 #ifdef CONFIG_TCP_MD5SIG
598         struct tcp_md5sig_key *key;
599         const __u8 *hash_location = NULL;
600         unsigned char newhash[16];
601         int genhash;
602         struct sock *sk1 = NULL;
603 #endif
604         struct net *net;
605
606         /* Never send a reset in response to a reset. */
607         if (th->rst)
608                 return;
609
610         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
611                 return;
612
613         /* Swap the send and the receive. */
614         memset(&rep, 0, sizeof(rep));
615         rep.th.dest   = th->source;
616         rep.th.source = th->dest;
617         rep.th.doff   = sizeof(struct tcphdr) / 4;
618         rep.th.rst    = 1;
619
620         if (th->ack) {
621                 rep.th.seq = th->ack_seq;
622         } else {
623                 rep.th.ack = 1;
624                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
625                                        skb->len - (th->doff << 2));
626         }
627
628         memset(&arg, 0, sizeof(arg));
629         arg.iov[0].iov_base = (unsigned char *)&rep;
630         arg.iov[0].iov_len  = sizeof(rep.th);
631
632 #ifdef CONFIG_TCP_MD5SIG
633         hash_location = tcp_parse_md5sig_option(th);
634         if (!sk && hash_location) {
635                 /*
636                  * active side is lost. Try to find listening socket through
637                  * source port, and then find md5 key through listening socket.
638                  * we are not loose security here:
639                  * Incoming packet is checked with md5 hash with finding key,
640                  * no RST generated if md5 hash doesn't match.
641                  */
642                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
643                                              &tcp_hashinfo, ip_hdr(skb)->saddr,
644                                              th->source, ip_hdr(skb)->daddr,
645                                              ntohs(th->source), inet_iif(skb));
646                 /* don't send rst if it can't find key */
647                 if (!sk1)
648                         return;
649                 rcu_read_lock();
650                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
651                                         &ip_hdr(skb)->saddr, AF_INET);
652                 if (!key)
653                         goto release_sk1;
654
655                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
656                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
657                         goto release_sk1;
658         } else {
659                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
660                                              &ip_hdr(skb)->saddr,
661                                              AF_INET) : NULL;
662         }
663
664         if (key) {
665                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
666                                    (TCPOPT_NOP << 16) |
667                                    (TCPOPT_MD5SIG << 8) |
668                                    TCPOLEN_MD5SIG);
669                 /* Update length and the length the header thinks exists */
670                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
671                 rep.th.doff = arg.iov[0].iov_len / 4;
672
673                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
674                                      key, ip_hdr(skb)->saddr,
675                                      ip_hdr(skb)->daddr, &rep.th);
676         }
677 #endif
678         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
679                                       ip_hdr(skb)->saddr, /* XXX */
680                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
681         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
682         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
683         /* When socket is gone, all binding information is lost.
684          * routing might fail in this case. No choice here, if we choose to force
685          * input interface, we will misroute in case of asymmetric route.
686          */
687         if (sk)
688                 arg.bound_dev_if = sk->sk_bound_dev_if;
689
690         net = dev_net(skb_dst(skb)->dev);
691         arg.tos = ip_hdr(skb)->tos;
692         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
693                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
694
695         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
696         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
697
698 #ifdef CONFIG_TCP_MD5SIG
699 release_sk1:
700         if (sk1) {
701                 rcu_read_unlock();
702                 sock_put(sk1);
703         }
704 #endif
705 }
706
707 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
708    outside socket context is ugly, certainly. What can I do?
709  */
710
711 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
712                             u32 win, u32 tsval, u32 tsecr, int oif,
713                             struct tcp_md5sig_key *key,
714                             int reply_flags, u8 tos)
715 {
716         const struct tcphdr *th = tcp_hdr(skb);
717         struct {
718                 struct tcphdr th;
719                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
720 #ifdef CONFIG_TCP_MD5SIG
721                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
722 #endif
723                         ];
724         } rep;
725         struct ip_reply_arg arg;
726         struct net *net = dev_net(skb_dst(skb)->dev);
727
728         memset(&rep.th, 0, sizeof(struct tcphdr));
729         memset(&arg, 0, sizeof(arg));
730
731         arg.iov[0].iov_base = (unsigned char *)&rep;
732         arg.iov[0].iov_len  = sizeof(rep.th);
733         if (tsecr) {
734                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
735                                    (TCPOPT_TIMESTAMP << 8) |
736                                    TCPOLEN_TIMESTAMP);
737                 rep.opt[1] = htonl(tsval);
738                 rep.opt[2] = htonl(tsecr);
739                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
740         }
741
742         /* Swap the send and the receive. */
743         rep.th.dest    = th->source;
744         rep.th.source  = th->dest;
745         rep.th.doff    = arg.iov[0].iov_len / 4;
746         rep.th.seq     = htonl(seq);
747         rep.th.ack_seq = htonl(ack);
748         rep.th.ack     = 1;
749         rep.th.window  = htons(win);
750
751 #ifdef CONFIG_TCP_MD5SIG
752         if (key) {
753                 int offset = (tsecr) ? 3 : 0;
754
755                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
756                                           (TCPOPT_NOP << 16) |
757                                           (TCPOPT_MD5SIG << 8) |
758                                           TCPOLEN_MD5SIG);
759                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
760                 rep.th.doff = arg.iov[0].iov_len/4;
761
762                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
763                                     key, ip_hdr(skb)->saddr,
764                                     ip_hdr(skb)->daddr, &rep.th);
765         }
766 #endif
767         arg.flags = reply_flags;
768         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
769                                       ip_hdr(skb)->saddr, /* XXX */
770                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
771         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
772         if (oif)
773                 arg.bound_dev_if = oif;
774         arg.tos = tos;
775         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
776                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
777
778         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
779 }
780
781 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
782 {
783         struct inet_timewait_sock *tw = inet_twsk(sk);
784         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
785
786         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
787                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
788                         tcp_time_stamp + tcptw->tw_ts_offset,
789                         tcptw->tw_ts_recent,
790                         tw->tw_bound_dev_if,
791                         tcp_twsk_md5_key(tcptw),
792                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
793                         tw->tw_tos
794                         );
795
796         inet_twsk_put(tw);
797 }
798
799 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
800                                   struct request_sock *req)
801 {
802         /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
803          * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
804          */
805         tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
806                         tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
807                         tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
808                         tcp_time_stamp,
809                         req->ts_recent,
810                         0,
811                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
812                                           AF_INET),
813                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
814                         ip_hdr(skb)->tos);
815 }
816
817 /*
818  *      Send a SYN-ACK after having received a SYN.
819  *      This still operates on a request_sock only, not on a big
820  *      socket.
821  */
822 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
823                               struct request_sock *req,
824                               u16 queue_mapping,
825                               bool nocache)
826 {
827         const struct inet_request_sock *ireq = inet_rsk(req);
828         struct flowi4 fl4;
829         int err = -1;
830         struct sk_buff * skb;
831
832         /* First, grab a route. */
833         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
834                 return -1;
835
836         skb = tcp_make_synack(sk, dst, req, NULL);
837
838         if (skb) {
839                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
840
841                 skb_set_queue_mapping(skb, queue_mapping);
842                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
843                                             ireq->rmt_addr,
844                                             ireq->opt);
845                 err = net_xmit_eval(err);
846                 if (!tcp_rsk(req)->snt_synack && !err)
847                         tcp_rsk(req)->snt_synack = tcp_time_stamp;
848         }
849
850         return err;
851 }
852
853 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
854 {
855         int res = tcp_v4_send_synack(sk, NULL, req, 0, false);
856
857         if (!res)
858                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859         return res;
860 }
861
862 /*
863  *      IPv4 request_sock destructor.
864  */
865 static void tcp_v4_reqsk_destructor(struct request_sock *req)
866 {
867         kfree(inet_rsk(req)->opt);
868 }
869
870 /*
871  * Return true if a syncookie should be sent
872  */
873 bool tcp_syn_flood_action(struct sock *sk,
874                          const struct sk_buff *skb,
875                          const char *proto)
876 {
877         const char *msg = "Dropping request";
878         bool want_cookie = false;
879         struct listen_sock *lopt;
880
881
882
883 #ifdef CONFIG_SYN_COOKIES
884         if (sysctl_tcp_syncookies) {
885                 msg = "Sending cookies";
886                 want_cookie = true;
887                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888         } else
889 #endif
890                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891
892         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893         if (!lopt->synflood_warned) {
894                 lopt->synflood_warned = 1;
895                 pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
896                         proto, ntohs(tcp_hdr(skb)->dest), msg);
897         }
898         return want_cookie;
899 }
900 EXPORT_SYMBOL(tcp_syn_flood_action);
901
902 /*
903  * Save and compile IPv4 options into the request_sock if needed.
904  */
905 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
906 {
907         const struct ip_options *opt = &(IPCB(skb)->opt);
908         struct ip_options_rcu *dopt = NULL;
909
910         if (opt && opt->optlen) {
911                 int opt_size = sizeof(*dopt) + opt->optlen;
912
913                 dopt = kmalloc(opt_size, GFP_ATOMIC);
914                 if (dopt) {
915                         if (ip_options_echo(&dopt->opt, skb)) {
916                                 kfree(dopt);
917                                 dopt = NULL;
918                         }
919                 }
920         }
921         return dopt;
922 }
923
924 #ifdef CONFIG_TCP_MD5SIG
925 /*
926  * RFC2385 MD5 checksumming requires a mapping of
927  * IP address->MD5 Key.
928  * We need to maintain these in the sk structure.
929  */
930
931 /* Find the Key structure for an address.  */
932 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
933                                          const union tcp_md5_addr *addr,
934                                          int family)
935 {
936         struct tcp_sock *tp = tcp_sk(sk);
937         struct tcp_md5sig_key *key;
938         unsigned int size = sizeof(struct in_addr);
939         struct tcp_md5sig_info *md5sig;
940
941         /* caller either holds rcu_read_lock() or socket lock */
942         md5sig = rcu_dereference_check(tp->md5sig_info,
943                                        sock_owned_by_user(sk) ||
944                                        lockdep_is_held(&sk->sk_lock.slock));
945         if (!md5sig)
946                 return NULL;
947 #if IS_ENABLED(CONFIG_IPV6)
948         if (family == AF_INET6)
949                 size = sizeof(struct in6_addr);
950 #endif
951         hlist_for_each_entry_rcu(key, &md5sig->head, node) {
952                 if (key->family != family)
953                         continue;
954                 if (!memcmp(&key->addr, addr, size))
955                         return key;
956         }
957         return NULL;
958 }
959 EXPORT_SYMBOL(tcp_md5_do_lookup);
960
961 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
962                                          struct sock *addr_sk)
963 {
964         union tcp_md5_addr *addr;
965
966         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
967         return tcp_md5_do_lookup(sk, addr, AF_INET);
968 }
969 EXPORT_SYMBOL(tcp_v4_md5_lookup);
970
971 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
972                                                       struct request_sock *req)
973 {
974         union tcp_md5_addr *addr;
975
976         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
977         return tcp_md5_do_lookup(sk, addr, AF_INET);
978 }
979
980 /* This can be called on a newly created socket, from other files */
981 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
982                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
983 {
984         /* Add Key to the list */
985         struct tcp_md5sig_key *key;
986         struct tcp_sock *tp = tcp_sk(sk);
987         struct tcp_md5sig_info *md5sig;
988
989         key = tcp_md5_do_lookup(sk, addr, family);
990         if (key) {
991                 /* Pre-existing entry - just update that one. */
992                 memcpy(key->key, newkey, newkeylen);
993                 key->keylen = newkeylen;
994                 return 0;
995         }
996
997         md5sig = rcu_dereference_protected(tp->md5sig_info,
998                                            sock_owned_by_user(sk));
999         if (!md5sig) {
1000                 md5sig = kmalloc(sizeof(*md5sig), gfp);
1001                 if (!md5sig)
1002                         return -ENOMEM;
1003
1004                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1005                 INIT_HLIST_HEAD(&md5sig->head);
1006                 rcu_assign_pointer(tp->md5sig_info, md5sig);
1007         }
1008
1009         key = sock_kmalloc(sk, sizeof(*key), gfp);
1010         if (!key)
1011                 return -ENOMEM;
1012         if (!tcp_alloc_md5sig_pool()) {
1013                 sock_kfree_s(sk, key, sizeof(*key));
1014                 return -ENOMEM;
1015         }
1016
1017         memcpy(key->key, newkey, newkeylen);
1018         key->keylen = newkeylen;
1019         key->family = family;
1020         memcpy(&key->addr, addr,
1021                (family == AF_INET6) ? sizeof(struct in6_addr) :
1022                                       sizeof(struct in_addr));
1023         hlist_add_head_rcu(&key->node, &md5sig->head);
1024         return 0;
1025 }
1026 EXPORT_SYMBOL(tcp_md5_do_add);
1027
1028 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1029 {
1030         struct tcp_md5sig_key *key;
1031
1032         key = tcp_md5_do_lookup(sk, addr, family);
1033         if (!key)
1034                 return -ENOENT;
1035         hlist_del_rcu(&key->node);
1036         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1037         kfree_rcu(key, rcu);
1038         return 0;
1039 }
1040 EXPORT_SYMBOL(tcp_md5_do_del);
1041
1042 static void tcp_clear_md5_list(struct sock *sk)
1043 {
1044         struct tcp_sock *tp = tcp_sk(sk);
1045         struct tcp_md5sig_key *key;
1046         struct hlist_node *n;
1047         struct tcp_md5sig_info *md5sig;
1048
1049         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1050
1051         hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1052                 hlist_del_rcu(&key->node);
1053                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1054                 kfree_rcu(key, rcu);
1055         }
1056 }
1057
1058 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1059                                  int optlen)
1060 {
1061         struct tcp_md5sig cmd;
1062         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1063
1064         if (optlen < sizeof(cmd))
1065                 return -EINVAL;
1066
1067         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1068                 return -EFAULT;
1069
1070         if (sin->sin_family != AF_INET)
1071                 return -EINVAL;
1072
1073         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1074                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1075                                       AF_INET);
1076
1077         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1078                 return -EINVAL;
1079
1080         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1081                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1082                               GFP_KERNEL);
1083 }
1084
1085 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1086                                         __be32 daddr, __be32 saddr, int nbytes)
1087 {
1088         struct tcp4_pseudohdr *bp;
1089         struct scatterlist sg;
1090
1091         bp = &hp->md5_blk.ip4;
1092
1093         /*
1094          * 1. the TCP pseudo-header (in the order: source IP address,
1095          * destination IP address, zero-padded protocol number, and
1096          * segment length)
1097          */
1098         bp->saddr = saddr;
1099         bp->daddr = daddr;
1100         bp->pad = 0;
1101         bp->protocol = IPPROTO_TCP;
1102         bp->len = cpu_to_be16(nbytes);
1103
1104         sg_init_one(&sg, bp, sizeof(*bp));
1105         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1106 }
1107
1108 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1109                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1110 {
1111         struct tcp_md5sig_pool *hp;
1112         struct hash_desc *desc;
1113
1114         hp = tcp_get_md5sig_pool();
1115         if (!hp)
1116                 goto clear_hash_noput;
1117         desc = &hp->md5_desc;
1118
1119         if (crypto_hash_init(desc))
1120                 goto clear_hash;
1121         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1122                 goto clear_hash;
1123         if (tcp_md5_hash_header(hp, th))
1124                 goto clear_hash;
1125         if (tcp_md5_hash_key(hp, key))
1126                 goto clear_hash;
1127         if (crypto_hash_final(desc, md5_hash))
1128                 goto clear_hash;
1129
1130         tcp_put_md5sig_pool();
1131         return 0;
1132
1133 clear_hash:
1134         tcp_put_md5sig_pool();
1135 clear_hash_noput:
1136         memset(md5_hash, 0, 16);
1137         return 1;
1138 }
1139
1140 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1141                         const struct sock *sk, const struct request_sock *req,
1142                         const struct sk_buff *skb)
1143 {
1144         struct tcp_md5sig_pool *hp;
1145         struct hash_desc *desc;
1146         const struct tcphdr *th = tcp_hdr(skb);
1147         __be32 saddr, daddr;
1148
1149         if (sk) {
1150                 saddr = inet_sk(sk)->inet_saddr;
1151                 daddr = inet_sk(sk)->inet_daddr;
1152         } else if (req) {
1153                 saddr = inet_rsk(req)->loc_addr;
1154                 daddr = inet_rsk(req)->rmt_addr;
1155         } else {
1156                 const struct iphdr *iph = ip_hdr(skb);
1157                 saddr = iph->saddr;
1158                 daddr = iph->daddr;
1159         }
1160
1161         hp = tcp_get_md5sig_pool();
1162         if (!hp)
1163                 goto clear_hash_noput;
1164         desc = &hp->md5_desc;
1165
1166         if (crypto_hash_init(desc))
1167                 goto clear_hash;
1168
1169         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1170                 goto clear_hash;
1171         if (tcp_md5_hash_header(hp, th))
1172                 goto clear_hash;
1173         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1174                 goto clear_hash;
1175         if (tcp_md5_hash_key(hp, key))
1176                 goto clear_hash;
1177         if (crypto_hash_final(desc, md5_hash))
1178                 goto clear_hash;
1179
1180         tcp_put_md5sig_pool();
1181         return 0;
1182
1183 clear_hash:
1184         tcp_put_md5sig_pool();
1185 clear_hash_noput:
1186         memset(md5_hash, 0, 16);
1187         return 1;
1188 }
1189 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1190
1191 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1192 {
1193         /*
1194          * This gets called for each TCP segment that arrives
1195          * so we want to be efficient.
1196          * We have 3 drop cases:
1197          * o No MD5 hash and one expected.
1198          * o MD5 hash and we're not expecting one.
1199          * o MD5 hash and its wrong.
1200          */
1201         const __u8 *hash_location = NULL;
1202         struct tcp_md5sig_key *hash_expected;
1203         const struct iphdr *iph = ip_hdr(skb);
1204         const struct tcphdr *th = tcp_hdr(skb);
1205         int genhash;
1206         unsigned char newhash[16];
1207
1208         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1209                                           AF_INET);
1210         hash_location = tcp_parse_md5sig_option(th);
1211
1212         /* We've parsed the options - do we have a hash? */
1213         if (!hash_expected && !hash_location)
1214                 return false;
1215
1216         if (hash_expected && !hash_location) {
1217                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1218                 return true;
1219         }
1220
1221         if (!hash_expected && hash_location) {
1222                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1223                 return true;
1224         }
1225
1226         /* Okay, so this is hash_expected and hash_location -
1227          * so we need to calculate the checksum.
1228          */
1229         genhash = tcp_v4_md5_hash_skb(newhash,
1230                                       hash_expected,
1231                                       NULL, NULL, skb);
1232
1233         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1234                 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1235                                      &iph->saddr, ntohs(th->source),
1236                                      &iph->daddr, ntohs(th->dest),
1237                                      genhash ? " tcp_v4_calc_md5_hash failed"
1238                                      : "");
1239                 return true;
1240         }
1241         return false;
1242 }
1243
1244 #endif
1245
1246 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1247         .family         =       PF_INET,
1248         .obj_size       =       sizeof(struct tcp_request_sock),
1249         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1250         .send_ack       =       tcp_v4_reqsk_send_ack,
1251         .destructor     =       tcp_v4_reqsk_destructor,
1252         .send_reset     =       tcp_v4_send_reset,
1253         .syn_ack_timeout =      tcp_syn_ack_timeout,
1254 };
1255
1256 #ifdef CONFIG_TCP_MD5SIG
1257 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1258         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1259         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1260 };
1261 #endif
1262
1263 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1264                                struct request_sock *req,
1265                                struct tcp_fastopen_cookie *foc,
1266                                struct tcp_fastopen_cookie *valid_foc)
1267 {
1268         bool skip_cookie = false;
1269         struct fastopen_queue *fastopenq;
1270
1271         if (likely(!fastopen_cookie_present(foc))) {
1272                 /* See include/net/tcp.h for the meaning of these knobs */
1273                 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1274                     ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1275                     (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1276                         skip_cookie = true; /* no cookie to validate */
1277                 else
1278                         return false;
1279         }
1280         fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1281         /* A FO option is present; bump the counter. */
1282         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1283
1284         /* Make sure the listener has enabled fastopen, and we don't
1285          * exceed the max # of pending TFO requests allowed before trying
1286          * to validating the cookie in order to avoid burning CPU cycles
1287          * unnecessarily.
1288          *
1289          * XXX (TFO) - The implication of checking the max_qlen before
1290          * processing a cookie request is that clients can't differentiate
1291          * between qlen overflow causing Fast Open to be disabled
1292          * temporarily vs a server not supporting Fast Open at all.
1293          */
1294         if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1295             fastopenq == NULL || fastopenq->max_qlen == 0)
1296                 return false;
1297
1298         if (fastopenq->qlen >= fastopenq->max_qlen) {
1299                 struct request_sock *req1;
1300                 spin_lock(&fastopenq->lock);
1301                 req1 = fastopenq->rskq_rst_head;
1302                 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1303                         spin_unlock(&fastopenq->lock);
1304                         NET_INC_STATS_BH(sock_net(sk),
1305                             LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1306                         /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1307                         foc->len = -1;
1308                         return false;
1309                 }
1310                 fastopenq->rskq_rst_head = req1->dl_next;
1311                 fastopenq->qlen--;
1312                 spin_unlock(&fastopenq->lock);
1313                 reqsk_free(req1);
1314         }
1315         if (skip_cookie) {
1316                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1317                 return true;
1318         }
1319         if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1320                 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1321                         tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1322                         if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1323                             memcmp(&foc->val[0], &valid_foc->val[0],
1324                             TCP_FASTOPEN_COOKIE_SIZE) != 0)
1325                                 return false;
1326                         valid_foc->len = -1;
1327                 }
1328                 /* Acknowledge the data received from the peer. */
1329                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1330                 return true;
1331         } else if (foc->len == 0) { /* Client requesting a cookie */
1332                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1333                 NET_INC_STATS_BH(sock_net(sk),
1334                     LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1335         } else {
1336                 /* Client sent a cookie with wrong size. Treat it
1337                  * the same as invalid and return a valid one.
1338                  */
1339                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1340         }
1341         return false;
1342 }
1343
1344 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1345                                     struct sk_buff *skb,
1346                                     struct sk_buff *skb_synack,
1347                                     struct request_sock *req)
1348 {
1349         struct tcp_sock *tp = tcp_sk(sk);
1350         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1351         const struct inet_request_sock *ireq = inet_rsk(req);
1352         struct sock *child;
1353         int err;
1354
1355         req->num_retrans = 0;
1356         req->num_timeout = 0;
1357         req->sk = NULL;
1358
1359         child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1360         if (child == NULL) {
1361                 NET_INC_STATS_BH(sock_net(sk),
1362                                  LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1363                 kfree_skb(skb_synack);
1364                 return -1;
1365         }
1366         err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1367                                     ireq->rmt_addr, ireq->opt);
1368         err = net_xmit_eval(err);
1369         if (!err)
1370                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1371         /* XXX (TFO) - is it ok to ignore error and continue? */
1372
1373         spin_lock(&queue->fastopenq->lock);
1374         queue->fastopenq->qlen++;
1375         spin_unlock(&queue->fastopenq->lock);
1376
1377         /* Initialize the child socket. Have to fix some values to take
1378          * into account the child is a Fast Open socket and is created
1379          * only out of the bits carried in the SYN packet.
1380          */
1381         tp = tcp_sk(child);
1382
1383         tp->fastopen_rsk = req;
1384         /* Do a hold on the listner sk so that if the listener is being
1385          * closed, the child that has been accepted can live on and still
1386          * access listen_lock.
1387          */
1388         sock_hold(sk);
1389         tcp_rsk(req)->listener = sk;
1390
1391         /* RFC1323: The window in SYN & SYN/ACK segments is never
1392          * scaled. So correct it appropriately.
1393          */
1394         tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1395
1396         /* Activate the retrans timer so that SYNACK can be retransmitted.
1397          * The request socket is not added to the SYN table of the parent
1398          * because it's been added to the accept queue directly.
1399          */
1400         inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1401             TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1402
1403         /* Add the child socket directly into the accept queue */
1404         inet_csk_reqsk_queue_add(sk, req, child);
1405
1406         /* Now finish processing the fastopen child socket. */
1407         inet_csk(child)->icsk_af_ops->rebuild_header(child);
1408         tcp_init_congestion_control(child);
1409         tcp_mtup_init(child);
1410         tcp_init_buffer_space(child);
1411         tcp_init_metrics(child);
1412
1413         /* Queue the data carried in the SYN packet. We need to first
1414          * bump skb's refcnt because the caller will attempt to free it.
1415          *
1416          * XXX (TFO) - we honor a zero-payload TFO request for now.
1417          * (Any reason not to?)
1418          */
1419         if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1420                 /* Don't queue the skb if there is no payload in SYN.
1421                  * XXX (TFO) - How about SYN+FIN?
1422                  */
1423                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1424         } else {
1425                 skb = skb_get(skb);
1426                 skb_dst_drop(skb);
1427                 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1428                 skb_set_owner_r(skb, child);
1429                 __skb_queue_tail(&child->sk_receive_queue, skb);
1430                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1431                 tp->syn_data_acked = 1;
1432         }
1433         sk->sk_data_ready(sk, 0);
1434         bh_unlock_sock(child);
1435         sock_put(child);
1436         WARN_ON(req->sk == NULL);
1437         return 0;
1438 }
1439
1440 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1441 {
1442         struct tcp_options_received tmp_opt;
1443         struct request_sock *req;
1444         struct inet_request_sock *ireq;
1445         struct tcp_sock *tp = tcp_sk(sk);
1446         struct dst_entry *dst = NULL;
1447         __be32 saddr = ip_hdr(skb)->saddr;
1448         __be32 daddr = ip_hdr(skb)->daddr;
1449         __u32 isn = TCP_SKB_CB(skb)->when;
1450         bool want_cookie = false;
1451         struct flowi4 fl4;
1452         struct tcp_fastopen_cookie foc = { .len = -1 };
1453         struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1454         struct sk_buff *skb_synack;
1455         int do_fastopen;
1456
1457         /* Never answer to SYNs send to broadcast or multicast */
1458         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1459                 goto drop;
1460
1461         /* TW buckets are converted to open requests without
1462          * limitations, they conserve resources and peer is
1463          * evidently real one.
1464          */
1465         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1466                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1467                 if (!want_cookie)
1468                         goto drop;
1469         }
1470
1471         /* Accept backlog is full. If we have already queued enough
1472          * of warm entries in syn queue, drop request. It is better than
1473          * clogging syn queue with openreqs with exponentially increasing
1474          * timeout.
1475          */
1476         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1477                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1478                 goto drop;
1479         }
1480
1481         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1482         if (!req)
1483                 goto drop;
1484
1485 #ifdef CONFIG_TCP_MD5SIG
1486         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1487 #endif
1488
1489         tcp_clear_options(&tmp_opt);
1490         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1491         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1492         tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1493
1494         if (want_cookie && !tmp_opt.saw_tstamp)
1495                 tcp_clear_options(&tmp_opt);
1496
1497         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1498         tcp_openreq_init(req, &tmp_opt, skb);
1499
1500         ireq = inet_rsk(req);
1501         ireq->loc_addr = daddr;
1502         ireq->rmt_addr = saddr;
1503         ireq->no_srccheck = inet_sk(sk)->transparent;
1504         ireq->opt = tcp_v4_save_options(skb);
1505
1506         if (security_inet_conn_request(sk, skb, req))
1507                 goto drop_and_free;
1508
1509         if (!want_cookie || tmp_opt.tstamp_ok)
1510                 TCP_ECN_create_request(req, skb, sock_net(sk));
1511
1512         if (want_cookie) {
1513                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1514                 req->cookie_ts = tmp_opt.tstamp_ok;
1515         } else if (!isn) {
1516                 /* VJ's idea. We save last timestamp seen
1517                  * from the destination in peer table, when entering
1518                  * state TIME-WAIT, and check against it before
1519                  * accepting new connection request.
1520                  *
1521                  * If "isn" is not zero, this request hit alive
1522                  * timewait bucket, so that all the necessary checks
1523                  * are made in the function processing timewait state.
1524                  */
1525                 if (tmp_opt.saw_tstamp &&
1526                     tcp_death_row.sysctl_tw_recycle &&
1527                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1528                     fl4.daddr == saddr) {
1529                         if (!tcp_peer_is_proven(req, dst, true)) {
1530                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1531                                 goto drop_and_release;
1532                         }
1533                 }
1534                 /* Kill the following clause, if you dislike this way. */
1535                 else if (!sysctl_tcp_syncookies &&
1536                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1537                           (sysctl_max_syn_backlog >> 2)) &&
1538                          !tcp_peer_is_proven(req, dst, false)) {
1539                         /* Without syncookies last quarter of
1540                          * backlog is filled with destinations,
1541                          * proven to be alive.
1542                          * It means that we continue to communicate
1543                          * to destinations, already remembered
1544                          * to the moment of synflood.
1545                          */
1546                         LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1547                                        &saddr, ntohs(tcp_hdr(skb)->source));
1548                         goto drop_and_release;
1549                 }
1550
1551                 isn = tcp_v4_init_sequence(skb);
1552         }
1553         tcp_rsk(req)->snt_isn = isn;
1554
1555         if (dst == NULL) {
1556                 dst = inet_csk_route_req(sk, &fl4, req);
1557                 if (dst == NULL)
1558                         goto drop_and_free;
1559         }
1560         do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1561
1562         /* We don't call tcp_v4_send_synack() directly because we need
1563          * to make sure a child socket can be created successfully before
1564          * sending back synack!
1565          *
1566          * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1567          * (or better yet, call tcp_send_synack() in the child context
1568          * directly, but will have to fix bunch of other code first)
1569          * after syn_recv_sock() except one will need to first fix the
1570          * latter to remove its dependency on the current implementation
1571          * of tcp_v4_send_synack()->tcp_select_initial_window().
1572          */
1573         skb_synack = tcp_make_synack(sk, dst, req,
1574             fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1575
1576         if (skb_synack) {
1577                 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1578                 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1579         } else
1580                 goto drop_and_free;
1581
1582         if (likely(!do_fastopen)) {
1583                 int err;
1584                 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1585                      ireq->rmt_addr, ireq->opt);
1586                 err = net_xmit_eval(err);
1587                 if (err || want_cookie)
1588                         goto drop_and_free;
1589
1590                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1591                 tcp_rsk(req)->listener = NULL;
1592                 /* Add the request_sock to the SYN table */
1593                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1594                 if (fastopen_cookie_present(&foc) && foc.len != 0)
1595                         NET_INC_STATS_BH(sock_net(sk),
1596                             LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1597         } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1598                 goto drop_and_free;
1599
1600         return 0;
1601
1602 drop_and_release:
1603         dst_release(dst);
1604 drop_and_free:
1605         reqsk_free(req);
1606 drop:
1607         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1608         return 0;
1609 }
1610 EXPORT_SYMBOL(tcp_v4_conn_request);
1611
1612
1613 /*
1614  * The three way handshake has completed - we got a valid synack -
1615  * now create the new socket.
1616  */
1617 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1618                                   struct request_sock *req,
1619                                   struct dst_entry *dst)
1620 {
1621         struct inet_request_sock *ireq;
1622         struct inet_sock *newinet;
1623         struct tcp_sock *newtp;
1624         struct sock *newsk;
1625 #ifdef CONFIG_TCP_MD5SIG
1626         struct tcp_md5sig_key *key;
1627 #endif
1628         struct ip_options_rcu *inet_opt;
1629
1630         if (sk_acceptq_is_full(sk))
1631                 goto exit_overflow;
1632
1633         newsk = tcp_create_openreq_child(sk, req, skb);
1634         if (!newsk)
1635                 goto exit_nonewsk;
1636
1637         newsk->sk_gso_type = SKB_GSO_TCPV4;
1638         inet_sk_rx_dst_set(newsk, skb);
1639
1640         newtp                 = tcp_sk(newsk);
1641         newinet               = inet_sk(newsk);
1642         ireq                  = inet_rsk(req);
1643         newinet->inet_daddr   = ireq->rmt_addr;
1644         newinet->inet_rcv_saddr = ireq->loc_addr;
1645         newinet->inet_saddr           = ireq->loc_addr;
1646         inet_opt              = ireq->opt;
1647         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1648         ireq->opt             = NULL;
1649         newinet->mc_index     = inet_iif(skb);
1650         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1651         newinet->rcv_tos      = ip_hdr(skb)->tos;
1652         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1653         if (inet_opt)
1654                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1655         newinet->inet_id = newtp->write_seq ^ jiffies;
1656
1657         if (!dst) {
1658                 dst = inet_csk_route_child_sock(sk, newsk, req);
1659                 if (!dst)
1660                         goto put_and_exit;
1661         } else {
1662                 /* syncookie case : see end of cookie_v4_check() */
1663         }
1664         sk_setup_caps(newsk, dst);
1665
1666         tcp_mtup_init(newsk);
1667         tcp_sync_mss(newsk, dst_mtu(dst));
1668         newtp->advmss = dst_metric_advmss(dst);
1669         if (tcp_sk(sk)->rx_opt.user_mss &&
1670             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1671                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1672
1673         tcp_initialize_rcv_mss(newsk);
1674         tcp_synack_rtt_meas(newsk, req);
1675         newtp->total_retrans = req->num_retrans;
1676
1677 #ifdef CONFIG_TCP_MD5SIG
1678         /* Copy over the MD5 key from the original socket */
1679         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1680                                 AF_INET);
1681         if (key != NULL) {
1682                 /*
1683                  * We're using one, so create a matching key
1684                  * on the newsk structure. If we fail to get
1685                  * memory, then we end up not copying the key
1686                  * across. Shucks.
1687                  */
1688                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1689                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1690                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1691         }
1692 #endif
1693
1694         if (__inet_inherit_port(sk, newsk) < 0)
1695                 goto put_and_exit;
1696         __inet_hash_nolisten(newsk, NULL);
1697
1698         return newsk;
1699
1700 exit_overflow:
1701         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1702 exit_nonewsk:
1703         dst_release(dst);
1704 exit:
1705         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1706         return NULL;
1707 put_and_exit:
1708         inet_csk_prepare_forced_close(newsk);
1709         tcp_done(newsk);
1710         goto exit;
1711 }
1712 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1713
1714 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1715 {
1716         struct tcphdr *th = tcp_hdr(skb);
1717         const struct iphdr *iph = ip_hdr(skb);
1718         struct sock *nsk;
1719         struct request_sock **prev;
1720         /* Find possible connection requests. */
1721         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1722                                                        iph->saddr, iph->daddr);
1723         if (req)
1724                 return tcp_check_req(sk, skb, req, prev, false);
1725
1726         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1727                         th->source, iph->daddr, th->dest, inet_iif(skb));
1728
1729         if (nsk) {
1730                 if (nsk->sk_state != TCP_TIME_WAIT) {
1731                         bh_lock_sock(nsk);
1732                         return nsk;
1733                 }
1734                 inet_twsk_put(inet_twsk(nsk));
1735                 return NULL;
1736         }
1737
1738 #ifdef CONFIG_SYN_COOKIES
1739         if (!th->syn)
1740                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1741 #endif
1742         return sk;
1743 }
1744
1745 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1746 {
1747         const struct iphdr *iph = ip_hdr(skb);
1748
1749         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1750                 if (!tcp_v4_check(skb->len, iph->saddr,
1751                                   iph->daddr, skb->csum)) {
1752                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1753                         return 0;
1754                 }
1755         }
1756
1757         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1758                                        skb->len, IPPROTO_TCP, 0);
1759
1760         if (skb->len <= 76) {
1761                 return __skb_checksum_complete(skb);
1762         }
1763         return 0;
1764 }
1765
1766
1767 /* The socket must have it's spinlock held when we get
1768  * here.
1769  *
1770  * We have a potential double-lock case here, so even when
1771  * doing backlog processing we use the BH locking scheme.
1772  * This is because we cannot sleep with the original spinlock
1773  * held.
1774  */
1775 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1776 {
1777         struct sock *rsk;
1778 #ifdef CONFIG_TCP_MD5SIG
1779         /*
1780          * We really want to reject the packet as early as possible
1781          * if:
1782          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1783          *  o There is an MD5 option and we're not expecting one
1784          */
1785         if (tcp_v4_inbound_md5_hash(sk, skb))
1786                 goto discard;
1787 #endif
1788
1789         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1790                 struct dst_entry *dst = sk->sk_rx_dst;
1791
1792                 sock_rps_save_rxhash(sk, skb);
1793                 if (dst) {
1794                         if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1795                             dst->ops->check(dst, 0) == NULL) {
1796                                 dst_release(dst);
1797                                 sk->sk_rx_dst = NULL;
1798                         }
1799                 }
1800                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1801                         rsk = sk;
1802                         goto reset;
1803                 }
1804                 return 0;
1805         }
1806
1807         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1808                 goto csum_err;
1809
1810         if (sk->sk_state == TCP_LISTEN) {
1811                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1812                 if (!nsk)
1813                         goto discard;
1814
1815                 if (nsk != sk) {
1816                         sock_rps_save_rxhash(nsk, skb);
1817                         if (tcp_child_process(sk, nsk, skb)) {
1818                                 rsk = nsk;
1819                                 goto reset;
1820                         }
1821                         return 0;
1822                 }
1823         } else
1824                 sock_rps_save_rxhash(sk, skb);
1825
1826         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1827                 rsk = sk;
1828                 goto reset;
1829         }
1830         return 0;
1831
1832 reset:
1833         tcp_v4_send_reset(rsk, skb);
1834 discard:
1835         kfree_skb(skb);
1836         /* Be careful here. If this function gets more complicated and
1837          * gcc suffers from register pressure on the x86, sk (in %ebx)
1838          * might be destroyed here. This current version compiles correctly,
1839          * but you have been warned.
1840          */
1841         return 0;
1842
1843 csum_err:
1844         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1845         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1846         goto discard;
1847 }
1848 EXPORT_SYMBOL(tcp_v4_do_rcv);
1849
1850 void tcp_v4_early_demux(struct sk_buff *skb)
1851 {
1852         const struct iphdr *iph;
1853         const struct tcphdr *th;
1854         struct sock *sk;
1855
1856         if (skb->pkt_type != PACKET_HOST)
1857                 return;
1858
1859         if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1860                 return;
1861
1862         iph = ip_hdr(skb);
1863         th = tcp_hdr(skb);
1864
1865         if (th->doff < sizeof(struct tcphdr) / 4)
1866                 return;
1867
1868         sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1869                                        iph->saddr, th->source,
1870                                        iph->daddr, ntohs(th->dest),
1871                                        skb->skb_iif);
1872         if (sk) {
1873                 skb->sk = sk;
1874                 skb->destructor = sock_edemux;
1875                 if (sk->sk_state != TCP_TIME_WAIT) {
1876                         struct dst_entry *dst = sk->sk_rx_dst;
1877
1878                         if (dst)
1879                                 dst = dst_check(dst, 0);
1880                         if (dst &&
1881                             inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1882                                 skb_dst_set_noref(skb, dst);
1883                 }
1884         }
1885 }
1886
1887 /* Packet is added to VJ-style prequeue for processing in process
1888  * context, if a reader task is waiting. Apparently, this exciting
1889  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1890  * failed somewhere. Latency? Burstiness? Well, at least now we will
1891  * see, why it failed. 8)8)                               --ANK
1892  *
1893  */
1894 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1895 {
1896         struct tcp_sock *tp = tcp_sk(sk);
1897
1898         if (sysctl_tcp_low_latency || !tp->ucopy.task)
1899                 return false;
1900
1901         if (skb->len <= tcp_hdrlen(skb) &&
1902             skb_queue_len(&tp->ucopy.prequeue) == 0)
1903                 return false;
1904
1905         skb_dst_force(skb);
1906         __skb_queue_tail(&tp->ucopy.prequeue, skb);
1907         tp->ucopy.memory += skb->truesize;
1908         if (tp->ucopy.memory > sk->sk_rcvbuf) {
1909                 struct sk_buff *skb1;
1910
1911                 BUG_ON(sock_owned_by_user(sk));
1912
1913                 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1914                         sk_backlog_rcv(sk, skb1);
1915                         NET_INC_STATS_BH(sock_net(sk),
1916                                          LINUX_MIB_TCPPREQUEUEDROPPED);
1917                 }
1918
1919                 tp->ucopy.memory = 0;
1920         } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1921                 wake_up_interruptible_sync_poll(sk_sleep(sk),
1922                                            POLLIN | POLLRDNORM | POLLRDBAND);
1923                 if (!inet_csk_ack_scheduled(sk))
1924                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1925                                                   (3 * tcp_rto_min(sk)) / 4,
1926                                                   TCP_RTO_MAX);
1927         }
1928         return true;
1929 }
1930 EXPORT_SYMBOL(tcp_prequeue);
1931
1932 /*
1933  *      From tcp_input.c
1934  */
1935
1936 int tcp_v4_rcv(struct sk_buff *skb)
1937 {
1938         const struct iphdr *iph;
1939         const struct tcphdr *th;
1940         struct sock *sk;
1941         int ret;
1942         struct net *net = dev_net(skb->dev);
1943
1944         if (skb->pkt_type != PACKET_HOST)
1945                 goto discard_it;
1946
1947         /* Count it even if it's bad */
1948         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1949
1950         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1951                 goto discard_it;
1952
1953         th = tcp_hdr(skb);
1954
1955         if (th->doff < sizeof(struct tcphdr) / 4)
1956                 goto bad_packet;
1957         if (!pskb_may_pull(skb, th->doff * 4))
1958                 goto discard_it;
1959
1960         /* An explanation is required here, I think.
1961          * Packet length and doff are validated by header prediction,
1962          * provided case of th->doff==0 is eliminated.
1963          * So, we defer the checks. */
1964         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1965                 goto csum_error;
1966
1967         th = tcp_hdr(skb);
1968         iph = ip_hdr(skb);
1969         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1970         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1971                                     skb->len - th->doff * 4);
1972         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1973         TCP_SKB_CB(skb)->when    = 0;
1974         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1975         TCP_SKB_CB(skb)->sacked  = 0;
1976
1977         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1978         if (!sk)
1979                 goto no_tcp_socket;
1980
1981 process:
1982         if (sk->sk_state == TCP_TIME_WAIT)
1983                 goto do_time_wait;
1984
1985         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1986                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1987                 goto discard_and_relse;
1988         }
1989
1990         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1991                 goto discard_and_relse;
1992         nf_reset(skb);
1993
1994         if (sk_filter(sk, skb))
1995                 goto discard_and_relse;
1996
1997         sk_mark_napi_id(sk, skb);
1998         skb->dev = NULL;
1999
2000         bh_lock_sock_nested(sk);
2001         ret = 0;
2002         if (!sock_owned_by_user(sk)) {
2003 #ifdef CONFIG_NET_DMA
2004                 struct tcp_sock *tp = tcp_sk(sk);
2005                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2006                         tp->ucopy.dma_chan = net_dma_find_channel();
2007                 if (tp->ucopy.dma_chan)
2008                         ret = tcp_v4_do_rcv(sk, skb);
2009                 else
2010 #endif
2011                 {
2012                         if (!tcp_prequeue(sk, skb))
2013                                 ret = tcp_v4_do_rcv(sk, skb);
2014                 }
2015         } else if (unlikely(sk_add_backlog(sk, skb,
2016                                            sk->sk_rcvbuf + sk->sk_sndbuf))) {
2017                 bh_unlock_sock(sk);
2018                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2019                 goto discard_and_relse;
2020         }
2021         bh_unlock_sock(sk);
2022
2023         sock_put(sk);
2024
2025         return ret;
2026
2027 no_tcp_socket:
2028         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2029                 goto discard_it;
2030
2031         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2032 csum_error:
2033                 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
2034 bad_packet:
2035                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2036         } else {
2037                 tcp_v4_send_reset(NULL, skb);
2038         }
2039
2040 discard_it:
2041         /* Discard frame. */
2042         kfree_skb(skb);
2043         return 0;
2044
2045 discard_and_relse:
2046         sock_put(sk);
2047         goto discard_it;
2048
2049 do_time_wait:
2050         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2051                 inet_twsk_put(inet_twsk(sk));
2052                 goto discard_it;
2053         }
2054
2055         if (skb->len < (th->doff << 2)) {
2056                 inet_twsk_put(inet_twsk(sk));
2057                 goto bad_packet;
2058         }
2059         if (tcp_checksum_complete(skb)) {
2060                 inet_twsk_put(inet_twsk(sk));
2061                 goto csum_error;
2062         }
2063         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2064         case TCP_TW_SYN: {
2065                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2066                                                         &tcp_hashinfo,
2067                                                         iph->saddr, th->source,
2068                                                         iph->daddr, th->dest,
2069                                                         inet_iif(skb));
2070                 if (sk2) {
2071                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2072                         inet_twsk_put(inet_twsk(sk));
2073                         sk = sk2;
2074                         goto process;
2075                 }
2076                 /* Fall through to ACK */
2077         }
2078         case TCP_TW_ACK:
2079                 tcp_v4_timewait_ack(sk, skb);
2080                 break;
2081         case TCP_TW_RST:
2082                 goto no_tcp_socket;
2083         case TCP_TW_SUCCESS:;
2084         }
2085         goto discard_it;
2086 }
2087
2088 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2089         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
2090         .twsk_unique    = tcp_twsk_unique,
2091         .twsk_destructor= tcp_twsk_destructor,
2092 };
2093
2094 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2095 {
2096         struct dst_entry *dst = skb_dst(skb);
2097
2098         dst_hold(dst);
2099         sk->sk_rx_dst = dst;
2100         inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2101 }
2102 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2103
2104 const struct inet_connection_sock_af_ops ipv4_specific = {
2105         .queue_xmit        = ip_queue_xmit,
2106         .send_check        = tcp_v4_send_check,
2107         .rebuild_header    = inet_sk_rebuild_header,
2108         .sk_rx_dst_set     = inet_sk_rx_dst_set,
2109         .conn_request      = tcp_v4_conn_request,
2110         .syn_recv_sock     = tcp_v4_syn_recv_sock,
2111         .net_header_len    = sizeof(struct iphdr),
2112         .setsockopt        = ip_setsockopt,
2113         .getsockopt        = ip_getsockopt,
2114         .addr2sockaddr     = inet_csk_addr2sockaddr,
2115         .sockaddr_len      = sizeof(struct sockaddr_in),
2116         .bind_conflict     = inet_csk_bind_conflict,
2117 #ifdef CONFIG_COMPAT
2118         .compat_setsockopt = compat_ip_setsockopt,
2119         .compat_getsockopt = compat_ip_getsockopt,
2120 #endif
2121 };
2122 EXPORT_SYMBOL(ipv4_specific);
2123
2124 #ifdef CONFIG_TCP_MD5SIG
2125 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2126         .md5_lookup             = tcp_v4_md5_lookup,
2127         .calc_md5_hash          = tcp_v4_md5_hash_skb,
2128         .md5_parse              = tcp_v4_parse_md5_keys,
2129 };
2130 #endif
2131
2132 /* NOTE: A lot of things set to zero explicitly by call to
2133  *       sk_alloc() so need not be done here.
2134  */
2135 static int tcp_v4_init_sock(struct sock *sk)
2136 {
2137         struct inet_connection_sock *icsk = inet_csk(sk);
2138
2139         tcp_init_sock(sk);
2140
2141         icsk->icsk_af_ops = &ipv4_specific;
2142
2143 #ifdef CONFIG_TCP_MD5SIG
2144         tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2145 #endif
2146
2147         return 0;
2148 }
2149
2150 void tcp_v4_destroy_sock(struct sock *sk)
2151 {
2152         struct tcp_sock *tp = tcp_sk(sk);
2153
2154         tcp_clear_xmit_timers(sk);
2155
2156         tcp_cleanup_congestion_control(sk);
2157
2158         /* Cleanup up the write buffer. */
2159         tcp_write_queue_purge(sk);
2160
2161         /* Cleans up our, hopefully empty, out_of_order_queue. */
2162         __skb_queue_purge(&tp->out_of_order_queue);
2163
2164 #ifdef CONFIG_TCP_MD5SIG
2165         /* Clean up the MD5 key list, if any */
2166         if (tp->md5sig_info) {
2167                 tcp_clear_md5_list(sk);
2168                 kfree_rcu(tp->md5sig_info, rcu);
2169                 tp->md5sig_info = NULL;
2170         }
2171 #endif
2172
2173 #ifdef CONFIG_NET_DMA
2174         /* Cleans up our sk_async_wait_queue */
2175         __skb_queue_purge(&sk->sk_async_wait_queue);
2176 #endif
2177
2178         /* Clean prequeue, it must be empty really */
2179         __skb_queue_purge(&tp->ucopy.prequeue);
2180
2181         /* Clean up a referenced TCP bind bucket. */
2182         if (inet_csk(sk)->icsk_bind_hash)
2183                 inet_put_port(sk);
2184
2185         BUG_ON(tp->fastopen_rsk != NULL);
2186
2187         /* If socket is aborted during connect operation */
2188         tcp_free_fastopen_req(tp);
2189
2190         sk_sockets_allocated_dec(sk);
2191         sock_release_memcg(sk);
2192 }
2193 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2194
2195 #ifdef CONFIG_PROC_FS
2196 /* Proc filesystem TCP sock list dumping. */
2197
2198 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2199 {
2200         return hlist_nulls_empty(head) ? NULL :
2201                 list_entry(head->first, struct inet_timewait_sock, tw_node);
2202 }
2203
2204 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2205 {
2206         return !is_a_nulls(tw->tw_node.next) ?
2207                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2208 }
2209
2210 /*
2211  * Get next listener socket follow cur.  If cur is NULL, get first socket
2212  * starting from bucket given in st->bucket; when st->bucket is zero the
2213  * very first socket in the hash table is returned.
2214  */
2215 static void *listening_get_next(struct seq_file *seq, void *cur)
2216 {
2217         struct inet_connection_sock *icsk;
2218         struct hlist_nulls_node *node;
2219         struct sock *sk = cur;
2220         struct inet_listen_hashbucket *ilb;
2221         struct tcp_iter_state *st = seq->private;
2222         struct net *net = seq_file_net(seq);
2223
2224         if (!sk) {
2225                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2226                 spin_lock_bh(&ilb->lock);
2227                 sk = sk_nulls_head(&ilb->head);
2228                 st->offset = 0;
2229                 goto get_sk;
2230         }
2231         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2232         ++st->num;
2233         ++st->offset;
2234
2235         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2236                 struct request_sock *req = cur;
2237
2238                 icsk = inet_csk(st->syn_wait_sk);
2239                 req = req->dl_next;
2240                 while (1) {
2241                         while (req) {
2242                                 if (req->rsk_ops->family == st->family) {
2243                                         cur = req;
2244                                         goto out;
2245                                 }
2246                                 req = req->dl_next;
2247                         }
2248                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2249                                 break;
2250 get_req:
2251                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2252                 }
2253                 sk        = sk_nulls_next(st->syn_wait_sk);
2254                 st->state = TCP_SEQ_STATE_LISTENING;
2255                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2256         } else {
2257                 icsk = inet_csk(sk);
2258                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2259                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2260                         goto start_req;
2261                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2262                 sk = sk_nulls_next(sk);
2263         }
2264 get_sk:
2265         sk_nulls_for_each_from(sk, node) {
2266                 if (!net_eq(sock_net(sk), net))
2267                         continue;
2268                 if (sk->sk_family == st->family) {
2269                         cur = sk;
2270                         goto out;
2271                 }
2272                 icsk = inet_csk(sk);
2273                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2274                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2275 start_req:
2276                         st->uid         = sock_i_uid(sk);
2277                         st->syn_wait_sk = sk;
2278                         st->state       = TCP_SEQ_STATE_OPENREQ;
2279                         st->sbucket     = 0;
2280                         goto get_req;
2281                 }
2282                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2283         }
2284         spin_unlock_bh(&ilb->lock);
2285         st->offset = 0;
2286         if (++st->bucket < INET_LHTABLE_SIZE) {
2287                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2288                 spin_lock_bh(&ilb->lock);
2289                 sk = sk_nulls_head(&ilb->head);
2290                 goto get_sk;
2291         }
2292         cur = NULL;
2293 out:
2294         return cur;
2295 }
2296
2297 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2298 {
2299         struct tcp_iter_state *st = seq->private;
2300         void *rc;
2301
2302         st->bucket = 0;
2303         st->offset = 0;
2304         rc = listening_get_next(seq, NULL);
2305
2306         while (rc && *pos) {
2307                 rc = listening_get_next(seq, rc);
2308                 --*pos;
2309         }
2310         return rc;
2311 }
2312
2313 static inline bool empty_bucket(struct tcp_iter_state *st)
2314 {
2315         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2316                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2317 }
2318
2319 /*
2320  * Get first established socket starting from bucket given in st->bucket.
2321  * If st->bucket is zero, the very first socket in the hash is returned.
2322  */
2323 static void *established_get_first(struct seq_file *seq)
2324 {
2325         struct tcp_iter_state *st = seq->private;
2326         struct net *net = seq_file_net(seq);
2327         void *rc = NULL;
2328
2329         st->offset = 0;
2330         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2331                 struct sock *sk;
2332                 struct hlist_nulls_node *node;
2333                 struct inet_timewait_sock *tw;
2334                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2335
2336                 /* Lockless fast path for the common case of empty buckets */
2337                 if (empty_bucket(st))
2338                         continue;
2339
2340                 spin_lock_bh(lock);
2341                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2342                         if (sk->sk_family != st->family ||
2343                             !net_eq(sock_net(sk), net)) {
2344                                 continue;
2345                         }
2346                         rc = sk;
2347                         goto out;
2348                 }
2349                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2350                 inet_twsk_for_each(tw, node,
2351                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2352                         if (tw->tw_family != st->family ||
2353                             !net_eq(twsk_net(tw), net)) {
2354                                 continue;
2355                         }
2356                         rc = tw;
2357                         goto out;
2358                 }
2359                 spin_unlock_bh(lock);
2360                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2361         }
2362 out:
2363         return rc;
2364 }
2365
2366 static void *established_get_next(struct seq_file *seq, void *cur)
2367 {
2368         struct sock *sk = cur;
2369         struct inet_timewait_sock *tw;
2370         struct hlist_nulls_node *node;
2371         struct tcp_iter_state *st = seq->private;
2372         struct net *net = seq_file_net(seq);
2373
2374         ++st->num;
2375         ++st->offset;
2376
2377         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2378                 tw = cur;
2379                 tw = tw_next(tw);
2380 get_tw:
2381                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2382                         tw = tw_next(tw);
2383                 }
2384                 if (tw) {
2385                         cur = tw;
2386                         goto out;
2387                 }
2388                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2389                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2390
2391                 /* Look for next non empty bucket */
2392                 st->offset = 0;
2393                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2394                                 empty_bucket(st))
2395                         ;
2396                 if (st->bucket > tcp_hashinfo.ehash_mask)
2397                         return NULL;
2398
2399                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2400                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2401         } else
2402                 sk = sk_nulls_next(sk);
2403
2404         sk_nulls_for_each_from(sk, node) {
2405                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2406                         goto found;
2407         }
2408
2409         st->state = TCP_SEQ_STATE_TIME_WAIT;
2410         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2411         goto get_tw;
2412 found:
2413         cur = sk;
2414 out:
2415         return cur;
2416 }
2417
2418 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2419 {
2420         struct tcp_iter_state *st = seq->private;
2421         void *rc;
2422
2423         st->bucket = 0;
2424         rc = established_get_first(seq);
2425
2426         while (rc && pos) {
2427                 rc = established_get_next(seq, rc);
2428                 --pos;
2429         }
2430         return rc;
2431 }
2432
2433 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2434 {
2435         void *rc;
2436         struct tcp_iter_state *st = seq->private;
2437
2438         st->state = TCP_SEQ_STATE_LISTENING;
2439         rc        = listening_get_idx(seq, &pos);
2440
2441         if (!rc) {
2442                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2443                 rc        = established_get_idx(seq, pos);
2444         }
2445
2446         return rc;
2447 }
2448
2449 static void *tcp_seek_last_pos(struct seq_file *seq)
2450 {
2451         struct tcp_iter_state *st = seq->private;
2452         int offset = st->offset;
2453         int orig_num = st->num;
2454         void *rc = NULL;
2455
2456         switch (st->state) {
2457         case TCP_SEQ_STATE_OPENREQ:
2458         case TCP_SEQ_STATE_LISTENING:
2459                 if (st->bucket >= INET_LHTABLE_SIZE)
2460                         break;
2461                 st->state = TCP_SEQ_STATE_LISTENING;
2462                 rc = listening_get_next(seq, NULL);
2463                 while (offset-- && rc)
2464                         rc = listening_get_next(seq, rc);
2465                 if (rc)
2466                         break;
2467                 st->bucket = 0;
2468                 /* Fallthrough */
2469         case TCP_SEQ_STATE_ESTABLISHED:
2470         case TCP_SEQ_STATE_TIME_WAIT:
2471                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2472                 if (st->bucket > tcp_hashinfo.ehash_mask)
2473                         break;
2474                 rc = established_get_first(seq);
2475                 while (offset-- && rc)
2476                         rc = established_get_next(seq, rc);
2477         }
2478
2479         st->num = orig_num;
2480
2481         return rc;
2482 }
2483
2484 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2485 {
2486         struct tcp_iter_state *st = seq->private;
2487         void *rc;
2488
2489         if (*pos && *pos == st->last_pos) {
2490                 rc = tcp_seek_last_pos(seq);
2491                 if (rc)
2492                         goto out;
2493         }
2494
2495         st->state = TCP_SEQ_STATE_LISTENING;
2496         st->num = 0;
2497         st->bucket = 0;
2498         st->offset = 0;
2499         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2500
2501 out:
2502         st->last_pos = *pos;
2503         return rc;
2504 }
2505
2506 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2507 {
2508         struct tcp_iter_state *st = seq->private;
2509         void *rc = NULL;
2510
2511         if (v == SEQ_START_TOKEN) {
2512                 rc = tcp_get_idx(seq, 0);
2513                 goto out;
2514         }
2515
2516         switch (st->state) {
2517         case TCP_SEQ_STATE_OPENREQ:
2518         case TCP_SEQ_STATE_LISTENING:
2519                 rc = listening_get_next(seq, v);
2520                 if (!rc) {
2521                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2522                         st->bucket = 0;
2523                         st->offset = 0;
2524                         rc        = established_get_first(seq);
2525                 }
2526                 break;
2527         case TCP_SEQ_STATE_ESTABLISHED:
2528         case TCP_SEQ_STATE_TIME_WAIT:
2529                 rc = established_get_next(seq, v);
2530                 break;
2531         }
2532 out:
2533         ++*pos;
2534         st->last_pos = *pos;
2535         return rc;
2536 }
2537
2538 static void tcp_seq_stop(struct seq_file *seq, void *v)
2539 {
2540         struct tcp_iter_state *st = seq->private;
2541
2542         switch (st->state) {
2543         case TCP_SEQ_STATE_OPENREQ:
2544                 if (v) {
2545                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2546                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2547                 }
2548         case TCP_SEQ_STATE_LISTENING:
2549                 if (v != SEQ_START_TOKEN)
2550                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2551                 break;
2552         case TCP_SEQ_STATE_TIME_WAIT:
2553         case TCP_SEQ_STATE_ESTABLISHED:
2554                 if (v)
2555                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2556                 break;
2557         }
2558 }
2559
2560 int tcp_seq_open(struct inode *inode, struct file *file)
2561 {
2562         struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2563         struct tcp_iter_state *s;
2564         int err;
2565
2566         err = seq_open_net(inode, file, &afinfo->seq_ops,
2567                           sizeof(struct tcp_iter_state));
2568         if (err < 0)
2569                 return err;
2570
2571         s = ((struct seq_file *)file->private_data)->private;
2572         s->family               = afinfo->family;
2573         s->last_pos             = 0;
2574         return 0;
2575 }
2576 EXPORT_SYMBOL(tcp_seq_open);
2577
2578 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2579 {
2580         int rc = 0;
2581         struct proc_dir_entry *p;
2582
2583         afinfo->seq_ops.start           = tcp_seq_start;
2584         afinfo->seq_ops.next            = tcp_seq_next;
2585         afinfo->seq_ops.stop            = tcp_seq_stop;
2586
2587         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2588                              afinfo->seq_fops, afinfo);
2589         if (!p)
2590                 rc = -ENOMEM;
2591         return rc;
2592 }
2593 EXPORT_SYMBOL(tcp_proc_register);
2594
2595 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2596 {
2597         remove_proc_entry(afinfo->name, net->proc_net);
2598 }
2599 EXPORT_SYMBOL(tcp_proc_unregister);
2600
2601 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2602                          struct seq_file *f, int i, kuid_t uid, int *len)
2603 {
2604         const struct inet_request_sock *ireq = inet_rsk(req);
2605         long delta = req->expires - jiffies;
2606
2607         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2608                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2609                 i,
2610                 ireq->loc_addr,
2611                 ntohs(inet_sk(sk)->inet_sport),
2612                 ireq->rmt_addr,
2613                 ntohs(ireq->rmt_port),
2614                 TCP_SYN_RECV,
2615                 0, 0, /* could print option size, but that is af dependent. */
2616                 1,    /* timers active (only the expire timer) */
2617                 jiffies_delta_to_clock_t(delta),
2618                 req->num_timeout,
2619                 from_kuid_munged(seq_user_ns(f), uid),
2620                 0,  /* non standard timer */
2621                 0, /* open_requests have no inode */
2622                 atomic_read(&sk->sk_refcnt),
2623                 req,
2624                 len);
2625 }
2626
2627 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2628 {
2629         int timer_active;
2630         unsigned long timer_expires;
2631         const struct tcp_sock *tp = tcp_sk(sk);
2632         const struct inet_connection_sock *icsk = inet_csk(sk);
2633         const struct inet_sock *inet = inet_sk(sk);
2634         struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2635         __be32 dest = inet->inet_daddr;
2636         __be32 src = inet->inet_rcv_saddr;
2637         __u16 destp = ntohs(inet->inet_dport);
2638         __u16 srcp = ntohs(inet->inet_sport);
2639         int rx_queue;
2640
2641         if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2642             icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2643             icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2644                 timer_active    = 1;
2645                 timer_expires   = icsk->icsk_timeout;
2646         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2647                 timer_active    = 4;
2648                 timer_expires   = icsk->icsk_timeout;
2649         } else if (timer_pending(&sk->sk_timer)) {
2650                 timer_active    = 2;
2651                 timer_expires   = sk->sk_timer.expires;
2652         } else {
2653                 timer_active    = 0;
2654                 timer_expires = jiffies;
2655         }
2656
2657         if (sk->sk_state == TCP_LISTEN)
2658                 rx_queue = sk->sk_ack_backlog;
2659         else
2660                 /*
2661                  * because we dont lock socket, we might find a transient negative value
2662                  */
2663                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2664
2665         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2666                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2667                 i, src, srcp, dest, destp, sk->sk_state,
2668                 tp->write_seq - tp->snd_una,
2669                 rx_queue,
2670                 timer_active,
2671                 jiffies_delta_to_clock_t(timer_expires - jiffies),
2672                 icsk->icsk_retransmits,
2673                 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2674                 icsk->icsk_probes_out,
2675                 sock_i_ino(sk),
2676                 atomic_read(&sk->sk_refcnt), sk,
2677                 jiffies_to_clock_t(icsk->icsk_rto),
2678                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2679                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2680                 tp->snd_cwnd,
2681                 sk->sk_state == TCP_LISTEN ?
2682                     (fastopenq ? fastopenq->max_qlen : 0) :
2683                     (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2684                 len);
2685 }
2686
2687 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2688                                struct seq_file *f, int i, int *len)
2689 {
2690         __be32 dest, src;
2691         __u16 destp, srcp;
2692         long delta = tw->tw_ttd - jiffies;
2693
2694         dest  = tw->tw_daddr;
2695         src   = tw->tw_rcv_saddr;
2696         destp = ntohs(tw->tw_dport);
2697         srcp  = ntohs(tw->tw_sport);
2698
2699         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2700                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2701                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2702                 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2703                 atomic_read(&tw->tw_refcnt), tw, len);
2704 }
2705
2706 #define TMPSZ 150
2707
2708 static int tcp4_seq_show(struct seq_file *seq, void *v)
2709 {
2710         struct tcp_iter_state *st;
2711         int len;
2712
2713         if (v == SEQ_START_TOKEN) {
2714                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2715                            "  sl  local_address rem_address   st tx_queue "
2716                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2717                            "inode");
2718                 goto out;
2719         }
2720         st = seq->private;
2721
2722         switch (st->state) {
2723         case TCP_SEQ_STATE_LISTENING:
2724         case TCP_SEQ_STATE_ESTABLISHED:
2725                 get_tcp4_sock(v, seq, st->num, &len);
2726                 break;
2727         case TCP_SEQ_STATE_OPENREQ:
2728                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2729                 break;
2730         case TCP_SEQ_STATE_TIME_WAIT:
2731                 get_timewait4_sock(v, seq, st->num, &len);
2732                 break;
2733         }
2734         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2735 out:
2736         return 0;
2737 }
2738
2739 static const struct file_operations tcp_afinfo_seq_fops = {
2740         .owner   = THIS_MODULE,
2741         .open    = tcp_seq_open,
2742         .read    = seq_read,
2743         .llseek  = seq_lseek,
2744         .release = seq_release_net
2745 };
2746
2747 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2748         .name           = "tcp",
2749         .family         = AF_INET,
2750         .seq_fops       = &tcp_afinfo_seq_fops,
2751         .seq_ops        = {
2752                 .show           = tcp4_seq_show,
2753         },
2754 };
2755
2756 static int __net_init tcp4_proc_init_net(struct net *net)
2757 {
2758         return tcp_proc_register(net, &tcp4_seq_afinfo);
2759 }
2760
2761 static void __net_exit tcp4_proc_exit_net(struct net *net)
2762 {
2763         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2764 }
2765
2766 static struct pernet_operations tcp4_net_ops = {
2767         .init = tcp4_proc_init_net,
2768         .exit = tcp4_proc_exit_net,
2769 };
2770
2771 int __init tcp4_proc_init(void)
2772 {
2773         return register_pernet_subsys(&tcp4_net_ops);
2774 }
2775
2776 void tcp4_proc_exit(void)
2777 {
2778         unregister_pernet_subsys(&tcp4_net_ops);
2779 }
2780 #endif /* CONFIG_PROC_FS */
2781
2782 struct proto tcp_prot = {
2783         .name                   = "TCP",
2784         .owner                  = THIS_MODULE,
2785         .close                  = tcp_close,
2786         .connect                = tcp_v4_connect,
2787         .disconnect             = tcp_disconnect,
2788         .accept                 = inet_csk_accept,
2789         .ioctl                  = tcp_ioctl,
2790         .init                   = tcp_v4_init_sock,
2791         .destroy                = tcp_v4_destroy_sock,
2792         .shutdown               = tcp_shutdown,
2793         .setsockopt             = tcp_setsockopt,
2794         .getsockopt             = tcp_getsockopt,
2795         .recvmsg                = tcp_recvmsg,
2796         .sendmsg                = tcp_sendmsg,
2797         .sendpage               = tcp_sendpage,
2798         .backlog_rcv            = tcp_v4_do_rcv,
2799         .release_cb             = tcp_release_cb,
2800         .mtu_reduced            = tcp_v4_mtu_reduced,
2801         .hash                   = inet_hash,
2802         .unhash                 = inet_unhash,
2803         .get_port               = inet_csk_get_port,
2804         .enter_memory_pressure  = tcp_enter_memory_pressure,
2805         .sockets_allocated      = &tcp_sockets_allocated,
2806         .orphan_count           = &tcp_orphan_count,
2807         .memory_allocated       = &tcp_memory_allocated,
2808         .memory_pressure        = &tcp_memory_pressure,
2809         .sysctl_wmem            = sysctl_tcp_wmem,
2810         .sysctl_rmem            = sysctl_tcp_rmem,
2811         .max_header             = MAX_TCP_HEADER,
2812         .obj_size               = sizeof(struct tcp_sock),
2813         .slab_flags             = SLAB_DESTROY_BY_RCU,
2814         .twsk_prot              = &tcp_timewait_sock_ops,
2815         .rsk_prot               = &tcp_request_sock_ops,
2816         .h.hashinfo             = &tcp_hashinfo,
2817         .no_autobind            = true,
2818 #ifdef CONFIG_COMPAT
2819         .compat_setsockopt      = compat_tcp_setsockopt,
2820         .compat_getsockopt      = compat_tcp_getsockopt,
2821 #endif
2822 #ifdef CONFIG_MEMCG_KMEM
2823         .init_cgroup            = tcp_init_cgroup,
2824         .destroy_cgroup         = tcp_destroy_cgroup,
2825         .proto_cgroup           = tcp_proto_cgroup,
2826 #endif
2827 };
2828 EXPORT_SYMBOL(tcp_prot);
2829
2830 static int __net_init tcp_sk_init(struct net *net)
2831 {
2832         net->ipv4.sysctl_tcp_ecn = 2;
2833         return 0;
2834 }
2835
2836 static void __net_exit tcp_sk_exit(struct net *net)
2837 {
2838 }
2839
2840 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2841 {
2842         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2843 }
2844
2845 static struct pernet_operations __net_initdata tcp_sk_ops = {
2846        .init       = tcp_sk_init,
2847        .exit       = tcp_sk_exit,
2848        .exit_batch = tcp_sk_exit_batch,
2849 };
2850
2851 void __init tcp_v4_init(void)
2852 {
2853         inet_hashinfo_init(&tcp_hashinfo);
2854         if (register_pernet_subsys(&tcp_sk_ops))
2855                 panic("Failed to create the TCP control socket.\n");
2856 }