Merge tag 'sound-3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[cascardo/linux.git] / net / sunrpc / xprtrdma / transport.c
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39
40 /*
41  * transport.c
42  *
43  * This file contains the top-level implementation of an RPC RDMA
44  * transport.
45  *
46  * Naming convention: functions beginning with xprt_ are part of the
47  * transport switch. All others are RPC RDMA internal.
48  */
49
50 #include <linux/module.h>
51 #include <linux/init.h>
52 #include <linux/slab.h>
53 #include <linux/seq_file.h>
54
55 #include "xprt_rdma.h"
56
57 #ifdef RPC_DEBUG
58 # define RPCDBG_FACILITY        RPCDBG_TRANS
59 #endif
60
61 MODULE_LICENSE("Dual BSD/GPL");
62
63 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
64 MODULE_AUTHOR("Network Appliance, Inc.");
65
66 /*
67  * tunables
68  */
69
70 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
71 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
72 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
73 static unsigned int xprt_rdma_inline_write_padding;
74 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
75                 int xprt_rdma_pad_optimize = 0;
76
77 #ifdef RPC_DEBUG
78
79 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
80 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
81 static unsigned int zero;
82 static unsigned int max_padding = PAGE_SIZE;
83 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
84 static unsigned int max_memreg = RPCRDMA_LAST - 1;
85
86 static struct ctl_table_header *sunrpc_table_header;
87
88 static ctl_table xr_tunables_table[] = {
89         {
90                 .procname       = "rdma_slot_table_entries",
91                 .data           = &xprt_rdma_slot_table_entries,
92                 .maxlen         = sizeof(unsigned int),
93                 .mode           = 0644,
94                 .proc_handler   = proc_dointvec_minmax,
95                 .extra1         = &min_slot_table_size,
96                 .extra2         = &max_slot_table_size
97         },
98         {
99                 .procname       = "rdma_max_inline_read",
100                 .data           = &xprt_rdma_max_inline_read,
101                 .maxlen         = sizeof(unsigned int),
102                 .mode           = 0644,
103                 .proc_handler   = proc_dointvec,
104         },
105         {
106                 .procname       = "rdma_max_inline_write",
107                 .data           = &xprt_rdma_max_inline_write,
108                 .maxlen         = sizeof(unsigned int),
109                 .mode           = 0644,
110                 .proc_handler   = proc_dointvec,
111         },
112         {
113                 .procname       = "rdma_inline_write_padding",
114                 .data           = &xprt_rdma_inline_write_padding,
115                 .maxlen         = sizeof(unsigned int),
116                 .mode           = 0644,
117                 .proc_handler   = proc_dointvec_minmax,
118                 .extra1         = &zero,
119                 .extra2         = &max_padding,
120         },
121         {
122                 .procname       = "rdma_memreg_strategy",
123                 .data           = &xprt_rdma_memreg_strategy,
124                 .maxlen         = sizeof(unsigned int),
125                 .mode           = 0644,
126                 .proc_handler   = proc_dointvec_minmax,
127                 .extra1         = &min_memreg,
128                 .extra2         = &max_memreg,
129         },
130         {
131                 .procname       = "rdma_pad_optimize",
132                 .data           = &xprt_rdma_pad_optimize,
133                 .maxlen         = sizeof(unsigned int),
134                 .mode           = 0644,
135                 .proc_handler   = proc_dointvec,
136         },
137         { },
138 };
139
140 static ctl_table sunrpc_table[] = {
141         {
142                 .procname       = "sunrpc",
143                 .mode           = 0555,
144                 .child          = xr_tunables_table
145         },
146         { },
147 };
148
149 #endif
150
151 static struct rpc_xprt_ops xprt_rdma_procs;     /* forward reference */
152
153 static void
154 xprt_rdma_format_addresses(struct rpc_xprt *xprt)
155 {
156         struct sockaddr *sap = (struct sockaddr *)
157                                         &rpcx_to_rdmad(xprt).addr;
158         struct sockaddr_in *sin = (struct sockaddr_in *)sap;
159         char buf[64];
160
161         (void)rpc_ntop(sap, buf, sizeof(buf));
162         xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
163
164         snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
165         xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
166
167         xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
168
169         snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
170         xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
171
172         snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
173         xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
174
175         /* netid */
176         xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
177 }
178
179 static void
180 xprt_rdma_free_addresses(struct rpc_xprt *xprt)
181 {
182         unsigned int i;
183
184         for (i = 0; i < RPC_DISPLAY_MAX; i++)
185                 switch (i) {
186                 case RPC_DISPLAY_PROTO:
187                 case RPC_DISPLAY_NETID:
188                         continue;
189                 default:
190                         kfree(xprt->address_strings[i]);
191                 }
192 }
193
194 static void
195 xprt_rdma_connect_worker(struct work_struct *work)
196 {
197         struct rpcrdma_xprt *r_xprt =
198                 container_of(work, struct rpcrdma_xprt, rdma_connect.work);
199         struct rpc_xprt *xprt = &r_xprt->xprt;
200         int rc = 0;
201
202         if (!xprt->shutdown) {
203                 current->flags |= PF_FSTRANS;
204                 xprt_clear_connected(xprt);
205
206                 dprintk("RPC:       %s: %sconnect\n", __func__,
207                                 r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
208                 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
209                 if (rc)
210                         goto out;
211         }
212         goto out_clear;
213
214 out:
215         xprt_wake_pending_tasks(xprt, rc);
216 out_clear:
217         dprintk("RPC:       %s: exit\n", __func__);
218         xprt_clear_connecting(xprt);
219         current->flags &= ~PF_FSTRANS;
220 }
221
222 /*
223  * xprt_rdma_destroy
224  *
225  * Destroy the xprt.
226  * Free all memory associated with the object, including its own.
227  * NOTE: none of the *destroy methods free memory for their top-level
228  * objects, even though they may have allocated it (they do free
229  * private memory). It's up to the caller to handle it. In this
230  * case (RDMA transport), all structure memory is inlined with the
231  * struct rpcrdma_xprt.
232  */
233 static void
234 xprt_rdma_destroy(struct rpc_xprt *xprt)
235 {
236         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
237         int rc;
238
239         dprintk("RPC:       %s: called\n", __func__);
240
241         cancel_delayed_work_sync(&r_xprt->rdma_connect);
242
243         xprt_clear_connected(xprt);
244
245         rpcrdma_buffer_destroy(&r_xprt->rx_buf);
246         rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
247         if (rc)
248                 dprintk("RPC:       %s: rpcrdma_ep_destroy returned %i\n",
249                         __func__, rc);
250         rpcrdma_ia_close(&r_xprt->rx_ia);
251
252         xprt_rdma_free_addresses(xprt);
253
254         xprt_free(xprt);
255
256         dprintk("RPC:       %s: returning\n", __func__);
257
258         module_put(THIS_MODULE);
259 }
260
261 static const struct rpc_timeout xprt_rdma_default_timeout = {
262         .to_initval = 60 * HZ,
263         .to_maxval = 60 * HZ,
264 };
265
266 /**
267  * xprt_setup_rdma - Set up transport to use RDMA
268  *
269  * @args: rpc transport arguments
270  */
271 static struct rpc_xprt *
272 xprt_setup_rdma(struct xprt_create *args)
273 {
274         struct rpcrdma_create_data_internal cdata;
275         struct rpc_xprt *xprt;
276         struct rpcrdma_xprt *new_xprt;
277         struct rpcrdma_ep *new_ep;
278         struct sockaddr_in *sin;
279         int rc;
280
281         if (args->addrlen > sizeof(xprt->addr)) {
282                 dprintk("RPC:       %s: address too large\n", __func__);
283                 return ERR_PTR(-EBADF);
284         }
285
286         xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt),
287                         xprt_rdma_slot_table_entries,
288                         xprt_rdma_slot_table_entries);
289         if (xprt == NULL) {
290                 dprintk("RPC:       %s: couldn't allocate rpcrdma_xprt\n",
291                         __func__);
292                 return ERR_PTR(-ENOMEM);
293         }
294
295         /* 60 second timeout, no retries */
296         xprt->timeout = &xprt_rdma_default_timeout;
297         xprt->bind_timeout = (60U * HZ);
298         xprt->reestablish_timeout = (5U * HZ);
299         xprt->idle_timeout = (5U * 60 * HZ);
300
301         xprt->resvport = 0;             /* privileged port not needed */
302         xprt->tsh_size = 0;             /* RPC-RDMA handles framing */
303         xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
304         xprt->ops = &xprt_rdma_procs;
305
306         /*
307          * Set up RDMA-specific connect data.
308          */
309
310         /* Put server RDMA address in local cdata */
311         memcpy(&cdata.addr, args->dstaddr, args->addrlen);
312
313         /* Ensure xprt->addr holds valid server TCP (not RDMA)
314          * address, for any side protocols which peek at it */
315         xprt->prot = IPPROTO_TCP;
316         xprt->addrlen = args->addrlen;
317         memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
318
319         sin = (struct sockaddr_in *)&cdata.addr;
320         if (ntohs(sin->sin_port) != 0)
321                 xprt_set_bound(xprt);
322
323         dprintk("RPC:       %s: %pI4:%u\n",
324                 __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
325
326         /* Set max requests */
327         cdata.max_requests = xprt->max_reqs;
328
329         /* Set some length limits */
330         cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
331         cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
332
333         cdata.inline_wsize = xprt_rdma_max_inline_write;
334         if (cdata.inline_wsize > cdata.wsize)
335                 cdata.inline_wsize = cdata.wsize;
336
337         cdata.inline_rsize = xprt_rdma_max_inline_read;
338         if (cdata.inline_rsize > cdata.rsize)
339                 cdata.inline_rsize = cdata.rsize;
340
341         cdata.padding = xprt_rdma_inline_write_padding;
342
343         /*
344          * Create new transport instance, which includes initialized
345          *  o ia
346          *  o endpoint
347          *  o buffers
348          */
349
350         new_xprt = rpcx_to_rdmax(xprt);
351
352         rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
353                                 xprt_rdma_memreg_strategy);
354         if (rc)
355                 goto out1;
356
357         /*
358          * initialize and create ep
359          */
360         new_xprt->rx_data = cdata;
361         new_ep = &new_xprt->rx_ep;
362         new_ep->rep_remote_addr = cdata.addr;
363
364         rc = rpcrdma_ep_create(&new_xprt->rx_ep,
365                                 &new_xprt->rx_ia, &new_xprt->rx_data);
366         if (rc)
367                 goto out2;
368
369         /*
370          * Allocate pre-registered send and receive buffers for headers and
371          * any inline data. Also specify any padding which will be provided
372          * from a preregistered zero buffer.
373          */
374         rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
375                                 &new_xprt->rx_data);
376         if (rc)
377                 goto out3;
378
379         /*
380          * Register a callback for connection events. This is necessary because
381          * connection loss notification is async. We also catch connection loss
382          * when reaping receives.
383          */
384         INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
385         new_ep->rep_func = rpcrdma_conn_func;
386         new_ep->rep_xprt = xprt;
387
388         xprt_rdma_format_addresses(xprt);
389
390         if (!try_module_get(THIS_MODULE))
391                 goto out4;
392
393         return xprt;
394
395 out4:
396         xprt_rdma_free_addresses(xprt);
397         rc = -EINVAL;
398 out3:
399         (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
400 out2:
401         rpcrdma_ia_close(&new_xprt->rx_ia);
402 out1:
403         xprt_free(xprt);
404         return ERR_PTR(rc);
405 }
406
407 /*
408  * Close a connection, during shutdown or timeout/reconnect
409  */
410 static void
411 xprt_rdma_close(struct rpc_xprt *xprt)
412 {
413         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
414
415         dprintk("RPC:       %s: closing\n", __func__);
416         if (r_xprt->rx_ep.rep_connected > 0)
417                 xprt->reestablish_timeout = 0;
418         xprt_disconnect_done(xprt);
419         (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
420 }
421
422 static void
423 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
424 {
425         struct sockaddr_in *sap;
426
427         sap = (struct sockaddr_in *)&xprt->addr;
428         sap->sin_port = htons(port);
429         sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
430         sap->sin_port = htons(port);
431         dprintk("RPC:       %s: %u\n", __func__, port);
432 }
433
434 static void
435 xprt_rdma_connect(struct rpc_task *task)
436 {
437         struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
438         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
439
440         if (r_xprt->rx_ep.rep_connected != 0) {
441                 /* Reconnect */
442                 schedule_delayed_work(&r_xprt->rdma_connect,
443                         xprt->reestablish_timeout);
444                 xprt->reestablish_timeout <<= 1;
445                 if (xprt->reestablish_timeout > (30 * HZ))
446                         xprt->reestablish_timeout = (30 * HZ);
447                 else if (xprt->reestablish_timeout < (5 * HZ))
448                         xprt->reestablish_timeout = (5 * HZ);
449         } else {
450                 schedule_delayed_work(&r_xprt->rdma_connect, 0);
451                 if (!RPC_IS_ASYNC(task))
452                         flush_delayed_work(&r_xprt->rdma_connect);
453         }
454 }
455
456 static int
457 xprt_rdma_reserve_xprt(struct rpc_xprt *xprt, struct rpc_task *task)
458 {
459         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
460         int credits = atomic_read(&r_xprt->rx_buf.rb_credits);
461
462         /* == RPC_CWNDSCALE @ init, but *after* setup */
463         if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
464                 r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
465                 dprintk("RPC:       %s: cwndscale %lu\n", __func__,
466                         r_xprt->rx_buf.rb_cwndscale);
467                 BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
468         }
469         xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
470         return xprt_reserve_xprt_cong(xprt, task);
471 }
472
473 /*
474  * The RDMA allocate/free functions need the task structure as a place
475  * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
476  * sequence. For this reason, the recv buffers are attached to send
477  * buffers for portions of the RPC. Note that the RPC layer allocates
478  * both send and receive buffers in the same call. We may register
479  * the receive buffer portion when using reply chunks.
480  */
481 static void *
482 xprt_rdma_allocate(struct rpc_task *task, size_t size)
483 {
484         struct rpc_xprt *xprt = task->tk_xprt;
485         struct rpcrdma_req *req, *nreq;
486
487         req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
488         BUG_ON(NULL == req);
489
490         if (size > req->rl_size) {
491                 dprintk("RPC:       %s: size %zd too large for buffer[%zd]: "
492                         "prog %d vers %d proc %d\n",
493                         __func__, size, req->rl_size,
494                         task->tk_client->cl_prog, task->tk_client->cl_vers,
495                         task->tk_msg.rpc_proc->p_proc);
496                 /*
497                  * Outgoing length shortage. Our inline write max must have
498                  * been configured to perform direct i/o.
499                  *
500                  * This is therefore a large metadata operation, and the
501                  * allocate call was made on the maximum possible message,
502                  * e.g. containing long filename(s) or symlink data. In
503                  * fact, while these metadata operations *might* carry
504                  * large outgoing payloads, they rarely *do*. However, we
505                  * have to commit to the request here, so reallocate and
506                  * register it now. The data path will never require this
507                  * reallocation.
508                  *
509                  * If the allocation or registration fails, the RPC framework
510                  * will (doggedly) retry.
511                  */
512                 if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
513                                 RPCRDMA_BOUNCEBUFFERS) {
514                         /* forced to "pure inline" */
515                         dprintk("RPC:       %s: too much data (%zd) for inline "
516                                         "(r/w max %d/%d)\n", __func__, size,
517                                         rpcx_to_rdmad(xprt).inline_rsize,
518                                         rpcx_to_rdmad(xprt).inline_wsize);
519                         size = req->rl_size;
520                         rpc_exit(task, -EIO);           /* fail the operation */
521                         rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
522                         goto out;
523                 }
524                 if (task->tk_flags & RPC_TASK_SWAPPER)
525                         nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
526                 else
527                         nreq = kmalloc(sizeof *req + size, GFP_NOFS);
528                 if (nreq == NULL)
529                         goto outfail;
530
531                 if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
532                                 nreq->rl_base, size + sizeof(struct rpcrdma_req)
533                                 - offsetof(struct rpcrdma_req, rl_base),
534                                 &nreq->rl_handle, &nreq->rl_iov)) {
535                         kfree(nreq);
536                         goto outfail;
537                 }
538                 rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
539                 nreq->rl_size = size;
540                 nreq->rl_niovs = 0;
541                 nreq->rl_nchunks = 0;
542                 nreq->rl_buffer = (struct rpcrdma_buffer *)req;
543                 nreq->rl_reply = req->rl_reply;
544                 memcpy(nreq->rl_segments,
545                         req->rl_segments, sizeof nreq->rl_segments);
546                 /* flag the swap with an unused field */
547                 nreq->rl_iov.length = 0;
548                 req->rl_reply = NULL;
549                 req = nreq;
550         }
551         dprintk("RPC:       %s: size %zd, request 0x%p\n", __func__, size, req);
552 out:
553         req->rl_connect_cookie = 0;     /* our reserved value */
554         return req->rl_xdr_buf;
555
556 outfail:
557         rpcrdma_buffer_put(req);
558         rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
559         return NULL;
560 }
561
562 /*
563  * This function returns all RDMA resources to the pool.
564  */
565 static void
566 xprt_rdma_free(void *buffer)
567 {
568         struct rpcrdma_req *req;
569         struct rpcrdma_xprt *r_xprt;
570         struct rpcrdma_rep *rep;
571         int i;
572
573         if (buffer == NULL)
574                 return;
575
576         req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
577         if (req->rl_iov.length == 0) {  /* see allocate above */
578                 r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
579                                       struct rpcrdma_xprt, rx_buf);
580         } else
581                 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
582         rep = req->rl_reply;
583
584         dprintk("RPC:       %s: called on 0x%p%s\n",
585                 __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
586
587         /*
588          * Finish the deregistration. When using mw bind, this was
589          * begun in rpcrdma_reply_handler(). In all other modes, we
590          * do it here, in thread context. The process is considered
591          * complete when the rr_func vector becomes NULL - this
592          * was put in place during rpcrdma_reply_handler() - the wait
593          * call below will not block if the dereg is "done". If
594          * interrupted, our framework will clean up.
595          */
596         for (i = 0; req->rl_nchunks;) {
597                 --req->rl_nchunks;
598                 i += rpcrdma_deregister_external(
599                         &req->rl_segments[i], r_xprt, NULL);
600         }
601
602         if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
603                 rep->rr_func = NULL;    /* abandon the callback */
604                 req->rl_reply = NULL;
605         }
606
607         if (req->rl_iov.length == 0) {  /* see allocate above */
608                 struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
609                 oreq->rl_reply = req->rl_reply;
610                 (void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
611                                                    req->rl_handle,
612                                                    &req->rl_iov);
613                 kfree(req);
614                 req = oreq;
615         }
616
617         /* Put back request+reply buffers */
618         rpcrdma_buffer_put(req);
619 }
620
621 /*
622  * send_request invokes the meat of RPC RDMA. It must do the following:
623  *  1.  Marshal the RPC request into an RPC RDMA request, which means
624  *      putting a header in front of data, and creating IOVs for RDMA
625  *      from those in the request.
626  *  2.  In marshaling, detect opportunities for RDMA, and use them.
627  *  3.  Post a recv message to set up asynch completion, then send
628  *      the request (rpcrdma_ep_post).
629  *  4.  No partial sends are possible in the RPC-RDMA protocol (as in UDP).
630  */
631
632 static int
633 xprt_rdma_send_request(struct rpc_task *task)
634 {
635         struct rpc_rqst *rqst = task->tk_rqstp;
636         struct rpc_xprt *xprt = task->tk_xprt;
637         struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
638         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
639
640         /* marshal the send itself */
641         if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
642                 r_xprt->rx_stats.failed_marshal_count++;
643                 dprintk("RPC:       %s: rpcrdma_marshal_req failed\n",
644                         __func__);
645                 return -EIO;
646         }
647
648         if (req->rl_reply == NULL)              /* e.g. reconnection */
649                 rpcrdma_recv_buffer_get(req);
650
651         if (req->rl_reply) {
652                 req->rl_reply->rr_func = rpcrdma_reply_handler;
653                 /* this need only be done once, but... */
654                 req->rl_reply->rr_xprt = xprt;
655         }
656
657         /* Must suppress retransmit to maintain credits */
658         if (req->rl_connect_cookie == xprt->connect_cookie)
659                 goto drop_connection;
660         req->rl_connect_cookie = xprt->connect_cookie;
661
662         if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
663                 goto drop_connection;
664
665         rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
666         rqst->rq_bytes_sent = 0;
667         return 0;
668
669 drop_connection:
670         xprt_disconnect_done(xprt);
671         return -ENOTCONN;       /* implies disconnect */
672 }
673
674 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
675 {
676         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
677         long idle_time = 0;
678
679         if (xprt_connected(xprt))
680                 idle_time = (long)(jiffies - xprt->last_used) / HZ;
681
682         seq_printf(seq,
683           "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
684           "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
685
686            0,   /* need a local port? */
687            xprt->stat.bind_count,
688            xprt->stat.connect_count,
689            xprt->stat.connect_time,
690            idle_time,
691            xprt->stat.sends,
692            xprt->stat.recvs,
693            xprt->stat.bad_xids,
694            xprt->stat.req_u,
695            xprt->stat.bklog_u,
696
697            r_xprt->rx_stats.read_chunk_count,
698            r_xprt->rx_stats.write_chunk_count,
699            r_xprt->rx_stats.reply_chunk_count,
700            r_xprt->rx_stats.total_rdma_request,
701            r_xprt->rx_stats.total_rdma_reply,
702            r_xprt->rx_stats.pullup_copy_count,
703            r_xprt->rx_stats.fixup_copy_count,
704            r_xprt->rx_stats.hardway_register_count,
705            r_xprt->rx_stats.failed_marshal_count,
706            r_xprt->rx_stats.bad_reply_count);
707 }
708
709 /*
710  * Plumbing for rpc transport switch and kernel module
711  */
712
713 static struct rpc_xprt_ops xprt_rdma_procs = {
714         .reserve_xprt           = xprt_rdma_reserve_xprt,
715         .release_xprt           = xprt_release_xprt_cong, /* sunrpc/xprt.c */
716         .release_request        = xprt_release_rqst_cong,       /* ditto */
717         .set_retrans_timeout    = xprt_set_retrans_timeout_def, /* ditto */
718         .rpcbind                = rpcb_getport_async,   /* sunrpc/rpcb_clnt.c */
719         .set_port               = xprt_rdma_set_port,
720         .connect                = xprt_rdma_connect,
721         .buf_alloc              = xprt_rdma_allocate,
722         .buf_free               = xprt_rdma_free,
723         .send_request           = xprt_rdma_send_request,
724         .close                  = xprt_rdma_close,
725         .destroy                = xprt_rdma_destroy,
726         .print_stats            = xprt_rdma_print_stats
727 };
728
729 static struct xprt_class xprt_rdma = {
730         .list                   = LIST_HEAD_INIT(xprt_rdma.list),
731         .name                   = "rdma",
732         .owner                  = THIS_MODULE,
733         .ident                  = XPRT_TRANSPORT_RDMA,
734         .setup                  = xprt_setup_rdma,
735 };
736
737 static void __exit xprt_rdma_cleanup(void)
738 {
739         int rc;
740
741         dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n");
742 #ifdef RPC_DEBUG
743         if (sunrpc_table_header) {
744                 unregister_sysctl_table(sunrpc_table_header);
745                 sunrpc_table_header = NULL;
746         }
747 #endif
748         rc = xprt_unregister_transport(&xprt_rdma);
749         if (rc)
750                 dprintk("RPC:       %s: xprt_unregister returned %i\n",
751                         __func__, rc);
752 }
753
754 static int __init xprt_rdma_init(void)
755 {
756         int rc;
757
758         rc = xprt_register_transport(&xprt_rdma);
759
760         if (rc)
761                 return rc;
762
763         dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");
764
765         dprintk(KERN_INFO "Defaults:\n");
766         dprintk(KERN_INFO "\tSlots %d\n"
767                 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
768                 xprt_rdma_slot_table_entries,
769                 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
770         dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
771                 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
772
773 #ifdef RPC_DEBUG
774         if (!sunrpc_table_header)
775                 sunrpc_table_header = register_sysctl_table(sunrpc_table);
776 #endif
777         return 0;
778 }
779
780 module_init(xprt_rdma_init);
781 module_exit(xprt_rdma_cleanup);