spi/topcliff-pch: Fix Kconfig dependencies
[cascardo/linux.git] / net / ipv6 / ip6_fib.c
1 /*
2  *      Linux INET6 implementation
3  *      Forwarding Information Database
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *      Changes:
14  *      Yuji SEKIYA @USAGI:     Support default route on router node;
15  *                              remove ip6_null_entry from the top of
16  *                              routing table.
17  *      Ville Nuorvala:         Fixed routing subtrees.
18  */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35
36 #include <net/ip6_fib.h>
37 #include <net/ip6_route.h>
38
39 #define RT6_DEBUG 2
40
41 #if RT6_DEBUG >= 3
42 #define RT6_TRACE(x...) pr_debug(x)
43 #else
44 #define RT6_TRACE(x...) do { ; } while (0)
45 #endif
46
47 static struct kmem_cache *fib6_node_kmem __read_mostly;
48
49 enum fib_walk_state_t {
50 #ifdef CONFIG_IPV6_SUBTREES
51         FWS_S,
52 #endif
53         FWS_L,
54         FWS_R,
55         FWS_C,
56         FWS_U
57 };
58
59 struct fib6_cleaner_t {
60         struct fib6_walker_t w;
61         struct net *net;
62         int (*func)(struct rt6_info *, void *arg);
63         void *arg;
64 };
65
66 static DEFINE_RWLOCK(fib6_walker_lock);
67
68 #ifdef CONFIG_IPV6_SUBTREES
69 #define FWS_INIT FWS_S
70 #else
71 #define FWS_INIT FWS_L
72 #endif
73
74 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
75                               struct rt6_info *rt);
76 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
77 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
78 static int fib6_walk(struct fib6_walker_t *w);
79 static int fib6_walk_continue(struct fib6_walker_t *w);
80
81 /*
82  *      A routing update causes an increase of the serial number on the
83  *      affected subtree. This allows for cached routes to be asynchronously
84  *      tested when modifications are made to the destination cache as a
85  *      result of redirects, path MTU changes, etc.
86  */
87
88 static __u32 rt_sernum;
89
90 static void fib6_gc_timer_cb(unsigned long arg);
91
92 static LIST_HEAD(fib6_walkers);
93 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
94
95 static inline void fib6_walker_link(struct fib6_walker_t *w)
96 {
97         write_lock_bh(&fib6_walker_lock);
98         list_add(&w->lh, &fib6_walkers);
99         write_unlock_bh(&fib6_walker_lock);
100 }
101
102 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
103 {
104         write_lock_bh(&fib6_walker_lock);
105         list_del(&w->lh);
106         write_unlock_bh(&fib6_walker_lock);
107 }
108 static __inline__ u32 fib6_new_sernum(void)
109 {
110         u32 n = ++rt_sernum;
111         if ((__s32)n <= 0)
112                 rt_sernum = n = 1;
113         return n;
114 }
115
116 /*
117  *      Auxiliary address test functions for the radix tree.
118  *
119  *      These assume a 32bit processor (although it will work on
120  *      64bit processors)
121  */
122
123 /*
124  *      test bit
125  */
126 #if defined(__LITTLE_ENDIAN)
127 # define BITOP_BE32_SWIZZLE     (0x1F & ~7)
128 #else
129 # define BITOP_BE32_SWIZZLE     0
130 #endif
131
132 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
133 {
134         const __be32 *addr = token;
135         /*
136          * Here,
137          *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
138          * is optimized version of
139          *      htonl(1 << ((~fn_bit)&0x1F))
140          * See include/asm-generic/bitops/le.h.
141          */
142         return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
143                addr[fn_bit >> 5];
144 }
145
146 static __inline__ struct fib6_node *node_alloc(void)
147 {
148         struct fib6_node *fn;
149
150         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
151
152         return fn;
153 }
154
155 static __inline__ void node_free(struct fib6_node *fn)
156 {
157         kmem_cache_free(fib6_node_kmem, fn);
158 }
159
160 static __inline__ void rt6_release(struct rt6_info *rt)
161 {
162         if (atomic_dec_and_test(&rt->rt6i_ref))
163                 dst_free(&rt->dst);
164 }
165
166 static void fib6_link_table(struct net *net, struct fib6_table *tb)
167 {
168         unsigned int h;
169
170         /*
171          * Initialize table lock at a single place to give lockdep a key,
172          * tables aren't visible prior to being linked to the list.
173          */
174         rwlock_init(&tb->tb6_lock);
175
176         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
177
178         /*
179          * No protection necessary, this is the only list mutatation
180          * operation, tables never disappear once they exist.
181          */
182         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
183 }
184
185 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
186
187 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
188 {
189         struct fib6_table *table;
190
191         table = kzalloc(sizeof(*table), GFP_ATOMIC);
192         if (table) {
193                 table->tb6_id = id;
194                 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
195                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
196                 inet_peer_base_init(&table->tb6_peers);
197         }
198
199         return table;
200 }
201
202 struct fib6_table *fib6_new_table(struct net *net, u32 id)
203 {
204         struct fib6_table *tb;
205
206         if (id == 0)
207                 id = RT6_TABLE_MAIN;
208         tb = fib6_get_table(net, id);
209         if (tb)
210                 return tb;
211
212         tb = fib6_alloc_table(net, id);
213         if (tb)
214                 fib6_link_table(net, tb);
215
216         return tb;
217 }
218
219 struct fib6_table *fib6_get_table(struct net *net, u32 id)
220 {
221         struct fib6_table *tb;
222         struct hlist_head *head;
223         unsigned int h;
224
225         if (id == 0)
226                 id = RT6_TABLE_MAIN;
227         h = id & (FIB6_TABLE_HASHSZ - 1);
228         rcu_read_lock();
229         head = &net->ipv6.fib_table_hash[h];
230         hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
231                 if (tb->tb6_id == id) {
232                         rcu_read_unlock();
233                         return tb;
234                 }
235         }
236         rcu_read_unlock();
237
238         return NULL;
239 }
240
241 static void __net_init fib6_tables_init(struct net *net)
242 {
243         fib6_link_table(net, net->ipv6.fib6_main_tbl);
244         fib6_link_table(net, net->ipv6.fib6_local_tbl);
245 }
246 #else
247
248 struct fib6_table *fib6_new_table(struct net *net, u32 id)
249 {
250         return fib6_get_table(net, id);
251 }
252
253 struct fib6_table *fib6_get_table(struct net *net, u32 id)
254 {
255           return net->ipv6.fib6_main_tbl;
256 }
257
258 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
259                                    int flags, pol_lookup_t lookup)
260 {
261         return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
262 }
263
264 static void __net_init fib6_tables_init(struct net *net)
265 {
266         fib6_link_table(net, net->ipv6.fib6_main_tbl);
267 }
268
269 #endif
270
271 static int fib6_dump_node(struct fib6_walker_t *w)
272 {
273         int res;
274         struct rt6_info *rt;
275
276         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
277                 res = rt6_dump_route(rt, w->args);
278                 if (res < 0) {
279                         /* Frame is full, suspend walking */
280                         w->leaf = rt;
281                         return 1;
282                 }
283                 WARN_ON(res == 0);
284         }
285         w->leaf = NULL;
286         return 0;
287 }
288
289 static void fib6_dump_end(struct netlink_callback *cb)
290 {
291         struct fib6_walker_t *w = (void *)cb->args[2];
292
293         if (w) {
294                 if (cb->args[4]) {
295                         cb->args[4] = 0;
296                         fib6_walker_unlink(w);
297                 }
298                 cb->args[2] = 0;
299                 kfree(w);
300         }
301         cb->done = (void *)cb->args[3];
302         cb->args[1] = 3;
303 }
304
305 static int fib6_dump_done(struct netlink_callback *cb)
306 {
307         fib6_dump_end(cb);
308         return cb->done ? cb->done(cb) : 0;
309 }
310
311 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
312                            struct netlink_callback *cb)
313 {
314         struct fib6_walker_t *w;
315         int res;
316
317         w = (void *)cb->args[2];
318         w->root = &table->tb6_root;
319
320         if (cb->args[4] == 0) {
321                 w->count = 0;
322                 w->skip = 0;
323
324                 read_lock_bh(&table->tb6_lock);
325                 res = fib6_walk(w);
326                 read_unlock_bh(&table->tb6_lock);
327                 if (res > 0) {
328                         cb->args[4] = 1;
329                         cb->args[5] = w->root->fn_sernum;
330                 }
331         } else {
332                 if (cb->args[5] != w->root->fn_sernum) {
333                         /* Begin at the root if the tree changed */
334                         cb->args[5] = w->root->fn_sernum;
335                         w->state = FWS_INIT;
336                         w->node = w->root;
337                         w->skip = w->count;
338                 } else
339                         w->skip = 0;
340
341                 read_lock_bh(&table->tb6_lock);
342                 res = fib6_walk_continue(w);
343                 read_unlock_bh(&table->tb6_lock);
344                 if (res <= 0) {
345                         fib6_walker_unlink(w);
346                         cb->args[4] = 0;
347                 }
348         }
349
350         return res;
351 }
352
353 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
354 {
355         struct net *net = sock_net(skb->sk);
356         unsigned int h, s_h;
357         unsigned int e = 0, s_e;
358         struct rt6_rtnl_dump_arg arg;
359         struct fib6_walker_t *w;
360         struct fib6_table *tb;
361         struct hlist_head *head;
362         int res = 0;
363
364         s_h = cb->args[0];
365         s_e = cb->args[1];
366
367         w = (void *)cb->args[2];
368         if (!w) {
369                 /* New dump:
370                  *
371                  * 1. hook callback destructor.
372                  */
373                 cb->args[3] = (long)cb->done;
374                 cb->done = fib6_dump_done;
375
376                 /*
377                  * 2. allocate and initialize walker.
378                  */
379                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
380                 if (!w)
381                         return -ENOMEM;
382                 w->func = fib6_dump_node;
383                 cb->args[2] = (long)w;
384         }
385
386         arg.skb = skb;
387         arg.cb = cb;
388         arg.net = net;
389         w->args = &arg;
390
391         rcu_read_lock();
392         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
393                 e = 0;
394                 head = &net->ipv6.fib_table_hash[h];
395                 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
396                         if (e < s_e)
397                                 goto next;
398                         res = fib6_dump_table(tb, skb, cb);
399                         if (res != 0)
400                                 goto out;
401 next:
402                         e++;
403                 }
404         }
405 out:
406         rcu_read_unlock();
407         cb->args[1] = e;
408         cb->args[0] = h;
409
410         res = res < 0 ? res : skb->len;
411         if (res <= 0)
412                 fib6_dump_end(cb);
413         return res;
414 }
415
416 /*
417  *      Routing Table
418  *
419  *      return the appropriate node for a routing tree "add" operation
420  *      by either creating and inserting or by returning an existing
421  *      node.
422  */
423
424 static struct fib6_node *fib6_add_1(struct fib6_node *root,
425                                      struct in6_addr *addr, int plen,
426                                      int offset, int allow_create,
427                                      int replace_required)
428 {
429         struct fib6_node *fn, *in, *ln;
430         struct fib6_node *pn = NULL;
431         struct rt6key *key;
432         int     bit;
433         __be32  dir = 0;
434         __u32   sernum = fib6_new_sernum();
435
436         RT6_TRACE("fib6_add_1\n");
437
438         /* insert node in tree */
439
440         fn = root;
441
442         do {
443                 key = (struct rt6key *)((u8 *)fn->leaf + offset);
444
445                 /*
446                  *      Prefix match
447                  */
448                 if (plen < fn->fn_bit ||
449                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
450                         if (!allow_create) {
451                                 if (replace_required) {
452                                         pr_warn("Can't replace route, no match found\n");
453                                         return ERR_PTR(-ENOENT);
454                                 }
455                                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
456                         }
457                         goto insert_above;
458                 }
459
460                 /*
461                  *      Exact match ?
462                  */
463
464                 if (plen == fn->fn_bit) {
465                         /* clean up an intermediate node */
466                         if (!(fn->fn_flags & RTN_RTINFO)) {
467                                 rt6_release(fn->leaf);
468                                 fn->leaf = NULL;
469                         }
470
471                         fn->fn_sernum = sernum;
472
473                         return fn;
474                 }
475
476                 /*
477                  *      We have more bits to go
478                  */
479
480                 /* Try to walk down on tree. */
481                 fn->fn_sernum = sernum;
482                 dir = addr_bit_set(addr, fn->fn_bit);
483                 pn = fn;
484                 fn = dir ? fn->right : fn->left;
485         } while (fn);
486
487         if (!allow_create) {
488                 /* We should not create new node because
489                  * NLM_F_REPLACE was specified without NLM_F_CREATE
490                  * I assume it is safe to require NLM_F_CREATE when
491                  * REPLACE flag is used! Later we may want to remove the
492                  * check for replace_required, because according
493                  * to netlink specification, NLM_F_CREATE
494                  * MUST be specified if new route is created.
495                  * That would keep IPv6 consistent with IPv4
496                  */
497                 if (replace_required) {
498                         pr_warn("Can't replace route, no match found\n");
499                         return ERR_PTR(-ENOENT);
500                 }
501                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
502         }
503         /*
504          *      We walked to the bottom of tree.
505          *      Create new leaf node without children.
506          */
507
508         ln = node_alloc();
509
510         if (!ln)
511                 return ERR_PTR(-ENOMEM);
512         ln->fn_bit = plen;
513
514         ln->parent = pn;
515         ln->fn_sernum = sernum;
516
517         if (dir)
518                 pn->right = ln;
519         else
520                 pn->left  = ln;
521
522         return ln;
523
524
525 insert_above:
526         /*
527          * split since we don't have a common prefix anymore or
528          * we have a less significant route.
529          * we've to insert an intermediate node on the list
530          * this new node will point to the one we need to create
531          * and the current
532          */
533
534         pn = fn->parent;
535
536         /* find 1st bit in difference between the 2 addrs.
537
538            See comment in __ipv6_addr_diff: bit may be an invalid value,
539            but if it is >= plen, the value is ignored in any case.
540          */
541
542         bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
543
544         /*
545          *              (intermediate)[in]
546          *                /        \
547          *      (new leaf node)[ln] (old node)[fn]
548          */
549         if (plen > bit) {
550                 in = node_alloc();
551                 ln = node_alloc();
552
553                 if (!in || !ln) {
554                         if (in)
555                                 node_free(in);
556                         if (ln)
557                                 node_free(ln);
558                         return ERR_PTR(-ENOMEM);
559                 }
560
561                 /*
562                  * new intermediate node.
563                  * RTN_RTINFO will
564                  * be off since that an address that chooses one of
565                  * the branches would not match less specific routes
566                  * in the other branch
567                  */
568
569                 in->fn_bit = bit;
570
571                 in->parent = pn;
572                 in->leaf = fn->leaf;
573                 atomic_inc(&in->leaf->rt6i_ref);
574
575                 in->fn_sernum = sernum;
576
577                 /* update parent pointer */
578                 if (dir)
579                         pn->right = in;
580                 else
581                         pn->left  = in;
582
583                 ln->fn_bit = plen;
584
585                 ln->parent = in;
586                 fn->parent = in;
587
588                 ln->fn_sernum = sernum;
589
590                 if (addr_bit_set(addr, bit)) {
591                         in->right = ln;
592                         in->left  = fn;
593                 } else {
594                         in->left  = ln;
595                         in->right = fn;
596                 }
597         } else { /* plen <= bit */
598
599                 /*
600                  *              (new leaf node)[ln]
601                  *                /        \
602                  *           (old node)[fn] NULL
603                  */
604
605                 ln = node_alloc();
606
607                 if (!ln)
608                         return ERR_PTR(-ENOMEM);
609
610                 ln->fn_bit = plen;
611
612                 ln->parent = pn;
613
614                 ln->fn_sernum = sernum;
615
616                 if (dir)
617                         pn->right = ln;
618                 else
619                         pn->left  = ln;
620
621                 if (addr_bit_set(&key->addr, plen))
622                         ln->right = fn;
623                 else
624                         ln->left  = fn;
625
626                 fn->parent = ln;
627         }
628         return ln;
629 }
630
631 static inline bool rt6_qualify_for_ecmp(struct rt6_info *rt)
632 {
633         return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
634                RTF_GATEWAY;
635 }
636
637 static int fib6_commit_metrics(struct dst_entry *dst,
638                                struct nlattr *mx, int mx_len)
639 {
640         struct nlattr *nla;
641         int remaining;
642         u32 *mp;
643
644         if (dst->flags & DST_HOST) {
645                 mp = dst_metrics_write_ptr(dst);
646         } else {
647                 mp = kzalloc(sizeof(u32) * RTAX_MAX, GFP_KERNEL);
648                 if (!mp)
649                         return -ENOMEM;
650                 dst_init_metrics(dst, mp, 0);
651         }
652
653         nla_for_each_attr(nla, mx, mx_len, remaining) {
654                 int type = nla_type(nla);
655
656                 if (type) {
657                         if (type > RTAX_MAX)
658                                 return -EINVAL;
659
660                         mp[type - 1] = nla_get_u32(nla);
661                 }
662         }
663         return 0;
664 }
665
666 /*
667  *      Insert routing information in a node.
668  */
669
670 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
671                             struct nl_info *info, struct nlattr *mx, int mx_len)
672 {
673         struct rt6_info *iter = NULL;
674         struct rt6_info **ins;
675         int replace = (info->nlh &&
676                        (info->nlh->nlmsg_flags & NLM_F_REPLACE));
677         int add = (!info->nlh ||
678                    (info->nlh->nlmsg_flags & NLM_F_CREATE));
679         int found = 0;
680         bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
681         int err;
682
683         ins = &fn->leaf;
684
685         for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
686                 /*
687                  *      Search for duplicates
688                  */
689
690                 if (iter->rt6i_metric == rt->rt6i_metric) {
691                         /*
692                          *      Same priority level
693                          */
694                         if (info->nlh &&
695                             (info->nlh->nlmsg_flags & NLM_F_EXCL))
696                                 return -EEXIST;
697                         if (replace) {
698                                 found++;
699                                 break;
700                         }
701
702                         if (iter->dst.dev == rt->dst.dev &&
703                             iter->rt6i_idev == rt->rt6i_idev &&
704                             ipv6_addr_equal(&iter->rt6i_gateway,
705                                             &rt->rt6i_gateway)) {
706                                 if (rt->rt6i_nsiblings)
707                                         rt->rt6i_nsiblings = 0;
708                                 if (!(iter->rt6i_flags & RTF_EXPIRES))
709                                         return -EEXIST;
710                                 if (!(rt->rt6i_flags & RTF_EXPIRES))
711                                         rt6_clean_expires(iter);
712                                 else
713                                         rt6_set_expires(iter, rt->dst.expires);
714                                 return -EEXIST;
715                         }
716                         /* If we have the same destination and the same metric,
717                          * but not the same gateway, then the route we try to
718                          * add is sibling to this route, increment our counter
719                          * of siblings, and later we will add our route to the
720                          * list.
721                          * Only static routes (which don't have flag
722                          * RTF_EXPIRES) are used for ECMPv6.
723                          *
724                          * To avoid long list, we only had siblings if the
725                          * route have a gateway.
726                          */
727                         if (rt_can_ecmp &&
728                             rt6_qualify_for_ecmp(iter))
729                                 rt->rt6i_nsiblings++;
730                 }
731
732                 if (iter->rt6i_metric > rt->rt6i_metric)
733                         break;
734
735                 ins = &iter->dst.rt6_next;
736         }
737
738         /* Reset round-robin state, if necessary */
739         if (ins == &fn->leaf)
740                 fn->rr_ptr = NULL;
741
742         /* Link this route to others same route. */
743         if (rt->rt6i_nsiblings) {
744                 unsigned int rt6i_nsiblings;
745                 struct rt6_info *sibling, *temp_sibling;
746
747                 /* Find the first route that have the same metric */
748                 sibling = fn->leaf;
749                 while (sibling) {
750                         if (sibling->rt6i_metric == rt->rt6i_metric &&
751                             rt6_qualify_for_ecmp(sibling)) {
752                                 list_add_tail(&rt->rt6i_siblings,
753                                               &sibling->rt6i_siblings);
754                                 break;
755                         }
756                         sibling = sibling->dst.rt6_next;
757                 }
758                 /* For each sibling in the list, increment the counter of
759                  * siblings. BUG() if counters does not match, list of siblings
760                  * is broken!
761                  */
762                 rt6i_nsiblings = 0;
763                 list_for_each_entry_safe(sibling, temp_sibling,
764                                          &rt->rt6i_siblings, rt6i_siblings) {
765                         sibling->rt6i_nsiblings++;
766                         BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
767                         rt6i_nsiblings++;
768                 }
769                 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
770         }
771
772         /*
773          *      insert node
774          */
775         if (!replace) {
776                 if (!add)
777                         pr_warn("NLM_F_CREATE should be set when creating new route\n");
778
779 add:
780                 if (mx) {
781                         err = fib6_commit_metrics(&rt->dst, mx, mx_len);
782                         if (err)
783                                 return err;
784                 }
785                 rt->dst.rt6_next = iter;
786                 *ins = rt;
787                 rt->rt6i_node = fn;
788                 atomic_inc(&rt->rt6i_ref);
789                 inet6_rt_notify(RTM_NEWROUTE, rt, info);
790                 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
791
792                 if (!(fn->fn_flags & RTN_RTINFO)) {
793                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
794                         fn->fn_flags |= RTN_RTINFO;
795                 }
796
797         } else {
798                 if (!found) {
799                         if (add)
800                                 goto add;
801                         pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
802                         return -ENOENT;
803                 }
804                 if (mx) {
805                         err = fib6_commit_metrics(&rt->dst, mx, mx_len);
806                         if (err)
807                                 return err;
808                 }
809                 *ins = rt;
810                 rt->rt6i_node = fn;
811                 rt->dst.rt6_next = iter->dst.rt6_next;
812                 atomic_inc(&rt->rt6i_ref);
813                 inet6_rt_notify(RTM_NEWROUTE, rt, info);
814                 rt6_release(iter);
815                 if (!(fn->fn_flags & RTN_RTINFO)) {
816                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
817                         fn->fn_flags |= RTN_RTINFO;
818                 }
819         }
820
821         return 0;
822 }
823
824 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
825 {
826         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
827             (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
828                 mod_timer(&net->ipv6.ip6_fib_timer,
829                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
830 }
831
832 void fib6_force_start_gc(struct net *net)
833 {
834         if (!timer_pending(&net->ipv6.ip6_fib_timer))
835                 mod_timer(&net->ipv6.ip6_fib_timer,
836                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
837 }
838
839 /*
840  *      Add routing information to the routing tree.
841  *      <destination addr>/<source addr>
842  *      with source addr info in sub-trees
843  */
844
845 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info,
846              struct nlattr *mx, int mx_len)
847 {
848         struct fib6_node *fn, *pn = NULL;
849         int err = -ENOMEM;
850         int allow_create = 1;
851         int replace_required = 0;
852
853         if (info->nlh) {
854                 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
855                         allow_create = 0;
856                 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
857                         replace_required = 1;
858         }
859         if (!allow_create && !replace_required)
860                 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
861
862         fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
863                         offsetof(struct rt6_info, rt6i_dst), allow_create,
864                         replace_required);
865         if (IS_ERR(fn)) {
866                 err = PTR_ERR(fn);
867                 fn = NULL;
868                 goto out;
869         }
870
871         pn = fn;
872
873 #ifdef CONFIG_IPV6_SUBTREES
874         if (rt->rt6i_src.plen) {
875                 struct fib6_node *sn;
876
877                 if (!fn->subtree) {
878                         struct fib6_node *sfn;
879
880                         /*
881                          * Create subtree.
882                          *
883                          *              fn[main tree]
884                          *              |
885                          *              sfn[subtree root]
886                          *                 \
887                          *                  sn[new leaf node]
888                          */
889
890                         /* Create subtree root node */
891                         sfn = node_alloc();
892                         if (!sfn)
893                                 goto st_failure;
894
895                         sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
896                         atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
897                         sfn->fn_flags = RTN_ROOT;
898                         sfn->fn_sernum = fib6_new_sernum();
899
900                         /* Now add the first leaf node to new subtree */
901
902                         sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
903                                         rt->rt6i_src.plen,
904                                         offsetof(struct rt6_info, rt6i_src),
905                                         allow_create, replace_required);
906
907                         if (IS_ERR(sn)) {
908                                 /* If it is failed, discard just allocated
909                                    root, and then (in st_failure) stale node
910                                    in main tree.
911                                  */
912                                 node_free(sfn);
913                                 err = PTR_ERR(sn);
914                                 goto st_failure;
915                         }
916
917                         /* Now link new subtree to main tree */
918                         sfn->parent = fn;
919                         fn->subtree = sfn;
920                 } else {
921                         sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
922                                         rt->rt6i_src.plen,
923                                         offsetof(struct rt6_info, rt6i_src),
924                                         allow_create, replace_required);
925
926                         if (IS_ERR(sn)) {
927                                 err = PTR_ERR(sn);
928                                 goto st_failure;
929                         }
930                 }
931
932                 if (!fn->leaf) {
933                         fn->leaf = rt;
934                         atomic_inc(&rt->rt6i_ref);
935                 }
936                 fn = sn;
937         }
938 #endif
939
940         err = fib6_add_rt2node(fn, rt, info, mx, mx_len);
941         if (!err) {
942                 fib6_start_gc(info->nl_net, rt);
943                 if (!(rt->rt6i_flags & RTF_CACHE))
944                         fib6_prune_clones(info->nl_net, pn, rt);
945         }
946
947 out:
948         if (err) {
949 #ifdef CONFIG_IPV6_SUBTREES
950                 /*
951                  * If fib6_add_1 has cleared the old leaf pointer in the
952                  * super-tree leaf node we have to find a new one for it.
953                  */
954                 if (pn != fn && pn->leaf == rt) {
955                         pn->leaf = NULL;
956                         atomic_dec(&rt->rt6i_ref);
957                 }
958                 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
959                         pn->leaf = fib6_find_prefix(info->nl_net, pn);
960 #if RT6_DEBUG >= 2
961                         if (!pn->leaf) {
962                                 WARN_ON(pn->leaf == NULL);
963                                 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
964                         }
965 #endif
966                         atomic_inc(&pn->leaf->rt6i_ref);
967                 }
968 #endif
969                 dst_free(&rt->dst);
970         }
971         return err;
972
973 #ifdef CONFIG_IPV6_SUBTREES
974         /* Subtree creation failed, probably main tree node
975            is orphan. If it is, shoot it.
976          */
977 st_failure:
978         if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
979                 fib6_repair_tree(info->nl_net, fn);
980         dst_free(&rt->dst);
981         return err;
982 #endif
983 }
984
985 /*
986  *      Routing tree lookup
987  *
988  */
989
990 struct lookup_args {
991         int                     offset;         /* key offset on rt6_info       */
992         const struct in6_addr   *addr;          /* search key                   */
993 };
994
995 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
996                                        struct lookup_args *args)
997 {
998         struct fib6_node *fn;
999         __be32 dir;
1000
1001         if (unlikely(args->offset == 0))
1002                 return NULL;
1003
1004         /*
1005          *      Descend on a tree
1006          */
1007
1008         fn = root;
1009
1010         for (;;) {
1011                 struct fib6_node *next;
1012
1013                 dir = addr_bit_set(args->addr, fn->fn_bit);
1014
1015                 next = dir ? fn->right : fn->left;
1016
1017                 if (next) {
1018                         fn = next;
1019                         continue;
1020                 }
1021                 break;
1022         }
1023
1024         while (fn) {
1025                 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1026                         struct rt6key *key;
1027
1028                         key = (struct rt6key *) ((u8 *) fn->leaf +
1029                                                  args->offset);
1030
1031                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1032 #ifdef CONFIG_IPV6_SUBTREES
1033                                 if (fn->subtree) {
1034                                         struct fib6_node *sfn;
1035                                         sfn = fib6_lookup_1(fn->subtree,
1036                                                             args + 1);
1037                                         if (!sfn)
1038                                                 goto backtrack;
1039                                         fn = sfn;
1040                                 }
1041 #endif
1042                                 if (fn->fn_flags & RTN_RTINFO)
1043                                         return fn;
1044                         }
1045                 }
1046 #ifdef CONFIG_IPV6_SUBTREES
1047 backtrack:
1048 #endif
1049                 if (fn->fn_flags & RTN_ROOT)
1050                         break;
1051
1052                 fn = fn->parent;
1053         }
1054
1055         return NULL;
1056 }
1057
1058 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1059                               const struct in6_addr *saddr)
1060 {
1061         struct fib6_node *fn;
1062         struct lookup_args args[] = {
1063                 {
1064                         .offset = offsetof(struct rt6_info, rt6i_dst),
1065                         .addr = daddr,
1066                 },
1067 #ifdef CONFIG_IPV6_SUBTREES
1068                 {
1069                         .offset = offsetof(struct rt6_info, rt6i_src),
1070                         .addr = saddr,
1071                 },
1072 #endif
1073                 {
1074                         .offset = 0,    /* sentinel */
1075                 }
1076         };
1077
1078         fn = fib6_lookup_1(root, daddr ? args : args + 1);
1079         if (!fn || fn->fn_flags & RTN_TL_ROOT)
1080                 fn = root;
1081
1082         return fn;
1083 }
1084
1085 /*
1086  *      Get node with specified destination prefix (and source prefix,
1087  *      if subtrees are used)
1088  */
1089
1090
1091 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1092                                        const struct in6_addr *addr,
1093                                        int plen, int offset)
1094 {
1095         struct fib6_node *fn;
1096
1097         for (fn = root; fn ; ) {
1098                 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1099
1100                 /*
1101                  *      Prefix match
1102                  */
1103                 if (plen < fn->fn_bit ||
1104                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1105                         return NULL;
1106
1107                 if (plen == fn->fn_bit)
1108                         return fn;
1109
1110                 /*
1111                  *      We have more bits to go
1112                  */
1113                 if (addr_bit_set(addr, fn->fn_bit))
1114                         fn = fn->right;
1115                 else
1116                         fn = fn->left;
1117         }
1118         return NULL;
1119 }
1120
1121 struct fib6_node *fib6_locate(struct fib6_node *root,
1122                               const struct in6_addr *daddr, int dst_len,
1123                               const struct in6_addr *saddr, int src_len)
1124 {
1125         struct fib6_node *fn;
1126
1127         fn = fib6_locate_1(root, daddr, dst_len,
1128                            offsetof(struct rt6_info, rt6i_dst));
1129
1130 #ifdef CONFIG_IPV6_SUBTREES
1131         if (src_len) {
1132                 WARN_ON(saddr == NULL);
1133                 if (fn && fn->subtree)
1134                         fn = fib6_locate_1(fn->subtree, saddr, src_len,
1135                                            offsetof(struct rt6_info, rt6i_src));
1136         }
1137 #endif
1138
1139         if (fn && fn->fn_flags & RTN_RTINFO)
1140                 return fn;
1141
1142         return NULL;
1143 }
1144
1145
1146 /*
1147  *      Deletion
1148  *
1149  */
1150
1151 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1152 {
1153         if (fn->fn_flags & RTN_ROOT)
1154                 return net->ipv6.ip6_null_entry;
1155
1156         while (fn) {
1157                 if (fn->left)
1158                         return fn->left->leaf;
1159                 if (fn->right)
1160                         return fn->right->leaf;
1161
1162                 fn = FIB6_SUBTREE(fn);
1163         }
1164         return NULL;
1165 }
1166
1167 /*
1168  *      Called to trim the tree of intermediate nodes when possible. "fn"
1169  *      is the node we want to try and remove.
1170  */
1171
1172 static struct fib6_node *fib6_repair_tree(struct net *net,
1173                                            struct fib6_node *fn)
1174 {
1175         int children;
1176         int nstate;
1177         struct fib6_node *child, *pn;
1178         struct fib6_walker_t *w;
1179         int iter = 0;
1180
1181         for (;;) {
1182                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1183                 iter++;
1184
1185                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1186                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1187                 WARN_ON(fn->leaf != NULL);
1188
1189                 children = 0;
1190                 child = NULL;
1191                 if (fn->right)
1192                         child = fn->right, children |= 1;
1193                 if (fn->left)
1194                         child = fn->left, children |= 2;
1195
1196                 if (children == 3 || FIB6_SUBTREE(fn)
1197 #ifdef CONFIG_IPV6_SUBTREES
1198                     /* Subtree root (i.e. fn) may have one child */
1199                     || (children && fn->fn_flags & RTN_ROOT)
1200 #endif
1201                     ) {
1202                         fn->leaf = fib6_find_prefix(net, fn);
1203 #if RT6_DEBUG >= 2
1204                         if (!fn->leaf) {
1205                                 WARN_ON(!fn->leaf);
1206                                 fn->leaf = net->ipv6.ip6_null_entry;
1207                         }
1208 #endif
1209                         atomic_inc(&fn->leaf->rt6i_ref);
1210                         return fn->parent;
1211                 }
1212
1213                 pn = fn->parent;
1214 #ifdef CONFIG_IPV6_SUBTREES
1215                 if (FIB6_SUBTREE(pn) == fn) {
1216                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1217                         FIB6_SUBTREE(pn) = NULL;
1218                         nstate = FWS_L;
1219                 } else {
1220                         WARN_ON(fn->fn_flags & RTN_ROOT);
1221 #endif
1222                         if (pn->right == fn)
1223                                 pn->right = child;
1224                         else if (pn->left == fn)
1225                                 pn->left = child;
1226 #if RT6_DEBUG >= 2
1227                         else
1228                                 WARN_ON(1);
1229 #endif
1230                         if (child)
1231                                 child->parent = pn;
1232                         nstate = FWS_R;
1233 #ifdef CONFIG_IPV6_SUBTREES
1234                 }
1235 #endif
1236
1237                 read_lock(&fib6_walker_lock);
1238                 FOR_WALKERS(w) {
1239                         if (!child) {
1240                                 if (w->root == fn) {
1241                                         w->root = w->node = NULL;
1242                                         RT6_TRACE("W %p adjusted by delroot 1\n", w);
1243                                 } else if (w->node == fn) {
1244                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1245                                         w->node = pn;
1246                                         w->state = nstate;
1247                                 }
1248                         } else {
1249                                 if (w->root == fn) {
1250                                         w->root = child;
1251                                         RT6_TRACE("W %p adjusted by delroot 2\n", w);
1252                                 }
1253                                 if (w->node == fn) {
1254                                         w->node = child;
1255                                         if (children&2) {
1256                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1257                                                 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1258                                         } else {
1259                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1260                                                 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1261                                         }
1262                                 }
1263                         }
1264                 }
1265                 read_unlock(&fib6_walker_lock);
1266
1267                 node_free(fn);
1268                 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1269                         return pn;
1270
1271                 rt6_release(pn->leaf);
1272                 pn->leaf = NULL;
1273                 fn = pn;
1274         }
1275 }
1276
1277 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1278                            struct nl_info *info)
1279 {
1280         struct fib6_walker_t *w;
1281         struct rt6_info *rt = *rtp;
1282         struct net *net = info->nl_net;
1283
1284         RT6_TRACE("fib6_del_route\n");
1285
1286         /* Unlink it */
1287         *rtp = rt->dst.rt6_next;
1288         rt->rt6i_node = NULL;
1289         net->ipv6.rt6_stats->fib_rt_entries--;
1290         net->ipv6.rt6_stats->fib_discarded_routes++;
1291
1292         /* Reset round-robin state, if necessary */
1293         if (fn->rr_ptr == rt)
1294                 fn->rr_ptr = NULL;
1295
1296         /* Remove this entry from other siblings */
1297         if (rt->rt6i_nsiblings) {
1298                 struct rt6_info *sibling, *next_sibling;
1299
1300                 list_for_each_entry_safe(sibling, next_sibling,
1301                                          &rt->rt6i_siblings, rt6i_siblings)
1302                         sibling->rt6i_nsiblings--;
1303                 rt->rt6i_nsiblings = 0;
1304                 list_del_init(&rt->rt6i_siblings);
1305         }
1306
1307         /* Adjust walkers */
1308         read_lock(&fib6_walker_lock);
1309         FOR_WALKERS(w) {
1310                 if (w->state == FWS_C && w->leaf == rt) {
1311                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1312                         w->leaf = rt->dst.rt6_next;
1313                         if (!w->leaf)
1314                                 w->state = FWS_U;
1315                 }
1316         }
1317         read_unlock(&fib6_walker_lock);
1318
1319         rt->dst.rt6_next = NULL;
1320
1321         /* If it was last route, expunge its radix tree node */
1322         if (!fn->leaf) {
1323                 fn->fn_flags &= ~RTN_RTINFO;
1324                 net->ipv6.rt6_stats->fib_route_nodes--;
1325                 fn = fib6_repair_tree(net, fn);
1326         }
1327
1328         if (atomic_read(&rt->rt6i_ref) != 1) {
1329                 /* This route is used as dummy address holder in some split
1330                  * nodes. It is not leaked, but it still holds other resources,
1331                  * which must be released in time. So, scan ascendant nodes
1332                  * and replace dummy references to this route with references
1333                  * to still alive ones.
1334                  */
1335                 while (fn) {
1336                         if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1337                                 fn->leaf = fib6_find_prefix(net, fn);
1338                                 atomic_inc(&fn->leaf->rt6i_ref);
1339                                 rt6_release(rt);
1340                         }
1341                         fn = fn->parent;
1342                 }
1343                 /* No more references are possible at this point. */
1344                 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1345         }
1346
1347         inet6_rt_notify(RTM_DELROUTE, rt, info);
1348         rt6_release(rt);
1349 }
1350
1351 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1352 {
1353         struct net *net = info->nl_net;
1354         struct fib6_node *fn = rt->rt6i_node;
1355         struct rt6_info **rtp;
1356
1357 #if RT6_DEBUG >= 2
1358         if (rt->dst.obsolete > 0) {
1359                 WARN_ON(fn != NULL);
1360                 return -ENOENT;
1361         }
1362 #endif
1363         if (!fn || rt == net->ipv6.ip6_null_entry)
1364                 return -ENOENT;
1365
1366         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1367
1368         if (!(rt->rt6i_flags & RTF_CACHE)) {
1369                 struct fib6_node *pn = fn;
1370 #ifdef CONFIG_IPV6_SUBTREES
1371                 /* clones of this route might be in another subtree */
1372                 if (rt->rt6i_src.plen) {
1373                         while (!(pn->fn_flags & RTN_ROOT))
1374                                 pn = pn->parent;
1375                         pn = pn->parent;
1376                 }
1377 #endif
1378                 fib6_prune_clones(info->nl_net, pn, rt);
1379         }
1380
1381         /*
1382          *      Walk the leaf entries looking for ourself
1383          */
1384
1385         for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1386                 if (*rtp == rt) {
1387                         fib6_del_route(fn, rtp, info);
1388                         return 0;
1389                 }
1390         }
1391         return -ENOENT;
1392 }
1393
1394 /*
1395  *      Tree traversal function.
1396  *
1397  *      Certainly, it is not interrupt safe.
1398  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1399  *      It means, that we can modify tree during walking
1400  *      and use this function for garbage collection, clone pruning,
1401  *      cleaning tree when a device goes down etc. etc.
1402  *
1403  *      It guarantees that every node will be traversed,
1404  *      and that it will be traversed only once.
1405  *
1406  *      Callback function w->func may return:
1407  *      0 -> continue walking.
1408  *      positive value -> walking is suspended (used by tree dumps,
1409  *      and probably by gc, if it will be split to several slices)
1410  *      negative value -> terminate walking.
1411  *
1412  *      The function itself returns:
1413  *      0   -> walk is complete.
1414  *      >0  -> walk is incomplete (i.e. suspended)
1415  *      <0  -> walk is terminated by an error.
1416  */
1417
1418 static int fib6_walk_continue(struct fib6_walker_t *w)
1419 {
1420         struct fib6_node *fn, *pn;
1421
1422         for (;;) {
1423                 fn = w->node;
1424                 if (!fn)
1425                         return 0;
1426
1427                 if (w->prune && fn != w->root &&
1428                     fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1429                         w->state = FWS_C;
1430                         w->leaf = fn->leaf;
1431                 }
1432                 switch (w->state) {
1433 #ifdef CONFIG_IPV6_SUBTREES
1434                 case FWS_S:
1435                         if (FIB6_SUBTREE(fn)) {
1436                                 w->node = FIB6_SUBTREE(fn);
1437                                 continue;
1438                         }
1439                         w->state = FWS_L;
1440 #endif
1441                 case FWS_L:
1442                         if (fn->left) {
1443                                 w->node = fn->left;
1444                                 w->state = FWS_INIT;
1445                                 continue;
1446                         }
1447                         w->state = FWS_R;
1448                 case FWS_R:
1449                         if (fn->right) {
1450                                 w->node = fn->right;
1451                                 w->state = FWS_INIT;
1452                                 continue;
1453                         }
1454                         w->state = FWS_C;
1455                         w->leaf = fn->leaf;
1456                 case FWS_C:
1457                         if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1458                                 int err;
1459
1460                                 if (w->skip) {
1461                                         w->skip--;
1462                                         continue;
1463                                 }
1464
1465                                 err = w->func(w);
1466                                 if (err)
1467                                         return err;
1468
1469                                 w->count++;
1470                                 continue;
1471                         }
1472                         w->state = FWS_U;
1473                 case FWS_U:
1474                         if (fn == w->root)
1475                                 return 0;
1476                         pn = fn->parent;
1477                         w->node = pn;
1478 #ifdef CONFIG_IPV6_SUBTREES
1479                         if (FIB6_SUBTREE(pn) == fn) {
1480                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1481                                 w->state = FWS_L;
1482                                 continue;
1483                         }
1484 #endif
1485                         if (pn->left == fn) {
1486                                 w->state = FWS_R;
1487                                 continue;
1488                         }
1489                         if (pn->right == fn) {
1490                                 w->state = FWS_C;
1491                                 w->leaf = w->node->leaf;
1492                                 continue;
1493                         }
1494 #if RT6_DEBUG >= 2
1495                         WARN_ON(1);
1496 #endif
1497                 }
1498         }
1499 }
1500
1501 static int fib6_walk(struct fib6_walker_t *w)
1502 {
1503         int res;
1504
1505         w->state = FWS_INIT;
1506         w->node = w->root;
1507
1508         fib6_walker_link(w);
1509         res = fib6_walk_continue(w);
1510         if (res <= 0)
1511                 fib6_walker_unlink(w);
1512         return res;
1513 }
1514
1515 static int fib6_clean_node(struct fib6_walker_t *w)
1516 {
1517         int res;
1518         struct rt6_info *rt;
1519         struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1520         struct nl_info info = {
1521                 .nl_net = c->net,
1522         };
1523
1524         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1525                 res = c->func(rt, c->arg);
1526                 if (res < 0) {
1527                         w->leaf = rt;
1528                         res = fib6_del(rt, &info);
1529                         if (res) {
1530 #if RT6_DEBUG >= 2
1531                                 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1532                                          __func__, rt, rt->rt6i_node, res);
1533 #endif
1534                                 continue;
1535                         }
1536                         return 0;
1537                 }
1538                 WARN_ON(res != 0);
1539         }
1540         w->leaf = rt;
1541         return 0;
1542 }
1543
1544 /*
1545  *      Convenient frontend to tree walker.
1546  *
1547  *      func is called on each route.
1548  *              It may return -1 -> delete this route.
1549  *                            0  -> continue walking
1550  *
1551  *      prune==1 -> only immediate children of node (certainly,
1552  *      ignoring pure split nodes) will be scanned.
1553  */
1554
1555 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1556                             int (*func)(struct rt6_info *, void *arg),
1557                             int prune, void *arg)
1558 {
1559         struct fib6_cleaner_t c;
1560
1561         c.w.root = root;
1562         c.w.func = fib6_clean_node;
1563         c.w.prune = prune;
1564         c.w.count = 0;
1565         c.w.skip = 0;
1566         c.func = func;
1567         c.arg = arg;
1568         c.net = net;
1569
1570         fib6_walk(&c.w);
1571 }
1572
1573 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1574                     void *arg)
1575 {
1576         struct fib6_table *table;
1577         struct hlist_head *head;
1578         unsigned int h;
1579
1580         rcu_read_lock();
1581         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1582                 head = &net->ipv6.fib_table_hash[h];
1583                 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1584                         write_lock_bh(&table->tb6_lock);
1585                         fib6_clean_tree(net, &table->tb6_root,
1586                                         func, 0, arg);
1587                         write_unlock_bh(&table->tb6_lock);
1588                 }
1589         }
1590         rcu_read_unlock();
1591 }
1592
1593 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1594 {
1595         if (rt->rt6i_flags & RTF_CACHE) {
1596                 RT6_TRACE("pruning clone %p\n", rt);
1597                 return -1;
1598         }
1599
1600         return 0;
1601 }
1602
1603 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1604                               struct rt6_info *rt)
1605 {
1606         fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1607 }
1608
1609 /*
1610  *      Garbage collection
1611  */
1612
1613 static struct fib6_gc_args
1614 {
1615         int                     timeout;
1616         int                     more;
1617 } gc_args;
1618
1619 static int fib6_age(struct rt6_info *rt, void *arg)
1620 {
1621         unsigned long now = jiffies;
1622
1623         /*
1624          *      check addrconf expiration here.
1625          *      Routes are expired even if they are in use.
1626          *
1627          *      Also age clones. Note, that clones are aged out
1628          *      only if they are not in use now.
1629          */
1630
1631         if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1632                 if (time_after(now, rt->dst.expires)) {
1633                         RT6_TRACE("expiring %p\n", rt);
1634                         return -1;
1635                 }
1636                 gc_args.more++;
1637         } else if (rt->rt6i_flags & RTF_CACHE) {
1638                 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1639                     time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1640                         RT6_TRACE("aging clone %p\n", rt);
1641                         return -1;
1642                 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1643                         struct neighbour *neigh;
1644                         __u8 neigh_flags = 0;
1645
1646                         neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1647                         if (neigh) {
1648                                 neigh_flags = neigh->flags;
1649                                 neigh_release(neigh);
1650                         }
1651                         if (!(neigh_flags & NTF_ROUTER)) {
1652                                 RT6_TRACE("purging route %p via non-router but gateway\n",
1653                                           rt);
1654                                 return -1;
1655                         }
1656                 }
1657                 gc_args.more++;
1658         }
1659
1660         return 0;
1661 }
1662
1663 static DEFINE_SPINLOCK(fib6_gc_lock);
1664
1665 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1666 {
1667         unsigned long now;
1668
1669         if (force) {
1670                 spin_lock_bh(&fib6_gc_lock);
1671         } else if (!spin_trylock_bh(&fib6_gc_lock)) {
1672                 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1673                 return;
1674         }
1675         gc_args.timeout = expires ? (int)expires :
1676                           net->ipv6.sysctl.ip6_rt_gc_interval;
1677
1678         gc_args.more = icmp6_dst_gc();
1679
1680         fib6_clean_all(net, fib6_age, NULL);
1681         now = jiffies;
1682         net->ipv6.ip6_rt_last_gc = now;
1683
1684         if (gc_args.more)
1685                 mod_timer(&net->ipv6.ip6_fib_timer,
1686                           round_jiffies(now
1687                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
1688         else
1689                 del_timer(&net->ipv6.ip6_fib_timer);
1690         spin_unlock_bh(&fib6_gc_lock);
1691 }
1692
1693 static void fib6_gc_timer_cb(unsigned long arg)
1694 {
1695         fib6_run_gc(0, (struct net *)arg, true);
1696 }
1697
1698 static int __net_init fib6_net_init(struct net *net)
1699 {
1700         size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1701
1702         setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1703
1704         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1705         if (!net->ipv6.rt6_stats)
1706                 goto out_timer;
1707
1708         /* Avoid false sharing : Use at least a full cache line */
1709         size = max_t(size_t, size, L1_CACHE_BYTES);
1710
1711         net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1712         if (!net->ipv6.fib_table_hash)
1713                 goto out_rt6_stats;
1714
1715         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1716                                           GFP_KERNEL);
1717         if (!net->ipv6.fib6_main_tbl)
1718                 goto out_fib_table_hash;
1719
1720         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1721         net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1722         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1723                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1724         inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1725
1726 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1727         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1728                                            GFP_KERNEL);
1729         if (!net->ipv6.fib6_local_tbl)
1730                 goto out_fib6_main_tbl;
1731         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1732         net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1733         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1734                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1735         inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1736 #endif
1737         fib6_tables_init(net);
1738
1739         return 0;
1740
1741 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1742 out_fib6_main_tbl:
1743         kfree(net->ipv6.fib6_main_tbl);
1744 #endif
1745 out_fib_table_hash:
1746         kfree(net->ipv6.fib_table_hash);
1747 out_rt6_stats:
1748         kfree(net->ipv6.rt6_stats);
1749 out_timer:
1750         return -ENOMEM;
1751 }
1752
1753 static void fib6_net_exit(struct net *net)
1754 {
1755         rt6_ifdown(net, NULL);
1756         del_timer_sync(&net->ipv6.ip6_fib_timer);
1757
1758 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1759         inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1760         kfree(net->ipv6.fib6_local_tbl);
1761 #endif
1762         inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1763         kfree(net->ipv6.fib6_main_tbl);
1764         kfree(net->ipv6.fib_table_hash);
1765         kfree(net->ipv6.rt6_stats);
1766 }
1767
1768 static struct pernet_operations fib6_net_ops = {
1769         .init = fib6_net_init,
1770         .exit = fib6_net_exit,
1771 };
1772
1773 int __init fib6_init(void)
1774 {
1775         int ret = -ENOMEM;
1776
1777         fib6_node_kmem = kmem_cache_create("fib6_nodes",
1778                                            sizeof(struct fib6_node),
1779                                            0, SLAB_HWCACHE_ALIGN,
1780                                            NULL);
1781         if (!fib6_node_kmem)
1782                 goto out;
1783
1784         ret = register_pernet_subsys(&fib6_net_ops);
1785         if (ret)
1786                 goto out_kmem_cache_create;
1787
1788         ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1789                               NULL);
1790         if (ret)
1791                 goto out_unregister_subsys;
1792 out:
1793         return ret;
1794
1795 out_unregister_subsys:
1796         unregister_pernet_subsys(&fib6_net_ops);
1797 out_kmem_cache_create:
1798         kmem_cache_destroy(fib6_node_kmem);
1799         goto out;
1800 }
1801
1802 void fib6_gc_cleanup(void)
1803 {
1804         unregister_pernet_subsys(&fib6_net_ops);
1805         kmem_cache_destroy(fib6_node_kmem);
1806 }
1807
1808 #ifdef CONFIG_PROC_FS
1809
1810 struct ipv6_route_iter {
1811         struct seq_net_private p;
1812         struct fib6_walker_t w;
1813         loff_t skip;
1814         struct fib6_table *tbl;
1815         __u32 sernum;
1816 };
1817
1818 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1819 {
1820         struct rt6_info *rt = v;
1821         struct ipv6_route_iter *iter = seq->private;
1822
1823         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1824
1825 #ifdef CONFIG_IPV6_SUBTREES
1826         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1827 #else
1828         seq_puts(seq, "00000000000000000000000000000000 00 ");
1829 #endif
1830         if (rt->rt6i_flags & RTF_GATEWAY)
1831                 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1832         else
1833                 seq_puts(seq, "00000000000000000000000000000000");
1834
1835         seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1836                    rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1837                    rt->dst.__use, rt->rt6i_flags,
1838                    rt->dst.dev ? rt->dst.dev->name : "");
1839         iter->w.leaf = NULL;
1840         return 0;
1841 }
1842
1843 static int ipv6_route_yield(struct fib6_walker_t *w)
1844 {
1845         struct ipv6_route_iter *iter = w->args;
1846
1847         if (!iter->skip)
1848                 return 1;
1849
1850         do {
1851                 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1852                 iter->skip--;
1853                 if (!iter->skip && iter->w.leaf)
1854                         return 1;
1855         } while (iter->w.leaf);
1856
1857         return 0;
1858 }
1859
1860 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1861 {
1862         memset(&iter->w, 0, sizeof(iter->w));
1863         iter->w.func = ipv6_route_yield;
1864         iter->w.root = &iter->tbl->tb6_root;
1865         iter->w.state = FWS_INIT;
1866         iter->w.node = iter->w.root;
1867         iter->w.args = iter;
1868         iter->sernum = iter->w.root->fn_sernum;
1869         INIT_LIST_HEAD(&iter->w.lh);
1870         fib6_walker_link(&iter->w);
1871 }
1872
1873 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1874                                                     struct net *net)
1875 {
1876         unsigned int h;
1877         struct hlist_node *node;
1878
1879         if (tbl) {
1880                 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1881                 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1882         } else {
1883                 h = 0;
1884                 node = NULL;
1885         }
1886
1887         while (!node && h < FIB6_TABLE_HASHSZ) {
1888                 node = rcu_dereference_bh(
1889                         hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1890         }
1891         return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1892 }
1893
1894 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
1895 {
1896         if (iter->sernum != iter->w.root->fn_sernum) {
1897                 iter->sernum = iter->w.root->fn_sernum;
1898                 iter->w.state = FWS_INIT;
1899                 iter->w.node = iter->w.root;
1900                 WARN_ON(iter->w.skip);
1901                 iter->w.skip = iter->w.count;
1902         }
1903 }
1904
1905 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1906 {
1907         int r;
1908         struct rt6_info *n;
1909         struct net *net = seq_file_net(seq);
1910         struct ipv6_route_iter *iter = seq->private;
1911
1912         if (!v)
1913                 goto iter_table;
1914
1915         n = ((struct rt6_info *)v)->dst.rt6_next;
1916         if (n) {
1917                 ++*pos;
1918                 return n;
1919         }
1920
1921 iter_table:
1922         ipv6_route_check_sernum(iter);
1923         read_lock(&iter->tbl->tb6_lock);
1924         r = fib6_walk_continue(&iter->w);
1925         read_unlock(&iter->tbl->tb6_lock);
1926         if (r > 0) {
1927                 if (v)
1928                         ++*pos;
1929                 return iter->w.leaf;
1930         } else if (r < 0) {
1931                 fib6_walker_unlink(&iter->w);
1932                 return NULL;
1933         }
1934         fib6_walker_unlink(&iter->w);
1935
1936         iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
1937         if (!iter->tbl)
1938                 return NULL;
1939
1940         ipv6_route_seq_setup_walk(iter);
1941         goto iter_table;
1942 }
1943
1944 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
1945         __acquires(RCU_BH)
1946 {
1947         struct net *net = seq_file_net(seq);
1948         struct ipv6_route_iter *iter = seq->private;
1949
1950         rcu_read_lock_bh();
1951         iter->tbl = ipv6_route_seq_next_table(NULL, net);
1952         iter->skip = *pos;
1953
1954         if (iter->tbl) {
1955                 ipv6_route_seq_setup_walk(iter);
1956                 return ipv6_route_seq_next(seq, NULL, pos);
1957         } else {
1958                 return NULL;
1959         }
1960 }
1961
1962 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
1963 {
1964         struct fib6_walker_t *w = &iter->w;
1965         return w->node && !(w->state == FWS_U && w->node == w->root);
1966 }
1967
1968 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
1969         __releases(RCU_BH)
1970 {
1971         struct ipv6_route_iter *iter = seq->private;
1972
1973         if (ipv6_route_iter_active(iter))
1974                 fib6_walker_unlink(&iter->w);
1975
1976         rcu_read_unlock_bh();
1977 }
1978
1979 static const struct seq_operations ipv6_route_seq_ops = {
1980         .start  = ipv6_route_seq_start,
1981         .next   = ipv6_route_seq_next,
1982         .stop   = ipv6_route_seq_stop,
1983         .show   = ipv6_route_seq_show
1984 };
1985
1986 int ipv6_route_open(struct inode *inode, struct file *file)
1987 {
1988         return seq_open_net(inode, file, &ipv6_route_seq_ops,
1989                             sizeof(struct ipv6_route_iter));
1990 }
1991
1992 #endif /* CONFIG_PROC_FS */