RDS: IB: mark rds_ib_fmr_wq static
[cascardo/linux.git] / net / rds / ib_rdma.c
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 #include <linux/llist.h>
37
38 #include "rds.h"
39 #include "ib.h"
40
41 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
42 #define CLEAN_LIST_BUSY_BIT 0
43
44 /*
45  * This is stored as mr->r_trans_private.
46  */
47 struct rds_ib_mr {
48         struct rds_ib_device    *device;
49         struct rds_ib_mr_pool   *pool;
50         struct ib_fmr           *fmr;
51
52         struct llist_node       llnode;
53
54         /* unmap_list is for freeing */
55         struct list_head        unmap_list;
56         unsigned int            remap_count;
57
58         struct scatterlist      *sg;
59         unsigned int            sg_len;
60         u64                     *dma;
61         int                     sg_dma_len;
62 };
63
64 /*
65  * Our own little FMR pool
66  */
67 struct rds_ib_mr_pool {
68         struct mutex            flush_lock;             /* serialize fmr invalidate */
69         struct delayed_work     flush_worker;           /* flush worker */
70
71         atomic_t                item_count;             /* total # of MRs */
72         atomic_t                dirty_count;            /* # dirty of MRs */
73
74         struct llist_head       drop_list;              /* MRs that have reached their max_maps limit */
75         struct llist_head       free_list;              /* unused MRs */
76         struct llist_head       clean_list;             /* global unused & unamapped MRs */
77         wait_queue_head_t       flush_wait;
78
79         atomic_t                free_pinned;            /* memory pinned by free MRs */
80         unsigned long           max_items;
81         unsigned long           max_items_soft;
82         unsigned long           max_free_pinned;
83         struct ib_fmr_attr      fmr_attr;
84 };
85
86 static struct workqueue_struct *rds_ib_fmr_wq;
87
88 int rds_ib_fmr_init(void)
89 {
90         rds_ib_fmr_wq = create_workqueue("rds_fmr_flushd");
91         if (!rds_ib_fmr_wq)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 /* By the time this is called all the IB devices should have been torn down and
97  * had their pools freed.  As each pool is freed its work struct is waited on,
98  * so the pool flushing work queue should be idle by the time we get here.
99  */
100 void rds_ib_fmr_exit(void)
101 {
102         destroy_workqueue(rds_ib_fmr_wq);
103 }
104
105 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
106 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
107 static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
108
109 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
110 {
111         struct rds_ib_device *rds_ibdev;
112         struct rds_ib_ipaddr *i_ipaddr;
113
114         rcu_read_lock();
115         list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
116                 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
117                         if (i_ipaddr->ipaddr == ipaddr) {
118                                 atomic_inc(&rds_ibdev->refcount);
119                                 rcu_read_unlock();
120                                 return rds_ibdev;
121                         }
122                 }
123         }
124         rcu_read_unlock();
125
126         return NULL;
127 }
128
129 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
130 {
131         struct rds_ib_ipaddr *i_ipaddr;
132
133         i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
134         if (!i_ipaddr)
135                 return -ENOMEM;
136
137         i_ipaddr->ipaddr = ipaddr;
138
139         spin_lock_irq(&rds_ibdev->spinlock);
140         list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
141         spin_unlock_irq(&rds_ibdev->spinlock);
142
143         return 0;
144 }
145
146 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
147 {
148         struct rds_ib_ipaddr *i_ipaddr;
149         struct rds_ib_ipaddr *to_free = NULL;
150
151
152         spin_lock_irq(&rds_ibdev->spinlock);
153         list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
154                 if (i_ipaddr->ipaddr == ipaddr) {
155                         list_del_rcu(&i_ipaddr->list);
156                         to_free = i_ipaddr;
157                         break;
158                 }
159         }
160         spin_unlock_irq(&rds_ibdev->spinlock);
161
162         if (to_free)
163                 kfree_rcu(to_free, rcu);
164 }
165
166 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
167 {
168         struct rds_ib_device *rds_ibdev_old;
169
170         rds_ibdev_old = rds_ib_get_device(ipaddr);
171         if (!rds_ibdev_old)
172                 return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
173
174         if (rds_ibdev_old != rds_ibdev) {
175                 rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
176                 rds_ib_dev_put(rds_ibdev_old);
177                 return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
178         }
179         rds_ib_dev_put(rds_ibdev_old);
180
181         return 0;
182 }
183
184 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
185 {
186         struct rds_ib_connection *ic = conn->c_transport_data;
187
188         /* conn was previously on the nodev_conns_list */
189         spin_lock_irq(&ib_nodev_conns_lock);
190         BUG_ON(list_empty(&ib_nodev_conns));
191         BUG_ON(list_empty(&ic->ib_node));
192         list_del(&ic->ib_node);
193
194         spin_lock(&rds_ibdev->spinlock);
195         list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
196         spin_unlock(&rds_ibdev->spinlock);
197         spin_unlock_irq(&ib_nodev_conns_lock);
198
199         ic->rds_ibdev = rds_ibdev;
200         atomic_inc(&rds_ibdev->refcount);
201 }
202
203 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
204 {
205         struct rds_ib_connection *ic = conn->c_transport_data;
206
207         /* place conn on nodev_conns_list */
208         spin_lock(&ib_nodev_conns_lock);
209
210         spin_lock_irq(&rds_ibdev->spinlock);
211         BUG_ON(list_empty(&ic->ib_node));
212         list_del(&ic->ib_node);
213         spin_unlock_irq(&rds_ibdev->spinlock);
214
215         list_add_tail(&ic->ib_node, &ib_nodev_conns);
216
217         spin_unlock(&ib_nodev_conns_lock);
218
219         ic->rds_ibdev = NULL;
220         rds_ib_dev_put(rds_ibdev);
221 }
222
223 void rds_ib_destroy_nodev_conns(void)
224 {
225         struct rds_ib_connection *ic, *_ic;
226         LIST_HEAD(tmp_list);
227
228         /* avoid calling conn_destroy with irqs off */
229         spin_lock_irq(&ib_nodev_conns_lock);
230         list_splice(&ib_nodev_conns, &tmp_list);
231         spin_unlock_irq(&ib_nodev_conns_lock);
232
233         list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
234                 rds_conn_destroy(ic->conn);
235 }
236
237 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
238 {
239         struct rds_ib_mr_pool *pool;
240
241         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
242         if (!pool)
243                 return ERR_PTR(-ENOMEM);
244
245         init_llist_head(&pool->free_list);
246         init_llist_head(&pool->drop_list);
247         init_llist_head(&pool->clean_list);
248         mutex_init(&pool->flush_lock);
249         init_waitqueue_head(&pool->flush_wait);
250         INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
251
252         pool->fmr_attr.max_pages = fmr_message_size;
253         pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
254         pool->fmr_attr.page_shift = PAGE_SHIFT;
255         pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;
256
257         /* We never allow more than max_items MRs to be allocated.
258          * When we exceed more than max_items_soft, we start freeing
259          * items more aggressively.
260          * Make sure that max_items > max_items_soft > max_items / 2
261          */
262         pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
263         pool->max_items = rds_ibdev->max_fmrs;
264
265         return pool;
266 }
267
268 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
269 {
270         struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
271
272         iinfo->rdma_mr_max = pool->max_items;
273         iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
274 }
275
276 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
277 {
278         cancel_delayed_work_sync(&pool->flush_worker);
279         rds_ib_flush_mr_pool(pool, 1, NULL);
280         WARN_ON(atomic_read(&pool->item_count));
281         WARN_ON(atomic_read(&pool->free_pinned));
282         kfree(pool);
283 }
284
285 static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
286 {
287         struct rds_ib_mr *ibmr = NULL;
288         struct llist_node *ret;
289         unsigned long *flag;
290
291         preempt_disable();
292         flag = this_cpu_ptr(&clean_list_grace);
293         set_bit(CLEAN_LIST_BUSY_BIT, flag);
294         ret = llist_del_first(&pool->clean_list);
295         if (ret)
296                 ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
297
298         clear_bit(CLEAN_LIST_BUSY_BIT, flag);
299         preempt_enable();
300         return ibmr;
301 }
302
303 static inline void wait_clean_list_grace(void)
304 {
305         int cpu;
306         unsigned long *flag;
307
308         for_each_online_cpu(cpu) {
309                 flag = &per_cpu(clean_list_grace, cpu);
310                 while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
311                         cpu_relax();
312         }
313 }
314
315 static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
316 {
317         struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
318         struct rds_ib_mr *ibmr = NULL;
319         int err = 0, iter = 0;
320
321         if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
322                 queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
323
324         while (1) {
325                 ibmr = rds_ib_reuse_fmr(pool);
326                 if (ibmr)
327                         return ibmr;
328
329                 /* No clean MRs - now we have the choice of either
330                  * allocating a fresh MR up to the limit imposed by the
331                  * driver, or flush any dirty unused MRs.
332                  * We try to avoid stalling in the send path if possible,
333                  * so we allocate as long as we're allowed to.
334                  *
335                  * We're fussy with enforcing the FMR limit, though. If the driver
336                  * tells us we can't use more than N fmrs, we shouldn't start
337                  * arguing with it */
338                 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
339                         break;
340
341                 atomic_dec(&pool->item_count);
342
343                 if (++iter > 2) {
344                         rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
345                         return ERR_PTR(-EAGAIN);
346                 }
347
348                 /* We do have some empty MRs. Flush them out. */
349                 rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
350                 rds_ib_flush_mr_pool(pool, 0, &ibmr);
351                 if (ibmr)
352                         return ibmr;
353         }
354
355         ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
356         if (!ibmr) {
357                 err = -ENOMEM;
358                 goto out_no_cigar;
359         }
360
361         ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
362                         (IB_ACCESS_LOCAL_WRITE |
363                          IB_ACCESS_REMOTE_READ |
364                          IB_ACCESS_REMOTE_WRITE|
365                          IB_ACCESS_REMOTE_ATOMIC),
366                         &pool->fmr_attr);
367         if (IS_ERR(ibmr->fmr)) {
368                 err = PTR_ERR(ibmr->fmr);
369                 ibmr->fmr = NULL;
370                 printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
371                 goto out_no_cigar;
372         }
373
374         rds_ib_stats_inc(s_ib_rdma_mr_alloc);
375         return ibmr;
376
377 out_no_cigar:
378         if (ibmr) {
379                 if (ibmr->fmr)
380                         ib_dealloc_fmr(ibmr->fmr);
381                 kfree(ibmr);
382         }
383         atomic_dec(&pool->item_count);
384         return ERR_PTR(err);
385 }
386
387 static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
388                struct scatterlist *sg, unsigned int nents)
389 {
390         struct ib_device *dev = rds_ibdev->dev;
391         struct scatterlist *scat = sg;
392         u64 io_addr = 0;
393         u64 *dma_pages;
394         u32 len;
395         int page_cnt, sg_dma_len;
396         int i, j;
397         int ret;
398
399         sg_dma_len = ib_dma_map_sg(dev, sg, nents,
400                                  DMA_BIDIRECTIONAL);
401         if (unlikely(!sg_dma_len)) {
402                 printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
403                 return -EBUSY;
404         }
405
406         len = 0;
407         page_cnt = 0;
408
409         for (i = 0; i < sg_dma_len; ++i) {
410                 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
411                 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
412
413                 if (dma_addr & ~PAGE_MASK) {
414                         if (i > 0)
415                                 return -EINVAL;
416                         else
417                                 ++page_cnt;
418                 }
419                 if ((dma_addr + dma_len) & ~PAGE_MASK) {
420                         if (i < sg_dma_len - 1)
421                                 return -EINVAL;
422                         else
423                                 ++page_cnt;
424                 }
425
426                 len += dma_len;
427         }
428
429         page_cnt += len >> PAGE_SHIFT;
430         if (page_cnt > fmr_message_size)
431                 return -EINVAL;
432
433         dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
434                                  rdsibdev_to_node(rds_ibdev));
435         if (!dma_pages)
436                 return -ENOMEM;
437
438         page_cnt = 0;
439         for (i = 0; i < sg_dma_len; ++i) {
440                 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
441                 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
442
443                 for (j = 0; j < dma_len; j += PAGE_SIZE)
444                         dma_pages[page_cnt++] =
445                                 (dma_addr & PAGE_MASK) + j;
446         }
447
448         ret = ib_map_phys_fmr(ibmr->fmr,
449                                    dma_pages, page_cnt, io_addr);
450         if (ret)
451                 goto out;
452
453         /* Success - we successfully remapped the MR, so we can
454          * safely tear down the old mapping. */
455         rds_ib_teardown_mr(ibmr);
456
457         ibmr->sg = scat;
458         ibmr->sg_len = nents;
459         ibmr->sg_dma_len = sg_dma_len;
460         ibmr->remap_count++;
461
462         rds_ib_stats_inc(s_ib_rdma_mr_used);
463         ret = 0;
464
465 out:
466         kfree(dma_pages);
467
468         return ret;
469 }
470
471 void rds_ib_sync_mr(void *trans_private, int direction)
472 {
473         struct rds_ib_mr *ibmr = trans_private;
474         struct rds_ib_device *rds_ibdev = ibmr->device;
475
476         switch (direction) {
477         case DMA_FROM_DEVICE:
478                 ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
479                         ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
480                 break;
481         case DMA_TO_DEVICE:
482                 ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
483                         ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
484                 break;
485         }
486 }
487
488 static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
489 {
490         struct rds_ib_device *rds_ibdev = ibmr->device;
491
492         if (ibmr->sg_dma_len) {
493                 ib_dma_unmap_sg(rds_ibdev->dev,
494                                 ibmr->sg, ibmr->sg_len,
495                                 DMA_BIDIRECTIONAL);
496                 ibmr->sg_dma_len = 0;
497         }
498
499         /* Release the s/g list */
500         if (ibmr->sg_len) {
501                 unsigned int i;
502
503                 for (i = 0; i < ibmr->sg_len; ++i) {
504                         struct page *page = sg_page(&ibmr->sg[i]);
505
506                         /* FIXME we need a way to tell a r/w MR
507                          * from a r/o MR */
508                         WARN_ON(!page->mapping && irqs_disabled());
509                         set_page_dirty(page);
510                         put_page(page);
511                 }
512                 kfree(ibmr->sg);
513
514                 ibmr->sg = NULL;
515                 ibmr->sg_len = 0;
516         }
517 }
518
519 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
520 {
521         unsigned int pinned = ibmr->sg_len;
522
523         __rds_ib_teardown_mr(ibmr);
524         if (pinned) {
525                 struct rds_ib_mr_pool *pool = ibmr->pool;
526
527                 atomic_sub(pinned, &pool->free_pinned);
528         }
529 }
530
531 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
532 {
533         unsigned int item_count;
534
535         item_count = atomic_read(&pool->item_count);
536         if (free_all)
537                 return item_count;
538
539         return 0;
540 }
541
542 /*
543  * given an llist of mrs, put them all into the list_head for more processing
544  */
545 static unsigned int llist_append_to_list(struct llist_head *llist,
546                                          struct list_head *list)
547 {
548         struct rds_ib_mr *ibmr;
549         struct llist_node *node;
550         struct llist_node *next;
551         unsigned int count = 0;
552
553         node = llist_del_all(llist);
554         while (node) {
555                 next = node->next;
556                 ibmr = llist_entry(node, struct rds_ib_mr, llnode);
557                 list_add_tail(&ibmr->unmap_list, list);
558                 node = next;
559                 count++;
560         }
561         return count;
562 }
563
564 /*
565  * this takes a list head of mrs and turns it into linked llist nodes
566  * of clusters.  Each cluster has linked llist nodes of
567  * MR_CLUSTER_SIZE mrs that are ready for reuse.
568  */
569 static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
570                                 struct list_head *list,
571                                 struct llist_node **nodes_head,
572                                 struct llist_node **nodes_tail)
573 {
574         struct rds_ib_mr *ibmr;
575         struct llist_node *cur = NULL;
576         struct llist_node **next = nodes_head;
577
578         list_for_each_entry(ibmr, list, unmap_list) {
579                 cur = &ibmr->llnode;
580                 *next = cur;
581                 next = &cur->next;
582         }
583         *next = NULL;
584         *nodes_tail = cur;
585 }
586
587 /*
588  * Flush our pool of MRs.
589  * At a minimum, all currently unused MRs are unmapped.
590  * If the number of MRs allocated exceeds the limit, we also try
591  * to free as many MRs as needed to get back to this limit.
592  */
593 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
594                                 int free_all, struct rds_ib_mr **ibmr_ret)
595 {
596         struct rds_ib_mr *ibmr, *next;
597         struct llist_node *clean_nodes;
598         struct llist_node *clean_tail;
599         LIST_HEAD(unmap_list);
600         LIST_HEAD(fmr_list);
601         unsigned long unpinned = 0;
602         unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
603         int ret = 0;
604
605         rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);
606
607         if (ibmr_ret) {
608                 DEFINE_WAIT(wait);
609                 while(!mutex_trylock(&pool->flush_lock)) {
610                         ibmr = rds_ib_reuse_fmr(pool);
611                         if (ibmr) {
612                                 *ibmr_ret = ibmr;
613                                 finish_wait(&pool->flush_wait, &wait);
614                                 goto out_nolock;
615                         }
616
617                         prepare_to_wait(&pool->flush_wait, &wait,
618                                         TASK_UNINTERRUPTIBLE);
619                         if (llist_empty(&pool->clean_list))
620                                 schedule();
621
622                         ibmr = rds_ib_reuse_fmr(pool);
623                         if (ibmr) {
624                                 *ibmr_ret = ibmr;
625                                 finish_wait(&pool->flush_wait, &wait);
626                                 goto out_nolock;
627                         }
628                 }
629                 finish_wait(&pool->flush_wait, &wait);
630         } else
631                 mutex_lock(&pool->flush_lock);
632
633         if (ibmr_ret) {
634                 ibmr = rds_ib_reuse_fmr(pool);
635                 if (ibmr) {
636                         *ibmr_ret = ibmr;
637                         goto out;
638                 }
639         }
640
641         /* Get the list of all MRs to be dropped. Ordering matters -
642          * we want to put drop_list ahead of free_list.
643          */
644         dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
645         dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
646         if (free_all)
647                 llist_append_to_list(&pool->clean_list, &unmap_list);
648
649         free_goal = rds_ib_flush_goal(pool, free_all);
650
651         if (list_empty(&unmap_list))
652                 goto out;
653
654         /* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
655         list_for_each_entry(ibmr, &unmap_list, unmap_list)
656                 list_add(&ibmr->fmr->list, &fmr_list);
657
658         ret = ib_unmap_fmr(&fmr_list);
659         if (ret)
660                 printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
661
662         /* Now we can destroy the DMA mapping and unpin any pages */
663         list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
664                 unpinned += ibmr->sg_len;
665                 __rds_ib_teardown_mr(ibmr);
666                 if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
667                         rds_ib_stats_inc(s_ib_rdma_mr_free);
668                         list_del(&ibmr->unmap_list);
669                         ib_dealloc_fmr(ibmr->fmr);
670                         kfree(ibmr);
671                         nfreed++;
672                 }
673         }
674
675         if (!list_empty(&unmap_list)) {
676                 /* we have to make sure that none of the things we're about
677                  * to put on the clean list would race with other cpus trying
678                  * to pull items off.  The llist would explode if we managed to
679                  * remove something from the clean list and then add it back again
680                  * while another CPU was spinning on that same item in llist_del_first.
681                  *
682                  * This is pretty unlikely, but just in case  wait for an llist grace period
683                  * here before adding anything back into the clean list.
684                  */
685                 wait_clean_list_grace();
686
687                 list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
688                 if (ibmr_ret)
689                         *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
690
691                 /* more than one entry in llist nodes */
692                 if (clean_nodes->next)
693                         llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list);
694
695         }
696
697         atomic_sub(unpinned, &pool->free_pinned);
698         atomic_sub(dirty_to_clean, &pool->dirty_count);
699         atomic_sub(nfreed, &pool->item_count);
700
701 out:
702         mutex_unlock(&pool->flush_lock);
703         if (waitqueue_active(&pool->flush_wait))
704                 wake_up(&pool->flush_wait);
705 out_nolock:
706         return ret;
707 }
708
709 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
710 {
711         struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
712
713         rds_ib_flush_mr_pool(pool, 0, NULL);
714 }
715
716 void rds_ib_free_mr(void *trans_private, int invalidate)
717 {
718         struct rds_ib_mr *ibmr = trans_private;
719         struct rds_ib_mr_pool *pool = ibmr->pool;
720         struct rds_ib_device *rds_ibdev = ibmr->device;
721
722         rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
723
724         /* Return it to the pool's free list */
725         if (ibmr->remap_count >= pool->fmr_attr.max_maps)
726                 llist_add(&ibmr->llnode, &pool->drop_list);
727         else
728                 llist_add(&ibmr->llnode, &pool->free_list);
729
730         atomic_add(ibmr->sg_len, &pool->free_pinned);
731         atomic_inc(&pool->dirty_count);
732
733         /* If we've pinned too many pages, request a flush */
734         if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
735             atomic_read(&pool->dirty_count) >= pool->max_items / 5)
736                 queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
737
738         if (invalidate) {
739                 if (likely(!in_interrupt())) {
740                         rds_ib_flush_mr_pool(pool, 0, NULL);
741                 } else {
742                         /* We get here if the user created a MR marked
743                          * as use_once and invalidate at the same time.
744                          */
745                         queue_delayed_work(rds_ib_fmr_wq,
746                                            &pool->flush_worker, 10);
747                 }
748         }
749
750         rds_ib_dev_put(rds_ibdev);
751 }
752
753 void rds_ib_flush_mrs(void)
754 {
755         struct rds_ib_device *rds_ibdev;
756
757         down_read(&rds_ib_devices_lock);
758         list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
759                 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
760
761                 if (pool)
762                         rds_ib_flush_mr_pool(pool, 0, NULL);
763         }
764         up_read(&rds_ib_devices_lock);
765 }
766
767 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
768                     struct rds_sock *rs, u32 *key_ret)
769 {
770         struct rds_ib_device *rds_ibdev;
771         struct rds_ib_mr *ibmr = NULL;
772         int ret;
773
774         rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
775         if (!rds_ibdev) {
776                 ret = -ENODEV;
777                 goto out;
778         }
779
780         if (!rds_ibdev->mr_pool) {
781                 ret = -ENODEV;
782                 goto out;
783         }
784
785         ibmr = rds_ib_alloc_fmr(rds_ibdev);
786         if (IS_ERR(ibmr)) {
787                 rds_ib_dev_put(rds_ibdev);
788                 return ibmr;
789         }
790
791         ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
792         if (ret == 0)
793                 *key_ret = ibmr->fmr->rkey;
794         else
795                 printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
796
797         ibmr->device = rds_ibdev;
798         rds_ibdev = NULL;
799
800  out:
801         if (ret) {
802                 if (ibmr)
803                         rds_ib_free_mr(ibmr, 0);
804                 ibmr = ERR_PTR(ret);
805         }
806         if (rds_ibdev)
807                 rds_ib_dev_put(rds_ibdev);
808         return ibmr;
809 }
810