Btrfs: handle quota reserve failure properly
[cascardo/linux.git] / net / ipv6 / ip6_fib.c
1 /*
2  *      Linux INET6 implementation
3  *      Forwarding Information Database
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *      Changes:
14  *      Yuji SEKIYA @USAGI:     Support default route on router node;
15  *                              remove ip6_null_entry from the top of
16  *                              routing table.
17  *      Ville Nuorvala:         Fixed routing subtrees.
18  */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39
40 #define RT6_DEBUG 2
41
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50 struct fib6_cleaner {
51         struct fib6_walker w;
52         struct net *net;
53         int (*func)(struct rt6_info *, void *arg);
54         int sernum;
55         void *arg;
56 };
57
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69
70 /*
71  *      A routing update causes an increase of the serial number on the
72  *      affected subtree. This allows for cached routes to be asynchronously
73  *      tested when modifications are made to the destination cache as a
74  *      result of redirects, path MTU changes, etc.
75  */
76
77 static void fib6_gc_timer_cb(unsigned long arg);
78
79 #define FOR_WALKERS(net, w) \
80         list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81
82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84         write_lock_bh(&net->ipv6.fib6_walker_lock);
85         list_add(&w->lh, &net->ipv6.fib6_walkers);
86         write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88
89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91         write_lock_bh(&net->ipv6.fib6_walker_lock);
92         list_del(&w->lh);
93         write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95
96 static int fib6_new_sernum(struct net *net)
97 {
98         int new, old;
99
100         do {
101                 old = atomic_read(&net->ipv6.fib6_sernum);
102                 new = old < INT_MAX ? old + 1 : 1;
103         } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104                                 old, new) != old);
105         return new;
106 }
107
108 enum {
109         FIB6_NO_SERNUM_CHANGE = 0,
110 };
111
112 /*
113  *      Auxiliary address test functions for the radix tree.
114  *
115  *      These assume a 32bit processor (although it will work on
116  *      64bit processors)
117  */
118
119 /*
120  *      test bit
121  */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE     (0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE     0
126 #endif
127
128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130         const __be32 *addr = token;
131         /*
132          * Here,
133          *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134          * is optimized version of
135          *      htonl(1 << ((~fn_bit)&0x1F))
136          * See include/asm-generic/bitops/le.h.
137          */
138         return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139                addr[fn_bit >> 5];
140 }
141
142 static struct fib6_node *node_alloc(void)
143 {
144         struct fib6_node *fn;
145
146         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147
148         return fn;
149 }
150
151 static void node_free(struct fib6_node *fn)
152 {
153         kmem_cache_free(fib6_node_kmem, fn);
154 }
155
156 static void rt6_rcu_free(struct rt6_info *rt)
157 {
158         call_rcu(&rt->dst.rcu_head, dst_rcu_free);
159 }
160
161 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
162 {
163         int cpu;
164
165         if (!non_pcpu_rt->rt6i_pcpu)
166                 return;
167
168         for_each_possible_cpu(cpu) {
169                 struct rt6_info **ppcpu_rt;
170                 struct rt6_info *pcpu_rt;
171
172                 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
173                 pcpu_rt = *ppcpu_rt;
174                 if (pcpu_rt) {
175                         rt6_rcu_free(pcpu_rt);
176                         *ppcpu_rt = NULL;
177                 }
178         }
179
180         non_pcpu_rt->rt6i_pcpu = NULL;
181 }
182
183 static void rt6_release(struct rt6_info *rt)
184 {
185         if (atomic_dec_and_test(&rt->rt6i_ref)) {
186                 rt6_free_pcpu(rt);
187                 rt6_rcu_free(rt);
188         }
189 }
190
191 static void fib6_link_table(struct net *net, struct fib6_table *tb)
192 {
193         unsigned int h;
194
195         /*
196          * Initialize table lock at a single place to give lockdep a key,
197          * tables aren't visible prior to being linked to the list.
198          */
199         rwlock_init(&tb->tb6_lock);
200
201         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
202
203         /*
204          * No protection necessary, this is the only list mutatation
205          * operation, tables never disappear once they exist.
206          */
207         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
208 }
209
210 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
211
212 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
213 {
214         struct fib6_table *table;
215
216         table = kzalloc(sizeof(*table), GFP_ATOMIC);
217         if (table) {
218                 table->tb6_id = id;
219                 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
220                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
221                 inet_peer_base_init(&table->tb6_peers);
222         }
223
224         return table;
225 }
226
227 struct fib6_table *fib6_new_table(struct net *net, u32 id)
228 {
229         struct fib6_table *tb;
230
231         if (id == 0)
232                 id = RT6_TABLE_MAIN;
233         tb = fib6_get_table(net, id);
234         if (tb)
235                 return tb;
236
237         tb = fib6_alloc_table(net, id);
238         if (tb)
239                 fib6_link_table(net, tb);
240
241         return tb;
242 }
243 EXPORT_SYMBOL_GPL(fib6_new_table);
244
245 struct fib6_table *fib6_get_table(struct net *net, u32 id)
246 {
247         struct fib6_table *tb;
248         struct hlist_head *head;
249         unsigned int h;
250
251         if (id == 0)
252                 id = RT6_TABLE_MAIN;
253         h = id & (FIB6_TABLE_HASHSZ - 1);
254         rcu_read_lock();
255         head = &net->ipv6.fib_table_hash[h];
256         hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
257                 if (tb->tb6_id == id) {
258                         rcu_read_unlock();
259                         return tb;
260                 }
261         }
262         rcu_read_unlock();
263
264         return NULL;
265 }
266 EXPORT_SYMBOL_GPL(fib6_get_table);
267
268 static void __net_init fib6_tables_init(struct net *net)
269 {
270         fib6_link_table(net, net->ipv6.fib6_main_tbl);
271         fib6_link_table(net, net->ipv6.fib6_local_tbl);
272 }
273 #else
274
275 struct fib6_table *fib6_new_table(struct net *net, u32 id)
276 {
277         return fib6_get_table(net, id);
278 }
279
280 struct fib6_table *fib6_get_table(struct net *net, u32 id)
281 {
282           return net->ipv6.fib6_main_tbl;
283 }
284
285 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
286                                    int flags, pol_lookup_t lookup)
287 {
288         struct rt6_info *rt;
289
290         rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
291         if (rt->rt6i_flags & RTF_REJECT &&
292             rt->dst.error == -EAGAIN) {
293                 ip6_rt_put(rt);
294                 rt = net->ipv6.ip6_null_entry;
295                 dst_hold(&rt->dst);
296         }
297
298         return &rt->dst;
299 }
300
301 static void __net_init fib6_tables_init(struct net *net)
302 {
303         fib6_link_table(net, net->ipv6.fib6_main_tbl);
304 }
305
306 #endif
307
308 static int fib6_dump_node(struct fib6_walker *w)
309 {
310         int res;
311         struct rt6_info *rt;
312
313         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
314                 res = rt6_dump_route(rt, w->args);
315                 if (res < 0) {
316                         /* Frame is full, suspend walking */
317                         w->leaf = rt;
318                         return 1;
319                 }
320         }
321         w->leaf = NULL;
322         return 0;
323 }
324
325 static void fib6_dump_end(struct netlink_callback *cb)
326 {
327         struct net *net = sock_net(cb->skb->sk);
328         struct fib6_walker *w = (void *)cb->args[2];
329
330         if (w) {
331                 if (cb->args[4]) {
332                         cb->args[4] = 0;
333                         fib6_walker_unlink(net, w);
334                 }
335                 cb->args[2] = 0;
336                 kfree(w);
337         }
338         cb->done = (void *)cb->args[3];
339         cb->args[1] = 3;
340 }
341
342 static int fib6_dump_done(struct netlink_callback *cb)
343 {
344         fib6_dump_end(cb);
345         return cb->done ? cb->done(cb) : 0;
346 }
347
348 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
349                            struct netlink_callback *cb)
350 {
351         struct net *net = sock_net(skb->sk);
352         struct fib6_walker *w;
353         int res;
354
355         w = (void *)cb->args[2];
356         w->root = &table->tb6_root;
357
358         if (cb->args[4] == 0) {
359                 w->count = 0;
360                 w->skip = 0;
361
362                 read_lock_bh(&table->tb6_lock);
363                 res = fib6_walk(net, w);
364                 read_unlock_bh(&table->tb6_lock);
365                 if (res > 0) {
366                         cb->args[4] = 1;
367                         cb->args[5] = w->root->fn_sernum;
368                 }
369         } else {
370                 if (cb->args[5] != w->root->fn_sernum) {
371                         /* Begin at the root if the tree changed */
372                         cb->args[5] = w->root->fn_sernum;
373                         w->state = FWS_INIT;
374                         w->node = w->root;
375                         w->skip = w->count;
376                 } else
377                         w->skip = 0;
378
379                 read_lock_bh(&table->tb6_lock);
380                 res = fib6_walk_continue(w);
381                 read_unlock_bh(&table->tb6_lock);
382                 if (res <= 0) {
383                         fib6_walker_unlink(net, w);
384                         cb->args[4] = 0;
385                 }
386         }
387
388         return res;
389 }
390
391 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
392 {
393         struct net *net = sock_net(skb->sk);
394         unsigned int h, s_h;
395         unsigned int e = 0, s_e;
396         struct rt6_rtnl_dump_arg arg;
397         struct fib6_walker *w;
398         struct fib6_table *tb;
399         struct hlist_head *head;
400         int res = 0;
401
402         s_h = cb->args[0];
403         s_e = cb->args[1];
404
405         w = (void *)cb->args[2];
406         if (!w) {
407                 /* New dump:
408                  *
409                  * 1. hook callback destructor.
410                  */
411                 cb->args[3] = (long)cb->done;
412                 cb->done = fib6_dump_done;
413
414                 /*
415                  * 2. allocate and initialize walker.
416                  */
417                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
418                 if (!w)
419                         return -ENOMEM;
420                 w->func = fib6_dump_node;
421                 cb->args[2] = (long)w;
422         }
423
424         arg.skb = skb;
425         arg.cb = cb;
426         arg.net = net;
427         w->args = &arg;
428
429         rcu_read_lock();
430         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
431                 e = 0;
432                 head = &net->ipv6.fib_table_hash[h];
433                 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
434                         if (e < s_e)
435                                 goto next;
436                         res = fib6_dump_table(tb, skb, cb);
437                         if (res != 0)
438                                 goto out;
439 next:
440                         e++;
441                 }
442         }
443 out:
444         rcu_read_unlock();
445         cb->args[1] = e;
446         cb->args[0] = h;
447
448         res = res < 0 ? res : skb->len;
449         if (res <= 0)
450                 fib6_dump_end(cb);
451         return res;
452 }
453
454 /*
455  *      Routing Table
456  *
457  *      return the appropriate node for a routing tree "add" operation
458  *      by either creating and inserting or by returning an existing
459  *      node.
460  */
461
462 static struct fib6_node *fib6_add_1(struct fib6_node *root,
463                                      struct in6_addr *addr, int plen,
464                                      int offset, int allow_create,
465                                      int replace_required, int sernum)
466 {
467         struct fib6_node *fn, *in, *ln;
468         struct fib6_node *pn = NULL;
469         struct rt6key *key;
470         int     bit;
471         __be32  dir = 0;
472
473         RT6_TRACE("fib6_add_1\n");
474
475         /* insert node in tree */
476
477         fn = root;
478
479         do {
480                 key = (struct rt6key *)((u8 *)fn->leaf + offset);
481
482                 /*
483                  *      Prefix match
484                  */
485                 if (plen < fn->fn_bit ||
486                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
487                         if (!allow_create) {
488                                 if (replace_required) {
489                                         pr_warn("Can't replace route, no match found\n");
490                                         return ERR_PTR(-ENOENT);
491                                 }
492                                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
493                         }
494                         goto insert_above;
495                 }
496
497                 /*
498                  *      Exact match ?
499                  */
500
501                 if (plen == fn->fn_bit) {
502                         /* clean up an intermediate node */
503                         if (!(fn->fn_flags & RTN_RTINFO)) {
504                                 rt6_release(fn->leaf);
505                                 fn->leaf = NULL;
506                         }
507
508                         fn->fn_sernum = sernum;
509
510                         return fn;
511                 }
512
513                 /*
514                  *      We have more bits to go
515                  */
516
517                 /* Try to walk down on tree. */
518                 fn->fn_sernum = sernum;
519                 dir = addr_bit_set(addr, fn->fn_bit);
520                 pn = fn;
521                 fn = dir ? fn->right : fn->left;
522         } while (fn);
523
524         if (!allow_create) {
525                 /* We should not create new node because
526                  * NLM_F_REPLACE was specified without NLM_F_CREATE
527                  * I assume it is safe to require NLM_F_CREATE when
528                  * REPLACE flag is used! Later we may want to remove the
529                  * check for replace_required, because according
530                  * to netlink specification, NLM_F_CREATE
531                  * MUST be specified if new route is created.
532                  * That would keep IPv6 consistent with IPv4
533                  */
534                 if (replace_required) {
535                         pr_warn("Can't replace route, no match found\n");
536                         return ERR_PTR(-ENOENT);
537                 }
538                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
539         }
540         /*
541          *      We walked to the bottom of tree.
542          *      Create new leaf node without children.
543          */
544
545         ln = node_alloc();
546
547         if (!ln)
548                 return ERR_PTR(-ENOMEM);
549         ln->fn_bit = plen;
550
551         ln->parent = pn;
552         ln->fn_sernum = sernum;
553
554         if (dir)
555                 pn->right = ln;
556         else
557                 pn->left  = ln;
558
559         return ln;
560
561
562 insert_above:
563         /*
564          * split since we don't have a common prefix anymore or
565          * we have a less significant route.
566          * we've to insert an intermediate node on the list
567          * this new node will point to the one we need to create
568          * and the current
569          */
570
571         pn = fn->parent;
572
573         /* find 1st bit in difference between the 2 addrs.
574
575            See comment in __ipv6_addr_diff: bit may be an invalid value,
576            but if it is >= plen, the value is ignored in any case.
577          */
578
579         bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
580
581         /*
582          *              (intermediate)[in]
583          *                /        \
584          *      (new leaf node)[ln] (old node)[fn]
585          */
586         if (plen > bit) {
587                 in = node_alloc();
588                 ln = node_alloc();
589
590                 if (!in || !ln) {
591                         if (in)
592                                 node_free(in);
593                         if (ln)
594                                 node_free(ln);
595                         return ERR_PTR(-ENOMEM);
596                 }
597
598                 /*
599                  * new intermediate node.
600                  * RTN_RTINFO will
601                  * be off since that an address that chooses one of
602                  * the branches would not match less specific routes
603                  * in the other branch
604                  */
605
606                 in->fn_bit = bit;
607
608                 in->parent = pn;
609                 in->leaf = fn->leaf;
610                 atomic_inc(&in->leaf->rt6i_ref);
611
612                 in->fn_sernum = sernum;
613
614                 /* update parent pointer */
615                 if (dir)
616                         pn->right = in;
617                 else
618                         pn->left  = in;
619
620                 ln->fn_bit = plen;
621
622                 ln->parent = in;
623                 fn->parent = in;
624
625                 ln->fn_sernum = sernum;
626
627                 if (addr_bit_set(addr, bit)) {
628                         in->right = ln;
629                         in->left  = fn;
630                 } else {
631                         in->left  = ln;
632                         in->right = fn;
633                 }
634         } else { /* plen <= bit */
635
636                 /*
637                  *              (new leaf node)[ln]
638                  *                /        \
639                  *           (old node)[fn] NULL
640                  */
641
642                 ln = node_alloc();
643
644                 if (!ln)
645                         return ERR_PTR(-ENOMEM);
646
647                 ln->fn_bit = plen;
648
649                 ln->parent = pn;
650
651                 ln->fn_sernum = sernum;
652
653                 if (dir)
654                         pn->right = ln;
655                 else
656                         pn->left  = ln;
657
658                 if (addr_bit_set(&key->addr, plen))
659                         ln->right = fn;
660                 else
661                         ln->left  = fn;
662
663                 fn->parent = ln;
664         }
665         return ln;
666 }
667
668 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
669 {
670         return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
671                RTF_GATEWAY;
672 }
673
674 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
675 {
676         int i;
677
678         for (i = 0; i < RTAX_MAX; i++) {
679                 if (test_bit(i, mxc->mx_valid))
680                         mp[i] = mxc->mx[i];
681         }
682 }
683
684 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
685 {
686         if (!mxc->mx)
687                 return 0;
688
689         if (dst->flags & DST_HOST) {
690                 u32 *mp = dst_metrics_write_ptr(dst);
691
692                 if (unlikely(!mp))
693                         return -ENOMEM;
694
695                 fib6_copy_metrics(mp, mxc);
696         } else {
697                 dst_init_metrics(dst, mxc->mx, false);
698
699                 /* We've stolen mx now. */
700                 mxc->mx = NULL;
701         }
702
703         return 0;
704 }
705
706 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
707                           struct net *net)
708 {
709         if (atomic_read(&rt->rt6i_ref) != 1) {
710                 /* This route is used as dummy address holder in some split
711                  * nodes. It is not leaked, but it still holds other resources,
712                  * which must be released in time. So, scan ascendant nodes
713                  * and replace dummy references to this route with references
714                  * to still alive ones.
715                  */
716                 while (fn) {
717                         if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
718                                 fn->leaf = fib6_find_prefix(net, fn);
719                                 atomic_inc(&fn->leaf->rt6i_ref);
720                                 rt6_release(rt);
721                         }
722                         fn = fn->parent;
723                 }
724                 /* No more references are possible at this point. */
725                 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
726         }
727 }
728
729 /*
730  *      Insert routing information in a node.
731  */
732
733 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
734                             struct nl_info *info, struct mx6_config *mxc)
735 {
736         struct rt6_info *iter = NULL;
737         struct rt6_info **ins;
738         struct rt6_info **fallback_ins = NULL;
739         int replace = (info->nlh &&
740                        (info->nlh->nlmsg_flags & NLM_F_REPLACE));
741         int add = (!info->nlh ||
742                    (info->nlh->nlmsg_flags & NLM_F_CREATE));
743         int found = 0;
744         bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
745         int err;
746
747         ins = &fn->leaf;
748
749         for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
750                 /*
751                  *      Search for duplicates
752                  */
753
754                 if (iter->rt6i_metric == rt->rt6i_metric) {
755                         /*
756                          *      Same priority level
757                          */
758                         if (info->nlh &&
759                             (info->nlh->nlmsg_flags & NLM_F_EXCL))
760                                 return -EEXIST;
761                         if (replace) {
762                                 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
763                                         found++;
764                                         break;
765                                 }
766                                 if (rt_can_ecmp)
767                                         fallback_ins = fallback_ins ?: ins;
768                                 goto next_iter;
769                         }
770
771                         if (iter->dst.dev == rt->dst.dev &&
772                             iter->rt6i_idev == rt->rt6i_idev &&
773                             ipv6_addr_equal(&iter->rt6i_gateway,
774                                             &rt->rt6i_gateway)) {
775                                 if (rt->rt6i_nsiblings)
776                                         rt->rt6i_nsiblings = 0;
777                                 if (!(iter->rt6i_flags & RTF_EXPIRES))
778                                         return -EEXIST;
779                                 if (!(rt->rt6i_flags & RTF_EXPIRES))
780                                         rt6_clean_expires(iter);
781                                 else
782                                         rt6_set_expires(iter, rt->dst.expires);
783                                 iter->rt6i_pmtu = rt->rt6i_pmtu;
784                                 return -EEXIST;
785                         }
786                         /* If we have the same destination and the same metric,
787                          * but not the same gateway, then the route we try to
788                          * add is sibling to this route, increment our counter
789                          * of siblings, and later we will add our route to the
790                          * list.
791                          * Only static routes (which don't have flag
792                          * RTF_EXPIRES) are used for ECMPv6.
793                          *
794                          * To avoid long list, we only had siblings if the
795                          * route have a gateway.
796                          */
797                         if (rt_can_ecmp &&
798                             rt6_qualify_for_ecmp(iter))
799                                 rt->rt6i_nsiblings++;
800                 }
801
802                 if (iter->rt6i_metric > rt->rt6i_metric)
803                         break;
804
805 next_iter:
806                 ins = &iter->dst.rt6_next;
807         }
808
809         if (fallback_ins && !found) {
810                 /* No ECMP-able route found, replace first non-ECMP one */
811                 ins = fallback_ins;
812                 iter = *ins;
813                 found++;
814         }
815
816         /* Reset round-robin state, if necessary */
817         if (ins == &fn->leaf)
818                 fn->rr_ptr = NULL;
819
820         /* Link this route to others same route. */
821         if (rt->rt6i_nsiblings) {
822                 unsigned int rt6i_nsiblings;
823                 struct rt6_info *sibling, *temp_sibling;
824
825                 /* Find the first route that have the same metric */
826                 sibling = fn->leaf;
827                 while (sibling) {
828                         if (sibling->rt6i_metric == rt->rt6i_metric &&
829                             rt6_qualify_for_ecmp(sibling)) {
830                                 list_add_tail(&rt->rt6i_siblings,
831                                               &sibling->rt6i_siblings);
832                                 break;
833                         }
834                         sibling = sibling->dst.rt6_next;
835                 }
836                 /* For each sibling in the list, increment the counter of
837                  * siblings. BUG() if counters does not match, list of siblings
838                  * is broken!
839                  */
840                 rt6i_nsiblings = 0;
841                 list_for_each_entry_safe(sibling, temp_sibling,
842                                          &rt->rt6i_siblings, rt6i_siblings) {
843                         sibling->rt6i_nsiblings++;
844                         BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
845                         rt6i_nsiblings++;
846                 }
847                 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
848         }
849
850         /*
851          *      insert node
852          */
853         if (!replace) {
854                 if (!add)
855                         pr_warn("NLM_F_CREATE should be set when creating new route\n");
856
857 add:
858                 err = fib6_commit_metrics(&rt->dst, mxc);
859                 if (err)
860                         return err;
861
862                 rt->dst.rt6_next = iter;
863                 *ins = rt;
864                 rt->rt6i_node = fn;
865                 atomic_inc(&rt->rt6i_ref);
866                 inet6_rt_notify(RTM_NEWROUTE, rt, info, 0);
867                 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
868
869                 if (!(fn->fn_flags & RTN_RTINFO)) {
870                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
871                         fn->fn_flags |= RTN_RTINFO;
872                 }
873
874         } else {
875                 int nsiblings;
876
877                 if (!found) {
878                         if (add)
879                                 goto add;
880                         pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
881                         return -ENOENT;
882                 }
883
884                 err = fib6_commit_metrics(&rt->dst, mxc);
885                 if (err)
886                         return err;
887
888                 *ins = rt;
889                 rt->rt6i_node = fn;
890                 rt->dst.rt6_next = iter->dst.rt6_next;
891                 atomic_inc(&rt->rt6i_ref);
892                 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
893                 if (!(fn->fn_flags & RTN_RTINFO)) {
894                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
895                         fn->fn_flags |= RTN_RTINFO;
896                 }
897                 nsiblings = iter->rt6i_nsiblings;
898                 fib6_purge_rt(iter, fn, info->nl_net);
899                 rt6_release(iter);
900
901                 if (nsiblings) {
902                         /* Replacing an ECMP route, remove all siblings */
903                         ins = &rt->dst.rt6_next;
904                         iter = *ins;
905                         while (iter) {
906                                 if (rt6_qualify_for_ecmp(iter)) {
907                                         *ins = iter->dst.rt6_next;
908                                         fib6_purge_rt(iter, fn, info->nl_net);
909                                         rt6_release(iter);
910                                         nsiblings--;
911                                 } else {
912                                         ins = &iter->dst.rt6_next;
913                                 }
914                                 iter = *ins;
915                         }
916                         WARN_ON(nsiblings != 0);
917                 }
918         }
919
920         return 0;
921 }
922
923 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
924 {
925         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
926             (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
927                 mod_timer(&net->ipv6.ip6_fib_timer,
928                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
929 }
930
931 void fib6_force_start_gc(struct net *net)
932 {
933         if (!timer_pending(&net->ipv6.ip6_fib_timer))
934                 mod_timer(&net->ipv6.ip6_fib_timer,
935                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
936 }
937
938 /*
939  *      Add routing information to the routing tree.
940  *      <destination addr>/<source addr>
941  *      with source addr info in sub-trees
942  */
943
944 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
945              struct nl_info *info, struct mx6_config *mxc)
946 {
947         struct fib6_node *fn, *pn = NULL;
948         int err = -ENOMEM;
949         int allow_create = 1;
950         int replace_required = 0;
951         int sernum = fib6_new_sernum(info->nl_net);
952
953         if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
954                          !atomic_read(&rt->dst.__refcnt)))
955                 return -EINVAL;
956
957         if (info->nlh) {
958                 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
959                         allow_create = 0;
960                 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
961                         replace_required = 1;
962         }
963         if (!allow_create && !replace_required)
964                 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
965
966         fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
967                         offsetof(struct rt6_info, rt6i_dst), allow_create,
968                         replace_required, sernum);
969         if (IS_ERR(fn)) {
970                 err = PTR_ERR(fn);
971                 fn = NULL;
972                 goto out;
973         }
974
975         pn = fn;
976
977 #ifdef CONFIG_IPV6_SUBTREES
978         if (rt->rt6i_src.plen) {
979                 struct fib6_node *sn;
980
981                 if (!fn->subtree) {
982                         struct fib6_node *sfn;
983
984                         /*
985                          * Create subtree.
986                          *
987                          *              fn[main tree]
988                          *              |
989                          *              sfn[subtree root]
990                          *                 \
991                          *                  sn[new leaf node]
992                          */
993
994                         /* Create subtree root node */
995                         sfn = node_alloc();
996                         if (!sfn)
997                                 goto st_failure;
998
999                         sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1000                         atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1001                         sfn->fn_flags = RTN_ROOT;
1002                         sfn->fn_sernum = sernum;
1003
1004                         /* Now add the first leaf node to new subtree */
1005
1006                         sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1007                                         rt->rt6i_src.plen,
1008                                         offsetof(struct rt6_info, rt6i_src),
1009                                         allow_create, replace_required, sernum);
1010
1011                         if (IS_ERR(sn)) {
1012                                 /* If it is failed, discard just allocated
1013                                    root, and then (in st_failure) stale node
1014                                    in main tree.
1015                                  */
1016                                 node_free(sfn);
1017                                 err = PTR_ERR(sn);
1018                                 goto st_failure;
1019                         }
1020
1021                         /* Now link new subtree to main tree */
1022                         sfn->parent = fn;
1023                         fn->subtree = sfn;
1024                 } else {
1025                         sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1026                                         rt->rt6i_src.plen,
1027                                         offsetof(struct rt6_info, rt6i_src),
1028                                         allow_create, replace_required, sernum);
1029
1030                         if (IS_ERR(sn)) {
1031                                 err = PTR_ERR(sn);
1032                                 goto st_failure;
1033                         }
1034                 }
1035
1036                 if (!fn->leaf) {
1037                         fn->leaf = rt;
1038                         atomic_inc(&rt->rt6i_ref);
1039                 }
1040                 fn = sn;
1041         }
1042 #endif
1043
1044         err = fib6_add_rt2node(fn, rt, info, mxc);
1045         if (!err) {
1046                 fib6_start_gc(info->nl_net, rt);
1047                 if (!(rt->rt6i_flags & RTF_CACHE))
1048                         fib6_prune_clones(info->nl_net, pn);
1049                 rt->dst.flags &= ~DST_NOCACHE;
1050         }
1051
1052 out:
1053         if (err) {
1054 #ifdef CONFIG_IPV6_SUBTREES
1055                 /*
1056                  * If fib6_add_1 has cleared the old leaf pointer in the
1057                  * super-tree leaf node we have to find a new one for it.
1058                  */
1059                 if (pn != fn && pn->leaf == rt) {
1060                         pn->leaf = NULL;
1061                         atomic_dec(&rt->rt6i_ref);
1062                 }
1063                 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1064                         pn->leaf = fib6_find_prefix(info->nl_net, pn);
1065 #if RT6_DEBUG >= 2
1066                         if (!pn->leaf) {
1067                                 WARN_ON(pn->leaf == NULL);
1068                                 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1069                         }
1070 #endif
1071                         atomic_inc(&pn->leaf->rt6i_ref);
1072                 }
1073 #endif
1074                 if (!(rt->dst.flags & DST_NOCACHE))
1075                         dst_free(&rt->dst);
1076         }
1077         return err;
1078
1079 #ifdef CONFIG_IPV6_SUBTREES
1080         /* Subtree creation failed, probably main tree node
1081            is orphan. If it is, shoot it.
1082          */
1083 st_failure:
1084         if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1085                 fib6_repair_tree(info->nl_net, fn);
1086         if (!(rt->dst.flags & DST_NOCACHE))
1087                 dst_free(&rt->dst);
1088         return err;
1089 #endif
1090 }
1091
1092 /*
1093  *      Routing tree lookup
1094  *
1095  */
1096
1097 struct lookup_args {
1098         int                     offset;         /* key offset on rt6_info       */
1099         const struct in6_addr   *addr;          /* search key                   */
1100 };
1101
1102 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1103                                        struct lookup_args *args)
1104 {
1105         struct fib6_node *fn;
1106         __be32 dir;
1107
1108         if (unlikely(args->offset == 0))
1109                 return NULL;
1110
1111         /*
1112          *      Descend on a tree
1113          */
1114
1115         fn = root;
1116
1117         for (;;) {
1118                 struct fib6_node *next;
1119
1120                 dir = addr_bit_set(args->addr, fn->fn_bit);
1121
1122                 next = dir ? fn->right : fn->left;
1123
1124                 if (next) {
1125                         fn = next;
1126                         continue;
1127                 }
1128                 break;
1129         }
1130
1131         while (fn) {
1132                 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1133                         struct rt6key *key;
1134
1135                         key = (struct rt6key *) ((u8 *) fn->leaf +
1136                                                  args->offset);
1137
1138                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1139 #ifdef CONFIG_IPV6_SUBTREES
1140                                 if (fn->subtree) {
1141                                         struct fib6_node *sfn;
1142                                         sfn = fib6_lookup_1(fn->subtree,
1143                                                             args + 1);
1144                                         if (!sfn)
1145                                                 goto backtrack;
1146                                         fn = sfn;
1147                                 }
1148 #endif
1149                                 if (fn->fn_flags & RTN_RTINFO)
1150                                         return fn;
1151                         }
1152                 }
1153 #ifdef CONFIG_IPV6_SUBTREES
1154 backtrack:
1155 #endif
1156                 if (fn->fn_flags & RTN_ROOT)
1157                         break;
1158
1159                 fn = fn->parent;
1160         }
1161
1162         return NULL;
1163 }
1164
1165 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1166                               const struct in6_addr *saddr)
1167 {
1168         struct fib6_node *fn;
1169         struct lookup_args args[] = {
1170                 {
1171                         .offset = offsetof(struct rt6_info, rt6i_dst),
1172                         .addr = daddr,
1173                 },
1174 #ifdef CONFIG_IPV6_SUBTREES
1175                 {
1176                         .offset = offsetof(struct rt6_info, rt6i_src),
1177                         .addr = saddr,
1178                 },
1179 #endif
1180                 {
1181                         .offset = 0,    /* sentinel */
1182                 }
1183         };
1184
1185         fn = fib6_lookup_1(root, daddr ? args : args + 1);
1186         if (!fn || fn->fn_flags & RTN_TL_ROOT)
1187                 fn = root;
1188
1189         return fn;
1190 }
1191
1192 /*
1193  *      Get node with specified destination prefix (and source prefix,
1194  *      if subtrees are used)
1195  */
1196
1197
1198 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1199                                        const struct in6_addr *addr,
1200                                        int plen, int offset)
1201 {
1202         struct fib6_node *fn;
1203
1204         for (fn = root; fn ; ) {
1205                 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1206
1207                 /*
1208                  *      Prefix match
1209                  */
1210                 if (plen < fn->fn_bit ||
1211                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1212                         return NULL;
1213
1214                 if (plen == fn->fn_bit)
1215                         return fn;
1216
1217                 /*
1218                  *      We have more bits to go
1219                  */
1220                 if (addr_bit_set(addr, fn->fn_bit))
1221                         fn = fn->right;
1222                 else
1223                         fn = fn->left;
1224         }
1225         return NULL;
1226 }
1227
1228 struct fib6_node *fib6_locate(struct fib6_node *root,
1229                               const struct in6_addr *daddr, int dst_len,
1230                               const struct in6_addr *saddr, int src_len)
1231 {
1232         struct fib6_node *fn;
1233
1234         fn = fib6_locate_1(root, daddr, dst_len,
1235                            offsetof(struct rt6_info, rt6i_dst));
1236
1237 #ifdef CONFIG_IPV6_SUBTREES
1238         if (src_len) {
1239                 WARN_ON(saddr == NULL);
1240                 if (fn && fn->subtree)
1241                         fn = fib6_locate_1(fn->subtree, saddr, src_len,
1242                                            offsetof(struct rt6_info, rt6i_src));
1243         }
1244 #endif
1245
1246         if (fn && fn->fn_flags & RTN_RTINFO)
1247                 return fn;
1248
1249         return NULL;
1250 }
1251
1252
1253 /*
1254  *      Deletion
1255  *
1256  */
1257
1258 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1259 {
1260         if (fn->fn_flags & RTN_ROOT)
1261                 return net->ipv6.ip6_null_entry;
1262
1263         while (fn) {
1264                 if (fn->left)
1265                         return fn->left->leaf;
1266                 if (fn->right)
1267                         return fn->right->leaf;
1268
1269                 fn = FIB6_SUBTREE(fn);
1270         }
1271         return NULL;
1272 }
1273
1274 /*
1275  *      Called to trim the tree of intermediate nodes when possible. "fn"
1276  *      is the node we want to try and remove.
1277  */
1278
1279 static struct fib6_node *fib6_repair_tree(struct net *net,
1280                                            struct fib6_node *fn)
1281 {
1282         int children;
1283         int nstate;
1284         struct fib6_node *child, *pn;
1285         struct fib6_walker *w;
1286         int iter = 0;
1287
1288         for (;;) {
1289                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1290                 iter++;
1291
1292                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1293                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1294                 WARN_ON(fn->leaf);
1295
1296                 children = 0;
1297                 child = NULL;
1298                 if (fn->right)
1299                         child = fn->right, children |= 1;
1300                 if (fn->left)
1301                         child = fn->left, children |= 2;
1302
1303                 if (children == 3 || FIB6_SUBTREE(fn)
1304 #ifdef CONFIG_IPV6_SUBTREES
1305                     /* Subtree root (i.e. fn) may have one child */
1306                     || (children && fn->fn_flags & RTN_ROOT)
1307 #endif
1308                     ) {
1309                         fn->leaf = fib6_find_prefix(net, fn);
1310 #if RT6_DEBUG >= 2
1311                         if (!fn->leaf) {
1312                                 WARN_ON(!fn->leaf);
1313                                 fn->leaf = net->ipv6.ip6_null_entry;
1314                         }
1315 #endif
1316                         atomic_inc(&fn->leaf->rt6i_ref);
1317                         return fn->parent;
1318                 }
1319
1320                 pn = fn->parent;
1321 #ifdef CONFIG_IPV6_SUBTREES
1322                 if (FIB6_SUBTREE(pn) == fn) {
1323                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1324                         FIB6_SUBTREE(pn) = NULL;
1325                         nstate = FWS_L;
1326                 } else {
1327                         WARN_ON(fn->fn_flags & RTN_ROOT);
1328 #endif
1329                         if (pn->right == fn)
1330                                 pn->right = child;
1331                         else if (pn->left == fn)
1332                                 pn->left = child;
1333 #if RT6_DEBUG >= 2
1334                         else
1335                                 WARN_ON(1);
1336 #endif
1337                         if (child)
1338                                 child->parent = pn;
1339                         nstate = FWS_R;
1340 #ifdef CONFIG_IPV6_SUBTREES
1341                 }
1342 #endif
1343
1344                 read_lock(&net->ipv6.fib6_walker_lock);
1345                 FOR_WALKERS(net, w) {
1346                         if (!child) {
1347                                 if (w->root == fn) {
1348                                         w->root = w->node = NULL;
1349                                         RT6_TRACE("W %p adjusted by delroot 1\n", w);
1350                                 } else if (w->node == fn) {
1351                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1352                                         w->node = pn;
1353                                         w->state = nstate;
1354                                 }
1355                         } else {
1356                                 if (w->root == fn) {
1357                                         w->root = child;
1358                                         RT6_TRACE("W %p adjusted by delroot 2\n", w);
1359                                 }
1360                                 if (w->node == fn) {
1361                                         w->node = child;
1362                                         if (children&2) {
1363                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1364                                                 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1365                                         } else {
1366                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1367                                                 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1368                                         }
1369                                 }
1370                         }
1371                 }
1372                 read_unlock(&net->ipv6.fib6_walker_lock);
1373
1374                 node_free(fn);
1375                 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1376                         return pn;
1377
1378                 rt6_release(pn->leaf);
1379                 pn->leaf = NULL;
1380                 fn = pn;
1381         }
1382 }
1383
1384 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1385                            struct nl_info *info)
1386 {
1387         struct fib6_walker *w;
1388         struct rt6_info *rt = *rtp;
1389         struct net *net = info->nl_net;
1390
1391         RT6_TRACE("fib6_del_route\n");
1392
1393         /* Unlink it */
1394         *rtp = rt->dst.rt6_next;
1395         rt->rt6i_node = NULL;
1396         net->ipv6.rt6_stats->fib_rt_entries--;
1397         net->ipv6.rt6_stats->fib_discarded_routes++;
1398
1399         /* Reset round-robin state, if necessary */
1400         if (fn->rr_ptr == rt)
1401                 fn->rr_ptr = NULL;
1402
1403         /* Remove this entry from other siblings */
1404         if (rt->rt6i_nsiblings) {
1405                 struct rt6_info *sibling, *next_sibling;
1406
1407                 list_for_each_entry_safe(sibling, next_sibling,
1408                                          &rt->rt6i_siblings, rt6i_siblings)
1409                         sibling->rt6i_nsiblings--;
1410                 rt->rt6i_nsiblings = 0;
1411                 list_del_init(&rt->rt6i_siblings);
1412         }
1413
1414         /* Adjust walkers */
1415         read_lock(&net->ipv6.fib6_walker_lock);
1416         FOR_WALKERS(net, w) {
1417                 if (w->state == FWS_C && w->leaf == rt) {
1418                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1419                         w->leaf = rt->dst.rt6_next;
1420                         if (!w->leaf)
1421                                 w->state = FWS_U;
1422                 }
1423         }
1424         read_unlock(&net->ipv6.fib6_walker_lock);
1425
1426         rt->dst.rt6_next = NULL;
1427
1428         /* If it was last route, expunge its radix tree node */
1429         if (!fn->leaf) {
1430                 fn->fn_flags &= ~RTN_RTINFO;
1431                 net->ipv6.rt6_stats->fib_route_nodes--;
1432                 fn = fib6_repair_tree(net, fn);
1433         }
1434
1435         fib6_purge_rt(rt, fn, net);
1436
1437         inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1438         rt6_release(rt);
1439 }
1440
1441 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1442 {
1443         struct net *net = info->nl_net;
1444         struct fib6_node *fn = rt->rt6i_node;
1445         struct rt6_info **rtp;
1446
1447 #if RT6_DEBUG >= 2
1448         if (rt->dst.obsolete > 0) {
1449                 WARN_ON(fn);
1450                 return -ENOENT;
1451         }
1452 #endif
1453         if (!fn || rt == net->ipv6.ip6_null_entry)
1454                 return -ENOENT;
1455
1456         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1457
1458         if (!(rt->rt6i_flags & RTF_CACHE)) {
1459                 struct fib6_node *pn = fn;
1460 #ifdef CONFIG_IPV6_SUBTREES
1461                 /* clones of this route might be in another subtree */
1462                 if (rt->rt6i_src.plen) {
1463                         while (!(pn->fn_flags & RTN_ROOT))
1464                                 pn = pn->parent;
1465                         pn = pn->parent;
1466                 }
1467 #endif
1468                 fib6_prune_clones(info->nl_net, pn);
1469         }
1470
1471         /*
1472          *      Walk the leaf entries looking for ourself
1473          */
1474
1475         for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1476                 if (*rtp == rt) {
1477                         fib6_del_route(fn, rtp, info);
1478                         return 0;
1479                 }
1480         }
1481         return -ENOENT;
1482 }
1483
1484 /*
1485  *      Tree traversal function.
1486  *
1487  *      Certainly, it is not interrupt safe.
1488  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1489  *      It means, that we can modify tree during walking
1490  *      and use this function for garbage collection, clone pruning,
1491  *      cleaning tree when a device goes down etc. etc.
1492  *
1493  *      It guarantees that every node will be traversed,
1494  *      and that it will be traversed only once.
1495  *
1496  *      Callback function w->func may return:
1497  *      0 -> continue walking.
1498  *      positive value -> walking is suspended (used by tree dumps,
1499  *      and probably by gc, if it will be split to several slices)
1500  *      negative value -> terminate walking.
1501  *
1502  *      The function itself returns:
1503  *      0   -> walk is complete.
1504  *      >0  -> walk is incomplete (i.e. suspended)
1505  *      <0  -> walk is terminated by an error.
1506  */
1507
1508 static int fib6_walk_continue(struct fib6_walker *w)
1509 {
1510         struct fib6_node *fn, *pn;
1511
1512         for (;;) {
1513                 fn = w->node;
1514                 if (!fn)
1515                         return 0;
1516
1517                 if (w->prune && fn != w->root &&
1518                     fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1519                         w->state = FWS_C;
1520                         w->leaf = fn->leaf;
1521                 }
1522                 switch (w->state) {
1523 #ifdef CONFIG_IPV6_SUBTREES
1524                 case FWS_S:
1525                         if (FIB6_SUBTREE(fn)) {
1526                                 w->node = FIB6_SUBTREE(fn);
1527                                 continue;
1528                         }
1529                         w->state = FWS_L;
1530 #endif
1531                 case FWS_L:
1532                         if (fn->left) {
1533                                 w->node = fn->left;
1534                                 w->state = FWS_INIT;
1535                                 continue;
1536                         }
1537                         w->state = FWS_R;
1538                 case FWS_R:
1539                         if (fn->right) {
1540                                 w->node = fn->right;
1541                                 w->state = FWS_INIT;
1542                                 continue;
1543                         }
1544                         w->state = FWS_C;
1545                         w->leaf = fn->leaf;
1546                 case FWS_C:
1547                         if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1548                                 int err;
1549
1550                                 if (w->skip) {
1551                                         w->skip--;
1552                                         goto skip;
1553                                 }
1554
1555                                 err = w->func(w);
1556                                 if (err)
1557                                         return err;
1558
1559                                 w->count++;
1560                                 continue;
1561                         }
1562 skip:
1563                         w->state = FWS_U;
1564                 case FWS_U:
1565                         if (fn == w->root)
1566                                 return 0;
1567                         pn = fn->parent;
1568                         w->node = pn;
1569 #ifdef CONFIG_IPV6_SUBTREES
1570                         if (FIB6_SUBTREE(pn) == fn) {
1571                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1572                                 w->state = FWS_L;
1573                                 continue;
1574                         }
1575 #endif
1576                         if (pn->left == fn) {
1577                                 w->state = FWS_R;
1578                                 continue;
1579                         }
1580                         if (pn->right == fn) {
1581                                 w->state = FWS_C;
1582                                 w->leaf = w->node->leaf;
1583                                 continue;
1584                         }
1585 #if RT6_DEBUG >= 2
1586                         WARN_ON(1);
1587 #endif
1588                 }
1589         }
1590 }
1591
1592 static int fib6_walk(struct net *net, struct fib6_walker *w)
1593 {
1594         int res;
1595
1596         w->state = FWS_INIT;
1597         w->node = w->root;
1598
1599         fib6_walker_link(net, w);
1600         res = fib6_walk_continue(w);
1601         if (res <= 0)
1602                 fib6_walker_unlink(net, w);
1603         return res;
1604 }
1605
1606 static int fib6_clean_node(struct fib6_walker *w)
1607 {
1608         int res;
1609         struct rt6_info *rt;
1610         struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1611         struct nl_info info = {
1612                 .nl_net = c->net,
1613         };
1614
1615         if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1616             w->node->fn_sernum != c->sernum)
1617                 w->node->fn_sernum = c->sernum;
1618
1619         if (!c->func) {
1620                 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1621                 w->leaf = NULL;
1622                 return 0;
1623         }
1624
1625         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1626                 res = c->func(rt, c->arg);
1627                 if (res < 0) {
1628                         w->leaf = rt;
1629                         res = fib6_del(rt, &info);
1630                         if (res) {
1631 #if RT6_DEBUG >= 2
1632                                 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1633                                          __func__, rt, rt->rt6i_node, res);
1634 #endif
1635                                 continue;
1636                         }
1637                         return 0;
1638                 }
1639                 WARN_ON(res != 0);
1640         }
1641         w->leaf = rt;
1642         return 0;
1643 }
1644
1645 /*
1646  *      Convenient frontend to tree walker.
1647  *
1648  *      func is called on each route.
1649  *              It may return -1 -> delete this route.
1650  *                            0  -> continue walking
1651  *
1652  *      prune==1 -> only immediate children of node (certainly,
1653  *      ignoring pure split nodes) will be scanned.
1654  */
1655
1656 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1657                             int (*func)(struct rt6_info *, void *arg),
1658                             bool prune, int sernum, void *arg)
1659 {
1660         struct fib6_cleaner c;
1661
1662         c.w.root = root;
1663         c.w.func = fib6_clean_node;
1664         c.w.prune = prune;
1665         c.w.count = 0;
1666         c.w.skip = 0;
1667         c.func = func;
1668         c.sernum = sernum;
1669         c.arg = arg;
1670         c.net = net;
1671
1672         fib6_walk(net, &c.w);
1673 }
1674
1675 static void __fib6_clean_all(struct net *net,
1676                              int (*func)(struct rt6_info *, void *),
1677                              int sernum, void *arg)
1678 {
1679         struct fib6_table *table;
1680         struct hlist_head *head;
1681         unsigned int h;
1682
1683         rcu_read_lock();
1684         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1685                 head = &net->ipv6.fib_table_hash[h];
1686                 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1687                         write_lock_bh(&table->tb6_lock);
1688                         fib6_clean_tree(net, &table->tb6_root,
1689                                         func, false, sernum, arg);
1690                         write_unlock_bh(&table->tb6_lock);
1691                 }
1692         }
1693         rcu_read_unlock();
1694 }
1695
1696 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1697                     void *arg)
1698 {
1699         __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1700 }
1701
1702 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1703 {
1704         if (rt->rt6i_flags & RTF_CACHE) {
1705                 RT6_TRACE("pruning clone %p\n", rt);
1706                 return -1;
1707         }
1708
1709         return 0;
1710 }
1711
1712 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1713 {
1714         fib6_clean_tree(net, fn, fib6_prune_clone, true,
1715                         FIB6_NO_SERNUM_CHANGE, NULL);
1716 }
1717
1718 static void fib6_flush_trees(struct net *net)
1719 {
1720         int new_sernum = fib6_new_sernum(net);
1721
1722         __fib6_clean_all(net, NULL, new_sernum, NULL);
1723 }
1724
1725 /*
1726  *      Garbage collection
1727  */
1728
1729 struct fib6_gc_args
1730 {
1731         int                     timeout;
1732         int                     more;
1733 };
1734
1735 static int fib6_age(struct rt6_info *rt, void *arg)
1736 {
1737         struct fib6_gc_args *gc_args = arg;
1738         unsigned long now = jiffies;
1739
1740         /*
1741          *      check addrconf expiration here.
1742          *      Routes are expired even if they are in use.
1743          *
1744          *      Also age clones. Note, that clones are aged out
1745          *      only if they are not in use now.
1746          */
1747
1748         if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1749                 if (time_after(now, rt->dst.expires)) {
1750                         RT6_TRACE("expiring %p\n", rt);
1751                         return -1;
1752                 }
1753                 gc_args->more++;
1754         } else if (rt->rt6i_flags & RTF_CACHE) {
1755                 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1756                     time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1757                         RT6_TRACE("aging clone %p\n", rt);
1758                         return -1;
1759                 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1760                         struct neighbour *neigh;
1761                         __u8 neigh_flags = 0;
1762
1763                         neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1764                         if (neigh) {
1765                                 neigh_flags = neigh->flags;
1766                                 neigh_release(neigh);
1767                         }
1768                         if (!(neigh_flags & NTF_ROUTER)) {
1769                                 RT6_TRACE("purging route %p via non-router but gateway\n",
1770                                           rt);
1771                                 return -1;
1772                         }
1773                 }
1774                 gc_args->more++;
1775         }
1776
1777         return 0;
1778 }
1779
1780 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1781 {
1782         struct fib6_gc_args gc_args;
1783         unsigned long now;
1784
1785         if (force) {
1786                 spin_lock_bh(&net->ipv6.fib6_gc_lock);
1787         } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1788                 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1789                 return;
1790         }
1791         gc_args.timeout = expires ? (int)expires :
1792                           net->ipv6.sysctl.ip6_rt_gc_interval;
1793
1794         gc_args.more = icmp6_dst_gc();
1795
1796         fib6_clean_all(net, fib6_age, &gc_args);
1797         now = jiffies;
1798         net->ipv6.ip6_rt_last_gc = now;
1799
1800         if (gc_args.more)
1801                 mod_timer(&net->ipv6.ip6_fib_timer,
1802                           round_jiffies(now
1803                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
1804         else
1805                 del_timer(&net->ipv6.ip6_fib_timer);
1806         spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1807 }
1808
1809 static void fib6_gc_timer_cb(unsigned long arg)
1810 {
1811         fib6_run_gc(0, (struct net *)arg, true);
1812 }
1813
1814 static int __net_init fib6_net_init(struct net *net)
1815 {
1816         size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1817
1818         spin_lock_init(&net->ipv6.fib6_gc_lock);
1819         rwlock_init(&net->ipv6.fib6_walker_lock);
1820         INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1821         setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1822
1823         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1824         if (!net->ipv6.rt6_stats)
1825                 goto out_timer;
1826
1827         /* Avoid false sharing : Use at least a full cache line */
1828         size = max_t(size_t, size, L1_CACHE_BYTES);
1829
1830         net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1831         if (!net->ipv6.fib_table_hash)
1832                 goto out_rt6_stats;
1833
1834         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1835                                           GFP_KERNEL);
1836         if (!net->ipv6.fib6_main_tbl)
1837                 goto out_fib_table_hash;
1838
1839         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1840         net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1841         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1842                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1843         inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1844
1845 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1846         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1847                                            GFP_KERNEL);
1848         if (!net->ipv6.fib6_local_tbl)
1849                 goto out_fib6_main_tbl;
1850         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1851         net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1852         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1853                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1854         inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1855 #endif
1856         fib6_tables_init(net);
1857
1858         return 0;
1859
1860 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1861 out_fib6_main_tbl:
1862         kfree(net->ipv6.fib6_main_tbl);
1863 #endif
1864 out_fib_table_hash:
1865         kfree(net->ipv6.fib_table_hash);
1866 out_rt6_stats:
1867         kfree(net->ipv6.rt6_stats);
1868 out_timer:
1869         return -ENOMEM;
1870 }
1871
1872 static void fib6_net_exit(struct net *net)
1873 {
1874         rt6_ifdown(net, NULL);
1875         del_timer_sync(&net->ipv6.ip6_fib_timer);
1876
1877 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1878         inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1879         kfree(net->ipv6.fib6_local_tbl);
1880 #endif
1881         inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1882         kfree(net->ipv6.fib6_main_tbl);
1883         kfree(net->ipv6.fib_table_hash);
1884         kfree(net->ipv6.rt6_stats);
1885 }
1886
1887 static struct pernet_operations fib6_net_ops = {
1888         .init = fib6_net_init,
1889         .exit = fib6_net_exit,
1890 };
1891
1892 int __init fib6_init(void)
1893 {
1894         int ret = -ENOMEM;
1895
1896         fib6_node_kmem = kmem_cache_create("fib6_nodes",
1897                                            sizeof(struct fib6_node),
1898                                            0, SLAB_HWCACHE_ALIGN,
1899                                            NULL);
1900         if (!fib6_node_kmem)
1901                 goto out;
1902
1903         ret = register_pernet_subsys(&fib6_net_ops);
1904         if (ret)
1905                 goto out_kmem_cache_create;
1906
1907         ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1908                               NULL);
1909         if (ret)
1910                 goto out_unregister_subsys;
1911
1912         __fib6_flush_trees = fib6_flush_trees;
1913 out:
1914         return ret;
1915
1916 out_unregister_subsys:
1917         unregister_pernet_subsys(&fib6_net_ops);
1918 out_kmem_cache_create:
1919         kmem_cache_destroy(fib6_node_kmem);
1920         goto out;
1921 }
1922
1923 void fib6_gc_cleanup(void)
1924 {
1925         unregister_pernet_subsys(&fib6_net_ops);
1926         kmem_cache_destroy(fib6_node_kmem);
1927 }
1928
1929 #ifdef CONFIG_PROC_FS
1930
1931 struct ipv6_route_iter {
1932         struct seq_net_private p;
1933         struct fib6_walker w;
1934         loff_t skip;
1935         struct fib6_table *tbl;
1936         int sernum;
1937 };
1938
1939 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1940 {
1941         struct rt6_info *rt = v;
1942         struct ipv6_route_iter *iter = seq->private;
1943
1944         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1945
1946 #ifdef CONFIG_IPV6_SUBTREES
1947         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1948 #else
1949         seq_puts(seq, "00000000000000000000000000000000 00 ");
1950 #endif
1951         if (rt->rt6i_flags & RTF_GATEWAY)
1952                 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1953         else
1954                 seq_puts(seq, "00000000000000000000000000000000");
1955
1956         seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1957                    rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1958                    rt->dst.__use, rt->rt6i_flags,
1959                    rt->dst.dev ? rt->dst.dev->name : "");
1960         iter->w.leaf = NULL;
1961         return 0;
1962 }
1963
1964 static int ipv6_route_yield(struct fib6_walker *w)
1965 {
1966         struct ipv6_route_iter *iter = w->args;
1967
1968         if (!iter->skip)
1969                 return 1;
1970
1971         do {
1972                 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1973                 iter->skip--;
1974                 if (!iter->skip && iter->w.leaf)
1975                         return 1;
1976         } while (iter->w.leaf);
1977
1978         return 0;
1979 }
1980
1981 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
1982                                       struct net *net)
1983 {
1984         memset(&iter->w, 0, sizeof(iter->w));
1985         iter->w.func = ipv6_route_yield;
1986         iter->w.root = &iter->tbl->tb6_root;
1987         iter->w.state = FWS_INIT;
1988         iter->w.node = iter->w.root;
1989         iter->w.args = iter;
1990         iter->sernum = iter->w.root->fn_sernum;
1991         INIT_LIST_HEAD(&iter->w.lh);
1992         fib6_walker_link(net, &iter->w);
1993 }
1994
1995 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1996                                                     struct net *net)
1997 {
1998         unsigned int h;
1999         struct hlist_node *node;
2000
2001         if (tbl) {
2002                 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2003                 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2004         } else {
2005                 h = 0;
2006                 node = NULL;
2007         }
2008
2009         while (!node && h < FIB6_TABLE_HASHSZ) {
2010                 node = rcu_dereference_bh(
2011                         hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2012         }
2013         return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2014 }
2015
2016 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2017 {
2018         if (iter->sernum != iter->w.root->fn_sernum) {
2019                 iter->sernum = iter->w.root->fn_sernum;
2020                 iter->w.state = FWS_INIT;
2021                 iter->w.node = iter->w.root;
2022                 WARN_ON(iter->w.skip);
2023                 iter->w.skip = iter->w.count;
2024         }
2025 }
2026
2027 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2028 {
2029         int r;
2030         struct rt6_info *n;
2031         struct net *net = seq_file_net(seq);
2032         struct ipv6_route_iter *iter = seq->private;
2033
2034         if (!v)
2035                 goto iter_table;
2036
2037         n = ((struct rt6_info *)v)->dst.rt6_next;
2038         if (n) {
2039                 ++*pos;
2040                 return n;
2041         }
2042
2043 iter_table:
2044         ipv6_route_check_sernum(iter);
2045         read_lock(&iter->tbl->tb6_lock);
2046         r = fib6_walk_continue(&iter->w);
2047         read_unlock(&iter->tbl->tb6_lock);
2048         if (r > 0) {
2049                 if (v)
2050                         ++*pos;
2051                 return iter->w.leaf;
2052         } else if (r < 0) {
2053                 fib6_walker_unlink(net, &iter->w);
2054                 return NULL;
2055         }
2056         fib6_walker_unlink(net, &iter->w);
2057
2058         iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2059         if (!iter->tbl)
2060                 return NULL;
2061
2062         ipv6_route_seq_setup_walk(iter, net);
2063         goto iter_table;
2064 }
2065
2066 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2067         __acquires(RCU_BH)
2068 {
2069         struct net *net = seq_file_net(seq);
2070         struct ipv6_route_iter *iter = seq->private;
2071
2072         rcu_read_lock_bh();
2073         iter->tbl = ipv6_route_seq_next_table(NULL, net);
2074         iter->skip = *pos;
2075
2076         if (iter->tbl) {
2077                 ipv6_route_seq_setup_walk(iter, net);
2078                 return ipv6_route_seq_next(seq, NULL, pos);
2079         } else {
2080                 return NULL;
2081         }
2082 }
2083
2084 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2085 {
2086         struct fib6_walker *w = &iter->w;
2087         return w->node && !(w->state == FWS_U && w->node == w->root);
2088 }
2089
2090 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2091         __releases(RCU_BH)
2092 {
2093         struct net *net = seq_file_net(seq);
2094         struct ipv6_route_iter *iter = seq->private;
2095
2096         if (ipv6_route_iter_active(iter))
2097                 fib6_walker_unlink(net, &iter->w);
2098
2099         rcu_read_unlock_bh();
2100 }
2101
2102 static const struct seq_operations ipv6_route_seq_ops = {
2103         .start  = ipv6_route_seq_start,
2104         .next   = ipv6_route_seq_next,
2105         .stop   = ipv6_route_seq_stop,
2106         .show   = ipv6_route_seq_show
2107 };
2108
2109 int ipv6_route_open(struct inode *inode, struct file *file)
2110 {
2111         return seq_open_net(inode, file, &ipv6_route_seq_ops,
2112                             sizeof(struct ipv6_route_iter));
2113 }
2114
2115 #endif /* CONFIG_PROC_FS */