Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[cascardo/linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...)                  \
64         printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 /**
70  * enum reg_request_treatment - regulatory request treatment
71  *
72  * @REG_REQ_OK: continue processing the regulatory request
73  * @REG_REQ_IGNORE: ignore the regulatory request
74  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75  *      be intersected with the current one.
76  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77  *      regulatory settings, and no further processing is required.
78  * @REG_REQ_USER_HINT_HANDLED: a non alpha2  user hint was handled and no
79  *      further processing is required, i.e., not need to update last_request
80  *      etc. This should be used for user hints that do not provide an alpha2
81  *      but some other type of regulatory hint, i.e., indoor operation.
82  */
83 enum reg_request_treatment {
84         REG_REQ_OK,
85         REG_REQ_IGNORE,
86         REG_REQ_INTERSECT,
87         REG_REQ_ALREADY_SET,
88         REG_REQ_USER_HINT_HANDLED,
89 };
90
91 static struct regulatory_request core_request_world = {
92         .initiator = NL80211_REGDOM_SET_BY_CORE,
93         .alpha2[0] = '0',
94         .alpha2[1] = '0',
95         .intersect = false,
96         .processed = true,
97         .country_ie_env = ENVIRON_ANY,
98 };
99
100 /*
101  * Receipt of information from last regulatory request,
102  * protected by RTNL (and can be accessed with RCU protection)
103  */
104 static struct regulatory_request __rcu *last_request =
105         (void __rcu *)&core_request_world;
106
107 /* To trigger userspace events */
108 static struct platform_device *reg_pdev;
109
110 /*
111  * Central wireless core regulatory domains, we only need two,
112  * the current one and a world regulatory domain in case we have no
113  * information to give us an alpha2.
114  * (protected by RTNL, can be read under RCU)
115  */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118 /*
119  * Number of devices that registered to the core
120  * that support cellular base station regulatory hints
121  * (protected by RTNL)
122  */
123 static int reg_num_devs_support_basehint;
124
125 /*
126  * State variable indicating if the platform on which the devices
127  * are attached is operating in an indoor environment. The state variable
128  * is relevant for all registered devices.
129  * (protected by RTNL)
130  */
131 static bool reg_is_indoor;
132
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135         return rtnl_dereference(cfg80211_regdomain);
136 }
137
138 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140         return rtnl_dereference(wiphy->regd);
141 }
142
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145         switch (dfs_region) {
146         case NL80211_DFS_UNSET:
147                 return "unset";
148         case NL80211_DFS_FCC:
149                 return "FCC";
150         case NL80211_DFS_ETSI:
151                 return "ETSI";
152         case NL80211_DFS_JP:
153                 return "JP";
154         }
155         return "Unknown";
156 }
157
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160         const struct ieee80211_regdomain *regd = NULL;
161         const struct ieee80211_regdomain *wiphy_regd = NULL;
162
163         regd = get_cfg80211_regdom();
164         if (!wiphy)
165                 goto out;
166
167         wiphy_regd = get_wiphy_regdom(wiphy);
168         if (!wiphy_regd)
169                 goto out;
170
171         if (wiphy_regd->dfs_region == regd->dfs_region)
172                 goto out;
173
174         REG_DBG_PRINT("%s: device specific dfs_region "
175                       "(%s) disagrees with cfg80211's "
176                       "central dfs_region (%s)\n",
177                       dev_name(&wiphy->dev),
178                       reg_dfs_region_str(wiphy_regd->dfs_region),
179                       reg_dfs_region_str(regd->dfs_region));
180
181 out:
182         return regd->dfs_region;
183 }
184
185 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
186 {
187         if (!r)
188                 return;
189         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
190 }
191
192 static struct regulatory_request *get_last_request(void)
193 {
194         return rcu_dereference_rtnl(last_request);
195 }
196
197 /* Used to queue up regulatory hints */
198 static LIST_HEAD(reg_requests_list);
199 static spinlock_t reg_requests_lock;
200
201 /* Used to queue up beacon hints for review */
202 static LIST_HEAD(reg_pending_beacons);
203 static spinlock_t reg_pending_beacons_lock;
204
205 /* Used to keep track of processed beacon hints */
206 static LIST_HEAD(reg_beacon_list);
207
208 struct reg_beacon {
209         struct list_head list;
210         struct ieee80211_channel chan;
211 };
212
213 static void reg_todo(struct work_struct *work);
214 static DECLARE_WORK(reg_work, reg_todo);
215
216 static void reg_timeout_work(struct work_struct *work);
217 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
218
219 /* We keep a static world regulatory domain in case of the absence of CRDA */
220 static const struct ieee80211_regdomain world_regdom = {
221         .n_reg_rules = 6,
222         .alpha2 =  "00",
223         .reg_rules = {
224                 /* IEEE 802.11b/g, channels 1..11 */
225                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
226                 /* IEEE 802.11b/g, channels 12..13. */
227                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
228                         NL80211_RRF_NO_IR),
229                 /* IEEE 802.11 channel 14 - Only JP enables
230                  * this and for 802.11b only */
231                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
232                         NL80211_RRF_NO_IR |
233                         NL80211_RRF_NO_OFDM),
234                 /* IEEE 802.11a, channel 36..48 */
235                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
236                         NL80211_RRF_NO_IR),
237
238                 /* IEEE 802.11a, channel 52..64 - DFS required */
239                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
240                         NL80211_RRF_NO_IR |
241                         NL80211_RRF_DFS),
242
243                 /* IEEE 802.11a, channel 100..144 - DFS required */
244                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
245                         NL80211_RRF_NO_IR |
246                         NL80211_RRF_DFS),
247
248                 /* IEEE 802.11a, channel 149..165 */
249                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
250                         NL80211_RRF_NO_IR),
251
252                 /* IEEE 802.11ad (60gHz), channels 1..3 */
253                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254         }
255 };
256
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259         &world_regdom;
260
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266
267 static void reg_free_request(struct regulatory_request *request)
268 {
269         if (request != get_last_request())
270                 kfree(request);
271 }
272
273 static void reg_free_last_request(void)
274 {
275         struct regulatory_request *lr = get_last_request();
276
277         if (lr != &core_request_world && lr)
278                 kfree_rcu(lr, rcu_head);
279 }
280
281 static void reg_update_last_request(struct regulatory_request *request)
282 {
283         struct regulatory_request *lr;
284
285         lr = get_last_request();
286         if (lr == request)
287                 return;
288
289         reg_free_last_request();
290         rcu_assign_pointer(last_request, request);
291 }
292
293 static void reset_regdomains(bool full_reset,
294                              const struct ieee80211_regdomain *new_regdom)
295 {
296         const struct ieee80211_regdomain *r;
297
298         ASSERT_RTNL();
299
300         r = get_cfg80211_regdom();
301
302         /* avoid freeing static information or freeing something twice */
303         if (r == cfg80211_world_regdom)
304                 r = NULL;
305         if (cfg80211_world_regdom == &world_regdom)
306                 cfg80211_world_regdom = NULL;
307         if (r == &world_regdom)
308                 r = NULL;
309
310         rcu_free_regdom(r);
311         rcu_free_regdom(cfg80211_world_regdom);
312
313         cfg80211_world_regdom = &world_regdom;
314         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
315
316         if (!full_reset)
317                 return;
318
319         reg_update_last_request(&core_request_world);
320 }
321
322 /*
323  * Dynamic world regulatory domain requested by the wireless
324  * core upon initialization
325  */
326 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
327 {
328         struct regulatory_request *lr;
329
330         lr = get_last_request();
331
332         WARN_ON(!lr);
333
334         reset_regdomains(false, rd);
335
336         cfg80211_world_regdom = rd;
337 }
338
339 bool is_world_regdom(const char *alpha2)
340 {
341         if (!alpha2)
342                 return false;
343         return alpha2[0] == '0' && alpha2[1] == '0';
344 }
345
346 static bool is_alpha2_set(const char *alpha2)
347 {
348         if (!alpha2)
349                 return false;
350         return alpha2[0] && alpha2[1];
351 }
352
353 static bool is_unknown_alpha2(const char *alpha2)
354 {
355         if (!alpha2)
356                 return false;
357         /*
358          * Special case where regulatory domain was built by driver
359          * but a specific alpha2 cannot be determined
360          */
361         return alpha2[0] == '9' && alpha2[1] == '9';
362 }
363
364 static bool is_intersected_alpha2(const char *alpha2)
365 {
366         if (!alpha2)
367                 return false;
368         /*
369          * Special case where regulatory domain is the
370          * result of an intersection between two regulatory domain
371          * structures
372          */
373         return alpha2[0] == '9' && alpha2[1] == '8';
374 }
375
376 static bool is_an_alpha2(const char *alpha2)
377 {
378         if (!alpha2)
379                 return false;
380         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
381 }
382
383 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
384 {
385         if (!alpha2_x || !alpha2_y)
386                 return false;
387         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
388 }
389
390 static bool regdom_changes(const char *alpha2)
391 {
392         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
393
394         if (!r)
395                 return true;
396         return !alpha2_equal(r->alpha2, alpha2);
397 }
398
399 /*
400  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
401  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
402  * has ever been issued.
403  */
404 static bool is_user_regdom_saved(void)
405 {
406         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
407                 return false;
408
409         /* This would indicate a mistake on the design */
410         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
411                  "Unexpected user alpha2: %c%c\n",
412                  user_alpha2[0], user_alpha2[1]))
413                 return false;
414
415         return true;
416 }
417
418 static const struct ieee80211_regdomain *
419 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
420 {
421         struct ieee80211_regdomain *regd;
422         int size_of_regd;
423         unsigned int i;
424
425         size_of_regd =
426                 sizeof(struct ieee80211_regdomain) +
427                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
428
429         regd = kzalloc(size_of_regd, GFP_KERNEL);
430         if (!regd)
431                 return ERR_PTR(-ENOMEM);
432
433         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
434
435         for (i = 0; i < src_regd->n_reg_rules; i++)
436                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
437                        sizeof(struct ieee80211_reg_rule));
438
439         return regd;
440 }
441
442 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
443 struct reg_regdb_search_request {
444         char alpha2[2];
445         struct list_head list;
446 };
447
448 static LIST_HEAD(reg_regdb_search_list);
449 static DEFINE_MUTEX(reg_regdb_search_mutex);
450
451 static void reg_regdb_search(struct work_struct *work)
452 {
453         struct reg_regdb_search_request *request;
454         const struct ieee80211_regdomain *curdom, *regdom = NULL;
455         int i;
456
457         rtnl_lock();
458
459         mutex_lock(&reg_regdb_search_mutex);
460         while (!list_empty(&reg_regdb_search_list)) {
461                 request = list_first_entry(&reg_regdb_search_list,
462                                            struct reg_regdb_search_request,
463                                            list);
464                 list_del(&request->list);
465
466                 for (i = 0; i < reg_regdb_size; i++) {
467                         curdom = reg_regdb[i];
468
469                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
470                                 regdom = reg_copy_regd(curdom);
471                                 break;
472                         }
473                 }
474
475                 kfree(request);
476         }
477         mutex_unlock(&reg_regdb_search_mutex);
478
479         if (!IS_ERR_OR_NULL(regdom))
480                 set_regdom(regdom);
481
482         rtnl_unlock();
483 }
484
485 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
486
487 static void reg_regdb_query(const char *alpha2)
488 {
489         struct reg_regdb_search_request *request;
490
491         if (!alpha2)
492                 return;
493
494         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
495         if (!request)
496                 return;
497
498         memcpy(request->alpha2, alpha2, 2);
499
500         mutex_lock(&reg_regdb_search_mutex);
501         list_add_tail(&request->list, &reg_regdb_search_list);
502         mutex_unlock(&reg_regdb_search_mutex);
503
504         schedule_work(&reg_regdb_work);
505 }
506
507 /* Feel free to add any other sanity checks here */
508 static void reg_regdb_size_check(void)
509 {
510         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
511         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
512 }
513 #else
514 static inline void reg_regdb_size_check(void) {}
515 static inline void reg_regdb_query(const char *alpha2) {}
516 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
517
518 /*
519  * This lets us keep regulatory code which is updated on a regulatory
520  * basis in userspace.
521  */
522 static int call_crda(const char *alpha2)
523 {
524         char country[12];
525         char *env[] = { country, NULL };
526
527         snprintf(country, sizeof(country), "COUNTRY=%c%c",
528                  alpha2[0], alpha2[1]);
529
530         if (!is_world_regdom((char *) alpha2))
531                 pr_info("Calling CRDA for country: %c%c\n",
532                         alpha2[0], alpha2[1]);
533         else
534                 pr_info("Calling CRDA to update world regulatory domain\n");
535
536         /* query internal regulatory database (if it exists) */
537         reg_regdb_query(alpha2);
538
539         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
540 }
541
542 static enum reg_request_treatment
543 reg_call_crda(struct regulatory_request *request)
544 {
545         if (call_crda(request->alpha2))
546                 return REG_REQ_IGNORE;
547         return REG_REQ_OK;
548 }
549
550 bool reg_is_valid_request(const char *alpha2)
551 {
552         struct regulatory_request *lr = get_last_request();
553
554         if (!lr || lr->processed)
555                 return false;
556
557         return alpha2_equal(lr->alpha2, alpha2);
558 }
559
560 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
561 {
562         struct regulatory_request *lr = get_last_request();
563
564         /*
565          * Follow the driver's regulatory domain, if present, unless a country
566          * IE has been processed or a user wants to help complaince further
567          */
568         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
569             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
570             wiphy->regd)
571                 return get_wiphy_regdom(wiphy);
572
573         return get_cfg80211_regdom();
574 }
575
576 static unsigned int
577 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
578                                  const struct ieee80211_reg_rule *rule)
579 {
580         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
581         const struct ieee80211_freq_range *freq_range_tmp;
582         const struct ieee80211_reg_rule *tmp;
583         u32 start_freq, end_freq, idx, no;
584
585         for (idx = 0; idx < rd->n_reg_rules; idx++)
586                 if (rule == &rd->reg_rules[idx])
587                         break;
588
589         if (idx == rd->n_reg_rules)
590                 return 0;
591
592         /* get start_freq */
593         no = idx;
594
595         while (no) {
596                 tmp = &rd->reg_rules[--no];
597                 freq_range_tmp = &tmp->freq_range;
598
599                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
600                         break;
601
602                 freq_range = freq_range_tmp;
603         }
604
605         start_freq = freq_range->start_freq_khz;
606
607         /* get end_freq */
608         freq_range = &rule->freq_range;
609         no = idx;
610
611         while (no < rd->n_reg_rules - 1) {
612                 tmp = &rd->reg_rules[++no];
613                 freq_range_tmp = &tmp->freq_range;
614
615                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
616                         break;
617
618                 freq_range = freq_range_tmp;
619         }
620
621         end_freq = freq_range->end_freq_khz;
622
623         return end_freq - start_freq;
624 }
625
626 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
627                                    const struct ieee80211_reg_rule *rule)
628 {
629         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
630
631         if (rule->flags & NL80211_RRF_NO_160MHZ)
632                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
633         if (rule->flags & NL80211_RRF_NO_80MHZ)
634                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
635
636         /*
637          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
638          * are not allowed.
639          */
640         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
641             rule->flags & NL80211_RRF_NO_HT40PLUS)
642                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
643
644         return bw;
645 }
646
647 /* Sanity check on a regulatory rule */
648 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
649 {
650         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
651         u32 freq_diff;
652
653         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
654                 return false;
655
656         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
657                 return false;
658
659         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
660
661         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
662             freq_range->max_bandwidth_khz > freq_diff)
663                 return false;
664
665         return true;
666 }
667
668 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
669 {
670         const struct ieee80211_reg_rule *reg_rule = NULL;
671         unsigned int i;
672
673         if (!rd->n_reg_rules)
674                 return false;
675
676         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
677                 return false;
678
679         for (i = 0; i < rd->n_reg_rules; i++) {
680                 reg_rule = &rd->reg_rules[i];
681                 if (!is_valid_reg_rule(reg_rule))
682                         return false;
683         }
684
685         return true;
686 }
687
688 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
689                             u32 center_freq_khz, u32 bw_khz)
690 {
691         u32 start_freq_khz, end_freq_khz;
692
693         start_freq_khz = center_freq_khz - (bw_khz/2);
694         end_freq_khz = center_freq_khz + (bw_khz/2);
695
696         if (start_freq_khz >= freq_range->start_freq_khz &&
697             end_freq_khz <= freq_range->end_freq_khz)
698                 return true;
699
700         return false;
701 }
702
703 /**
704  * freq_in_rule_band - tells us if a frequency is in a frequency band
705  * @freq_range: frequency rule we want to query
706  * @freq_khz: frequency we are inquiring about
707  *
708  * This lets us know if a specific frequency rule is or is not relevant to
709  * a specific frequency's band. Bands are device specific and artificial
710  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
711  * however it is safe for now to assume that a frequency rule should not be
712  * part of a frequency's band if the start freq or end freq are off by more
713  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
714  * 60 GHz band.
715  * This resolution can be lowered and should be considered as we add
716  * regulatory rule support for other "bands".
717  **/
718 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
719                               u32 freq_khz)
720 {
721 #define ONE_GHZ_IN_KHZ  1000000
722         /*
723          * From 802.11ad: directional multi-gigabit (DMG):
724          * Pertaining to operation in a frequency band containing a channel
725          * with the Channel starting frequency above 45 GHz.
726          */
727         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
728                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
729         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
730                 return true;
731         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
732                 return true;
733         return false;
734 #undef ONE_GHZ_IN_KHZ
735 }
736
737 /*
738  * Later on we can perhaps use the more restrictive DFS
739  * region but we don't have information for that yet so
740  * for now simply disallow conflicts.
741  */
742 static enum nl80211_dfs_regions
743 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
744                          const enum nl80211_dfs_regions dfs_region2)
745 {
746         if (dfs_region1 != dfs_region2)
747                 return NL80211_DFS_UNSET;
748         return dfs_region1;
749 }
750
751 /*
752  * Helper for regdom_intersect(), this does the real
753  * mathematical intersection fun
754  */
755 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
756                                const struct ieee80211_regdomain *rd2,
757                                const struct ieee80211_reg_rule *rule1,
758                                const struct ieee80211_reg_rule *rule2,
759                                struct ieee80211_reg_rule *intersected_rule)
760 {
761         const struct ieee80211_freq_range *freq_range1, *freq_range2;
762         struct ieee80211_freq_range *freq_range;
763         const struct ieee80211_power_rule *power_rule1, *power_rule2;
764         struct ieee80211_power_rule *power_rule;
765         u32 freq_diff, max_bandwidth1, max_bandwidth2;
766
767         freq_range1 = &rule1->freq_range;
768         freq_range2 = &rule2->freq_range;
769         freq_range = &intersected_rule->freq_range;
770
771         power_rule1 = &rule1->power_rule;
772         power_rule2 = &rule2->power_rule;
773         power_rule = &intersected_rule->power_rule;
774
775         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
776                                          freq_range2->start_freq_khz);
777         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
778                                        freq_range2->end_freq_khz);
779
780         max_bandwidth1 = freq_range1->max_bandwidth_khz;
781         max_bandwidth2 = freq_range2->max_bandwidth_khz;
782
783         if (rule1->flags & NL80211_RRF_AUTO_BW)
784                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
785         if (rule2->flags & NL80211_RRF_AUTO_BW)
786                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
787
788         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
789
790         intersected_rule->flags = rule1->flags | rule2->flags;
791
792         /*
793          * In case NL80211_RRF_AUTO_BW requested for both rules
794          * set AUTO_BW in intersected rule also. Next we will
795          * calculate BW correctly in handle_channel function.
796          * In other case remove AUTO_BW flag while we calculate
797          * maximum bandwidth correctly and auto calculation is
798          * not required.
799          */
800         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
801             (rule2->flags & NL80211_RRF_AUTO_BW))
802                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
803         else
804                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
805
806         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
807         if (freq_range->max_bandwidth_khz > freq_diff)
808                 freq_range->max_bandwidth_khz = freq_diff;
809
810         power_rule->max_eirp = min(power_rule1->max_eirp,
811                 power_rule2->max_eirp);
812         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
813                 power_rule2->max_antenna_gain);
814
815         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
816                                            rule2->dfs_cac_ms);
817
818         if (!is_valid_reg_rule(intersected_rule))
819                 return -EINVAL;
820
821         return 0;
822 }
823
824 /* check whether old rule contains new rule */
825 static bool rule_contains(struct ieee80211_reg_rule *r1,
826                           struct ieee80211_reg_rule *r2)
827 {
828         /* for simplicity, currently consider only same flags */
829         if (r1->flags != r2->flags)
830                 return false;
831
832         /* verify r1 is more restrictive */
833         if ((r1->power_rule.max_antenna_gain >
834              r2->power_rule.max_antenna_gain) ||
835             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
836                 return false;
837
838         /* make sure r2's range is contained within r1 */
839         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
840             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
841                 return false;
842
843         /* and finally verify that r1.max_bw >= r2.max_bw */
844         if (r1->freq_range.max_bandwidth_khz <
845             r2->freq_range.max_bandwidth_khz)
846                 return false;
847
848         return true;
849 }
850
851 /* add or extend current rules. do nothing if rule is already contained */
852 static void add_rule(struct ieee80211_reg_rule *rule,
853                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
854 {
855         struct ieee80211_reg_rule *tmp_rule;
856         int i;
857
858         for (i = 0; i < *n_rules; i++) {
859                 tmp_rule = &reg_rules[i];
860                 /* rule is already contained - do nothing */
861                 if (rule_contains(tmp_rule, rule))
862                         return;
863
864                 /* extend rule if possible */
865                 if (rule_contains(rule, tmp_rule)) {
866                         memcpy(tmp_rule, rule, sizeof(*rule));
867                         return;
868                 }
869         }
870
871         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
872         (*n_rules)++;
873 }
874
875 /**
876  * regdom_intersect - do the intersection between two regulatory domains
877  * @rd1: first regulatory domain
878  * @rd2: second regulatory domain
879  *
880  * Use this function to get the intersection between two regulatory domains.
881  * Once completed we will mark the alpha2 for the rd as intersected, "98",
882  * as no one single alpha2 can represent this regulatory domain.
883  *
884  * Returns a pointer to the regulatory domain structure which will hold the
885  * resulting intersection of rules between rd1 and rd2. We will
886  * kzalloc() this structure for you.
887  */
888 static struct ieee80211_regdomain *
889 regdom_intersect(const struct ieee80211_regdomain *rd1,
890                  const struct ieee80211_regdomain *rd2)
891 {
892         int r, size_of_regd;
893         unsigned int x, y;
894         unsigned int num_rules = 0;
895         const struct ieee80211_reg_rule *rule1, *rule2;
896         struct ieee80211_reg_rule intersected_rule;
897         struct ieee80211_regdomain *rd;
898
899         if (!rd1 || !rd2)
900                 return NULL;
901
902         /*
903          * First we get a count of the rules we'll need, then we actually
904          * build them. This is to so we can malloc() and free() a
905          * regdomain once. The reason we use reg_rules_intersect() here
906          * is it will return -EINVAL if the rule computed makes no sense.
907          * All rules that do check out OK are valid.
908          */
909
910         for (x = 0; x < rd1->n_reg_rules; x++) {
911                 rule1 = &rd1->reg_rules[x];
912                 for (y = 0; y < rd2->n_reg_rules; y++) {
913                         rule2 = &rd2->reg_rules[y];
914                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
915                                                  &intersected_rule))
916                                 num_rules++;
917                 }
918         }
919
920         if (!num_rules)
921                 return NULL;
922
923         size_of_regd = sizeof(struct ieee80211_regdomain) +
924                        num_rules * sizeof(struct ieee80211_reg_rule);
925
926         rd = kzalloc(size_of_regd, GFP_KERNEL);
927         if (!rd)
928                 return NULL;
929
930         for (x = 0; x < rd1->n_reg_rules; x++) {
931                 rule1 = &rd1->reg_rules[x];
932                 for (y = 0; y < rd2->n_reg_rules; y++) {
933                         rule2 = &rd2->reg_rules[y];
934                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
935                                                 &intersected_rule);
936                         /*
937                          * No need to memset here the intersected rule here as
938                          * we're not using the stack anymore
939                          */
940                         if (r)
941                                 continue;
942
943                         add_rule(&intersected_rule, rd->reg_rules,
944                                  &rd->n_reg_rules);
945                 }
946         }
947
948         rd->alpha2[0] = '9';
949         rd->alpha2[1] = '8';
950         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
951                                                   rd2->dfs_region);
952
953         return rd;
954 }
955
956 /*
957  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
958  * want to just have the channel structure use these
959  */
960 static u32 map_regdom_flags(u32 rd_flags)
961 {
962         u32 channel_flags = 0;
963         if (rd_flags & NL80211_RRF_NO_IR_ALL)
964                 channel_flags |= IEEE80211_CHAN_NO_IR;
965         if (rd_flags & NL80211_RRF_DFS)
966                 channel_flags |= IEEE80211_CHAN_RADAR;
967         if (rd_flags & NL80211_RRF_NO_OFDM)
968                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
969         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
970                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
971         if (rd_flags & NL80211_RRF_GO_CONCURRENT)
972                 channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
973         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
974                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
975         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
976                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
977         if (rd_flags & NL80211_RRF_NO_80MHZ)
978                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
979         if (rd_flags & NL80211_RRF_NO_160MHZ)
980                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
981         return channel_flags;
982 }
983
984 static const struct ieee80211_reg_rule *
985 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
986                    const struct ieee80211_regdomain *regd)
987 {
988         int i;
989         bool band_rule_found = false;
990         bool bw_fits = false;
991
992         if (!regd)
993                 return ERR_PTR(-EINVAL);
994
995         for (i = 0; i < regd->n_reg_rules; i++) {
996                 const struct ieee80211_reg_rule *rr;
997                 const struct ieee80211_freq_range *fr = NULL;
998
999                 rr = &regd->reg_rules[i];
1000                 fr = &rr->freq_range;
1001
1002                 /*
1003                  * We only need to know if one frequency rule was
1004                  * was in center_freq's band, that's enough, so lets
1005                  * not overwrite it once found
1006                  */
1007                 if (!band_rule_found)
1008                         band_rule_found = freq_in_rule_band(fr, center_freq);
1009
1010                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1011
1012                 if (band_rule_found && bw_fits)
1013                         return rr;
1014         }
1015
1016         if (!band_rule_found)
1017                 return ERR_PTR(-ERANGE);
1018
1019         return ERR_PTR(-EINVAL);
1020 }
1021
1022 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1023                                                u32 center_freq)
1024 {
1025         const struct ieee80211_regdomain *regd;
1026
1027         regd = reg_get_regdomain(wiphy);
1028
1029         return freq_reg_info_regd(wiphy, center_freq, regd);
1030 }
1031 EXPORT_SYMBOL(freq_reg_info);
1032
1033 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1034 {
1035         switch (initiator) {
1036         case NL80211_REGDOM_SET_BY_CORE:
1037                 return "core";
1038         case NL80211_REGDOM_SET_BY_USER:
1039                 return "user";
1040         case NL80211_REGDOM_SET_BY_DRIVER:
1041                 return "driver";
1042         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1043                 return "country IE";
1044         default:
1045                 WARN_ON(1);
1046                 return "bug";
1047         }
1048 }
1049 EXPORT_SYMBOL(reg_initiator_name);
1050
1051 #ifdef CONFIG_CFG80211_REG_DEBUG
1052 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1053                                     struct ieee80211_channel *chan,
1054                                     const struct ieee80211_reg_rule *reg_rule)
1055 {
1056         const struct ieee80211_power_rule *power_rule;
1057         const struct ieee80211_freq_range *freq_range;
1058         char max_antenna_gain[32], bw[32];
1059
1060         power_rule = &reg_rule->power_rule;
1061         freq_range = &reg_rule->freq_range;
1062
1063         if (!power_rule->max_antenna_gain)
1064                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1065         else
1066                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1067                          power_rule->max_antenna_gain);
1068
1069         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1070                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1071                          freq_range->max_bandwidth_khz,
1072                          reg_get_max_bandwidth(regd, reg_rule));
1073         else
1074                 snprintf(bw, sizeof(bw), "%d KHz",
1075                          freq_range->max_bandwidth_khz);
1076
1077         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1078                       chan->center_freq);
1079
1080         REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1081                       freq_range->start_freq_khz, freq_range->end_freq_khz,
1082                       bw, max_antenna_gain,
1083                       power_rule->max_eirp);
1084 }
1085 #else
1086 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1087                                     struct ieee80211_channel *chan,
1088                                     const struct ieee80211_reg_rule *reg_rule)
1089 {
1090         return;
1091 }
1092 #endif
1093
1094 /*
1095  * Note that right now we assume the desired channel bandwidth
1096  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1097  * per channel, the primary and the extension channel).
1098  */
1099 static void handle_channel(struct wiphy *wiphy,
1100                            enum nl80211_reg_initiator initiator,
1101                            struct ieee80211_channel *chan)
1102 {
1103         u32 flags, bw_flags = 0;
1104         const struct ieee80211_reg_rule *reg_rule = NULL;
1105         const struct ieee80211_power_rule *power_rule = NULL;
1106         const struct ieee80211_freq_range *freq_range = NULL;
1107         struct wiphy *request_wiphy = NULL;
1108         struct regulatory_request *lr = get_last_request();
1109         const struct ieee80211_regdomain *regd;
1110         u32 max_bandwidth_khz;
1111
1112         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1113
1114         flags = chan->orig_flags;
1115
1116         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1117         if (IS_ERR(reg_rule)) {
1118                 /*
1119                  * We will disable all channels that do not match our
1120                  * received regulatory rule unless the hint is coming
1121                  * from a Country IE and the Country IE had no information
1122                  * about a band. The IEEE 802.11 spec allows for an AP
1123                  * to send only a subset of the regulatory rules allowed,
1124                  * so an AP in the US that only supports 2.4 GHz may only send
1125                  * a country IE with information for the 2.4 GHz band
1126                  * while 5 GHz is still supported.
1127                  */
1128                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1129                     PTR_ERR(reg_rule) == -ERANGE)
1130                         return;
1131
1132                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1133                     request_wiphy && request_wiphy == wiphy &&
1134                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1135                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1136                                       chan->center_freq);
1137                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1138                         chan->flags = chan->orig_flags;
1139                 } else {
1140                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1141                                       chan->center_freq);
1142                         chan->flags |= IEEE80211_CHAN_DISABLED;
1143                 }
1144                 return;
1145         }
1146
1147         regd = reg_get_regdomain(wiphy);
1148         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1149
1150         power_rule = &reg_rule->power_rule;
1151         freq_range = &reg_rule->freq_range;
1152
1153         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1154         /* Check if auto calculation requested */
1155         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1156                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1157
1158         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1159                 bw_flags = IEEE80211_CHAN_NO_HT40;
1160         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1161                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1162         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1163                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1164
1165         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1166             request_wiphy && request_wiphy == wiphy &&
1167             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1168                 /*
1169                  * This guarantees the driver's requested regulatory domain
1170                  * will always be used as a base for further regulatory
1171                  * settings
1172                  */
1173                 chan->flags = chan->orig_flags =
1174                         map_regdom_flags(reg_rule->flags) | bw_flags;
1175                 chan->max_antenna_gain = chan->orig_mag =
1176                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1177                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1178                         (int) MBM_TO_DBM(power_rule->max_eirp);
1179
1180                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1181                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1182                         if (reg_rule->dfs_cac_ms)
1183                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1184                 }
1185
1186                 return;
1187         }
1188
1189         chan->dfs_state = NL80211_DFS_USABLE;
1190         chan->dfs_state_entered = jiffies;
1191
1192         chan->beacon_found = false;
1193         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1194         chan->max_antenna_gain =
1195                 min_t(int, chan->orig_mag,
1196                       MBI_TO_DBI(power_rule->max_antenna_gain));
1197         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1198
1199         if (chan->flags & IEEE80211_CHAN_RADAR) {
1200                 if (reg_rule->dfs_cac_ms)
1201                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1202                 else
1203                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1204         }
1205
1206         if (chan->orig_mpwr) {
1207                 /*
1208                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1209                  * will always follow the passed country IE power settings.
1210                  */
1211                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1212                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1213                         chan->max_power = chan->max_reg_power;
1214                 else
1215                         chan->max_power = min(chan->orig_mpwr,
1216                                               chan->max_reg_power);
1217         } else
1218                 chan->max_power = chan->max_reg_power;
1219 }
1220
1221 static void handle_band(struct wiphy *wiphy,
1222                         enum nl80211_reg_initiator initiator,
1223                         struct ieee80211_supported_band *sband)
1224 {
1225         unsigned int i;
1226
1227         if (!sband)
1228                 return;
1229
1230         for (i = 0; i < sband->n_channels; i++)
1231                 handle_channel(wiphy, initiator, &sband->channels[i]);
1232 }
1233
1234 static bool reg_request_cell_base(struct regulatory_request *request)
1235 {
1236         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1237                 return false;
1238         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1239 }
1240
1241 static bool reg_request_indoor(struct regulatory_request *request)
1242 {
1243         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1244                 return false;
1245         return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1246 }
1247
1248 bool reg_last_request_cell_base(void)
1249 {
1250         return reg_request_cell_base(get_last_request());
1251 }
1252
1253 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1254 /* Core specific check */
1255 static enum reg_request_treatment
1256 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1257 {
1258         struct regulatory_request *lr = get_last_request();
1259
1260         if (!reg_num_devs_support_basehint)
1261                 return REG_REQ_IGNORE;
1262
1263         if (reg_request_cell_base(lr) &&
1264             !regdom_changes(pending_request->alpha2))
1265                 return REG_REQ_ALREADY_SET;
1266
1267         return REG_REQ_OK;
1268 }
1269
1270 /* Device specific check */
1271 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1272 {
1273         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1274 }
1275 #else
1276 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1277 {
1278         return REG_REQ_IGNORE;
1279 }
1280
1281 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1282 {
1283         return true;
1284 }
1285 #endif
1286
1287 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1288 {
1289         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1290             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1291                 return true;
1292         return false;
1293 }
1294
1295 static bool ignore_reg_update(struct wiphy *wiphy,
1296                               enum nl80211_reg_initiator initiator)
1297 {
1298         struct regulatory_request *lr = get_last_request();
1299
1300         if (!lr) {
1301                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1302                               "since last_request is not set\n",
1303                               reg_initiator_name(initiator));
1304                 return true;
1305         }
1306
1307         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1308             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1309                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1310                               "since the driver uses its own custom "
1311                               "regulatory domain\n",
1312                               reg_initiator_name(initiator));
1313                 return true;
1314         }
1315
1316         /*
1317          * wiphy->regd will be set once the device has its own
1318          * desired regulatory domain set
1319          */
1320         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1321             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1322             !is_world_regdom(lr->alpha2)) {
1323                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1324                               "since the driver requires its own regulatory "
1325                               "domain to be set first\n",
1326                               reg_initiator_name(initiator));
1327                 return true;
1328         }
1329
1330         if (reg_request_cell_base(lr))
1331                 return reg_dev_ignore_cell_hint(wiphy);
1332
1333         return false;
1334 }
1335
1336 static bool reg_is_world_roaming(struct wiphy *wiphy)
1337 {
1338         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1339         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1340         struct regulatory_request *lr = get_last_request();
1341
1342         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1343                 return true;
1344
1345         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1346             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1347                 return true;
1348
1349         return false;
1350 }
1351
1352 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1353                               struct reg_beacon *reg_beacon)
1354 {
1355         struct ieee80211_supported_band *sband;
1356         struct ieee80211_channel *chan;
1357         bool channel_changed = false;
1358         struct ieee80211_channel chan_before;
1359
1360         sband = wiphy->bands[reg_beacon->chan.band];
1361         chan = &sband->channels[chan_idx];
1362
1363         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1364                 return;
1365
1366         if (chan->beacon_found)
1367                 return;
1368
1369         chan->beacon_found = true;
1370
1371         if (!reg_is_world_roaming(wiphy))
1372                 return;
1373
1374         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1375                 return;
1376
1377         chan_before.center_freq = chan->center_freq;
1378         chan_before.flags = chan->flags;
1379
1380         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1381                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1382                 channel_changed = true;
1383         }
1384
1385         if (channel_changed)
1386                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1387 }
1388
1389 /*
1390  * Called when a scan on a wiphy finds a beacon on
1391  * new channel
1392  */
1393 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1394                                     struct reg_beacon *reg_beacon)
1395 {
1396         unsigned int i;
1397         struct ieee80211_supported_band *sband;
1398
1399         if (!wiphy->bands[reg_beacon->chan.band])
1400                 return;
1401
1402         sband = wiphy->bands[reg_beacon->chan.band];
1403
1404         for (i = 0; i < sband->n_channels; i++)
1405                 handle_reg_beacon(wiphy, i, reg_beacon);
1406 }
1407
1408 /*
1409  * Called upon reg changes or a new wiphy is added
1410  */
1411 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1412 {
1413         unsigned int i;
1414         struct ieee80211_supported_band *sband;
1415         struct reg_beacon *reg_beacon;
1416
1417         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1418                 if (!wiphy->bands[reg_beacon->chan.band])
1419                         continue;
1420                 sband = wiphy->bands[reg_beacon->chan.band];
1421                 for (i = 0; i < sband->n_channels; i++)
1422                         handle_reg_beacon(wiphy, i, reg_beacon);
1423         }
1424 }
1425
1426 /* Reap the advantages of previously found beacons */
1427 static void reg_process_beacons(struct wiphy *wiphy)
1428 {
1429         /*
1430          * Means we are just firing up cfg80211, so no beacons would
1431          * have been processed yet.
1432          */
1433         if (!last_request)
1434                 return;
1435         wiphy_update_beacon_reg(wiphy);
1436 }
1437
1438 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1439 {
1440         if (!chan)
1441                 return false;
1442         if (chan->flags & IEEE80211_CHAN_DISABLED)
1443                 return false;
1444         /* This would happen when regulatory rules disallow HT40 completely */
1445         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1446                 return false;
1447         return true;
1448 }
1449
1450 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1451                                          struct ieee80211_channel *channel)
1452 {
1453         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1454         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1455         unsigned int i;
1456
1457         if (!is_ht40_allowed(channel)) {
1458                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1459                 return;
1460         }
1461
1462         /*
1463          * We need to ensure the extension channels exist to
1464          * be able to use HT40- or HT40+, this finds them (or not)
1465          */
1466         for (i = 0; i < sband->n_channels; i++) {
1467                 struct ieee80211_channel *c = &sband->channels[i];
1468
1469                 if (c->center_freq == (channel->center_freq - 20))
1470                         channel_before = c;
1471                 if (c->center_freq == (channel->center_freq + 20))
1472                         channel_after = c;
1473         }
1474
1475         /*
1476          * Please note that this assumes target bandwidth is 20 MHz,
1477          * if that ever changes we also need to change the below logic
1478          * to include that as well.
1479          */
1480         if (!is_ht40_allowed(channel_before))
1481                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1482         else
1483                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1484
1485         if (!is_ht40_allowed(channel_after))
1486                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1487         else
1488                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1489 }
1490
1491 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1492                                       struct ieee80211_supported_band *sband)
1493 {
1494         unsigned int i;
1495
1496         if (!sband)
1497                 return;
1498
1499         for (i = 0; i < sband->n_channels; i++)
1500                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1501 }
1502
1503 static void reg_process_ht_flags(struct wiphy *wiphy)
1504 {
1505         enum ieee80211_band band;
1506
1507         if (!wiphy)
1508                 return;
1509
1510         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1511                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1512 }
1513
1514 static void reg_call_notifier(struct wiphy *wiphy,
1515                               struct regulatory_request *request)
1516 {
1517         if (wiphy->reg_notifier)
1518                 wiphy->reg_notifier(wiphy, request);
1519 }
1520
1521 static void wiphy_update_regulatory(struct wiphy *wiphy,
1522                                     enum nl80211_reg_initiator initiator)
1523 {
1524         enum ieee80211_band band;
1525         struct regulatory_request *lr = get_last_request();
1526
1527         if (ignore_reg_update(wiphy, initiator)) {
1528                 /*
1529                  * Regulatory updates set by CORE are ignored for custom
1530                  * regulatory cards. Let us notify the changes to the driver,
1531                  * as some drivers used this to restore its orig_* reg domain.
1532                  */
1533                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1534                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1535                         reg_call_notifier(wiphy, lr);
1536                 return;
1537         }
1538
1539         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1540
1541         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1542                 handle_band(wiphy, initiator, wiphy->bands[band]);
1543
1544         reg_process_beacons(wiphy);
1545         reg_process_ht_flags(wiphy);
1546         reg_call_notifier(wiphy, lr);
1547 }
1548
1549 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1550 {
1551         struct cfg80211_registered_device *rdev;
1552         struct wiphy *wiphy;
1553
1554         ASSERT_RTNL();
1555
1556         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1557                 wiphy = &rdev->wiphy;
1558                 wiphy_update_regulatory(wiphy, initiator);
1559         }
1560 }
1561
1562 static void handle_channel_custom(struct wiphy *wiphy,
1563                                   struct ieee80211_channel *chan,
1564                                   const struct ieee80211_regdomain *regd)
1565 {
1566         u32 bw_flags = 0;
1567         const struct ieee80211_reg_rule *reg_rule = NULL;
1568         const struct ieee80211_power_rule *power_rule = NULL;
1569         const struct ieee80211_freq_range *freq_range = NULL;
1570         u32 max_bandwidth_khz;
1571
1572         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1573                                       regd);
1574
1575         if (IS_ERR(reg_rule)) {
1576                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1577                               chan->center_freq);
1578                 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1579                 chan->flags = chan->orig_flags;
1580                 return;
1581         }
1582
1583         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1584
1585         power_rule = &reg_rule->power_rule;
1586         freq_range = &reg_rule->freq_range;
1587
1588         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1589         /* Check if auto calculation requested */
1590         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1591                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1592
1593         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1594                 bw_flags = IEEE80211_CHAN_NO_HT40;
1595         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1596                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1597         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1598                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1599
1600         chan->dfs_state_entered = jiffies;
1601         chan->dfs_state = NL80211_DFS_USABLE;
1602
1603         chan->beacon_found = false;
1604         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1605         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1606         chan->max_reg_power = chan->max_power =
1607                 (int) MBM_TO_DBM(power_rule->max_eirp);
1608
1609         if (chan->flags & IEEE80211_CHAN_RADAR) {
1610                 if (reg_rule->dfs_cac_ms)
1611                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1612                 else
1613                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1614         }
1615
1616         chan->max_power = chan->max_reg_power;
1617 }
1618
1619 static void handle_band_custom(struct wiphy *wiphy,
1620                                struct ieee80211_supported_band *sband,
1621                                const struct ieee80211_regdomain *regd)
1622 {
1623         unsigned int i;
1624
1625         if (!sband)
1626                 return;
1627
1628         for (i = 0; i < sband->n_channels; i++)
1629                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1630 }
1631
1632 /* Used by drivers prior to wiphy registration */
1633 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1634                                    const struct ieee80211_regdomain *regd)
1635 {
1636         enum ieee80211_band band;
1637         unsigned int bands_set = 0;
1638
1639         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1640              "wiphy should have REGULATORY_CUSTOM_REG\n");
1641         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1642
1643         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1644                 if (!wiphy->bands[band])
1645                         continue;
1646                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1647                 bands_set++;
1648         }
1649
1650         /*
1651          * no point in calling this if it won't have any effect
1652          * on your device's supported bands.
1653          */
1654         WARN_ON(!bands_set);
1655 }
1656 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1657
1658 static void reg_set_request_processed(void)
1659 {
1660         bool need_more_processing = false;
1661         struct regulatory_request *lr = get_last_request();
1662
1663         lr->processed = true;
1664
1665         spin_lock(&reg_requests_lock);
1666         if (!list_empty(&reg_requests_list))
1667                 need_more_processing = true;
1668         spin_unlock(&reg_requests_lock);
1669
1670         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1671                 cancel_delayed_work(&reg_timeout);
1672
1673         if (need_more_processing)
1674                 schedule_work(&reg_work);
1675 }
1676
1677 /**
1678  * reg_process_hint_core - process core regulatory requests
1679  * @pending_request: a pending core regulatory request
1680  *
1681  * The wireless subsystem can use this function to process
1682  * a regulatory request issued by the regulatory core.
1683  *
1684  * Returns one of the different reg request treatment values.
1685  */
1686 static enum reg_request_treatment
1687 reg_process_hint_core(struct regulatory_request *core_request)
1688 {
1689
1690         core_request->intersect = false;
1691         core_request->processed = false;
1692
1693         reg_update_last_request(core_request);
1694
1695         return reg_call_crda(core_request);
1696 }
1697
1698 static enum reg_request_treatment
1699 __reg_process_hint_user(struct regulatory_request *user_request)
1700 {
1701         struct regulatory_request *lr = get_last_request();
1702
1703         if (reg_request_indoor(user_request)) {
1704                 reg_is_indoor = true;
1705                 return REG_REQ_USER_HINT_HANDLED;
1706         }
1707
1708         if (reg_request_cell_base(user_request))
1709                 return reg_ignore_cell_hint(user_request);
1710
1711         if (reg_request_cell_base(lr))
1712                 return REG_REQ_IGNORE;
1713
1714         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1715                 return REG_REQ_INTERSECT;
1716         /*
1717          * If the user knows better the user should set the regdom
1718          * to their country before the IE is picked up
1719          */
1720         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1721             lr->intersect)
1722                 return REG_REQ_IGNORE;
1723         /*
1724          * Process user requests only after previous user/driver/core
1725          * requests have been processed
1726          */
1727         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1728              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1729              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1730             regdom_changes(lr->alpha2))
1731                 return REG_REQ_IGNORE;
1732
1733         if (!regdom_changes(user_request->alpha2))
1734                 return REG_REQ_ALREADY_SET;
1735
1736         return REG_REQ_OK;
1737 }
1738
1739 /**
1740  * reg_process_hint_user - process user regulatory requests
1741  * @user_request: a pending user regulatory request
1742  *
1743  * The wireless subsystem can use this function to process
1744  * a regulatory request initiated by userspace.
1745  *
1746  * Returns one of the different reg request treatment values.
1747  */
1748 static enum reg_request_treatment
1749 reg_process_hint_user(struct regulatory_request *user_request)
1750 {
1751         enum reg_request_treatment treatment;
1752
1753         treatment = __reg_process_hint_user(user_request);
1754         if (treatment == REG_REQ_IGNORE ||
1755             treatment == REG_REQ_ALREADY_SET ||
1756             treatment == REG_REQ_USER_HINT_HANDLED) {
1757                 reg_free_request(user_request);
1758                 return treatment;
1759         }
1760
1761         user_request->intersect = treatment == REG_REQ_INTERSECT;
1762         user_request->processed = false;
1763
1764         reg_update_last_request(user_request);
1765
1766         user_alpha2[0] = user_request->alpha2[0];
1767         user_alpha2[1] = user_request->alpha2[1];
1768
1769         return reg_call_crda(user_request);
1770 }
1771
1772 static enum reg_request_treatment
1773 __reg_process_hint_driver(struct regulatory_request *driver_request)
1774 {
1775         struct regulatory_request *lr = get_last_request();
1776
1777         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1778                 if (regdom_changes(driver_request->alpha2))
1779                         return REG_REQ_OK;
1780                 return REG_REQ_ALREADY_SET;
1781         }
1782
1783         /*
1784          * This would happen if you unplug and plug your card
1785          * back in or if you add a new device for which the previously
1786          * loaded card also agrees on the regulatory domain.
1787          */
1788         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1789             !regdom_changes(driver_request->alpha2))
1790                 return REG_REQ_ALREADY_SET;
1791
1792         return REG_REQ_INTERSECT;
1793 }
1794
1795 /**
1796  * reg_process_hint_driver - process driver regulatory requests
1797  * @driver_request: a pending driver regulatory request
1798  *
1799  * The wireless subsystem can use this function to process
1800  * a regulatory request issued by an 802.11 driver.
1801  *
1802  * Returns one of the different reg request treatment values.
1803  */
1804 static enum reg_request_treatment
1805 reg_process_hint_driver(struct wiphy *wiphy,
1806                         struct regulatory_request *driver_request)
1807 {
1808         const struct ieee80211_regdomain *regd;
1809         enum reg_request_treatment treatment;
1810
1811         treatment = __reg_process_hint_driver(driver_request);
1812
1813         switch (treatment) {
1814         case REG_REQ_OK:
1815                 break;
1816         case REG_REQ_IGNORE:
1817         case REG_REQ_USER_HINT_HANDLED:
1818                 reg_free_request(driver_request);
1819                 return treatment;
1820         case REG_REQ_INTERSECT:
1821                 /* fall through */
1822         case REG_REQ_ALREADY_SET:
1823                 regd = reg_copy_regd(get_cfg80211_regdom());
1824                 if (IS_ERR(regd)) {
1825                         reg_free_request(driver_request);
1826                         return REG_REQ_IGNORE;
1827                 }
1828                 rcu_assign_pointer(wiphy->regd, regd);
1829         }
1830
1831
1832         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1833         driver_request->processed = false;
1834
1835         reg_update_last_request(driver_request);
1836
1837         /*
1838          * Since CRDA will not be called in this case as we already
1839          * have applied the requested regulatory domain before we just
1840          * inform userspace we have processed the request
1841          */
1842         if (treatment == REG_REQ_ALREADY_SET) {
1843                 nl80211_send_reg_change_event(driver_request);
1844                 reg_set_request_processed();
1845                 return treatment;
1846         }
1847
1848         return reg_call_crda(driver_request);
1849 }
1850
1851 static enum reg_request_treatment
1852 __reg_process_hint_country_ie(struct wiphy *wiphy,
1853                               struct regulatory_request *country_ie_request)
1854 {
1855         struct wiphy *last_wiphy = NULL;
1856         struct regulatory_request *lr = get_last_request();
1857
1858         if (reg_request_cell_base(lr)) {
1859                 /* Trust a Cell base station over the AP's country IE */
1860                 if (regdom_changes(country_ie_request->alpha2))
1861                         return REG_REQ_IGNORE;
1862                 return REG_REQ_ALREADY_SET;
1863         } else {
1864                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1865                         return REG_REQ_IGNORE;
1866         }
1867
1868         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1869                 return -EINVAL;
1870
1871         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1872                 return REG_REQ_OK;
1873
1874         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1875
1876         if (last_wiphy != wiphy) {
1877                 /*
1878                  * Two cards with two APs claiming different
1879                  * Country IE alpha2s. We could
1880                  * intersect them, but that seems unlikely
1881                  * to be correct. Reject second one for now.
1882                  */
1883                 if (regdom_changes(country_ie_request->alpha2))
1884                         return REG_REQ_IGNORE;
1885                 return REG_REQ_ALREADY_SET;
1886         }
1887         /*
1888          * Two consecutive Country IE hints on the same wiphy.
1889          * This should be picked up early by the driver/stack
1890          */
1891         if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1892                 return REG_REQ_OK;
1893         return REG_REQ_ALREADY_SET;
1894 }
1895
1896 /**
1897  * reg_process_hint_country_ie - process regulatory requests from country IEs
1898  * @country_ie_request: a regulatory request from a country IE
1899  *
1900  * The wireless subsystem can use this function to process
1901  * a regulatory request issued by a country Information Element.
1902  *
1903  * Returns one of the different reg request treatment values.
1904  */
1905 static enum reg_request_treatment
1906 reg_process_hint_country_ie(struct wiphy *wiphy,
1907                             struct regulatory_request *country_ie_request)
1908 {
1909         enum reg_request_treatment treatment;
1910
1911         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1912
1913         switch (treatment) {
1914         case REG_REQ_OK:
1915                 break;
1916         case REG_REQ_IGNORE:
1917         case REG_REQ_USER_HINT_HANDLED:
1918                 /* fall through */
1919         case REG_REQ_ALREADY_SET:
1920                 reg_free_request(country_ie_request);
1921                 return treatment;
1922         case REG_REQ_INTERSECT:
1923                 reg_free_request(country_ie_request);
1924                 /*
1925                  * This doesn't happen yet, not sure we
1926                  * ever want to support it for this case.
1927                  */
1928                 WARN_ONCE(1, "Unexpected intersection for country IEs");
1929                 return REG_REQ_IGNORE;
1930         }
1931
1932         country_ie_request->intersect = false;
1933         country_ie_request->processed = false;
1934
1935         reg_update_last_request(country_ie_request);
1936
1937         return reg_call_crda(country_ie_request);
1938 }
1939
1940 /* This processes *all* regulatory hints */
1941 static void reg_process_hint(struct regulatory_request *reg_request)
1942 {
1943         struct wiphy *wiphy = NULL;
1944         enum reg_request_treatment treatment;
1945
1946         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1947                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1948
1949         switch (reg_request->initiator) {
1950         case NL80211_REGDOM_SET_BY_CORE:
1951                 reg_process_hint_core(reg_request);
1952                 return;
1953         case NL80211_REGDOM_SET_BY_USER:
1954                 treatment = reg_process_hint_user(reg_request);
1955                 if (treatment == REG_REQ_IGNORE ||
1956                     treatment == REG_REQ_ALREADY_SET ||
1957                     treatment == REG_REQ_USER_HINT_HANDLED)
1958                         return;
1959                 queue_delayed_work(system_power_efficient_wq,
1960                                    &reg_timeout, msecs_to_jiffies(3142));
1961                 return;
1962         case NL80211_REGDOM_SET_BY_DRIVER:
1963                 if (!wiphy)
1964                         goto out_free;
1965                 treatment = reg_process_hint_driver(wiphy, reg_request);
1966                 break;
1967         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1968                 if (!wiphy)
1969                         goto out_free;
1970                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1971                 break;
1972         default:
1973                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1974                 goto out_free;
1975         }
1976
1977         /* This is required so that the orig_* parameters are saved */
1978         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1979             wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1980                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1981
1982         return;
1983
1984 out_free:
1985         reg_free_request(reg_request);
1986 }
1987
1988 /*
1989  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1990  * Regulatory hints come on a first come first serve basis and we
1991  * must process each one atomically.
1992  */
1993 static void reg_process_pending_hints(void)
1994 {
1995         struct regulatory_request *reg_request, *lr;
1996
1997         lr = get_last_request();
1998
1999         /* When last_request->processed becomes true this will be rescheduled */
2000         if (lr && !lr->processed) {
2001                 reg_process_hint(lr);
2002                 return;
2003         }
2004
2005         spin_lock(&reg_requests_lock);
2006
2007         if (list_empty(&reg_requests_list)) {
2008                 spin_unlock(&reg_requests_lock);
2009                 return;
2010         }
2011
2012         reg_request = list_first_entry(&reg_requests_list,
2013                                        struct regulatory_request,
2014                                        list);
2015         list_del_init(&reg_request->list);
2016
2017         spin_unlock(&reg_requests_lock);
2018
2019         reg_process_hint(reg_request);
2020 }
2021
2022 /* Processes beacon hints -- this has nothing to do with country IEs */
2023 static void reg_process_pending_beacon_hints(void)
2024 {
2025         struct cfg80211_registered_device *rdev;
2026         struct reg_beacon *pending_beacon, *tmp;
2027
2028         /* This goes through the _pending_ beacon list */
2029         spin_lock_bh(&reg_pending_beacons_lock);
2030
2031         list_for_each_entry_safe(pending_beacon, tmp,
2032                                  &reg_pending_beacons, list) {
2033                 list_del_init(&pending_beacon->list);
2034
2035                 /* Applies the beacon hint to current wiphys */
2036                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2037                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2038
2039                 /* Remembers the beacon hint for new wiphys or reg changes */
2040                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2041         }
2042
2043         spin_unlock_bh(&reg_pending_beacons_lock);
2044 }
2045
2046 static void reg_todo(struct work_struct *work)
2047 {
2048         rtnl_lock();
2049         reg_process_pending_hints();
2050         reg_process_pending_beacon_hints();
2051         rtnl_unlock();
2052 }
2053
2054 static void queue_regulatory_request(struct regulatory_request *request)
2055 {
2056         request->alpha2[0] = toupper(request->alpha2[0]);
2057         request->alpha2[1] = toupper(request->alpha2[1]);
2058
2059         spin_lock(&reg_requests_lock);
2060         list_add_tail(&request->list, &reg_requests_list);
2061         spin_unlock(&reg_requests_lock);
2062
2063         schedule_work(&reg_work);
2064 }
2065
2066 /*
2067  * Core regulatory hint -- happens during cfg80211_init()
2068  * and when we restore regulatory settings.
2069  */
2070 static int regulatory_hint_core(const char *alpha2)
2071 {
2072         struct regulatory_request *request;
2073
2074         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2075         if (!request)
2076                 return -ENOMEM;
2077
2078         request->alpha2[0] = alpha2[0];
2079         request->alpha2[1] = alpha2[1];
2080         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2081
2082         queue_regulatory_request(request);
2083
2084         return 0;
2085 }
2086
2087 /* User hints */
2088 int regulatory_hint_user(const char *alpha2,
2089                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2090 {
2091         struct regulatory_request *request;
2092
2093         if (WARN_ON(!alpha2))
2094                 return -EINVAL;
2095
2096         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2097         if (!request)
2098                 return -ENOMEM;
2099
2100         request->wiphy_idx = WIPHY_IDX_INVALID;
2101         request->alpha2[0] = alpha2[0];
2102         request->alpha2[1] = alpha2[1];
2103         request->initiator = NL80211_REGDOM_SET_BY_USER;
2104         request->user_reg_hint_type = user_reg_hint_type;
2105
2106         queue_regulatory_request(request);
2107
2108         return 0;
2109 }
2110
2111 int regulatory_hint_indoor_user(void)
2112 {
2113         struct regulatory_request *request;
2114
2115         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2116         if (!request)
2117                 return -ENOMEM;
2118
2119         request->wiphy_idx = WIPHY_IDX_INVALID;
2120         request->initiator = NL80211_REGDOM_SET_BY_USER;
2121         request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2122         queue_regulatory_request(request);
2123
2124         return 0;
2125 }
2126
2127 /* Driver hints */
2128 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2129 {
2130         struct regulatory_request *request;
2131
2132         if (WARN_ON(!alpha2 || !wiphy))
2133                 return -EINVAL;
2134
2135         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2136
2137         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2138         if (!request)
2139                 return -ENOMEM;
2140
2141         request->wiphy_idx = get_wiphy_idx(wiphy);
2142
2143         request->alpha2[0] = alpha2[0];
2144         request->alpha2[1] = alpha2[1];
2145         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2146
2147         queue_regulatory_request(request);
2148
2149         return 0;
2150 }
2151 EXPORT_SYMBOL(regulatory_hint);
2152
2153 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2154                                 const u8 *country_ie, u8 country_ie_len)
2155 {
2156         char alpha2[2];
2157         enum environment_cap env = ENVIRON_ANY;
2158         struct regulatory_request *request = NULL, *lr;
2159
2160         /* IE len must be evenly divisible by 2 */
2161         if (country_ie_len & 0x01)
2162                 return;
2163
2164         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2165                 return;
2166
2167         request = kzalloc(sizeof(*request), GFP_KERNEL);
2168         if (!request)
2169                 return;
2170
2171         alpha2[0] = country_ie[0];
2172         alpha2[1] = country_ie[1];
2173
2174         if (country_ie[2] == 'I')
2175                 env = ENVIRON_INDOOR;
2176         else if (country_ie[2] == 'O')
2177                 env = ENVIRON_OUTDOOR;
2178
2179         rcu_read_lock();
2180         lr = get_last_request();
2181
2182         if (unlikely(!lr))
2183                 goto out;
2184
2185         /*
2186          * We will run this only upon a successful connection on cfg80211.
2187          * We leave conflict resolution to the workqueue, where can hold
2188          * the RTNL.
2189          */
2190         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2191             lr->wiphy_idx != WIPHY_IDX_INVALID)
2192                 goto out;
2193
2194         request->wiphy_idx = get_wiphy_idx(wiphy);
2195         request->alpha2[0] = alpha2[0];
2196         request->alpha2[1] = alpha2[1];
2197         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2198         request->country_ie_env = env;
2199
2200         queue_regulatory_request(request);
2201         request = NULL;
2202 out:
2203         kfree(request);
2204         rcu_read_unlock();
2205 }
2206
2207 static void restore_alpha2(char *alpha2, bool reset_user)
2208 {
2209         /* indicates there is no alpha2 to consider for restoration */
2210         alpha2[0] = '9';
2211         alpha2[1] = '7';
2212
2213         /* The user setting has precedence over the module parameter */
2214         if (is_user_regdom_saved()) {
2215                 /* Unless we're asked to ignore it and reset it */
2216                 if (reset_user) {
2217                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2218                         user_alpha2[0] = '9';
2219                         user_alpha2[1] = '7';
2220
2221                         /*
2222                          * If we're ignoring user settings, we still need to
2223                          * check the module parameter to ensure we put things
2224                          * back as they were for a full restore.
2225                          */
2226                         if (!is_world_regdom(ieee80211_regdom)) {
2227                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2228                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2229                                 alpha2[0] = ieee80211_regdom[0];
2230                                 alpha2[1] = ieee80211_regdom[1];
2231                         }
2232                 } else {
2233                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2234                                       user_alpha2[0], user_alpha2[1]);
2235                         alpha2[0] = user_alpha2[0];
2236                         alpha2[1] = user_alpha2[1];
2237                 }
2238         } else if (!is_world_regdom(ieee80211_regdom)) {
2239                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2240                               ieee80211_regdom[0], ieee80211_regdom[1]);
2241                 alpha2[0] = ieee80211_regdom[0];
2242                 alpha2[1] = ieee80211_regdom[1];
2243         } else
2244                 REG_DBG_PRINT("Restoring regulatory settings\n");
2245 }
2246
2247 static void restore_custom_reg_settings(struct wiphy *wiphy)
2248 {
2249         struct ieee80211_supported_band *sband;
2250         enum ieee80211_band band;
2251         struct ieee80211_channel *chan;
2252         int i;
2253
2254         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2255                 sband = wiphy->bands[band];
2256                 if (!sband)
2257                         continue;
2258                 for (i = 0; i < sband->n_channels; i++) {
2259                         chan = &sband->channels[i];
2260                         chan->flags = chan->orig_flags;
2261                         chan->max_antenna_gain = chan->orig_mag;
2262                         chan->max_power = chan->orig_mpwr;
2263                         chan->beacon_found = false;
2264                 }
2265         }
2266 }
2267
2268 /*
2269  * Restoring regulatory settings involves ingoring any
2270  * possibly stale country IE information and user regulatory
2271  * settings if so desired, this includes any beacon hints
2272  * learned as we could have traveled outside to another country
2273  * after disconnection. To restore regulatory settings we do
2274  * exactly what we did at bootup:
2275  *
2276  *   - send a core regulatory hint
2277  *   - send a user regulatory hint if applicable
2278  *
2279  * Device drivers that send a regulatory hint for a specific country
2280  * keep their own regulatory domain on wiphy->regd so that does does
2281  * not need to be remembered.
2282  */
2283 static void restore_regulatory_settings(bool reset_user)
2284 {
2285         char alpha2[2];
2286         char world_alpha2[2];
2287         struct reg_beacon *reg_beacon, *btmp;
2288         struct regulatory_request *reg_request, *tmp;
2289         LIST_HEAD(tmp_reg_req_list);
2290         struct cfg80211_registered_device *rdev;
2291
2292         ASSERT_RTNL();
2293
2294         reg_is_indoor = false;
2295
2296         reset_regdomains(true, &world_regdom);
2297         restore_alpha2(alpha2, reset_user);
2298
2299         /*
2300          * If there's any pending requests we simply
2301          * stash them to a temporary pending queue and
2302          * add then after we've restored regulatory
2303          * settings.
2304          */
2305         spin_lock(&reg_requests_lock);
2306         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2307                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2308                         continue;
2309                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2310         }
2311         spin_unlock(&reg_requests_lock);
2312
2313         /* Clear beacon hints */
2314         spin_lock_bh(&reg_pending_beacons_lock);
2315         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2316                 list_del(&reg_beacon->list);
2317                 kfree(reg_beacon);
2318         }
2319         spin_unlock_bh(&reg_pending_beacons_lock);
2320
2321         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2322                 list_del(&reg_beacon->list);
2323                 kfree(reg_beacon);
2324         }
2325
2326         /* First restore to the basic regulatory settings */
2327         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2328         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2329
2330         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2331                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2332                         restore_custom_reg_settings(&rdev->wiphy);
2333         }
2334
2335         regulatory_hint_core(world_alpha2);
2336
2337         /*
2338          * This restores the ieee80211_regdom module parameter
2339          * preference or the last user requested regulatory
2340          * settings, user regulatory settings takes precedence.
2341          */
2342         if (is_an_alpha2(alpha2))
2343                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2344
2345         spin_lock(&reg_requests_lock);
2346         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2347         spin_unlock(&reg_requests_lock);
2348
2349         REG_DBG_PRINT("Kicking the queue\n");
2350
2351         schedule_work(&reg_work);
2352 }
2353
2354 void regulatory_hint_disconnect(void)
2355 {
2356         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2357         restore_regulatory_settings(false);
2358 }
2359
2360 static bool freq_is_chan_12_13_14(u16 freq)
2361 {
2362         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2363             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2364             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2365                 return true;
2366         return false;
2367 }
2368
2369 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2370 {
2371         struct reg_beacon *pending_beacon;
2372
2373         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2374                 if (beacon_chan->center_freq ==
2375                     pending_beacon->chan.center_freq)
2376                         return true;
2377         return false;
2378 }
2379
2380 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2381                                  struct ieee80211_channel *beacon_chan,
2382                                  gfp_t gfp)
2383 {
2384         struct reg_beacon *reg_beacon;
2385         bool processing;
2386
2387         if (beacon_chan->beacon_found ||
2388             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2389             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2390              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2391                 return 0;
2392
2393         spin_lock_bh(&reg_pending_beacons_lock);
2394         processing = pending_reg_beacon(beacon_chan);
2395         spin_unlock_bh(&reg_pending_beacons_lock);
2396
2397         if (processing)
2398                 return 0;
2399
2400         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2401         if (!reg_beacon)
2402                 return -ENOMEM;
2403
2404         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2405                       beacon_chan->center_freq,
2406                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2407                       wiphy_name(wiphy));
2408
2409         memcpy(&reg_beacon->chan, beacon_chan,
2410                sizeof(struct ieee80211_channel));
2411
2412         /*
2413          * Since we can be called from BH or and non-BH context
2414          * we must use spin_lock_bh()
2415          */
2416         spin_lock_bh(&reg_pending_beacons_lock);
2417         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2418         spin_unlock_bh(&reg_pending_beacons_lock);
2419
2420         schedule_work(&reg_work);
2421
2422         return 0;
2423 }
2424
2425 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2426 {
2427         unsigned int i;
2428         const struct ieee80211_reg_rule *reg_rule = NULL;
2429         const struct ieee80211_freq_range *freq_range = NULL;
2430         const struct ieee80211_power_rule *power_rule = NULL;
2431         char bw[32], cac_time[32];
2432
2433         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2434
2435         for (i = 0; i < rd->n_reg_rules; i++) {
2436                 reg_rule = &rd->reg_rules[i];
2437                 freq_range = &reg_rule->freq_range;
2438                 power_rule = &reg_rule->power_rule;
2439
2440                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2441                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2442                                  freq_range->max_bandwidth_khz,
2443                                  reg_get_max_bandwidth(rd, reg_rule));
2444                 else
2445                         snprintf(bw, sizeof(bw), "%d KHz",
2446                                  freq_range->max_bandwidth_khz);
2447
2448                 if (reg_rule->flags & NL80211_RRF_DFS)
2449                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2450                                   reg_rule->dfs_cac_ms/1000);
2451                 else
2452                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2453
2454
2455                 /*
2456                  * There may not be documentation for max antenna gain
2457                  * in certain regions
2458                  */
2459                 if (power_rule->max_antenna_gain)
2460                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2461                                 freq_range->start_freq_khz,
2462                                 freq_range->end_freq_khz,
2463                                 bw,
2464                                 power_rule->max_antenna_gain,
2465                                 power_rule->max_eirp,
2466                                 cac_time);
2467                 else
2468                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2469                                 freq_range->start_freq_khz,
2470                                 freq_range->end_freq_khz,
2471                                 bw,
2472                                 power_rule->max_eirp,
2473                                 cac_time);
2474         }
2475 }
2476
2477 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2478 {
2479         switch (dfs_region) {
2480         case NL80211_DFS_UNSET:
2481         case NL80211_DFS_FCC:
2482         case NL80211_DFS_ETSI:
2483         case NL80211_DFS_JP:
2484                 return true;
2485         default:
2486                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2487                               dfs_region);
2488                 return false;
2489         }
2490 }
2491
2492 static void print_regdomain(const struct ieee80211_regdomain *rd)
2493 {
2494         struct regulatory_request *lr = get_last_request();
2495
2496         if (is_intersected_alpha2(rd->alpha2)) {
2497                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2498                         struct cfg80211_registered_device *rdev;
2499                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2500                         if (rdev) {
2501                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2502                                         rdev->country_ie_alpha2[0],
2503                                         rdev->country_ie_alpha2[1]);
2504                         } else
2505                                 pr_info("Current regulatory domain intersected:\n");
2506                 } else
2507                         pr_info("Current regulatory domain intersected:\n");
2508         } else if (is_world_regdom(rd->alpha2)) {
2509                 pr_info("World regulatory domain updated:\n");
2510         } else {
2511                 if (is_unknown_alpha2(rd->alpha2))
2512                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2513                 else {
2514                         if (reg_request_cell_base(lr))
2515                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2516                                         rd->alpha2[0], rd->alpha2[1]);
2517                         else
2518                                 pr_info("Regulatory domain changed to country: %c%c\n",
2519                                         rd->alpha2[0], rd->alpha2[1]);
2520                 }
2521         }
2522
2523         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2524         print_rd_rules(rd);
2525 }
2526
2527 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2528 {
2529         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2530         print_rd_rules(rd);
2531 }
2532
2533 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2534 {
2535         if (!is_world_regdom(rd->alpha2))
2536                 return -EINVAL;
2537         update_world_regdomain(rd);
2538         return 0;
2539 }
2540
2541 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2542                            struct regulatory_request *user_request)
2543 {
2544         const struct ieee80211_regdomain *intersected_rd = NULL;
2545
2546         if (!regdom_changes(rd->alpha2))
2547                 return -EALREADY;
2548
2549         if (!is_valid_rd(rd)) {
2550                 pr_err("Invalid regulatory domain detected:\n");
2551                 print_regdomain_info(rd);
2552                 return -EINVAL;
2553         }
2554
2555         if (!user_request->intersect) {
2556                 reset_regdomains(false, rd);
2557                 return 0;
2558         }
2559
2560         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2561         if (!intersected_rd)
2562                 return -EINVAL;
2563
2564         kfree(rd);
2565         rd = NULL;
2566         reset_regdomains(false, intersected_rd);
2567
2568         return 0;
2569 }
2570
2571 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2572                              struct regulatory_request *driver_request)
2573 {
2574         const struct ieee80211_regdomain *regd;
2575         const struct ieee80211_regdomain *intersected_rd = NULL;
2576         const struct ieee80211_regdomain *tmp;
2577         struct wiphy *request_wiphy;
2578
2579         if (is_world_regdom(rd->alpha2))
2580                 return -EINVAL;
2581
2582         if (!regdom_changes(rd->alpha2))
2583                 return -EALREADY;
2584
2585         if (!is_valid_rd(rd)) {
2586                 pr_err("Invalid regulatory domain detected:\n");
2587                 print_regdomain_info(rd);
2588                 return -EINVAL;
2589         }
2590
2591         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2592         if (!request_wiphy) {
2593                 queue_delayed_work(system_power_efficient_wq,
2594                                    &reg_timeout, 0);
2595                 return -ENODEV;
2596         }
2597
2598         if (!driver_request->intersect) {
2599                 if (request_wiphy->regd)
2600                         return -EALREADY;
2601
2602                 regd = reg_copy_regd(rd);
2603                 if (IS_ERR(regd))
2604                         return PTR_ERR(regd);
2605
2606                 rcu_assign_pointer(request_wiphy->regd, regd);
2607                 reset_regdomains(false, rd);
2608                 return 0;
2609         }
2610
2611         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2612         if (!intersected_rd)
2613                 return -EINVAL;
2614
2615         /*
2616          * We can trash what CRDA provided now.
2617          * However if a driver requested this specific regulatory
2618          * domain we keep it for its private use
2619          */
2620         tmp = get_wiphy_regdom(request_wiphy);
2621         rcu_assign_pointer(request_wiphy->regd, rd);
2622         rcu_free_regdom(tmp);
2623
2624         rd = NULL;
2625
2626         reset_regdomains(false, intersected_rd);
2627
2628         return 0;
2629 }
2630
2631 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2632                                  struct regulatory_request *country_ie_request)
2633 {
2634         struct wiphy *request_wiphy;
2635
2636         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2637             !is_unknown_alpha2(rd->alpha2))
2638                 return -EINVAL;
2639
2640         /*
2641          * Lets only bother proceeding on the same alpha2 if the current
2642          * rd is non static (it means CRDA was present and was used last)
2643          * and the pending request came in from a country IE
2644          */
2645
2646         if (!is_valid_rd(rd)) {
2647                 pr_err("Invalid regulatory domain detected:\n");
2648                 print_regdomain_info(rd);
2649                 return -EINVAL;
2650         }
2651
2652         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2653         if (!request_wiphy) {
2654                 queue_delayed_work(system_power_efficient_wq,
2655                                    &reg_timeout, 0);
2656                 return -ENODEV;
2657         }
2658
2659         if (country_ie_request->intersect)
2660                 return -EINVAL;
2661
2662         reset_regdomains(false, rd);
2663         return 0;
2664 }
2665
2666 /*
2667  * Use this call to set the current regulatory domain. Conflicts with
2668  * multiple drivers can be ironed out later. Caller must've already
2669  * kmalloc'd the rd structure.
2670  */
2671 int set_regdom(const struct ieee80211_regdomain *rd)
2672 {
2673         struct regulatory_request *lr;
2674         bool user_reset = false;
2675         int r;
2676
2677         if (!reg_is_valid_request(rd->alpha2)) {
2678                 kfree(rd);
2679                 return -EINVAL;
2680         }
2681
2682         lr = get_last_request();
2683
2684         /* Note that this doesn't update the wiphys, this is done below */
2685         switch (lr->initiator) {
2686         case NL80211_REGDOM_SET_BY_CORE:
2687                 r = reg_set_rd_core(rd);
2688                 break;
2689         case NL80211_REGDOM_SET_BY_USER:
2690                 r = reg_set_rd_user(rd, lr);
2691                 user_reset = true;
2692                 break;
2693         case NL80211_REGDOM_SET_BY_DRIVER:
2694                 r = reg_set_rd_driver(rd, lr);
2695                 break;
2696         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2697                 r = reg_set_rd_country_ie(rd, lr);
2698                 break;
2699         default:
2700                 WARN(1, "invalid initiator %d\n", lr->initiator);
2701                 return -EINVAL;
2702         }
2703
2704         if (r) {
2705                 switch (r) {
2706                 case -EALREADY:
2707                         reg_set_request_processed();
2708                         break;
2709                 default:
2710                         /* Back to world regulatory in case of errors */
2711                         restore_regulatory_settings(user_reset);
2712                 }
2713
2714                 kfree(rd);
2715                 return r;
2716         }
2717
2718         /* This would make this whole thing pointless */
2719         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2720                 return -EINVAL;
2721
2722         /* update all wiphys now with the new established regulatory domain */
2723         update_all_wiphy_regulatory(lr->initiator);
2724
2725         print_regdomain(get_cfg80211_regdom());
2726
2727         nl80211_send_reg_change_event(lr);
2728
2729         reg_set_request_processed();
2730
2731         return 0;
2732 }
2733
2734 void wiphy_regulatory_register(struct wiphy *wiphy)
2735 {
2736         struct regulatory_request *lr;
2737
2738         if (!reg_dev_ignore_cell_hint(wiphy))
2739                 reg_num_devs_support_basehint++;
2740
2741         lr = get_last_request();
2742         wiphy_update_regulatory(wiphy, lr->initiator);
2743 }
2744
2745 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2746 {
2747         struct wiphy *request_wiphy = NULL;
2748         struct regulatory_request *lr;
2749
2750         lr = get_last_request();
2751
2752         if (!reg_dev_ignore_cell_hint(wiphy))
2753                 reg_num_devs_support_basehint--;
2754
2755         rcu_free_regdom(get_wiphy_regdom(wiphy));
2756         RCU_INIT_POINTER(wiphy->regd, NULL);
2757
2758         if (lr)
2759                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2760
2761         if (!request_wiphy || request_wiphy != wiphy)
2762                 return;
2763
2764         lr->wiphy_idx = WIPHY_IDX_INVALID;
2765         lr->country_ie_env = ENVIRON_ANY;
2766 }
2767
2768 static void reg_timeout_work(struct work_struct *work)
2769 {
2770         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2771         rtnl_lock();
2772         restore_regulatory_settings(true);
2773         rtnl_unlock();
2774 }
2775
2776 /*
2777  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2778  * UNII band definitions
2779  */
2780 int cfg80211_get_unii(int freq)
2781 {
2782         /* UNII-1 */
2783         if (freq >= 5150 && freq <= 5250)
2784                 return 0;
2785
2786         /* UNII-2A */
2787         if (freq > 5250 && freq <= 5350)
2788                 return 1;
2789
2790         /* UNII-2B */
2791         if (freq > 5350 && freq <= 5470)
2792                 return 2;
2793
2794         /* UNII-2C */
2795         if (freq > 5470 && freq <= 5725)
2796                 return 3;
2797
2798         /* UNII-3 */
2799         if (freq > 5725 && freq <= 5825)
2800                 return 4;
2801
2802         return -EINVAL;
2803 }
2804
2805 bool regulatory_indoor_allowed(void)
2806 {
2807         return reg_is_indoor;
2808 }
2809
2810 int __init regulatory_init(void)
2811 {
2812         int err = 0;
2813
2814         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2815         if (IS_ERR(reg_pdev))
2816                 return PTR_ERR(reg_pdev);
2817
2818         spin_lock_init(&reg_requests_lock);
2819         spin_lock_init(&reg_pending_beacons_lock);
2820
2821         reg_regdb_size_check();
2822
2823         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2824
2825         user_alpha2[0] = '9';
2826         user_alpha2[1] = '7';
2827
2828         /* We always try to get an update for the static regdomain */
2829         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2830         if (err) {
2831                 if (err == -ENOMEM)
2832                         return err;
2833                 /*
2834                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2835                  * memory which is handled and propagated appropriately above
2836                  * but it can also fail during a netlink_broadcast() or during
2837                  * early boot for call_usermodehelper(). For now treat these
2838                  * errors as non-fatal.
2839                  */
2840                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2841         }
2842
2843         /*
2844          * Finally, if the user set the module parameter treat it
2845          * as a user hint.
2846          */
2847         if (!is_world_regdom(ieee80211_regdom))
2848                 regulatory_hint_user(ieee80211_regdom,
2849                                      NL80211_USER_REG_HINT_USER);
2850
2851         return 0;
2852 }
2853
2854 void regulatory_exit(void)
2855 {
2856         struct regulatory_request *reg_request, *tmp;
2857         struct reg_beacon *reg_beacon, *btmp;
2858
2859         cancel_work_sync(&reg_work);
2860         cancel_delayed_work_sync(&reg_timeout);
2861
2862         /* Lock to suppress warnings */
2863         rtnl_lock();
2864         reset_regdomains(true, NULL);
2865         rtnl_unlock();
2866
2867         dev_set_uevent_suppress(&reg_pdev->dev, true);
2868
2869         platform_device_unregister(reg_pdev);
2870
2871         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2872                 list_del(&reg_beacon->list);
2873                 kfree(reg_beacon);
2874         }
2875
2876         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2877                 list_del(&reg_beacon->list);
2878                 kfree(reg_beacon);
2879         }
2880
2881         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2882                 list_del(&reg_request->list);
2883                 kfree(reg_request);
2884         }
2885 }