ath6kl: remove -D__CHECK_ENDIAN__ from Makefile
[cascardo/linux.git] / net / openvswitch / flow.c
1 /*
2  * Copyright (c) 2007-2011 Nicira Networks.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/if_ether.h>
36 #include <linux/ip.h>
37 #include <linux/ipv6.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/ndisc.h>
46
47 static struct kmem_cache *flow_cache;
48
49 static int check_header(struct sk_buff *skb, int len)
50 {
51         if (unlikely(skb->len < len))
52                 return -EINVAL;
53         if (unlikely(!pskb_may_pull(skb, len)))
54                 return -ENOMEM;
55         return 0;
56 }
57
58 static bool arphdr_ok(struct sk_buff *skb)
59 {
60         return pskb_may_pull(skb, skb_network_offset(skb) +
61                                   sizeof(struct arp_eth_header));
62 }
63
64 static int check_iphdr(struct sk_buff *skb)
65 {
66         unsigned int nh_ofs = skb_network_offset(skb);
67         unsigned int ip_len;
68         int err;
69
70         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
71         if (unlikely(err))
72                 return err;
73
74         ip_len = ip_hdrlen(skb);
75         if (unlikely(ip_len < sizeof(struct iphdr) ||
76                      skb->len < nh_ofs + ip_len))
77                 return -EINVAL;
78
79         skb_set_transport_header(skb, nh_ofs + ip_len);
80         return 0;
81 }
82
83 static bool tcphdr_ok(struct sk_buff *skb)
84 {
85         int th_ofs = skb_transport_offset(skb);
86         int tcp_len;
87
88         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
89                 return false;
90
91         tcp_len = tcp_hdrlen(skb);
92         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
93                      skb->len < th_ofs + tcp_len))
94                 return false;
95
96         return true;
97 }
98
99 static bool udphdr_ok(struct sk_buff *skb)
100 {
101         return pskb_may_pull(skb, skb_transport_offset(skb) +
102                                   sizeof(struct udphdr));
103 }
104
105 static bool icmphdr_ok(struct sk_buff *skb)
106 {
107         return pskb_may_pull(skb, skb_transport_offset(skb) +
108                                   sizeof(struct icmphdr));
109 }
110
111 u64 ovs_flow_used_time(unsigned long flow_jiffies)
112 {
113         struct timespec cur_ts;
114         u64 cur_ms, idle_ms;
115
116         ktime_get_ts(&cur_ts);
117         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
118         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
119                  cur_ts.tv_nsec / NSEC_PER_MSEC;
120
121         return cur_ms - idle_ms;
122 }
123
124 #define SW_FLOW_KEY_OFFSET(field)               \
125         (offsetof(struct sw_flow_key, field) +  \
126          FIELD_SIZEOF(struct sw_flow_key, field))
127
128 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
129                          int *key_lenp)
130 {
131         unsigned int nh_ofs = skb_network_offset(skb);
132         unsigned int nh_len;
133         int payload_ofs;
134         struct ipv6hdr *nh;
135         uint8_t nexthdr;
136         __be16 frag_off;
137         int err;
138
139         *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
140
141         err = check_header(skb, nh_ofs + sizeof(*nh));
142         if (unlikely(err))
143                 return err;
144
145         nh = ipv6_hdr(skb);
146         nexthdr = nh->nexthdr;
147         payload_ofs = (u8 *)(nh + 1) - skb->data;
148
149         key->ip.proto = NEXTHDR_NONE;
150         key->ip.tos = ipv6_get_dsfield(nh);
151         key->ip.ttl = nh->hop_limit;
152         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
153         key->ipv6.addr.src = nh->saddr;
154         key->ipv6.addr.dst = nh->daddr;
155
156         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
157         if (unlikely(payload_ofs < 0))
158                 return -EINVAL;
159
160         if (frag_off) {
161                 if (frag_off & htons(~0x7))
162                         key->ip.frag = OVS_FRAG_TYPE_LATER;
163                 else
164                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
165         }
166
167         nh_len = payload_ofs - nh_ofs;
168         skb_set_transport_header(skb, nh_ofs + nh_len);
169         key->ip.proto = nexthdr;
170         return nh_len;
171 }
172
173 static bool icmp6hdr_ok(struct sk_buff *skb)
174 {
175         return pskb_may_pull(skb, skb_transport_offset(skb) +
176                                   sizeof(struct icmp6hdr));
177 }
178
179 #define TCP_FLAGS_OFFSET 13
180 #define TCP_FLAG_MASK 0x3f
181
182 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
183 {
184         u8 tcp_flags = 0;
185
186         if (flow->key.eth.type == htons(ETH_P_IP) &&
187             flow->key.ip.proto == IPPROTO_TCP) {
188                 u8 *tcp = (u8 *)tcp_hdr(skb);
189                 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
190         }
191
192         spin_lock(&flow->lock);
193         flow->used = jiffies;
194         flow->packet_count++;
195         flow->byte_count += skb->len;
196         flow->tcp_flags |= tcp_flags;
197         spin_unlock(&flow->lock);
198 }
199
200 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
201 {
202         int actions_len = nla_len(actions);
203         struct sw_flow_actions *sfa;
204
205         /* At least DP_MAX_PORTS actions are required to be able to flood a
206          * packet to every port.  Factor of 2 allows for setting VLAN tags,
207          * etc. */
208         if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
209                 return ERR_PTR(-EINVAL);
210
211         sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
212         if (!sfa)
213                 return ERR_PTR(-ENOMEM);
214
215         sfa->actions_len = actions_len;
216         memcpy(sfa->actions, nla_data(actions), actions_len);
217         return sfa;
218 }
219
220 struct sw_flow *ovs_flow_alloc(void)
221 {
222         struct sw_flow *flow;
223
224         flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
225         if (!flow)
226                 return ERR_PTR(-ENOMEM);
227
228         spin_lock_init(&flow->lock);
229         flow->sf_acts = NULL;
230
231         return flow;
232 }
233
234 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
235 {
236         hash = jhash_1word(hash, table->hash_seed);
237         return flex_array_get(table->buckets,
238                                 (hash & (table->n_buckets - 1)));
239 }
240
241 static struct flex_array *alloc_buckets(unsigned int n_buckets)
242 {
243         struct flex_array *buckets;
244         int i, err;
245
246         buckets = flex_array_alloc(sizeof(struct hlist_head *),
247                                    n_buckets, GFP_KERNEL);
248         if (!buckets)
249                 return NULL;
250
251         err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
252         if (err) {
253                 flex_array_free(buckets);
254                 return NULL;
255         }
256
257         for (i = 0; i < n_buckets; i++)
258                 INIT_HLIST_HEAD((struct hlist_head *)
259                                         flex_array_get(buckets, i));
260
261         return buckets;
262 }
263
264 static void free_buckets(struct flex_array *buckets)
265 {
266         flex_array_free(buckets);
267 }
268
269 struct flow_table *ovs_flow_tbl_alloc(int new_size)
270 {
271         struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
272
273         if (!table)
274                 return NULL;
275
276         table->buckets = alloc_buckets(new_size);
277
278         if (!table->buckets) {
279                 kfree(table);
280                 return NULL;
281         }
282         table->n_buckets = new_size;
283         table->count = 0;
284         table->node_ver = 0;
285         table->keep_flows = false;
286         get_random_bytes(&table->hash_seed, sizeof(u32));
287
288         return table;
289 }
290
291 void ovs_flow_tbl_destroy(struct flow_table *table)
292 {
293         int i;
294
295         if (!table)
296                 return;
297
298         if (table->keep_flows)
299                 goto skip_flows;
300
301         for (i = 0; i < table->n_buckets; i++) {
302                 struct sw_flow *flow;
303                 struct hlist_head *head = flex_array_get(table->buckets, i);
304                 struct hlist_node *node, *n;
305                 int ver = table->node_ver;
306
307                 hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
308                         hlist_del_rcu(&flow->hash_node[ver]);
309                         ovs_flow_free(flow);
310                 }
311         }
312
313 skip_flows:
314         free_buckets(table->buckets);
315         kfree(table);
316 }
317
318 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
319 {
320         struct flow_table *table = container_of(rcu, struct flow_table, rcu);
321
322         ovs_flow_tbl_destroy(table);
323 }
324
325 void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
326 {
327         if (!table)
328                 return;
329
330         call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
331 }
332
333 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
334 {
335         struct sw_flow *flow;
336         struct hlist_head *head;
337         struct hlist_node *n;
338         int ver;
339         int i;
340
341         ver = table->node_ver;
342         while (*bucket < table->n_buckets) {
343                 i = 0;
344                 head = flex_array_get(table->buckets, *bucket);
345                 hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
346                         if (i < *last) {
347                                 i++;
348                                 continue;
349                         }
350                         *last = i + 1;
351                         return flow;
352                 }
353                 (*bucket)++;
354                 *last = 0;
355         }
356
357         return NULL;
358 }
359
360 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
361 {
362         int old_ver;
363         int i;
364
365         old_ver = old->node_ver;
366         new->node_ver = !old_ver;
367
368         /* Insert in new table. */
369         for (i = 0; i < old->n_buckets; i++) {
370                 struct sw_flow *flow;
371                 struct hlist_head *head;
372                 struct hlist_node *n;
373
374                 head = flex_array_get(old->buckets, i);
375
376                 hlist_for_each_entry(flow, n, head, hash_node[old_ver])
377                         ovs_flow_tbl_insert(new, flow);
378         }
379         old->keep_flows = true;
380 }
381
382 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
383 {
384         struct flow_table *new_table;
385
386         new_table = ovs_flow_tbl_alloc(n_buckets);
387         if (!new_table)
388                 return ERR_PTR(-ENOMEM);
389
390         flow_table_copy_flows(table, new_table);
391
392         return new_table;
393 }
394
395 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
396 {
397         return __flow_tbl_rehash(table, table->n_buckets);
398 }
399
400 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
401 {
402         return __flow_tbl_rehash(table, table->n_buckets * 2);
403 }
404
405 void ovs_flow_free(struct sw_flow *flow)
406 {
407         if (unlikely(!flow))
408                 return;
409
410         kfree((struct sf_flow_acts __force *)flow->sf_acts);
411         kmem_cache_free(flow_cache, flow);
412 }
413
414 /* RCU callback used by ovs_flow_deferred_free. */
415 static void rcu_free_flow_callback(struct rcu_head *rcu)
416 {
417         struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
418
419         ovs_flow_free(flow);
420 }
421
422 /* Schedules 'flow' to be freed after the next RCU grace period.
423  * The caller must hold rcu_read_lock for this to be sensible. */
424 void ovs_flow_deferred_free(struct sw_flow *flow)
425 {
426         call_rcu(&flow->rcu, rcu_free_flow_callback);
427 }
428
429 /* RCU callback used by ovs_flow_deferred_free_acts. */
430 static void rcu_free_acts_callback(struct rcu_head *rcu)
431 {
432         struct sw_flow_actions *sf_acts = container_of(rcu,
433                         struct sw_flow_actions, rcu);
434         kfree(sf_acts);
435 }
436
437 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
438  * The caller must hold rcu_read_lock for this to be sensible. */
439 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
440 {
441         call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
442 }
443
444 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
445 {
446         struct qtag_prefix {
447                 __be16 eth_type; /* ETH_P_8021Q */
448                 __be16 tci;
449         };
450         struct qtag_prefix *qp;
451
452         if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
453                 return 0;
454
455         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
456                                          sizeof(__be16))))
457                 return -ENOMEM;
458
459         qp = (struct qtag_prefix *) skb->data;
460         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
461         __skb_pull(skb, sizeof(struct qtag_prefix));
462
463         return 0;
464 }
465
466 static __be16 parse_ethertype(struct sk_buff *skb)
467 {
468         struct llc_snap_hdr {
469                 u8  dsap;  /* Always 0xAA */
470                 u8  ssap;  /* Always 0xAA */
471                 u8  ctrl;
472                 u8  oui[3];
473                 __be16 ethertype;
474         };
475         struct llc_snap_hdr *llc;
476         __be16 proto;
477
478         proto = *(__be16 *) skb->data;
479         __skb_pull(skb, sizeof(__be16));
480
481         if (ntohs(proto) >= 1536)
482                 return proto;
483
484         if (skb->len < sizeof(struct llc_snap_hdr))
485                 return htons(ETH_P_802_2);
486
487         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
488                 return htons(0);
489
490         llc = (struct llc_snap_hdr *) skb->data;
491         if (llc->dsap != LLC_SAP_SNAP ||
492             llc->ssap != LLC_SAP_SNAP ||
493             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
494                 return htons(ETH_P_802_2);
495
496         __skb_pull(skb, sizeof(struct llc_snap_hdr));
497         return llc->ethertype;
498 }
499
500 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
501                         int *key_lenp, int nh_len)
502 {
503         struct icmp6hdr *icmp = icmp6_hdr(skb);
504         int error = 0;
505         int key_len;
506
507         /* The ICMPv6 type and code fields use the 16-bit transport port
508          * fields, so we need to store them in 16-bit network byte order.
509          */
510         key->ipv6.tp.src = htons(icmp->icmp6_type);
511         key->ipv6.tp.dst = htons(icmp->icmp6_code);
512         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
513
514         if (icmp->icmp6_code == 0 &&
515             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
516              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
517                 int icmp_len = skb->len - skb_transport_offset(skb);
518                 struct nd_msg *nd;
519                 int offset;
520
521                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
522
523                 /* In order to process neighbor discovery options, we need the
524                  * entire packet.
525                  */
526                 if (unlikely(icmp_len < sizeof(*nd)))
527                         goto out;
528                 if (unlikely(skb_linearize(skb))) {
529                         error = -ENOMEM;
530                         goto out;
531                 }
532
533                 nd = (struct nd_msg *)skb_transport_header(skb);
534                 key->ipv6.nd.target = nd->target;
535                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
536
537                 icmp_len -= sizeof(*nd);
538                 offset = 0;
539                 while (icmp_len >= 8) {
540                         struct nd_opt_hdr *nd_opt =
541                                  (struct nd_opt_hdr *)(nd->opt + offset);
542                         int opt_len = nd_opt->nd_opt_len * 8;
543
544                         if (unlikely(!opt_len || opt_len > icmp_len))
545                                 goto invalid;
546
547                         /* Store the link layer address if the appropriate
548                          * option is provided.  It is considered an error if
549                          * the same link layer option is specified twice.
550                          */
551                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
552                             && opt_len == 8) {
553                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
554                                         goto invalid;
555                                 memcpy(key->ipv6.nd.sll,
556                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
557                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
558                                    && opt_len == 8) {
559                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
560                                         goto invalid;
561                                 memcpy(key->ipv6.nd.tll,
562                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
563                         }
564
565                         icmp_len -= opt_len;
566                         offset += opt_len;
567                 }
568         }
569
570         goto out;
571
572 invalid:
573         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
574         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
575         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
576
577 out:
578         *key_lenp = key_len;
579         return error;
580 }
581
582 /**
583  * ovs_flow_extract - extracts a flow key from an Ethernet frame.
584  * @skb: sk_buff that contains the frame, with skb->data pointing to the
585  * Ethernet header
586  * @in_port: port number on which @skb was received.
587  * @key: output flow key
588  * @key_lenp: length of output flow key
589  *
590  * The caller must ensure that skb->len >= ETH_HLEN.
591  *
592  * Returns 0 if successful, otherwise a negative errno value.
593  *
594  * Initializes @skb header pointers as follows:
595  *
596  *    - skb->mac_header: the Ethernet header.
597  *
598  *    - skb->network_header: just past the Ethernet header, or just past the
599  *      VLAN header, to the first byte of the Ethernet payload.
600  *
601  *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
602  *      on output, then just past the IP header, if one is present and
603  *      of a correct length, otherwise the same as skb->network_header.
604  *      For other key->dl_type values it is left untouched.
605  */
606 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
607                  int *key_lenp)
608 {
609         int error = 0;
610         int key_len = SW_FLOW_KEY_OFFSET(eth);
611         struct ethhdr *eth;
612
613         memset(key, 0, sizeof(*key));
614
615         key->phy.priority = skb->priority;
616         key->phy.in_port = in_port;
617
618         skb_reset_mac_header(skb);
619
620         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
621          * header in the linear data area.
622          */
623         eth = eth_hdr(skb);
624         memcpy(key->eth.src, eth->h_source, ETH_ALEN);
625         memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
626
627         __skb_pull(skb, 2 * ETH_ALEN);
628
629         if (vlan_tx_tag_present(skb))
630                 key->eth.tci = htons(skb->vlan_tci);
631         else if (eth->h_proto == htons(ETH_P_8021Q))
632                 if (unlikely(parse_vlan(skb, key)))
633                         return -ENOMEM;
634
635         key->eth.type = parse_ethertype(skb);
636         if (unlikely(key->eth.type == htons(0)))
637                 return -ENOMEM;
638
639         skb_reset_network_header(skb);
640         __skb_push(skb, skb->data - skb_mac_header(skb));
641
642         /* Network layer. */
643         if (key->eth.type == htons(ETH_P_IP)) {
644                 struct iphdr *nh;
645                 __be16 offset;
646
647                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
648
649                 error = check_iphdr(skb);
650                 if (unlikely(error)) {
651                         if (error == -EINVAL) {
652                                 skb->transport_header = skb->network_header;
653                                 error = 0;
654                         }
655                         goto out;
656                 }
657
658                 nh = ip_hdr(skb);
659                 key->ipv4.addr.src = nh->saddr;
660                 key->ipv4.addr.dst = nh->daddr;
661
662                 key->ip.proto = nh->protocol;
663                 key->ip.tos = nh->tos;
664                 key->ip.ttl = nh->ttl;
665
666                 offset = nh->frag_off & htons(IP_OFFSET);
667                 if (offset) {
668                         key->ip.frag = OVS_FRAG_TYPE_LATER;
669                         goto out;
670                 }
671                 if (nh->frag_off & htons(IP_MF) ||
672                          skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
673                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
674
675                 /* Transport layer. */
676                 if (key->ip.proto == IPPROTO_TCP) {
677                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
678                         if (tcphdr_ok(skb)) {
679                                 struct tcphdr *tcp = tcp_hdr(skb);
680                                 key->ipv4.tp.src = tcp->source;
681                                 key->ipv4.tp.dst = tcp->dest;
682                         }
683                 } else if (key->ip.proto == IPPROTO_UDP) {
684                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
685                         if (udphdr_ok(skb)) {
686                                 struct udphdr *udp = udp_hdr(skb);
687                                 key->ipv4.tp.src = udp->source;
688                                 key->ipv4.tp.dst = udp->dest;
689                         }
690                 } else if (key->ip.proto == IPPROTO_ICMP) {
691                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
692                         if (icmphdr_ok(skb)) {
693                                 struct icmphdr *icmp = icmp_hdr(skb);
694                                 /* The ICMP type and code fields use the 16-bit
695                                  * transport port fields, so we need to store
696                                  * them in 16-bit network byte order. */
697                                 key->ipv4.tp.src = htons(icmp->type);
698                                 key->ipv4.tp.dst = htons(icmp->code);
699                         }
700                 }
701
702         } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
703                 struct arp_eth_header *arp;
704
705                 arp = (struct arp_eth_header *)skb_network_header(skb);
706
707                 if (arp->ar_hrd == htons(ARPHRD_ETHER)
708                                 && arp->ar_pro == htons(ETH_P_IP)
709                                 && arp->ar_hln == ETH_ALEN
710                                 && arp->ar_pln == 4) {
711
712                         /* We only match on the lower 8 bits of the opcode. */
713                         if (ntohs(arp->ar_op) <= 0xff)
714                                 key->ip.proto = ntohs(arp->ar_op);
715
716                         if (key->ip.proto == ARPOP_REQUEST
717                                         || key->ip.proto == ARPOP_REPLY) {
718                                 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
719                                 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
720                                 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
721                                 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
722                                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
723                         }
724                 }
725         } else if (key->eth.type == htons(ETH_P_IPV6)) {
726                 int nh_len;             /* IPv6 Header + Extensions */
727
728                 nh_len = parse_ipv6hdr(skb, key, &key_len);
729                 if (unlikely(nh_len < 0)) {
730                         if (nh_len == -EINVAL)
731                                 skb->transport_header = skb->network_header;
732                         else
733                                 error = nh_len;
734                         goto out;
735                 }
736
737                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
738                         goto out;
739                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
740                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
741
742                 /* Transport layer. */
743                 if (key->ip.proto == NEXTHDR_TCP) {
744                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
745                         if (tcphdr_ok(skb)) {
746                                 struct tcphdr *tcp = tcp_hdr(skb);
747                                 key->ipv6.tp.src = tcp->source;
748                                 key->ipv6.tp.dst = tcp->dest;
749                         }
750                 } else if (key->ip.proto == NEXTHDR_UDP) {
751                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
752                         if (udphdr_ok(skb)) {
753                                 struct udphdr *udp = udp_hdr(skb);
754                                 key->ipv6.tp.src = udp->source;
755                                 key->ipv6.tp.dst = udp->dest;
756                         }
757                 } else if (key->ip.proto == NEXTHDR_ICMP) {
758                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
759                         if (icmp6hdr_ok(skb)) {
760                                 error = parse_icmpv6(skb, key, &key_len, nh_len);
761                                 if (error < 0)
762                                         goto out;
763                         }
764                 }
765         }
766
767 out:
768         *key_lenp = key_len;
769         return error;
770 }
771
772 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
773 {
774         return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
775 }
776
777 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
778                                 struct sw_flow_key *key, int key_len)
779 {
780         struct sw_flow *flow;
781         struct hlist_node *n;
782         struct hlist_head *head;
783         u32 hash;
784
785         hash = ovs_flow_hash(key, key_len);
786
787         head = find_bucket(table, hash);
788         hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
789
790                 if (flow->hash == hash &&
791                     !memcmp(&flow->key, key, key_len)) {
792                         return flow;
793                 }
794         }
795         return NULL;
796 }
797
798 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
799 {
800         struct hlist_head *head;
801
802         head = find_bucket(table, flow->hash);
803         hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
804         table->count++;
805 }
806
807 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
808 {
809         hlist_del_rcu(&flow->hash_node[table->node_ver]);
810         table->count--;
811         BUG_ON(table->count < 0);
812 }
813
814 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
815 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
816         [OVS_KEY_ATTR_ENCAP] = -1,
817         [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
818         [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
819         [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
820         [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
821         [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
822         [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
823         [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
824         [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
825         [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
826         [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
827         [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
828         [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
829         [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
830 };
831
832 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
833                                   const struct nlattr *a[], u32 *attrs)
834 {
835         const struct ovs_key_icmp *icmp_key;
836         const struct ovs_key_tcp *tcp_key;
837         const struct ovs_key_udp *udp_key;
838
839         switch (swkey->ip.proto) {
840         case IPPROTO_TCP:
841                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
842                         return -EINVAL;
843                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
844
845                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
846                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
847                 swkey->ipv4.tp.src = tcp_key->tcp_src;
848                 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
849                 break;
850
851         case IPPROTO_UDP:
852                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
853                         return -EINVAL;
854                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
855
856                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
857                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
858                 swkey->ipv4.tp.src = udp_key->udp_src;
859                 swkey->ipv4.tp.dst = udp_key->udp_dst;
860                 break;
861
862         case IPPROTO_ICMP:
863                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
864                         return -EINVAL;
865                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
866
867                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
868                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
869                 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
870                 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
871                 break;
872         }
873
874         return 0;
875 }
876
877 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
878                                   const struct nlattr *a[], u32 *attrs)
879 {
880         const struct ovs_key_icmpv6 *icmpv6_key;
881         const struct ovs_key_tcp *tcp_key;
882         const struct ovs_key_udp *udp_key;
883
884         switch (swkey->ip.proto) {
885         case IPPROTO_TCP:
886                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
887                         return -EINVAL;
888                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
889
890                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
891                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
892                 swkey->ipv6.tp.src = tcp_key->tcp_src;
893                 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
894                 break;
895
896         case IPPROTO_UDP:
897                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
898                         return -EINVAL;
899                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
900
901                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
902                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
903                 swkey->ipv6.tp.src = udp_key->udp_src;
904                 swkey->ipv6.tp.dst = udp_key->udp_dst;
905                 break;
906
907         case IPPROTO_ICMPV6:
908                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
909                         return -EINVAL;
910                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
911
912                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
913                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
914                 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
915                 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
916
917                 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
918                     swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
919                         const struct ovs_key_nd *nd_key;
920
921                         if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
922                                 return -EINVAL;
923                         *attrs &= ~(1 << OVS_KEY_ATTR_ND);
924
925                         *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
926                         nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
927                         memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
928                                sizeof(swkey->ipv6.nd.target));
929                         memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
930                         memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
931                 }
932                 break;
933         }
934
935         return 0;
936 }
937
938 static int parse_flow_nlattrs(const struct nlattr *attr,
939                               const struct nlattr *a[], u32 *attrsp)
940 {
941         const struct nlattr *nla;
942         u32 attrs;
943         int rem;
944
945         attrs = 0;
946         nla_for_each_nested(nla, attr, rem) {
947                 u16 type = nla_type(nla);
948                 int expected_len;
949
950                 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
951                         return -EINVAL;
952
953                 expected_len = ovs_key_lens[type];
954                 if (nla_len(nla) != expected_len && expected_len != -1)
955                         return -EINVAL;
956
957                 attrs |= 1 << type;
958                 a[type] = nla;
959         }
960         if (rem)
961                 return -EINVAL;
962
963         *attrsp = attrs;
964         return 0;
965 }
966
967 /**
968  * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
969  * @swkey: receives the extracted flow key.
970  * @key_lenp: number of bytes used in @swkey.
971  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
972  * sequence.
973  */
974 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
975                       const struct nlattr *attr)
976 {
977         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
978         const struct ovs_key_ethernet *eth_key;
979         int key_len;
980         u32 attrs;
981         int err;
982
983         memset(swkey, 0, sizeof(struct sw_flow_key));
984         key_len = SW_FLOW_KEY_OFFSET(eth);
985
986         err = parse_flow_nlattrs(attr, a, &attrs);
987         if (err)
988                 return err;
989
990         /* Metadata attributes. */
991         if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
992                 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
993                 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
994         }
995         if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
996                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
997                 if (in_port >= DP_MAX_PORTS)
998                         return -EINVAL;
999                 swkey->phy.in_port = in_port;
1000                 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1001         } else {
1002                 swkey->phy.in_port = USHRT_MAX;
1003         }
1004
1005         /* Data attributes. */
1006         if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1007                 return -EINVAL;
1008         attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1009
1010         eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1011         memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1012         memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1013
1014         if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1015             nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1016                 const struct nlattr *encap;
1017                 __be16 tci;
1018
1019                 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1020                               (1 << OVS_KEY_ATTR_ETHERTYPE) |
1021                               (1 << OVS_KEY_ATTR_ENCAP)))
1022                         return -EINVAL;
1023
1024                 encap = a[OVS_KEY_ATTR_ENCAP];
1025                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1026                 if (tci & htons(VLAN_TAG_PRESENT)) {
1027                         swkey->eth.tci = tci;
1028
1029                         err = parse_flow_nlattrs(encap, a, &attrs);
1030                         if (err)
1031                                 return err;
1032                 } else if (!tci) {
1033                         /* Corner case for truncated 802.1Q header. */
1034                         if (nla_len(encap))
1035                                 return -EINVAL;
1036
1037                         swkey->eth.type = htons(ETH_P_8021Q);
1038                         *key_lenp = key_len;
1039                         return 0;
1040                 } else {
1041                         return -EINVAL;
1042                 }
1043         }
1044
1045         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1046                 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1047                 if (ntohs(swkey->eth.type) < 1536)
1048                         return -EINVAL;
1049                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1050         } else {
1051                 swkey->eth.type = htons(ETH_P_802_2);
1052         }
1053
1054         if (swkey->eth.type == htons(ETH_P_IP)) {
1055                 const struct ovs_key_ipv4 *ipv4_key;
1056
1057                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1058                         return -EINVAL;
1059                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1060
1061                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1062                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1063                 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1064                         return -EINVAL;
1065                 swkey->ip.proto = ipv4_key->ipv4_proto;
1066                 swkey->ip.tos = ipv4_key->ipv4_tos;
1067                 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1068                 swkey->ip.frag = ipv4_key->ipv4_frag;
1069                 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1070                 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1071
1072                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1073                         err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1074                         if (err)
1075                                 return err;
1076                 }
1077         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1078                 const struct ovs_key_ipv6 *ipv6_key;
1079
1080                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1081                         return -EINVAL;
1082                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1083
1084                 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1085                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1086                 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1087                         return -EINVAL;
1088                 swkey->ipv6.label = ipv6_key->ipv6_label;
1089                 swkey->ip.proto = ipv6_key->ipv6_proto;
1090                 swkey->ip.tos = ipv6_key->ipv6_tclass;
1091                 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1092                 swkey->ip.frag = ipv6_key->ipv6_frag;
1093                 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1094                        sizeof(swkey->ipv6.addr.src));
1095                 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1096                        sizeof(swkey->ipv6.addr.dst));
1097
1098                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1099                         err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1100                         if (err)
1101                                 return err;
1102                 }
1103         } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1104                 const struct ovs_key_arp *arp_key;
1105
1106                 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1107                         return -EINVAL;
1108                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1109
1110                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1111                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1112                 swkey->ipv4.addr.src = arp_key->arp_sip;
1113                 swkey->ipv4.addr.dst = arp_key->arp_tip;
1114                 if (arp_key->arp_op & htons(0xff00))
1115                         return -EINVAL;
1116                 swkey->ip.proto = ntohs(arp_key->arp_op);
1117                 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1118                 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1119         }
1120
1121         if (attrs)
1122                 return -EINVAL;
1123         *key_lenp = key_len;
1124
1125         return 0;
1126 }
1127
1128 /**
1129  * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1130  * @in_port: receives the extracted input port.
1131  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1132  * sequence.
1133  *
1134  * This parses a series of Netlink attributes that form a flow key, which must
1135  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1136  * get the metadata, that is, the parts of the flow key that cannot be
1137  * extracted from the packet itself.
1138  */
1139 int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port,
1140                                const struct nlattr *attr)
1141 {
1142         const struct nlattr *nla;
1143         int rem;
1144
1145         *in_port = USHRT_MAX;
1146         *priority = 0;
1147
1148         nla_for_each_nested(nla, attr, rem) {
1149                 int type = nla_type(nla);
1150
1151                 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1152                         if (nla_len(nla) != ovs_key_lens[type])
1153                                 return -EINVAL;
1154
1155                         switch (type) {
1156                         case OVS_KEY_ATTR_PRIORITY:
1157                                 *priority = nla_get_u32(nla);
1158                                 break;
1159
1160                         case OVS_KEY_ATTR_IN_PORT:
1161                                 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1162                                         return -EINVAL;
1163                                 *in_port = nla_get_u32(nla);
1164                                 break;
1165                         }
1166                 }
1167         }
1168         if (rem)
1169                 return -EINVAL;
1170         return 0;
1171 }
1172
1173 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1174 {
1175         struct ovs_key_ethernet *eth_key;
1176         struct nlattr *nla, *encap;
1177
1178         if (swkey->phy.priority)
1179                 NLA_PUT_U32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority);
1180
1181         if (swkey->phy.in_port != USHRT_MAX)
1182                 NLA_PUT_U32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port);
1183
1184         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1185         if (!nla)
1186                 goto nla_put_failure;
1187         eth_key = nla_data(nla);
1188         memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1189         memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1190
1191         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1192                 NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q));
1193                 NLA_PUT_BE16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci);
1194                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1195                 if (!swkey->eth.tci)
1196                         goto unencap;
1197         } else {
1198                 encap = NULL;
1199         }
1200
1201         if (swkey->eth.type == htons(ETH_P_802_2))
1202                 goto unencap;
1203
1204         NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type);
1205
1206         if (swkey->eth.type == htons(ETH_P_IP)) {
1207                 struct ovs_key_ipv4 *ipv4_key;
1208
1209                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1210                 if (!nla)
1211                         goto nla_put_failure;
1212                 ipv4_key = nla_data(nla);
1213                 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1214                 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1215                 ipv4_key->ipv4_proto = swkey->ip.proto;
1216                 ipv4_key->ipv4_tos = swkey->ip.tos;
1217                 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1218                 ipv4_key->ipv4_frag = swkey->ip.frag;
1219         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1220                 struct ovs_key_ipv6 *ipv6_key;
1221
1222                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1223                 if (!nla)
1224                         goto nla_put_failure;
1225                 ipv6_key = nla_data(nla);
1226                 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1227                                 sizeof(ipv6_key->ipv6_src));
1228                 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1229                                 sizeof(ipv6_key->ipv6_dst));
1230                 ipv6_key->ipv6_label = swkey->ipv6.label;
1231                 ipv6_key->ipv6_proto = swkey->ip.proto;
1232                 ipv6_key->ipv6_tclass = swkey->ip.tos;
1233                 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1234                 ipv6_key->ipv6_frag = swkey->ip.frag;
1235         } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1236                 struct ovs_key_arp *arp_key;
1237
1238                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1239                 if (!nla)
1240                         goto nla_put_failure;
1241                 arp_key = nla_data(nla);
1242                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1243                 arp_key->arp_sip = swkey->ipv4.addr.src;
1244                 arp_key->arp_tip = swkey->ipv4.addr.dst;
1245                 arp_key->arp_op = htons(swkey->ip.proto);
1246                 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1247                 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1248         }
1249
1250         if ((swkey->eth.type == htons(ETH_P_IP) ||
1251              swkey->eth.type == htons(ETH_P_IPV6)) &&
1252              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1253
1254                 if (swkey->ip.proto == IPPROTO_TCP) {
1255                         struct ovs_key_tcp *tcp_key;
1256
1257                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1258                         if (!nla)
1259                                 goto nla_put_failure;
1260                         tcp_key = nla_data(nla);
1261                         if (swkey->eth.type == htons(ETH_P_IP)) {
1262                                 tcp_key->tcp_src = swkey->ipv4.tp.src;
1263                                 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1264                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1265                                 tcp_key->tcp_src = swkey->ipv6.tp.src;
1266                                 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1267                         }
1268                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1269                         struct ovs_key_udp *udp_key;
1270
1271                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1272                         if (!nla)
1273                                 goto nla_put_failure;
1274                         udp_key = nla_data(nla);
1275                         if (swkey->eth.type == htons(ETH_P_IP)) {
1276                                 udp_key->udp_src = swkey->ipv4.tp.src;
1277                                 udp_key->udp_dst = swkey->ipv4.tp.dst;
1278                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1279                                 udp_key->udp_src = swkey->ipv6.tp.src;
1280                                 udp_key->udp_dst = swkey->ipv6.tp.dst;
1281                         }
1282                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1283                            swkey->ip.proto == IPPROTO_ICMP) {
1284                         struct ovs_key_icmp *icmp_key;
1285
1286                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1287                         if (!nla)
1288                                 goto nla_put_failure;
1289                         icmp_key = nla_data(nla);
1290                         icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1291                         icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1292                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1293                            swkey->ip.proto == IPPROTO_ICMPV6) {
1294                         struct ovs_key_icmpv6 *icmpv6_key;
1295
1296                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1297                                                 sizeof(*icmpv6_key));
1298                         if (!nla)
1299                                 goto nla_put_failure;
1300                         icmpv6_key = nla_data(nla);
1301                         icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1302                         icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1303
1304                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1305                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1306                                 struct ovs_key_nd *nd_key;
1307
1308                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1309                                 if (!nla)
1310                                         goto nla_put_failure;
1311                                 nd_key = nla_data(nla);
1312                                 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1313                                                         sizeof(nd_key->nd_target));
1314                                 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1315                                 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1316                         }
1317                 }
1318         }
1319
1320 unencap:
1321         if (encap)
1322                 nla_nest_end(skb, encap);
1323
1324         return 0;
1325
1326 nla_put_failure:
1327         return -EMSGSIZE;
1328 }
1329
1330 /* Initializes the flow module.
1331  * Returns zero if successful or a negative error code. */
1332 int ovs_flow_init(void)
1333 {
1334         flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1335                                         0, NULL);
1336         if (flow_cache == NULL)
1337                 return -ENOMEM;
1338
1339         return 0;
1340 }
1341
1342 /* Uninitializes the flow module. */
1343 void ovs_flow_exit(void)
1344 {
1345         kmem_cache_destroy(flow_cache);
1346 }