ath10k: setup peer UAPSD flag correctly
[cascardo/linux.git] / net / netfilter / nf_nat_core.c
1 /*
2  * (C) 1999-2001 Paul `Rusty' Russell
3  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
4  * (C) 2011 Patrick McHardy <kaber@trash.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/timer.h>
14 #include <linux/skbuff.h>
15 #include <linux/gfp.h>
16 #include <net/xfrm.h>
17 #include <linux/jhash.h>
18 #include <linux/rtnetlink.h>
19
20 #include <net/netfilter/nf_conntrack.h>
21 #include <net/netfilter/nf_conntrack_core.h>
22 #include <net/netfilter/nf_nat.h>
23 #include <net/netfilter/nf_nat_l3proto.h>
24 #include <net/netfilter/nf_nat_l4proto.h>
25 #include <net/netfilter/nf_nat_core.h>
26 #include <net/netfilter/nf_nat_helper.h>
27 #include <net/netfilter/nf_conntrack_helper.h>
28 #include <net/netfilter/nf_conntrack_l3proto.h>
29 #include <net/netfilter/nf_conntrack_zones.h>
30 #include <linux/netfilter/nf_nat.h>
31
32 static DEFINE_SPINLOCK(nf_nat_lock);
33
34 static DEFINE_MUTEX(nf_nat_proto_mutex);
35 static const struct nf_nat_l3proto __rcu *nf_nat_l3protos[NFPROTO_NUMPROTO]
36                                                 __read_mostly;
37 static const struct nf_nat_l4proto __rcu **nf_nat_l4protos[NFPROTO_NUMPROTO]
38                                                 __read_mostly;
39
40
41 inline const struct nf_nat_l3proto *
42 __nf_nat_l3proto_find(u8 family)
43 {
44         return rcu_dereference(nf_nat_l3protos[family]);
45 }
46
47 inline const struct nf_nat_l4proto *
48 __nf_nat_l4proto_find(u8 family, u8 protonum)
49 {
50         return rcu_dereference(nf_nat_l4protos[family][protonum]);
51 }
52 EXPORT_SYMBOL_GPL(__nf_nat_l4proto_find);
53
54 #ifdef CONFIG_XFRM
55 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
56 {
57         const struct nf_nat_l3proto *l3proto;
58         const struct nf_conn *ct;
59         enum ip_conntrack_info ctinfo;
60         enum ip_conntrack_dir dir;
61         unsigned  long statusbit;
62         u8 family;
63
64         ct = nf_ct_get(skb, &ctinfo);
65         if (ct == NULL)
66                 return;
67
68         family = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.l3num;
69         rcu_read_lock();
70         l3proto = __nf_nat_l3proto_find(family);
71         if (l3proto == NULL)
72                 goto out;
73
74         dir = CTINFO2DIR(ctinfo);
75         if (dir == IP_CT_DIR_ORIGINAL)
76                 statusbit = IPS_DST_NAT;
77         else
78                 statusbit = IPS_SRC_NAT;
79
80         l3proto->decode_session(skb, ct, dir, statusbit, fl);
81 out:
82         rcu_read_unlock();
83 }
84
85 int nf_xfrm_me_harder(struct sk_buff *skb, unsigned int family)
86 {
87         struct flowi fl;
88         unsigned int hh_len;
89         struct dst_entry *dst;
90         int err;
91
92         err = xfrm_decode_session(skb, &fl, family);
93         if (err < 0)
94                 return err;
95
96         dst = skb_dst(skb);
97         if (dst->xfrm)
98                 dst = ((struct xfrm_dst *)dst)->route;
99         dst_hold(dst);
100
101         dst = xfrm_lookup(dev_net(dst->dev), dst, &fl, skb->sk, 0);
102         if (IS_ERR(dst))
103                 return PTR_ERR(dst);
104
105         skb_dst_drop(skb);
106         skb_dst_set(skb, dst);
107
108         /* Change in oif may mean change in hh_len. */
109         hh_len = skb_dst(skb)->dev->hard_header_len;
110         if (skb_headroom(skb) < hh_len &&
111             pskb_expand_head(skb, hh_len - skb_headroom(skb), 0, GFP_ATOMIC))
112                 return -ENOMEM;
113         return 0;
114 }
115 EXPORT_SYMBOL(nf_xfrm_me_harder);
116 #endif /* CONFIG_XFRM */
117
118 /* We keep an extra hash for each conntrack, for fast searching. */
119 static inline unsigned int
120 hash_by_src(const struct net *net, u16 zone,
121             const struct nf_conntrack_tuple *tuple)
122 {
123         unsigned int hash;
124
125         /* Original src, to ensure we map it consistently if poss. */
126         hash = jhash2((u32 *)&tuple->src, sizeof(tuple->src) / sizeof(u32),
127                       tuple->dst.protonum ^ zone ^ nf_conntrack_hash_rnd);
128         return ((u64)hash * net->ct.nat_htable_size) >> 32;
129 }
130
131 /* Is this tuple already taken? (not by us) */
132 int
133 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
134                   const struct nf_conn *ignored_conntrack)
135 {
136         /* Conntrack tracking doesn't keep track of outgoing tuples; only
137          * incoming ones.  NAT means they don't have a fixed mapping,
138          * so we invert the tuple and look for the incoming reply.
139          *
140          * We could keep a separate hash if this proves too slow.
141          */
142         struct nf_conntrack_tuple reply;
143
144         nf_ct_invert_tuplepr(&reply, tuple);
145         return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
146 }
147 EXPORT_SYMBOL(nf_nat_used_tuple);
148
149 /* If we source map this tuple so reply looks like reply_tuple, will
150  * that meet the constraints of range.
151  */
152 static int in_range(const struct nf_nat_l3proto *l3proto,
153                     const struct nf_nat_l4proto *l4proto,
154                     const struct nf_conntrack_tuple *tuple,
155                     const struct nf_nat_range *range)
156 {
157         /* If we are supposed to map IPs, then we must be in the
158          * range specified, otherwise let this drag us onto a new src IP.
159          */
160         if (range->flags & NF_NAT_RANGE_MAP_IPS &&
161             !l3proto->in_range(tuple, range))
162                 return 0;
163
164         if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
165             l4proto->in_range(tuple, NF_NAT_MANIP_SRC,
166                               &range->min_proto, &range->max_proto))
167                 return 1;
168
169         return 0;
170 }
171
172 static inline int
173 same_src(const struct nf_conn *ct,
174          const struct nf_conntrack_tuple *tuple)
175 {
176         const struct nf_conntrack_tuple *t;
177
178         t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
179         return (t->dst.protonum == tuple->dst.protonum &&
180                 nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
181                 t->src.u.all == tuple->src.u.all);
182 }
183
184 /* Only called for SRC manip */
185 static int
186 find_appropriate_src(struct net *net, u16 zone,
187                      const struct nf_nat_l3proto *l3proto,
188                      const struct nf_nat_l4proto *l4proto,
189                      const struct nf_conntrack_tuple *tuple,
190                      struct nf_conntrack_tuple *result,
191                      const struct nf_nat_range *range)
192 {
193         unsigned int h = hash_by_src(net, zone, tuple);
194         const struct nf_conn_nat *nat;
195         const struct nf_conn *ct;
196
197         hlist_for_each_entry_rcu(nat, &net->ct.nat_bysource[h], bysource) {
198                 ct = nat->ct;
199                 if (same_src(ct, tuple) && nf_ct_zone(ct) == zone) {
200                         /* Copy source part from reply tuple. */
201                         nf_ct_invert_tuplepr(result,
202                                        &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
203                         result->dst = tuple->dst;
204
205                         if (in_range(l3proto, l4proto, result, range))
206                                 return 1;
207                 }
208         }
209         return 0;
210 }
211
212 /* For [FUTURE] fragmentation handling, we want the least-used
213  * src-ip/dst-ip/proto triple.  Fairness doesn't come into it.  Thus
214  * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
215  * 1-65535, we don't do pro-rata allocation based on ports; we choose
216  * the ip with the lowest src-ip/dst-ip/proto usage.
217  */
218 static void
219 find_best_ips_proto(u16 zone, struct nf_conntrack_tuple *tuple,
220                     const struct nf_nat_range *range,
221                     const struct nf_conn *ct,
222                     enum nf_nat_manip_type maniptype)
223 {
224         union nf_inet_addr *var_ipp;
225         unsigned int i, max;
226         /* Host order */
227         u32 minip, maxip, j, dist;
228         bool full_range;
229
230         /* No IP mapping?  Do nothing. */
231         if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
232                 return;
233
234         if (maniptype == NF_NAT_MANIP_SRC)
235                 var_ipp = &tuple->src.u3;
236         else
237                 var_ipp = &tuple->dst.u3;
238
239         /* Fast path: only one choice. */
240         if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
241                 *var_ipp = range->min_addr;
242                 return;
243         }
244
245         if (nf_ct_l3num(ct) == NFPROTO_IPV4)
246                 max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
247         else
248                 max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
249
250         /* Hashing source and destination IPs gives a fairly even
251          * spread in practice (if there are a small number of IPs
252          * involved, there usually aren't that many connections
253          * anyway).  The consistency means that servers see the same
254          * client coming from the same IP (some Internet Banking sites
255          * like this), even across reboots.
256          */
257         j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
258                    range->flags & NF_NAT_RANGE_PERSISTENT ?
259                         0 : (__force u32)tuple->dst.u3.all[max] ^ zone);
260
261         full_range = false;
262         for (i = 0; i <= max; i++) {
263                 /* If first bytes of the address are at the maximum, use the
264                  * distance. Otherwise use the full range.
265                  */
266                 if (!full_range) {
267                         minip = ntohl((__force __be32)range->min_addr.all[i]);
268                         maxip = ntohl((__force __be32)range->max_addr.all[i]);
269                         dist  = maxip - minip + 1;
270                 } else {
271                         minip = 0;
272                         dist  = ~0;
273                 }
274
275                 var_ipp->all[i] = (__force __u32)
276                         htonl(minip + (((u64)j * dist) >> 32));
277                 if (var_ipp->all[i] != range->max_addr.all[i])
278                         full_range = true;
279
280                 if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
281                         j ^= (__force u32)tuple->dst.u3.all[i];
282         }
283 }
284
285 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
286  * we change the source to map into the range. For NF_INET_PRE_ROUTING
287  * and NF_INET_LOCAL_OUT, we change the destination to map into the
288  * range. It might not be possible to get a unique tuple, but we try.
289  * At worst (or if we race), we will end up with a final duplicate in
290  * __ip_conntrack_confirm and drop the packet. */
291 static void
292 get_unique_tuple(struct nf_conntrack_tuple *tuple,
293                  const struct nf_conntrack_tuple *orig_tuple,
294                  const struct nf_nat_range *range,
295                  struct nf_conn *ct,
296                  enum nf_nat_manip_type maniptype)
297 {
298         const struct nf_nat_l3proto *l3proto;
299         const struct nf_nat_l4proto *l4proto;
300         struct net *net = nf_ct_net(ct);
301         u16 zone = nf_ct_zone(ct);
302
303         rcu_read_lock();
304         l3proto = __nf_nat_l3proto_find(orig_tuple->src.l3num);
305         l4proto = __nf_nat_l4proto_find(orig_tuple->src.l3num,
306                                         orig_tuple->dst.protonum);
307
308         /* 1) If this srcip/proto/src-proto-part is currently mapped,
309          * and that same mapping gives a unique tuple within the given
310          * range, use that.
311          *
312          * This is only required for source (ie. NAT/masq) mappings.
313          * So far, we don't do local source mappings, so multiple
314          * manips not an issue.
315          */
316         if (maniptype == NF_NAT_MANIP_SRC &&
317             !(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
318                 /* try the original tuple first */
319                 if (in_range(l3proto, l4proto, orig_tuple, range)) {
320                         if (!nf_nat_used_tuple(orig_tuple, ct)) {
321                                 *tuple = *orig_tuple;
322                                 goto out;
323                         }
324                 } else if (find_appropriate_src(net, zone, l3proto, l4proto,
325                                                 orig_tuple, tuple, range)) {
326                         pr_debug("get_unique_tuple: Found current src map\n");
327                         if (!nf_nat_used_tuple(tuple, ct))
328                                 goto out;
329                 }
330         }
331
332         /* 2) Select the least-used IP/proto combination in the given range */
333         *tuple = *orig_tuple;
334         find_best_ips_proto(zone, tuple, range, ct, maniptype);
335
336         /* 3) The per-protocol part of the manip is made to map into
337          * the range to make a unique tuple.
338          */
339
340         /* Only bother mapping if it's not already in range and unique */
341         if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
342                 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
343                         if (l4proto->in_range(tuple, maniptype,
344                                               &range->min_proto,
345                                               &range->max_proto) &&
346                             (range->min_proto.all == range->max_proto.all ||
347                              !nf_nat_used_tuple(tuple, ct)))
348                                 goto out;
349                 } else if (!nf_nat_used_tuple(tuple, ct)) {
350                         goto out;
351                 }
352         }
353
354         /* Last change: get protocol to try to obtain unique tuple. */
355         l4proto->unique_tuple(l3proto, tuple, range, maniptype, ct);
356 out:
357         rcu_read_unlock();
358 }
359
360 unsigned int
361 nf_nat_setup_info(struct nf_conn *ct,
362                   const struct nf_nat_range *range,
363                   enum nf_nat_manip_type maniptype)
364 {
365         struct net *net = nf_ct_net(ct);
366         struct nf_conntrack_tuple curr_tuple, new_tuple;
367         struct nf_conn_nat *nat;
368
369         /* nat helper or nfctnetlink also setup binding */
370         nat = nfct_nat(ct);
371         if (!nat) {
372                 nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
373                 if (nat == NULL) {
374                         pr_debug("failed to add NAT extension\n");
375                         return NF_ACCEPT;
376                 }
377         }
378
379         NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
380                      maniptype == NF_NAT_MANIP_DST);
381         BUG_ON(nf_nat_initialized(ct, maniptype));
382
383         /* What we've got will look like inverse of reply. Normally
384          * this is what is in the conntrack, except for prior
385          * manipulations (future optimization: if num_manips == 0,
386          * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
387          */
388         nf_ct_invert_tuplepr(&curr_tuple,
389                              &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
390
391         get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
392
393         if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
394                 struct nf_conntrack_tuple reply;
395
396                 /* Alter conntrack table so will recognize replies. */
397                 nf_ct_invert_tuplepr(&reply, &new_tuple);
398                 nf_conntrack_alter_reply(ct, &reply);
399
400                 /* Non-atomic: we own this at the moment. */
401                 if (maniptype == NF_NAT_MANIP_SRC)
402                         ct->status |= IPS_SRC_NAT;
403                 else
404                         ct->status |= IPS_DST_NAT;
405         }
406
407         if (maniptype == NF_NAT_MANIP_SRC) {
408                 unsigned int srchash;
409
410                 srchash = hash_by_src(net, nf_ct_zone(ct),
411                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
412                 spin_lock_bh(&nf_nat_lock);
413                 /* nf_conntrack_alter_reply might re-allocate extension aera */
414                 nat = nfct_nat(ct);
415                 nat->ct = ct;
416                 hlist_add_head_rcu(&nat->bysource,
417                                    &net->ct.nat_bysource[srchash]);
418                 spin_unlock_bh(&nf_nat_lock);
419         }
420
421         /* It's done. */
422         if (maniptype == NF_NAT_MANIP_DST)
423                 ct->status |= IPS_DST_NAT_DONE;
424         else
425                 ct->status |= IPS_SRC_NAT_DONE;
426
427         return NF_ACCEPT;
428 }
429 EXPORT_SYMBOL(nf_nat_setup_info);
430
431 /* Do packet manipulations according to nf_nat_setup_info. */
432 unsigned int nf_nat_packet(struct nf_conn *ct,
433                            enum ip_conntrack_info ctinfo,
434                            unsigned int hooknum,
435                            struct sk_buff *skb)
436 {
437         const struct nf_nat_l3proto *l3proto;
438         const struct nf_nat_l4proto *l4proto;
439         enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
440         unsigned long statusbit;
441         enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
442
443         if (mtype == NF_NAT_MANIP_SRC)
444                 statusbit = IPS_SRC_NAT;
445         else
446                 statusbit = IPS_DST_NAT;
447
448         /* Invert if this is reply dir. */
449         if (dir == IP_CT_DIR_REPLY)
450                 statusbit ^= IPS_NAT_MASK;
451
452         /* Non-atomic: these bits don't change. */
453         if (ct->status & statusbit) {
454                 struct nf_conntrack_tuple target;
455
456                 /* We are aiming to look like inverse of other direction. */
457                 nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
458
459                 l3proto = __nf_nat_l3proto_find(target.src.l3num);
460                 l4proto = __nf_nat_l4proto_find(target.src.l3num,
461                                                 target.dst.protonum);
462                 if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
463                         return NF_DROP;
464         }
465         return NF_ACCEPT;
466 }
467 EXPORT_SYMBOL_GPL(nf_nat_packet);
468
469 struct nf_nat_proto_clean {
470         u8      l3proto;
471         u8      l4proto;
472 };
473
474 /* kill conntracks with affected NAT section */
475 static int nf_nat_proto_remove(struct nf_conn *i, void *data)
476 {
477         const struct nf_nat_proto_clean *clean = data;
478         struct nf_conn_nat *nat = nfct_nat(i);
479
480         if (!nat)
481                 return 0;
482
483         if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
484             (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
485                 return 0;
486
487         return i->status & IPS_NAT_MASK ? 1 : 0;
488 }
489
490 static void nf_nat_l4proto_clean(u8 l3proto, u8 l4proto)
491 {
492         struct nf_nat_proto_clean clean = {
493                 .l3proto = l3proto,
494                 .l4proto = l4proto,
495         };
496         struct net *net;
497
498         rtnl_lock();
499         for_each_net(net)
500                 nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean);
501         rtnl_unlock();
502 }
503
504 static void nf_nat_l3proto_clean(u8 l3proto)
505 {
506         struct nf_nat_proto_clean clean = {
507                 .l3proto = l3proto,
508         };
509         struct net *net;
510
511         rtnl_lock();
512
513         for_each_net(net)
514                 nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean);
515         rtnl_unlock();
516 }
517
518 /* Protocol registration. */
519 int nf_nat_l4proto_register(u8 l3proto, const struct nf_nat_l4proto *l4proto)
520 {
521         const struct nf_nat_l4proto **l4protos;
522         unsigned int i;
523         int ret = 0;
524
525         mutex_lock(&nf_nat_proto_mutex);
526         if (nf_nat_l4protos[l3proto] == NULL) {
527                 l4protos = kmalloc(IPPROTO_MAX * sizeof(struct nf_nat_l4proto *),
528                                    GFP_KERNEL);
529                 if (l4protos == NULL) {
530                         ret = -ENOMEM;
531                         goto out;
532                 }
533
534                 for (i = 0; i < IPPROTO_MAX; i++)
535                         RCU_INIT_POINTER(l4protos[i], &nf_nat_l4proto_unknown);
536
537                 /* Before making proto_array visible to lockless readers,
538                  * we must make sure its content is committed to memory.
539                  */
540                 smp_wmb();
541
542                 nf_nat_l4protos[l3proto] = l4protos;
543         }
544
545         if (rcu_dereference_protected(
546                         nf_nat_l4protos[l3proto][l4proto->l4proto],
547                         lockdep_is_held(&nf_nat_proto_mutex)
548                         ) != &nf_nat_l4proto_unknown) {
549                 ret = -EBUSY;
550                 goto out;
551         }
552         RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto], l4proto);
553  out:
554         mutex_unlock(&nf_nat_proto_mutex);
555         return ret;
556 }
557 EXPORT_SYMBOL_GPL(nf_nat_l4proto_register);
558
559 /* No one stores the protocol anywhere; simply delete it. */
560 void nf_nat_l4proto_unregister(u8 l3proto, const struct nf_nat_l4proto *l4proto)
561 {
562         mutex_lock(&nf_nat_proto_mutex);
563         RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto],
564                          &nf_nat_l4proto_unknown);
565         mutex_unlock(&nf_nat_proto_mutex);
566         synchronize_rcu();
567
568         nf_nat_l4proto_clean(l3proto, l4proto->l4proto);
569 }
570 EXPORT_SYMBOL_GPL(nf_nat_l4proto_unregister);
571
572 int nf_nat_l3proto_register(const struct nf_nat_l3proto *l3proto)
573 {
574         int err;
575
576         err = nf_ct_l3proto_try_module_get(l3proto->l3proto);
577         if (err < 0)
578                 return err;
579
580         mutex_lock(&nf_nat_proto_mutex);
581         RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_TCP],
582                          &nf_nat_l4proto_tcp);
583         RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDP],
584                          &nf_nat_l4proto_udp);
585         mutex_unlock(&nf_nat_proto_mutex);
586
587         RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], l3proto);
588         return 0;
589 }
590 EXPORT_SYMBOL_GPL(nf_nat_l3proto_register);
591
592 void nf_nat_l3proto_unregister(const struct nf_nat_l3proto *l3proto)
593 {
594         mutex_lock(&nf_nat_proto_mutex);
595         RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], NULL);
596         mutex_unlock(&nf_nat_proto_mutex);
597         synchronize_rcu();
598
599         nf_nat_l3proto_clean(l3proto->l3proto);
600         nf_ct_l3proto_module_put(l3proto->l3proto);
601 }
602 EXPORT_SYMBOL_GPL(nf_nat_l3proto_unregister);
603
604 /* No one using conntrack by the time this called. */
605 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
606 {
607         struct nf_conn_nat *nat = nf_ct_ext_find(ct, NF_CT_EXT_NAT);
608
609         if (nat == NULL || nat->ct == NULL)
610                 return;
611
612         NF_CT_ASSERT(nat->ct->status & IPS_SRC_NAT_DONE);
613
614         spin_lock_bh(&nf_nat_lock);
615         hlist_del_rcu(&nat->bysource);
616         spin_unlock_bh(&nf_nat_lock);
617 }
618
619 static void nf_nat_move_storage(void *new, void *old)
620 {
621         struct nf_conn_nat *new_nat = new;
622         struct nf_conn_nat *old_nat = old;
623         struct nf_conn *ct = old_nat->ct;
624
625         if (!ct || !(ct->status & IPS_SRC_NAT_DONE))
626                 return;
627
628         spin_lock_bh(&nf_nat_lock);
629         hlist_replace_rcu(&old_nat->bysource, &new_nat->bysource);
630         spin_unlock_bh(&nf_nat_lock);
631 }
632
633 static struct nf_ct_ext_type nat_extend __read_mostly = {
634         .len            = sizeof(struct nf_conn_nat),
635         .align          = __alignof__(struct nf_conn_nat),
636         .destroy        = nf_nat_cleanup_conntrack,
637         .move           = nf_nat_move_storage,
638         .id             = NF_CT_EXT_NAT,
639         .flags          = NF_CT_EXT_F_PREALLOC,
640 };
641
642 #if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
643
644 #include <linux/netfilter/nfnetlink.h>
645 #include <linux/netfilter/nfnetlink_conntrack.h>
646
647 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
648         [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
649         [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
650 };
651
652 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
653                                      const struct nf_conn *ct,
654                                      struct nf_nat_range *range)
655 {
656         struct nlattr *tb[CTA_PROTONAT_MAX+1];
657         const struct nf_nat_l4proto *l4proto;
658         int err;
659
660         err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy);
661         if (err < 0)
662                 return err;
663
664         l4proto = __nf_nat_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
665         if (l4proto->nlattr_to_range)
666                 err = l4proto->nlattr_to_range(tb, range);
667
668         return err;
669 }
670
671 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
672         [CTA_NAT_V4_MINIP]      = { .type = NLA_U32 },
673         [CTA_NAT_V4_MAXIP]      = { .type = NLA_U32 },
674         [CTA_NAT_V6_MINIP]      = { .len = sizeof(struct in6_addr) },
675         [CTA_NAT_V6_MAXIP]      = { .len = sizeof(struct in6_addr) },
676         [CTA_NAT_PROTO]         = { .type = NLA_NESTED },
677 };
678
679 static int
680 nfnetlink_parse_nat(const struct nlattr *nat,
681                     const struct nf_conn *ct, struct nf_nat_range *range)
682 {
683         const struct nf_nat_l3proto *l3proto;
684         struct nlattr *tb[CTA_NAT_MAX+1];
685         int err;
686
687         memset(range, 0, sizeof(*range));
688
689         err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy);
690         if (err < 0)
691                 return err;
692
693         rcu_read_lock();
694         l3proto = __nf_nat_l3proto_find(nf_ct_l3num(ct));
695         if (l3proto == NULL) {
696                 err = -EAGAIN;
697                 goto out;
698         }
699         err = l3proto->nlattr_to_range(tb, range);
700         if (err < 0)
701                 goto out;
702
703         if (!tb[CTA_NAT_PROTO])
704                 goto out;
705
706         err = nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
707 out:
708         rcu_read_unlock();
709         return err;
710 }
711
712 static int
713 nfnetlink_parse_nat_setup(struct nf_conn *ct,
714                           enum nf_nat_manip_type manip,
715                           const struct nlattr *attr)
716 {
717         struct nf_nat_range range;
718         int err;
719
720         err = nfnetlink_parse_nat(attr, ct, &range);
721         if (err < 0)
722                 return err;
723         if (nf_nat_initialized(ct, manip))
724                 return -EEXIST;
725
726         return nf_nat_setup_info(ct, &range, manip);
727 }
728 #else
729 static int
730 nfnetlink_parse_nat_setup(struct nf_conn *ct,
731                           enum nf_nat_manip_type manip,
732                           const struct nlattr *attr)
733 {
734         return -EOPNOTSUPP;
735 }
736 #endif
737
738 static int __net_init nf_nat_net_init(struct net *net)
739 {
740         /* Leave them the same for the moment. */
741         net->ct.nat_htable_size = net->ct.htable_size;
742         net->ct.nat_bysource = nf_ct_alloc_hashtable(&net->ct.nat_htable_size, 0);
743         if (!net->ct.nat_bysource)
744                 return -ENOMEM;
745         return 0;
746 }
747
748 static void __net_exit nf_nat_net_exit(struct net *net)
749 {
750         struct nf_nat_proto_clean clean = {};
751
752         nf_ct_iterate_cleanup(net, &nf_nat_proto_remove, &clean);
753         synchronize_rcu();
754         nf_ct_free_hashtable(net->ct.nat_bysource, net->ct.nat_htable_size);
755 }
756
757 static struct pernet_operations nf_nat_net_ops = {
758         .init = nf_nat_net_init,
759         .exit = nf_nat_net_exit,
760 };
761
762 static struct nf_ct_helper_expectfn follow_master_nat = {
763         .name           = "nat-follow-master",
764         .expectfn       = nf_nat_follow_master,
765 };
766
767 static struct nfq_ct_nat_hook nfq_ct_nat = {
768         .seq_adjust     = nf_nat_tcp_seq_adjust,
769 };
770
771 static int __init nf_nat_init(void)
772 {
773         int ret;
774
775         ret = nf_ct_extend_register(&nat_extend);
776         if (ret < 0) {
777                 printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
778                 return ret;
779         }
780
781         ret = register_pernet_subsys(&nf_nat_net_ops);
782         if (ret < 0)
783                 goto cleanup_extend;
784
785         nf_ct_helper_expectfn_register(&follow_master_nat);
786
787         /* Initialize fake conntrack so that NAT will skip it */
788         nf_ct_untracked_status_or(IPS_NAT_DONE_MASK);
789
790         BUG_ON(nf_nat_seq_adjust_hook != NULL);
791         RCU_INIT_POINTER(nf_nat_seq_adjust_hook, nf_nat_seq_adjust);
792         BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
793         RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
794                            nfnetlink_parse_nat_setup);
795         BUG_ON(nf_ct_nat_offset != NULL);
796         RCU_INIT_POINTER(nf_ct_nat_offset, nf_nat_get_offset);
797         RCU_INIT_POINTER(nfq_ct_nat_hook, &nfq_ct_nat);
798 #ifdef CONFIG_XFRM
799         BUG_ON(nf_nat_decode_session_hook != NULL);
800         RCU_INIT_POINTER(nf_nat_decode_session_hook, __nf_nat_decode_session);
801 #endif
802         return 0;
803
804  cleanup_extend:
805         nf_ct_extend_unregister(&nat_extend);
806         return ret;
807 }
808
809 static void __exit nf_nat_cleanup(void)
810 {
811         unsigned int i;
812
813         unregister_pernet_subsys(&nf_nat_net_ops);
814         nf_ct_extend_unregister(&nat_extend);
815         nf_ct_helper_expectfn_unregister(&follow_master_nat);
816         RCU_INIT_POINTER(nf_nat_seq_adjust_hook, NULL);
817         RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
818         RCU_INIT_POINTER(nf_ct_nat_offset, NULL);
819         RCU_INIT_POINTER(nfq_ct_nat_hook, NULL);
820 #ifdef CONFIG_XFRM
821         RCU_INIT_POINTER(nf_nat_decode_session_hook, NULL);
822 #endif
823         for (i = 0; i < NFPROTO_NUMPROTO; i++)
824                 kfree(nf_nat_l4protos[i]);
825         synchronize_net();
826 }
827
828 MODULE_LICENSE("GPL");
829
830 module_init(nf_nat_init);
831 module_exit(nf_nat_cleanup);