MAINTAINERS: add ath10k
[cascardo/linux.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>             /* for local_port_range[] */
54 #include <net/sock.h>
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>    /* for network interface checks */
64 #include <net/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>           /* for Unix socket types */
70 #include <net/af_unix.h>        /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/security.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
87
88 #include "avc.h"
89 #include "objsec.h"
90 #include "netif.h"
91 #include "netnode.h"
92 #include "netport.h"
93 #include "xfrm.h"
94 #include "netlabel.h"
95 #include "audit.h"
96 #include "avc_ss.h"
97
98 #define NUM_SEL_MNT_OPTS 5
99
100 extern struct security_operations *security_ops;
101
102 /* SECMARK reference count */
103 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
104
105 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
106 int selinux_enforcing;
107
108 static int __init enforcing_setup(char *str)
109 {
110         unsigned long enforcing;
111         if (!strict_strtoul(str, 0, &enforcing))
112                 selinux_enforcing = enforcing ? 1 : 0;
113         return 1;
114 }
115 __setup("enforcing=", enforcing_setup);
116 #endif
117
118 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
119 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
120
121 static int __init selinux_enabled_setup(char *str)
122 {
123         unsigned long enabled;
124         if (!strict_strtoul(str, 0, &enabled))
125                 selinux_enabled = enabled ? 1 : 0;
126         return 1;
127 }
128 __setup("selinux=", selinux_enabled_setup);
129 #else
130 int selinux_enabled = 1;
131 #endif
132
133 static struct kmem_cache *sel_inode_cache;
134
135 /**
136  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
137  *
138  * Description:
139  * This function checks the SECMARK reference counter to see if any SECMARK
140  * targets are currently configured, if the reference counter is greater than
141  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
142  * enabled, false (0) if SECMARK is disabled.
143  *
144  */
145 static int selinux_secmark_enabled(void)
146 {
147         return (atomic_read(&selinux_secmark_refcount) > 0);
148 }
149
150 /*
151  * initialise the security for the init task
152  */
153 static void cred_init_security(void)
154 {
155         struct cred *cred = (struct cred *) current->real_cred;
156         struct task_security_struct *tsec;
157
158         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
159         if (!tsec)
160                 panic("SELinux:  Failed to initialize initial task.\n");
161
162         tsec->osid = tsec->sid = SECINITSID_KERNEL;
163         cred->security = tsec;
164 }
165
166 /*
167  * get the security ID of a set of credentials
168  */
169 static inline u32 cred_sid(const struct cred *cred)
170 {
171         const struct task_security_struct *tsec;
172
173         tsec = cred->security;
174         return tsec->sid;
175 }
176
177 /*
178  * get the objective security ID of a task
179  */
180 static inline u32 task_sid(const struct task_struct *task)
181 {
182         u32 sid;
183
184         rcu_read_lock();
185         sid = cred_sid(__task_cred(task));
186         rcu_read_unlock();
187         return sid;
188 }
189
190 /*
191  * get the subjective security ID of the current task
192  */
193 static inline u32 current_sid(void)
194 {
195         const struct task_security_struct *tsec = current_security();
196
197         return tsec->sid;
198 }
199
200 /* Allocate and free functions for each kind of security blob. */
201
202 static int inode_alloc_security(struct inode *inode)
203 {
204         struct inode_security_struct *isec;
205         u32 sid = current_sid();
206
207         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
208         if (!isec)
209                 return -ENOMEM;
210
211         mutex_init(&isec->lock);
212         INIT_LIST_HEAD(&isec->list);
213         isec->inode = inode;
214         isec->sid = SECINITSID_UNLABELED;
215         isec->sclass = SECCLASS_FILE;
216         isec->task_sid = sid;
217         inode->i_security = isec;
218
219         return 0;
220 }
221
222 static void inode_free_security(struct inode *inode)
223 {
224         struct inode_security_struct *isec = inode->i_security;
225         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
226
227         spin_lock(&sbsec->isec_lock);
228         if (!list_empty(&isec->list))
229                 list_del_init(&isec->list);
230         spin_unlock(&sbsec->isec_lock);
231
232         inode->i_security = NULL;
233         kmem_cache_free(sel_inode_cache, isec);
234 }
235
236 static int file_alloc_security(struct file *file)
237 {
238         struct file_security_struct *fsec;
239         u32 sid = current_sid();
240
241         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
242         if (!fsec)
243                 return -ENOMEM;
244
245         fsec->sid = sid;
246         fsec->fown_sid = sid;
247         file->f_security = fsec;
248
249         return 0;
250 }
251
252 static void file_free_security(struct file *file)
253 {
254         struct file_security_struct *fsec = file->f_security;
255         file->f_security = NULL;
256         kfree(fsec);
257 }
258
259 static int superblock_alloc_security(struct super_block *sb)
260 {
261         struct superblock_security_struct *sbsec;
262
263         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
264         if (!sbsec)
265                 return -ENOMEM;
266
267         mutex_init(&sbsec->lock);
268         INIT_LIST_HEAD(&sbsec->isec_head);
269         spin_lock_init(&sbsec->isec_lock);
270         sbsec->sb = sb;
271         sbsec->sid = SECINITSID_UNLABELED;
272         sbsec->def_sid = SECINITSID_FILE;
273         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
274         sb->s_security = sbsec;
275
276         return 0;
277 }
278
279 static void superblock_free_security(struct super_block *sb)
280 {
281         struct superblock_security_struct *sbsec = sb->s_security;
282         sb->s_security = NULL;
283         kfree(sbsec);
284 }
285
286 /* The file system's label must be initialized prior to use. */
287
288 static const char *labeling_behaviors[7] = {
289         "uses xattr",
290         "uses transition SIDs",
291         "uses task SIDs",
292         "uses genfs_contexts",
293         "not configured for labeling",
294         "uses mountpoint labeling",
295         "uses native labeling",
296 };
297
298 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
299
300 static inline int inode_doinit(struct inode *inode)
301 {
302         return inode_doinit_with_dentry(inode, NULL);
303 }
304
305 enum {
306         Opt_error = -1,
307         Opt_context = 1,
308         Opt_fscontext = 2,
309         Opt_defcontext = 3,
310         Opt_rootcontext = 4,
311         Opt_labelsupport = 5,
312 };
313
314 static const match_table_t tokens = {
315         {Opt_context, CONTEXT_STR "%s"},
316         {Opt_fscontext, FSCONTEXT_STR "%s"},
317         {Opt_defcontext, DEFCONTEXT_STR "%s"},
318         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
319         {Opt_labelsupport, LABELSUPP_STR},
320         {Opt_error, NULL},
321 };
322
323 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
324
325 static int may_context_mount_sb_relabel(u32 sid,
326                         struct superblock_security_struct *sbsec,
327                         const struct cred *cred)
328 {
329         const struct task_security_struct *tsec = cred->security;
330         int rc;
331
332         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
333                           FILESYSTEM__RELABELFROM, NULL);
334         if (rc)
335                 return rc;
336
337         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
338                           FILESYSTEM__RELABELTO, NULL);
339         return rc;
340 }
341
342 static int may_context_mount_inode_relabel(u32 sid,
343                         struct superblock_security_struct *sbsec,
344                         const struct cred *cred)
345 {
346         const struct task_security_struct *tsec = cred->security;
347         int rc;
348         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
349                           FILESYSTEM__RELABELFROM, NULL);
350         if (rc)
351                 return rc;
352
353         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
354                           FILESYSTEM__ASSOCIATE, NULL);
355         return rc;
356 }
357
358 static int sb_finish_set_opts(struct super_block *sb)
359 {
360         struct superblock_security_struct *sbsec = sb->s_security;
361         struct dentry *root = sb->s_root;
362         struct inode *root_inode = root->d_inode;
363         int rc = 0;
364
365         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
366                 /* Make sure that the xattr handler exists and that no
367                    error other than -ENODATA is returned by getxattr on
368                    the root directory.  -ENODATA is ok, as this may be
369                    the first boot of the SELinux kernel before we have
370                    assigned xattr values to the filesystem. */
371                 if (!root_inode->i_op->getxattr) {
372                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
373                                "xattr support\n", sb->s_id, sb->s_type->name);
374                         rc = -EOPNOTSUPP;
375                         goto out;
376                 }
377                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
378                 if (rc < 0 && rc != -ENODATA) {
379                         if (rc == -EOPNOTSUPP)
380                                 printk(KERN_WARNING "SELinux: (dev %s, type "
381                                        "%s) has no security xattr handler\n",
382                                        sb->s_id, sb->s_type->name);
383                         else
384                                 printk(KERN_WARNING "SELinux: (dev %s, type "
385                                        "%s) getxattr errno %d\n", sb->s_id,
386                                        sb->s_type->name, -rc);
387                         goto out;
388                 }
389         }
390
391         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
392
393         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
394                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
395                        sb->s_id, sb->s_type->name);
396         else
397                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
398                        sb->s_id, sb->s_type->name,
399                        labeling_behaviors[sbsec->behavior-1]);
400
401         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
402             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
403             sbsec->behavior == SECURITY_FS_USE_NONE ||
404             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
405                 sbsec->flags &= ~SE_SBLABELSUPP;
406
407         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
408         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
409                 sbsec->flags |= SE_SBLABELSUPP;
410
411         /* Initialize the root inode. */
412         rc = inode_doinit_with_dentry(root_inode, root);
413
414         /* Initialize any other inodes associated with the superblock, e.g.
415            inodes created prior to initial policy load or inodes created
416            during get_sb by a pseudo filesystem that directly
417            populates itself. */
418         spin_lock(&sbsec->isec_lock);
419 next_inode:
420         if (!list_empty(&sbsec->isec_head)) {
421                 struct inode_security_struct *isec =
422                                 list_entry(sbsec->isec_head.next,
423                                            struct inode_security_struct, list);
424                 struct inode *inode = isec->inode;
425                 spin_unlock(&sbsec->isec_lock);
426                 inode = igrab(inode);
427                 if (inode) {
428                         if (!IS_PRIVATE(inode))
429                                 inode_doinit(inode);
430                         iput(inode);
431                 }
432                 spin_lock(&sbsec->isec_lock);
433                 list_del_init(&isec->list);
434                 goto next_inode;
435         }
436         spin_unlock(&sbsec->isec_lock);
437 out:
438         return rc;
439 }
440
441 /*
442  * This function should allow an FS to ask what it's mount security
443  * options were so it can use those later for submounts, displaying
444  * mount options, or whatever.
445  */
446 static int selinux_get_mnt_opts(const struct super_block *sb,
447                                 struct security_mnt_opts *opts)
448 {
449         int rc = 0, i;
450         struct superblock_security_struct *sbsec = sb->s_security;
451         char *context = NULL;
452         u32 len;
453         char tmp;
454
455         security_init_mnt_opts(opts);
456
457         if (!(sbsec->flags & SE_SBINITIALIZED))
458                 return -EINVAL;
459
460         if (!ss_initialized)
461                 return -EINVAL;
462
463         tmp = sbsec->flags & SE_MNTMASK;
464         /* count the number of mount options for this sb */
465         for (i = 0; i < 8; i++) {
466                 if (tmp & 0x01)
467                         opts->num_mnt_opts++;
468                 tmp >>= 1;
469         }
470         /* Check if the Label support flag is set */
471         if (sbsec->flags & SE_SBLABELSUPP)
472                 opts->num_mnt_opts++;
473
474         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
475         if (!opts->mnt_opts) {
476                 rc = -ENOMEM;
477                 goto out_free;
478         }
479
480         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
481         if (!opts->mnt_opts_flags) {
482                 rc = -ENOMEM;
483                 goto out_free;
484         }
485
486         i = 0;
487         if (sbsec->flags & FSCONTEXT_MNT) {
488                 rc = security_sid_to_context(sbsec->sid, &context, &len);
489                 if (rc)
490                         goto out_free;
491                 opts->mnt_opts[i] = context;
492                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
493         }
494         if (sbsec->flags & CONTEXT_MNT) {
495                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
496                 if (rc)
497                         goto out_free;
498                 opts->mnt_opts[i] = context;
499                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
500         }
501         if (sbsec->flags & DEFCONTEXT_MNT) {
502                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
503                 if (rc)
504                         goto out_free;
505                 opts->mnt_opts[i] = context;
506                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
507         }
508         if (sbsec->flags & ROOTCONTEXT_MNT) {
509                 struct inode *root = sbsec->sb->s_root->d_inode;
510                 struct inode_security_struct *isec = root->i_security;
511
512                 rc = security_sid_to_context(isec->sid, &context, &len);
513                 if (rc)
514                         goto out_free;
515                 opts->mnt_opts[i] = context;
516                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
517         }
518         if (sbsec->flags & SE_SBLABELSUPP) {
519                 opts->mnt_opts[i] = NULL;
520                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
521         }
522
523         BUG_ON(i != opts->num_mnt_opts);
524
525         return 0;
526
527 out_free:
528         security_free_mnt_opts(opts);
529         return rc;
530 }
531
532 static int bad_option(struct superblock_security_struct *sbsec, char flag,
533                       u32 old_sid, u32 new_sid)
534 {
535         char mnt_flags = sbsec->flags & SE_MNTMASK;
536
537         /* check if the old mount command had the same options */
538         if (sbsec->flags & SE_SBINITIALIZED)
539                 if (!(sbsec->flags & flag) ||
540                     (old_sid != new_sid))
541                         return 1;
542
543         /* check if we were passed the same options twice,
544          * aka someone passed context=a,context=b
545          */
546         if (!(sbsec->flags & SE_SBINITIALIZED))
547                 if (mnt_flags & flag)
548                         return 1;
549         return 0;
550 }
551
552 /*
553  * Allow filesystems with binary mount data to explicitly set mount point
554  * labeling information.
555  */
556 static int selinux_set_mnt_opts(struct super_block *sb,
557                                 struct security_mnt_opts *opts,
558                                 unsigned long kern_flags,
559                                 unsigned long *set_kern_flags)
560 {
561         const struct cred *cred = current_cred();
562         int rc = 0, i;
563         struct superblock_security_struct *sbsec = sb->s_security;
564         const char *name = sb->s_type->name;
565         struct inode *inode = sbsec->sb->s_root->d_inode;
566         struct inode_security_struct *root_isec = inode->i_security;
567         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
568         u32 defcontext_sid = 0;
569         char **mount_options = opts->mnt_opts;
570         int *flags = opts->mnt_opts_flags;
571         int num_opts = opts->num_mnt_opts;
572
573         mutex_lock(&sbsec->lock);
574
575         if (!ss_initialized) {
576                 if (!num_opts) {
577                         /* Defer initialization until selinux_complete_init,
578                            after the initial policy is loaded and the security
579                            server is ready to handle calls. */
580                         goto out;
581                 }
582                 rc = -EINVAL;
583                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
584                         "before the security server is initialized\n");
585                 goto out;
586         }
587         if (kern_flags && !set_kern_flags) {
588                 /* Specifying internal flags without providing a place to
589                  * place the results is not allowed */
590                 rc = -EINVAL;
591                 goto out;
592         }
593
594         /*
595          * Binary mount data FS will come through this function twice.  Once
596          * from an explicit call and once from the generic calls from the vfs.
597          * Since the generic VFS calls will not contain any security mount data
598          * we need to skip the double mount verification.
599          *
600          * This does open a hole in which we will not notice if the first
601          * mount using this sb set explict options and a second mount using
602          * this sb does not set any security options.  (The first options
603          * will be used for both mounts)
604          */
605         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
606             && (num_opts == 0))
607                 goto out;
608
609         /*
610          * parse the mount options, check if they are valid sids.
611          * also check if someone is trying to mount the same sb more
612          * than once with different security options.
613          */
614         for (i = 0; i < num_opts; i++) {
615                 u32 sid;
616
617                 if (flags[i] == SE_SBLABELSUPP)
618                         continue;
619                 rc = security_context_to_sid(mount_options[i],
620                                              strlen(mount_options[i]), &sid);
621                 if (rc) {
622                         printk(KERN_WARNING "SELinux: security_context_to_sid"
623                                "(%s) failed for (dev %s, type %s) errno=%d\n",
624                                mount_options[i], sb->s_id, name, rc);
625                         goto out;
626                 }
627                 switch (flags[i]) {
628                 case FSCONTEXT_MNT:
629                         fscontext_sid = sid;
630
631                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
632                                         fscontext_sid))
633                                 goto out_double_mount;
634
635                         sbsec->flags |= FSCONTEXT_MNT;
636                         break;
637                 case CONTEXT_MNT:
638                         context_sid = sid;
639
640                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
641                                         context_sid))
642                                 goto out_double_mount;
643
644                         sbsec->flags |= CONTEXT_MNT;
645                         break;
646                 case ROOTCONTEXT_MNT:
647                         rootcontext_sid = sid;
648
649                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
650                                         rootcontext_sid))
651                                 goto out_double_mount;
652
653                         sbsec->flags |= ROOTCONTEXT_MNT;
654
655                         break;
656                 case DEFCONTEXT_MNT:
657                         defcontext_sid = sid;
658
659                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
660                                         defcontext_sid))
661                                 goto out_double_mount;
662
663                         sbsec->flags |= DEFCONTEXT_MNT;
664
665                         break;
666                 default:
667                         rc = -EINVAL;
668                         goto out;
669                 }
670         }
671
672         if (sbsec->flags & SE_SBINITIALIZED) {
673                 /* previously mounted with options, but not on this attempt? */
674                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
675                         goto out_double_mount;
676                 rc = 0;
677                 goto out;
678         }
679
680         if (strcmp(sb->s_type->name, "proc") == 0)
681                 sbsec->flags |= SE_SBPROC;
682
683         if (!sbsec->behavior) {
684                 /*
685                  * Determine the labeling behavior to use for this
686                  * filesystem type.
687                  */
688                 rc = security_fs_use((sbsec->flags & SE_SBPROC) ?
689                                         "proc" : sb->s_type->name,
690                                         &sbsec->behavior, &sbsec->sid);
691                 if (rc) {
692                         printk(KERN_WARNING
693                                 "%s: security_fs_use(%s) returned %d\n",
694                                         __func__, sb->s_type->name, rc);
695                         goto out;
696                 }
697         }
698         /* sets the context of the superblock for the fs being mounted. */
699         if (fscontext_sid) {
700                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
701                 if (rc)
702                         goto out;
703
704                 sbsec->sid = fscontext_sid;
705         }
706
707         /*
708          * Switch to using mount point labeling behavior.
709          * sets the label used on all file below the mountpoint, and will set
710          * the superblock context if not already set.
711          */
712         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
713                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
714                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
715         }
716
717         if (context_sid) {
718                 if (!fscontext_sid) {
719                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
720                                                           cred);
721                         if (rc)
722                                 goto out;
723                         sbsec->sid = context_sid;
724                 } else {
725                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
726                                                              cred);
727                         if (rc)
728                                 goto out;
729                 }
730                 if (!rootcontext_sid)
731                         rootcontext_sid = context_sid;
732
733                 sbsec->mntpoint_sid = context_sid;
734                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
735         }
736
737         if (rootcontext_sid) {
738                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
739                                                      cred);
740                 if (rc)
741                         goto out;
742
743                 root_isec->sid = rootcontext_sid;
744                 root_isec->initialized = 1;
745         }
746
747         if (defcontext_sid) {
748                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
749                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
750                         rc = -EINVAL;
751                         printk(KERN_WARNING "SELinux: defcontext option is "
752                                "invalid for this filesystem type\n");
753                         goto out;
754                 }
755
756                 if (defcontext_sid != sbsec->def_sid) {
757                         rc = may_context_mount_inode_relabel(defcontext_sid,
758                                                              sbsec, cred);
759                         if (rc)
760                                 goto out;
761                 }
762
763                 sbsec->def_sid = defcontext_sid;
764         }
765
766         rc = sb_finish_set_opts(sb);
767 out:
768         mutex_unlock(&sbsec->lock);
769         return rc;
770 out_double_mount:
771         rc = -EINVAL;
772         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
773                "security settings for (dev %s, type %s)\n", sb->s_id, name);
774         goto out;
775 }
776
777 static int selinux_cmp_sb_context(const struct super_block *oldsb,
778                                     const struct super_block *newsb)
779 {
780         struct superblock_security_struct *old = oldsb->s_security;
781         struct superblock_security_struct *new = newsb->s_security;
782         char oldflags = old->flags & SE_MNTMASK;
783         char newflags = new->flags & SE_MNTMASK;
784
785         if (oldflags != newflags)
786                 goto mismatch;
787         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
788                 goto mismatch;
789         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
790                 goto mismatch;
791         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
792                 goto mismatch;
793         if (oldflags & ROOTCONTEXT_MNT) {
794                 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
795                 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
796                 if (oldroot->sid != newroot->sid)
797                         goto mismatch;
798         }
799         return 0;
800 mismatch:
801         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
802                             "different security settings for (dev %s, "
803                             "type %s)\n", newsb->s_id, newsb->s_type->name);
804         return -EBUSY;
805 }
806
807 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
808                                         struct super_block *newsb)
809 {
810         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
811         struct superblock_security_struct *newsbsec = newsb->s_security;
812
813         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
814         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
815         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
816
817         /*
818          * if the parent was able to be mounted it clearly had no special lsm
819          * mount options.  thus we can safely deal with this superblock later
820          */
821         if (!ss_initialized)
822                 return 0;
823
824         /* how can we clone if the old one wasn't set up?? */
825         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
826
827         /* if fs is reusing a sb, make sure that the contexts match */
828         if (newsbsec->flags & SE_SBINITIALIZED)
829                 return selinux_cmp_sb_context(oldsb, newsb);
830
831         mutex_lock(&newsbsec->lock);
832
833         newsbsec->flags = oldsbsec->flags;
834
835         newsbsec->sid = oldsbsec->sid;
836         newsbsec->def_sid = oldsbsec->def_sid;
837         newsbsec->behavior = oldsbsec->behavior;
838
839         if (set_context) {
840                 u32 sid = oldsbsec->mntpoint_sid;
841
842                 if (!set_fscontext)
843                         newsbsec->sid = sid;
844                 if (!set_rootcontext) {
845                         struct inode *newinode = newsb->s_root->d_inode;
846                         struct inode_security_struct *newisec = newinode->i_security;
847                         newisec->sid = sid;
848                 }
849                 newsbsec->mntpoint_sid = sid;
850         }
851         if (set_rootcontext) {
852                 const struct inode *oldinode = oldsb->s_root->d_inode;
853                 const struct inode_security_struct *oldisec = oldinode->i_security;
854                 struct inode *newinode = newsb->s_root->d_inode;
855                 struct inode_security_struct *newisec = newinode->i_security;
856
857                 newisec->sid = oldisec->sid;
858         }
859
860         sb_finish_set_opts(newsb);
861         mutex_unlock(&newsbsec->lock);
862         return 0;
863 }
864
865 static int selinux_parse_opts_str(char *options,
866                                   struct security_mnt_opts *opts)
867 {
868         char *p;
869         char *context = NULL, *defcontext = NULL;
870         char *fscontext = NULL, *rootcontext = NULL;
871         int rc, num_mnt_opts = 0;
872
873         opts->num_mnt_opts = 0;
874
875         /* Standard string-based options. */
876         while ((p = strsep(&options, "|")) != NULL) {
877                 int token;
878                 substring_t args[MAX_OPT_ARGS];
879
880                 if (!*p)
881                         continue;
882
883                 token = match_token(p, tokens, args);
884
885                 switch (token) {
886                 case Opt_context:
887                         if (context || defcontext) {
888                                 rc = -EINVAL;
889                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
890                                 goto out_err;
891                         }
892                         context = match_strdup(&args[0]);
893                         if (!context) {
894                                 rc = -ENOMEM;
895                                 goto out_err;
896                         }
897                         break;
898
899                 case Opt_fscontext:
900                         if (fscontext) {
901                                 rc = -EINVAL;
902                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
903                                 goto out_err;
904                         }
905                         fscontext = match_strdup(&args[0]);
906                         if (!fscontext) {
907                                 rc = -ENOMEM;
908                                 goto out_err;
909                         }
910                         break;
911
912                 case Opt_rootcontext:
913                         if (rootcontext) {
914                                 rc = -EINVAL;
915                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
916                                 goto out_err;
917                         }
918                         rootcontext = match_strdup(&args[0]);
919                         if (!rootcontext) {
920                                 rc = -ENOMEM;
921                                 goto out_err;
922                         }
923                         break;
924
925                 case Opt_defcontext:
926                         if (context || defcontext) {
927                                 rc = -EINVAL;
928                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
929                                 goto out_err;
930                         }
931                         defcontext = match_strdup(&args[0]);
932                         if (!defcontext) {
933                                 rc = -ENOMEM;
934                                 goto out_err;
935                         }
936                         break;
937                 case Opt_labelsupport:
938                         break;
939                 default:
940                         rc = -EINVAL;
941                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
942                         goto out_err;
943
944                 }
945         }
946
947         rc = -ENOMEM;
948         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
949         if (!opts->mnt_opts)
950                 goto out_err;
951
952         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
953         if (!opts->mnt_opts_flags) {
954                 kfree(opts->mnt_opts);
955                 goto out_err;
956         }
957
958         if (fscontext) {
959                 opts->mnt_opts[num_mnt_opts] = fscontext;
960                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
961         }
962         if (context) {
963                 opts->mnt_opts[num_mnt_opts] = context;
964                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
965         }
966         if (rootcontext) {
967                 opts->mnt_opts[num_mnt_opts] = rootcontext;
968                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
969         }
970         if (defcontext) {
971                 opts->mnt_opts[num_mnt_opts] = defcontext;
972                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
973         }
974
975         opts->num_mnt_opts = num_mnt_opts;
976         return 0;
977
978 out_err:
979         kfree(context);
980         kfree(defcontext);
981         kfree(fscontext);
982         kfree(rootcontext);
983         return rc;
984 }
985 /*
986  * string mount options parsing and call set the sbsec
987  */
988 static int superblock_doinit(struct super_block *sb, void *data)
989 {
990         int rc = 0;
991         char *options = data;
992         struct security_mnt_opts opts;
993
994         security_init_mnt_opts(&opts);
995
996         if (!data)
997                 goto out;
998
999         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1000
1001         rc = selinux_parse_opts_str(options, &opts);
1002         if (rc)
1003                 goto out_err;
1004
1005 out:
1006         rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1007
1008 out_err:
1009         security_free_mnt_opts(&opts);
1010         return rc;
1011 }
1012
1013 static void selinux_write_opts(struct seq_file *m,
1014                                struct security_mnt_opts *opts)
1015 {
1016         int i;
1017         char *prefix;
1018
1019         for (i = 0; i < opts->num_mnt_opts; i++) {
1020                 char *has_comma;
1021
1022                 if (opts->mnt_opts[i])
1023                         has_comma = strchr(opts->mnt_opts[i], ',');
1024                 else
1025                         has_comma = NULL;
1026
1027                 switch (opts->mnt_opts_flags[i]) {
1028                 case CONTEXT_MNT:
1029                         prefix = CONTEXT_STR;
1030                         break;
1031                 case FSCONTEXT_MNT:
1032                         prefix = FSCONTEXT_STR;
1033                         break;
1034                 case ROOTCONTEXT_MNT:
1035                         prefix = ROOTCONTEXT_STR;
1036                         break;
1037                 case DEFCONTEXT_MNT:
1038                         prefix = DEFCONTEXT_STR;
1039                         break;
1040                 case SE_SBLABELSUPP:
1041                         seq_putc(m, ',');
1042                         seq_puts(m, LABELSUPP_STR);
1043                         continue;
1044                 default:
1045                         BUG();
1046                         return;
1047                 };
1048                 /* we need a comma before each option */
1049                 seq_putc(m, ',');
1050                 seq_puts(m, prefix);
1051                 if (has_comma)
1052                         seq_putc(m, '\"');
1053                 seq_puts(m, opts->mnt_opts[i]);
1054                 if (has_comma)
1055                         seq_putc(m, '\"');
1056         }
1057 }
1058
1059 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1060 {
1061         struct security_mnt_opts opts;
1062         int rc;
1063
1064         rc = selinux_get_mnt_opts(sb, &opts);
1065         if (rc) {
1066                 /* before policy load we may get EINVAL, don't show anything */
1067                 if (rc == -EINVAL)
1068                         rc = 0;
1069                 return rc;
1070         }
1071
1072         selinux_write_opts(m, &opts);
1073
1074         security_free_mnt_opts(&opts);
1075
1076         return rc;
1077 }
1078
1079 static inline u16 inode_mode_to_security_class(umode_t mode)
1080 {
1081         switch (mode & S_IFMT) {
1082         case S_IFSOCK:
1083                 return SECCLASS_SOCK_FILE;
1084         case S_IFLNK:
1085                 return SECCLASS_LNK_FILE;
1086         case S_IFREG:
1087                 return SECCLASS_FILE;
1088         case S_IFBLK:
1089                 return SECCLASS_BLK_FILE;
1090         case S_IFDIR:
1091                 return SECCLASS_DIR;
1092         case S_IFCHR:
1093                 return SECCLASS_CHR_FILE;
1094         case S_IFIFO:
1095                 return SECCLASS_FIFO_FILE;
1096
1097         }
1098
1099         return SECCLASS_FILE;
1100 }
1101
1102 static inline int default_protocol_stream(int protocol)
1103 {
1104         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1105 }
1106
1107 static inline int default_protocol_dgram(int protocol)
1108 {
1109         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1110 }
1111
1112 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1113 {
1114         switch (family) {
1115         case PF_UNIX:
1116                 switch (type) {
1117                 case SOCK_STREAM:
1118                 case SOCK_SEQPACKET:
1119                         return SECCLASS_UNIX_STREAM_SOCKET;
1120                 case SOCK_DGRAM:
1121                         return SECCLASS_UNIX_DGRAM_SOCKET;
1122                 }
1123                 break;
1124         case PF_INET:
1125         case PF_INET6:
1126                 switch (type) {
1127                 case SOCK_STREAM:
1128                         if (default_protocol_stream(protocol))
1129                                 return SECCLASS_TCP_SOCKET;
1130                         else
1131                                 return SECCLASS_RAWIP_SOCKET;
1132                 case SOCK_DGRAM:
1133                         if (default_protocol_dgram(protocol))
1134                                 return SECCLASS_UDP_SOCKET;
1135                         else
1136                                 return SECCLASS_RAWIP_SOCKET;
1137                 case SOCK_DCCP:
1138                         return SECCLASS_DCCP_SOCKET;
1139                 default:
1140                         return SECCLASS_RAWIP_SOCKET;
1141                 }
1142                 break;
1143         case PF_NETLINK:
1144                 switch (protocol) {
1145                 case NETLINK_ROUTE:
1146                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1147                 case NETLINK_FIREWALL:
1148                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1149                 case NETLINK_SOCK_DIAG:
1150                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1151                 case NETLINK_NFLOG:
1152                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1153                 case NETLINK_XFRM:
1154                         return SECCLASS_NETLINK_XFRM_SOCKET;
1155                 case NETLINK_SELINUX:
1156                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1157                 case NETLINK_AUDIT:
1158                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1159                 case NETLINK_IP6_FW:
1160                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1161                 case NETLINK_DNRTMSG:
1162                         return SECCLASS_NETLINK_DNRT_SOCKET;
1163                 case NETLINK_KOBJECT_UEVENT:
1164                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1165                 default:
1166                         return SECCLASS_NETLINK_SOCKET;
1167                 }
1168         case PF_PACKET:
1169                 return SECCLASS_PACKET_SOCKET;
1170         case PF_KEY:
1171                 return SECCLASS_KEY_SOCKET;
1172         case PF_APPLETALK:
1173                 return SECCLASS_APPLETALK_SOCKET;
1174         }
1175
1176         return SECCLASS_SOCKET;
1177 }
1178
1179 #ifdef CONFIG_PROC_FS
1180 static int selinux_proc_get_sid(struct dentry *dentry,
1181                                 u16 tclass,
1182                                 u32 *sid)
1183 {
1184         int rc;
1185         char *buffer, *path;
1186
1187         buffer = (char *)__get_free_page(GFP_KERNEL);
1188         if (!buffer)
1189                 return -ENOMEM;
1190
1191         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1192         if (IS_ERR(path))
1193                 rc = PTR_ERR(path);
1194         else {
1195                 /* each process gets a /proc/PID/ entry. Strip off the
1196                  * PID part to get a valid selinux labeling.
1197                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1198                 while (path[1] >= '0' && path[1] <= '9') {
1199                         path[1] = '/';
1200                         path++;
1201                 }
1202                 rc = security_genfs_sid("proc", path, tclass, sid);
1203         }
1204         free_page((unsigned long)buffer);
1205         return rc;
1206 }
1207 #else
1208 static int selinux_proc_get_sid(struct dentry *dentry,
1209                                 u16 tclass,
1210                                 u32 *sid)
1211 {
1212         return -EINVAL;
1213 }
1214 #endif
1215
1216 /* The inode's security attributes must be initialized before first use. */
1217 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1218 {
1219         struct superblock_security_struct *sbsec = NULL;
1220         struct inode_security_struct *isec = inode->i_security;
1221         u32 sid;
1222         struct dentry *dentry;
1223 #define INITCONTEXTLEN 255
1224         char *context = NULL;
1225         unsigned len = 0;
1226         int rc = 0;
1227
1228         if (isec->initialized)
1229                 goto out;
1230
1231         mutex_lock(&isec->lock);
1232         if (isec->initialized)
1233                 goto out_unlock;
1234
1235         sbsec = inode->i_sb->s_security;
1236         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1237                 /* Defer initialization until selinux_complete_init,
1238                    after the initial policy is loaded and the security
1239                    server is ready to handle calls. */
1240                 spin_lock(&sbsec->isec_lock);
1241                 if (list_empty(&isec->list))
1242                         list_add(&isec->list, &sbsec->isec_head);
1243                 spin_unlock(&sbsec->isec_lock);
1244                 goto out_unlock;
1245         }
1246
1247         switch (sbsec->behavior) {
1248         case SECURITY_FS_USE_NATIVE:
1249                 break;
1250         case SECURITY_FS_USE_XATTR:
1251                 if (!inode->i_op->getxattr) {
1252                         isec->sid = sbsec->def_sid;
1253                         break;
1254                 }
1255
1256                 /* Need a dentry, since the xattr API requires one.
1257                    Life would be simpler if we could just pass the inode. */
1258                 if (opt_dentry) {
1259                         /* Called from d_instantiate or d_splice_alias. */
1260                         dentry = dget(opt_dentry);
1261                 } else {
1262                         /* Called from selinux_complete_init, try to find a dentry. */
1263                         dentry = d_find_alias(inode);
1264                 }
1265                 if (!dentry) {
1266                         /*
1267                          * this is can be hit on boot when a file is accessed
1268                          * before the policy is loaded.  When we load policy we
1269                          * may find inodes that have no dentry on the
1270                          * sbsec->isec_head list.  No reason to complain as these
1271                          * will get fixed up the next time we go through
1272                          * inode_doinit with a dentry, before these inodes could
1273                          * be used again by userspace.
1274                          */
1275                         goto out_unlock;
1276                 }
1277
1278                 len = INITCONTEXTLEN;
1279                 context = kmalloc(len+1, GFP_NOFS);
1280                 if (!context) {
1281                         rc = -ENOMEM;
1282                         dput(dentry);
1283                         goto out_unlock;
1284                 }
1285                 context[len] = '\0';
1286                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1287                                            context, len);
1288                 if (rc == -ERANGE) {
1289                         kfree(context);
1290
1291                         /* Need a larger buffer.  Query for the right size. */
1292                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1293                                                    NULL, 0);
1294                         if (rc < 0) {
1295                                 dput(dentry);
1296                                 goto out_unlock;
1297                         }
1298                         len = rc;
1299                         context = kmalloc(len+1, GFP_NOFS);
1300                         if (!context) {
1301                                 rc = -ENOMEM;
1302                                 dput(dentry);
1303                                 goto out_unlock;
1304                         }
1305                         context[len] = '\0';
1306                         rc = inode->i_op->getxattr(dentry,
1307                                                    XATTR_NAME_SELINUX,
1308                                                    context, len);
1309                 }
1310                 dput(dentry);
1311                 if (rc < 0) {
1312                         if (rc != -ENODATA) {
1313                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1314                                        "%d for dev=%s ino=%ld\n", __func__,
1315                                        -rc, inode->i_sb->s_id, inode->i_ino);
1316                                 kfree(context);
1317                                 goto out_unlock;
1318                         }
1319                         /* Map ENODATA to the default file SID */
1320                         sid = sbsec->def_sid;
1321                         rc = 0;
1322                 } else {
1323                         rc = security_context_to_sid_default(context, rc, &sid,
1324                                                              sbsec->def_sid,
1325                                                              GFP_NOFS);
1326                         if (rc) {
1327                                 char *dev = inode->i_sb->s_id;
1328                                 unsigned long ino = inode->i_ino;
1329
1330                                 if (rc == -EINVAL) {
1331                                         if (printk_ratelimit())
1332                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1333                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1334                                                         "filesystem in question.\n", ino, dev, context);
1335                                 } else {
1336                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1337                                                "returned %d for dev=%s ino=%ld\n",
1338                                                __func__, context, -rc, dev, ino);
1339                                 }
1340                                 kfree(context);
1341                                 /* Leave with the unlabeled SID */
1342                                 rc = 0;
1343                                 break;
1344                         }
1345                 }
1346                 kfree(context);
1347                 isec->sid = sid;
1348                 break;
1349         case SECURITY_FS_USE_TASK:
1350                 isec->sid = isec->task_sid;
1351                 break;
1352         case SECURITY_FS_USE_TRANS:
1353                 /* Default to the fs SID. */
1354                 isec->sid = sbsec->sid;
1355
1356                 /* Try to obtain a transition SID. */
1357                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1358                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1359                                              isec->sclass, NULL, &sid);
1360                 if (rc)
1361                         goto out_unlock;
1362                 isec->sid = sid;
1363                 break;
1364         case SECURITY_FS_USE_MNTPOINT:
1365                 isec->sid = sbsec->mntpoint_sid;
1366                 break;
1367         default:
1368                 /* Default to the fs superblock SID. */
1369                 isec->sid = sbsec->sid;
1370
1371                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1372                         if (opt_dentry) {
1373                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1374                                 rc = selinux_proc_get_sid(opt_dentry,
1375                                                           isec->sclass,
1376                                                           &sid);
1377                                 if (rc)
1378                                         goto out_unlock;
1379                                 isec->sid = sid;
1380                         }
1381                 }
1382                 break;
1383         }
1384
1385         isec->initialized = 1;
1386
1387 out_unlock:
1388         mutex_unlock(&isec->lock);
1389 out:
1390         if (isec->sclass == SECCLASS_FILE)
1391                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1392         return rc;
1393 }
1394
1395 /* Convert a Linux signal to an access vector. */
1396 static inline u32 signal_to_av(int sig)
1397 {
1398         u32 perm = 0;
1399
1400         switch (sig) {
1401         case SIGCHLD:
1402                 /* Commonly granted from child to parent. */
1403                 perm = PROCESS__SIGCHLD;
1404                 break;
1405         case SIGKILL:
1406                 /* Cannot be caught or ignored */
1407                 perm = PROCESS__SIGKILL;
1408                 break;
1409         case SIGSTOP:
1410                 /* Cannot be caught or ignored */
1411                 perm = PROCESS__SIGSTOP;
1412                 break;
1413         default:
1414                 /* All other signals. */
1415                 perm = PROCESS__SIGNAL;
1416                 break;
1417         }
1418
1419         return perm;
1420 }
1421
1422 /*
1423  * Check permission between a pair of credentials
1424  * fork check, ptrace check, etc.
1425  */
1426 static int cred_has_perm(const struct cred *actor,
1427                          const struct cred *target,
1428                          u32 perms)
1429 {
1430         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1431
1432         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1433 }
1434
1435 /*
1436  * Check permission between a pair of tasks, e.g. signal checks,
1437  * fork check, ptrace check, etc.
1438  * tsk1 is the actor and tsk2 is the target
1439  * - this uses the default subjective creds of tsk1
1440  */
1441 static int task_has_perm(const struct task_struct *tsk1,
1442                          const struct task_struct *tsk2,
1443                          u32 perms)
1444 {
1445         const struct task_security_struct *__tsec1, *__tsec2;
1446         u32 sid1, sid2;
1447
1448         rcu_read_lock();
1449         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1450         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1451         rcu_read_unlock();
1452         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1453 }
1454
1455 /*
1456  * Check permission between current and another task, e.g. signal checks,
1457  * fork check, ptrace check, etc.
1458  * current is the actor and tsk2 is the target
1459  * - this uses current's subjective creds
1460  */
1461 static int current_has_perm(const struct task_struct *tsk,
1462                             u32 perms)
1463 {
1464         u32 sid, tsid;
1465
1466         sid = current_sid();
1467         tsid = task_sid(tsk);
1468         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1469 }
1470
1471 #if CAP_LAST_CAP > 63
1472 #error Fix SELinux to handle capabilities > 63.
1473 #endif
1474
1475 /* Check whether a task is allowed to use a capability. */
1476 static int cred_has_capability(const struct cred *cred,
1477                                int cap, int audit)
1478 {
1479         struct common_audit_data ad;
1480         struct av_decision avd;
1481         u16 sclass;
1482         u32 sid = cred_sid(cred);
1483         u32 av = CAP_TO_MASK(cap);
1484         int rc;
1485
1486         ad.type = LSM_AUDIT_DATA_CAP;
1487         ad.u.cap = cap;
1488
1489         switch (CAP_TO_INDEX(cap)) {
1490         case 0:
1491                 sclass = SECCLASS_CAPABILITY;
1492                 break;
1493         case 1:
1494                 sclass = SECCLASS_CAPABILITY2;
1495                 break;
1496         default:
1497                 printk(KERN_ERR
1498                        "SELinux:  out of range capability %d\n", cap);
1499                 BUG();
1500                 return -EINVAL;
1501         }
1502
1503         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1504         if (audit == SECURITY_CAP_AUDIT) {
1505                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1506                 if (rc2)
1507                         return rc2;
1508         }
1509         return rc;
1510 }
1511
1512 /* Check whether a task is allowed to use a system operation. */
1513 static int task_has_system(struct task_struct *tsk,
1514                            u32 perms)
1515 {
1516         u32 sid = task_sid(tsk);
1517
1518         return avc_has_perm(sid, SECINITSID_KERNEL,
1519                             SECCLASS_SYSTEM, perms, NULL);
1520 }
1521
1522 /* Check whether a task has a particular permission to an inode.
1523    The 'adp' parameter is optional and allows other audit
1524    data to be passed (e.g. the dentry). */
1525 static int inode_has_perm(const struct cred *cred,
1526                           struct inode *inode,
1527                           u32 perms,
1528                           struct common_audit_data *adp,
1529                           unsigned flags)
1530 {
1531         struct inode_security_struct *isec;
1532         u32 sid;
1533
1534         validate_creds(cred);
1535
1536         if (unlikely(IS_PRIVATE(inode)))
1537                 return 0;
1538
1539         sid = cred_sid(cred);
1540         isec = inode->i_security;
1541
1542         return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1543 }
1544
1545 /* Same as inode_has_perm, but pass explicit audit data containing
1546    the dentry to help the auditing code to more easily generate the
1547    pathname if needed. */
1548 static inline int dentry_has_perm(const struct cred *cred,
1549                                   struct dentry *dentry,
1550                                   u32 av)
1551 {
1552         struct inode *inode = dentry->d_inode;
1553         struct common_audit_data ad;
1554
1555         ad.type = LSM_AUDIT_DATA_DENTRY;
1556         ad.u.dentry = dentry;
1557         return inode_has_perm(cred, inode, av, &ad, 0);
1558 }
1559
1560 /* Same as inode_has_perm, but pass explicit audit data containing
1561    the path to help the auditing code to more easily generate the
1562    pathname if needed. */
1563 static inline int path_has_perm(const struct cred *cred,
1564                                 struct path *path,
1565                                 u32 av)
1566 {
1567         struct inode *inode = path->dentry->d_inode;
1568         struct common_audit_data ad;
1569
1570         ad.type = LSM_AUDIT_DATA_PATH;
1571         ad.u.path = *path;
1572         return inode_has_perm(cred, inode, av, &ad, 0);
1573 }
1574
1575 /* Same as path_has_perm, but uses the inode from the file struct. */
1576 static inline int file_path_has_perm(const struct cred *cred,
1577                                      struct file *file,
1578                                      u32 av)
1579 {
1580         struct common_audit_data ad;
1581
1582         ad.type = LSM_AUDIT_DATA_PATH;
1583         ad.u.path = file->f_path;
1584         return inode_has_perm(cred, file_inode(file), av, &ad, 0);
1585 }
1586
1587 /* Check whether a task can use an open file descriptor to
1588    access an inode in a given way.  Check access to the
1589    descriptor itself, and then use dentry_has_perm to
1590    check a particular permission to the file.
1591    Access to the descriptor is implicitly granted if it
1592    has the same SID as the process.  If av is zero, then
1593    access to the file is not checked, e.g. for cases
1594    where only the descriptor is affected like seek. */
1595 static int file_has_perm(const struct cred *cred,
1596                          struct file *file,
1597                          u32 av)
1598 {
1599         struct file_security_struct *fsec = file->f_security;
1600         struct inode *inode = file_inode(file);
1601         struct common_audit_data ad;
1602         u32 sid = cred_sid(cred);
1603         int rc;
1604
1605         ad.type = LSM_AUDIT_DATA_PATH;
1606         ad.u.path = file->f_path;
1607
1608         if (sid != fsec->sid) {
1609                 rc = avc_has_perm(sid, fsec->sid,
1610                                   SECCLASS_FD,
1611                                   FD__USE,
1612                                   &ad);
1613                 if (rc)
1614                         goto out;
1615         }
1616
1617         /* av is zero if only checking access to the descriptor. */
1618         rc = 0;
1619         if (av)
1620                 rc = inode_has_perm(cred, inode, av, &ad, 0);
1621
1622 out:
1623         return rc;
1624 }
1625
1626 /* Check whether a task can create a file. */
1627 static int may_create(struct inode *dir,
1628                       struct dentry *dentry,
1629                       u16 tclass)
1630 {
1631         const struct task_security_struct *tsec = current_security();
1632         struct inode_security_struct *dsec;
1633         struct superblock_security_struct *sbsec;
1634         u32 sid, newsid;
1635         struct common_audit_data ad;
1636         int rc;
1637
1638         dsec = dir->i_security;
1639         sbsec = dir->i_sb->s_security;
1640
1641         sid = tsec->sid;
1642         newsid = tsec->create_sid;
1643
1644         ad.type = LSM_AUDIT_DATA_DENTRY;
1645         ad.u.dentry = dentry;
1646
1647         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1648                           DIR__ADD_NAME | DIR__SEARCH,
1649                           &ad);
1650         if (rc)
1651                 return rc;
1652
1653         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1654                 rc = security_transition_sid(sid, dsec->sid, tclass,
1655                                              &dentry->d_name, &newsid);
1656                 if (rc)
1657                         return rc;
1658         }
1659
1660         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1661         if (rc)
1662                 return rc;
1663
1664         return avc_has_perm(newsid, sbsec->sid,
1665                             SECCLASS_FILESYSTEM,
1666                             FILESYSTEM__ASSOCIATE, &ad);
1667 }
1668
1669 /* Check whether a task can create a key. */
1670 static int may_create_key(u32 ksid,
1671                           struct task_struct *ctx)
1672 {
1673         u32 sid = task_sid(ctx);
1674
1675         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1676 }
1677
1678 #define MAY_LINK        0
1679 #define MAY_UNLINK      1
1680 #define MAY_RMDIR       2
1681
1682 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1683 static int may_link(struct inode *dir,
1684                     struct dentry *dentry,
1685                     int kind)
1686
1687 {
1688         struct inode_security_struct *dsec, *isec;
1689         struct common_audit_data ad;
1690         u32 sid = current_sid();
1691         u32 av;
1692         int rc;
1693
1694         dsec = dir->i_security;
1695         isec = dentry->d_inode->i_security;
1696
1697         ad.type = LSM_AUDIT_DATA_DENTRY;
1698         ad.u.dentry = dentry;
1699
1700         av = DIR__SEARCH;
1701         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1702         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1703         if (rc)
1704                 return rc;
1705
1706         switch (kind) {
1707         case MAY_LINK:
1708                 av = FILE__LINK;
1709                 break;
1710         case MAY_UNLINK:
1711                 av = FILE__UNLINK;
1712                 break;
1713         case MAY_RMDIR:
1714                 av = DIR__RMDIR;
1715                 break;
1716         default:
1717                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1718                         __func__, kind);
1719                 return 0;
1720         }
1721
1722         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1723         return rc;
1724 }
1725
1726 static inline int may_rename(struct inode *old_dir,
1727                              struct dentry *old_dentry,
1728                              struct inode *new_dir,
1729                              struct dentry *new_dentry)
1730 {
1731         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1732         struct common_audit_data ad;
1733         u32 sid = current_sid();
1734         u32 av;
1735         int old_is_dir, new_is_dir;
1736         int rc;
1737
1738         old_dsec = old_dir->i_security;
1739         old_isec = old_dentry->d_inode->i_security;
1740         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1741         new_dsec = new_dir->i_security;
1742
1743         ad.type = LSM_AUDIT_DATA_DENTRY;
1744
1745         ad.u.dentry = old_dentry;
1746         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1747                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1748         if (rc)
1749                 return rc;
1750         rc = avc_has_perm(sid, old_isec->sid,
1751                           old_isec->sclass, FILE__RENAME, &ad);
1752         if (rc)
1753                 return rc;
1754         if (old_is_dir && new_dir != old_dir) {
1755                 rc = avc_has_perm(sid, old_isec->sid,
1756                                   old_isec->sclass, DIR__REPARENT, &ad);
1757                 if (rc)
1758                         return rc;
1759         }
1760
1761         ad.u.dentry = new_dentry;
1762         av = DIR__ADD_NAME | DIR__SEARCH;
1763         if (new_dentry->d_inode)
1764                 av |= DIR__REMOVE_NAME;
1765         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1766         if (rc)
1767                 return rc;
1768         if (new_dentry->d_inode) {
1769                 new_isec = new_dentry->d_inode->i_security;
1770                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1771                 rc = avc_has_perm(sid, new_isec->sid,
1772                                   new_isec->sclass,
1773                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1774                 if (rc)
1775                         return rc;
1776         }
1777
1778         return 0;
1779 }
1780
1781 /* Check whether a task can perform a filesystem operation. */
1782 static int superblock_has_perm(const struct cred *cred,
1783                                struct super_block *sb,
1784                                u32 perms,
1785                                struct common_audit_data *ad)
1786 {
1787         struct superblock_security_struct *sbsec;
1788         u32 sid = cred_sid(cred);
1789
1790         sbsec = sb->s_security;
1791         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1792 }
1793
1794 /* Convert a Linux mode and permission mask to an access vector. */
1795 static inline u32 file_mask_to_av(int mode, int mask)
1796 {
1797         u32 av = 0;
1798
1799         if (!S_ISDIR(mode)) {
1800                 if (mask & MAY_EXEC)
1801                         av |= FILE__EXECUTE;
1802                 if (mask & MAY_READ)
1803                         av |= FILE__READ;
1804
1805                 if (mask & MAY_APPEND)
1806                         av |= FILE__APPEND;
1807                 else if (mask & MAY_WRITE)
1808                         av |= FILE__WRITE;
1809
1810         } else {
1811                 if (mask & MAY_EXEC)
1812                         av |= DIR__SEARCH;
1813                 if (mask & MAY_WRITE)
1814                         av |= DIR__WRITE;
1815                 if (mask & MAY_READ)
1816                         av |= DIR__READ;
1817         }
1818
1819         return av;
1820 }
1821
1822 /* Convert a Linux file to an access vector. */
1823 static inline u32 file_to_av(struct file *file)
1824 {
1825         u32 av = 0;
1826
1827         if (file->f_mode & FMODE_READ)
1828                 av |= FILE__READ;
1829         if (file->f_mode & FMODE_WRITE) {
1830                 if (file->f_flags & O_APPEND)
1831                         av |= FILE__APPEND;
1832                 else
1833                         av |= FILE__WRITE;
1834         }
1835         if (!av) {
1836                 /*
1837                  * Special file opened with flags 3 for ioctl-only use.
1838                  */
1839                 av = FILE__IOCTL;
1840         }
1841
1842         return av;
1843 }
1844
1845 /*
1846  * Convert a file to an access vector and include the correct open
1847  * open permission.
1848  */
1849 static inline u32 open_file_to_av(struct file *file)
1850 {
1851         u32 av = file_to_av(file);
1852
1853         if (selinux_policycap_openperm)
1854                 av |= FILE__OPEN;
1855
1856         return av;
1857 }
1858
1859 /* Hook functions begin here. */
1860
1861 static int selinux_ptrace_access_check(struct task_struct *child,
1862                                      unsigned int mode)
1863 {
1864         int rc;
1865
1866         rc = cap_ptrace_access_check(child, mode);
1867         if (rc)
1868                 return rc;
1869
1870         if (mode & PTRACE_MODE_READ) {
1871                 u32 sid = current_sid();
1872                 u32 csid = task_sid(child);
1873                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1874         }
1875
1876         return current_has_perm(child, PROCESS__PTRACE);
1877 }
1878
1879 static int selinux_ptrace_traceme(struct task_struct *parent)
1880 {
1881         int rc;
1882
1883         rc = cap_ptrace_traceme(parent);
1884         if (rc)
1885                 return rc;
1886
1887         return task_has_perm(parent, current, PROCESS__PTRACE);
1888 }
1889
1890 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1891                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1892 {
1893         int error;
1894
1895         error = current_has_perm(target, PROCESS__GETCAP);
1896         if (error)
1897                 return error;
1898
1899         return cap_capget(target, effective, inheritable, permitted);
1900 }
1901
1902 static int selinux_capset(struct cred *new, const struct cred *old,
1903                           const kernel_cap_t *effective,
1904                           const kernel_cap_t *inheritable,
1905                           const kernel_cap_t *permitted)
1906 {
1907         int error;
1908
1909         error = cap_capset(new, old,
1910                                       effective, inheritable, permitted);
1911         if (error)
1912                 return error;
1913
1914         return cred_has_perm(old, new, PROCESS__SETCAP);
1915 }
1916
1917 /*
1918  * (This comment used to live with the selinux_task_setuid hook,
1919  * which was removed).
1920  *
1921  * Since setuid only affects the current process, and since the SELinux
1922  * controls are not based on the Linux identity attributes, SELinux does not
1923  * need to control this operation.  However, SELinux does control the use of
1924  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1925  */
1926
1927 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1928                            int cap, int audit)
1929 {
1930         int rc;
1931
1932         rc = cap_capable(cred, ns, cap, audit);
1933         if (rc)
1934                 return rc;
1935
1936         return cred_has_capability(cred, cap, audit);
1937 }
1938
1939 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1940 {
1941         const struct cred *cred = current_cred();
1942         int rc = 0;
1943
1944         if (!sb)
1945                 return 0;
1946
1947         switch (cmds) {
1948         case Q_SYNC:
1949         case Q_QUOTAON:
1950         case Q_QUOTAOFF:
1951         case Q_SETINFO:
1952         case Q_SETQUOTA:
1953                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1954                 break;
1955         case Q_GETFMT:
1956         case Q_GETINFO:
1957         case Q_GETQUOTA:
1958                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1959                 break;
1960         default:
1961                 rc = 0;  /* let the kernel handle invalid cmds */
1962                 break;
1963         }
1964         return rc;
1965 }
1966
1967 static int selinux_quota_on(struct dentry *dentry)
1968 {
1969         const struct cred *cred = current_cred();
1970
1971         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1972 }
1973
1974 static int selinux_syslog(int type)
1975 {
1976         int rc;
1977
1978         switch (type) {
1979         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
1980         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1981                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1982                 break;
1983         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1984         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
1985         /* Set level of messages printed to console */
1986         case SYSLOG_ACTION_CONSOLE_LEVEL:
1987                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1988                 break;
1989         case SYSLOG_ACTION_CLOSE:       /* Close log */
1990         case SYSLOG_ACTION_OPEN:        /* Open log */
1991         case SYSLOG_ACTION_READ:        /* Read from log */
1992         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
1993         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
1994         default:
1995                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1996                 break;
1997         }
1998         return rc;
1999 }
2000
2001 /*
2002  * Check that a process has enough memory to allocate a new virtual
2003  * mapping. 0 means there is enough memory for the allocation to
2004  * succeed and -ENOMEM implies there is not.
2005  *
2006  * Do not audit the selinux permission check, as this is applied to all
2007  * processes that allocate mappings.
2008  */
2009 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2010 {
2011         int rc, cap_sys_admin = 0;
2012
2013         rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2014                              SECURITY_CAP_NOAUDIT);
2015         if (rc == 0)
2016                 cap_sys_admin = 1;
2017
2018         return __vm_enough_memory(mm, pages, cap_sys_admin);
2019 }
2020
2021 /* binprm security operations */
2022
2023 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2024 {
2025         const struct task_security_struct *old_tsec;
2026         struct task_security_struct *new_tsec;
2027         struct inode_security_struct *isec;
2028         struct common_audit_data ad;
2029         struct inode *inode = file_inode(bprm->file);
2030         int rc;
2031
2032         rc = cap_bprm_set_creds(bprm);
2033         if (rc)
2034                 return rc;
2035
2036         /* SELinux context only depends on initial program or script and not
2037          * the script interpreter */
2038         if (bprm->cred_prepared)
2039                 return 0;
2040
2041         old_tsec = current_security();
2042         new_tsec = bprm->cred->security;
2043         isec = inode->i_security;
2044
2045         /* Default to the current task SID. */
2046         new_tsec->sid = old_tsec->sid;
2047         new_tsec->osid = old_tsec->sid;
2048
2049         /* Reset fs, key, and sock SIDs on execve. */
2050         new_tsec->create_sid = 0;
2051         new_tsec->keycreate_sid = 0;
2052         new_tsec->sockcreate_sid = 0;
2053
2054         if (old_tsec->exec_sid) {
2055                 new_tsec->sid = old_tsec->exec_sid;
2056                 /* Reset exec SID on execve. */
2057                 new_tsec->exec_sid = 0;
2058
2059                 /*
2060                  * Minimize confusion: if no_new_privs and a transition is
2061                  * explicitly requested, then fail the exec.
2062                  */
2063                 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2064                         return -EPERM;
2065         } else {
2066                 /* Check for a default transition on this program. */
2067                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2068                                              SECCLASS_PROCESS, NULL,
2069                                              &new_tsec->sid);
2070                 if (rc)
2071                         return rc;
2072         }
2073
2074         ad.type = LSM_AUDIT_DATA_PATH;
2075         ad.u.path = bprm->file->f_path;
2076
2077         if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2078             (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2079                 new_tsec->sid = old_tsec->sid;
2080
2081         if (new_tsec->sid == old_tsec->sid) {
2082                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2083                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2084                 if (rc)
2085                         return rc;
2086         } else {
2087                 /* Check permissions for the transition. */
2088                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2089                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2090                 if (rc)
2091                         return rc;
2092
2093                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2094                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2095                 if (rc)
2096                         return rc;
2097
2098                 /* Check for shared state */
2099                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2100                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2101                                           SECCLASS_PROCESS, PROCESS__SHARE,
2102                                           NULL);
2103                         if (rc)
2104                                 return -EPERM;
2105                 }
2106
2107                 /* Make sure that anyone attempting to ptrace over a task that
2108                  * changes its SID has the appropriate permit */
2109                 if (bprm->unsafe &
2110                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2111                         struct task_struct *tracer;
2112                         struct task_security_struct *sec;
2113                         u32 ptsid = 0;
2114
2115                         rcu_read_lock();
2116                         tracer = ptrace_parent(current);
2117                         if (likely(tracer != NULL)) {
2118                                 sec = __task_cred(tracer)->security;
2119                                 ptsid = sec->sid;
2120                         }
2121                         rcu_read_unlock();
2122
2123                         if (ptsid != 0) {
2124                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2125                                                   SECCLASS_PROCESS,
2126                                                   PROCESS__PTRACE, NULL);
2127                                 if (rc)
2128                                         return -EPERM;
2129                         }
2130                 }
2131
2132                 /* Clear any possibly unsafe personality bits on exec: */
2133                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2134         }
2135
2136         return 0;
2137 }
2138
2139 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2140 {
2141         const struct task_security_struct *tsec = current_security();
2142         u32 sid, osid;
2143         int atsecure = 0;
2144
2145         sid = tsec->sid;
2146         osid = tsec->osid;
2147
2148         if (osid != sid) {
2149                 /* Enable secure mode for SIDs transitions unless
2150                    the noatsecure permission is granted between
2151                    the two SIDs, i.e. ahp returns 0. */
2152                 atsecure = avc_has_perm(osid, sid,
2153                                         SECCLASS_PROCESS,
2154                                         PROCESS__NOATSECURE, NULL);
2155         }
2156
2157         return (atsecure || cap_bprm_secureexec(bprm));
2158 }
2159
2160 static int match_file(const void *p, struct file *file, unsigned fd)
2161 {
2162         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2163 }
2164
2165 /* Derived from fs/exec.c:flush_old_files. */
2166 static inline void flush_unauthorized_files(const struct cred *cred,
2167                                             struct files_struct *files)
2168 {
2169         struct file *file, *devnull = NULL;
2170         struct tty_struct *tty;
2171         int drop_tty = 0;
2172         unsigned n;
2173
2174         tty = get_current_tty();
2175         if (tty) {
2176                 spin_lock(&tty_files_lock);
2177                 if (!list_empty(&tty->tty_files)) {
2178                         struct tty_file_private *file_priv;
2179
2180                         /* Revalidate access to controlling tty.
2181                            Use file_path_has_perm on the tty path directly
2182                            rather than using file_has_perm, as this particular
2183                            open file may belong to another process and we are
2184                            only interested in the inode-based check here. */
2185                         file_priv = list_first_entry(&tty->tty_files,
2186                                                 struct tty_file_private, list);
2187                         file = file_priv->file;
2188                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2189                                 drop_tty = 1;
2190                 }
2191                 spin_unlock(&tty_files_lock);
2192                 tty_kref_put(tty);
2193         }
2194         /* Reset controlling tty. */
2195         if (drop_tty)
2196                 no_tty();
2197
2198         /* Revalidate access to inherited open files. */
2199         n = iterate_fd(files, 0, match_file, cred);
2200         if (!n) /* none found? */
2201                 return;
2202
2203         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2204         if (IS_ERR(devnull))
2205                 devnull = NULL;
2206         /* replace all the matching ones with this */
2207         do {
2208                 replace_fd(n - 1, devnull, 0);
2209         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2210         if (devnull)
2211                 fput(devnull);
2212 }
2213
2214 /*
2215  * Prepare a process for imminent new credential changes due to exec
2216  */
2217 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2218 {
2219         struct task_security_struct *new_tsec;
2220         struct rlimit *rlim, *initrlim;
2221         int rc, i;
2222
2223         new_tsec = bprm->cred->security;
2224         if (new_tsec->sid == new_tsec->osid)
2225                 return;
2226
2227         /* Close files for which the new task SID is not authorized. */
2228         flush_unauthorized_files(bprm->cred, current->files);
2229
2230         /* Always clear parent death signal on SID transitions. */
2231         current->pdeath_signal = 0;
2232
2233         /* Check whether the new SID can inherit resource limits from the old
2234          * SID.  If not, reset all soft limits to the lower of the current
2235          * task's hard limit and the init task's soft limit.
2236          *
2237          * Note that the setting of hard limits (even to lower them) can be
2238          * controlled by the setrlimit check.  The inclusion of the init task's
2239          * soft limit into the computation is to avoid resetting soft limits
2240          * higher than the default soft limit for cases where the default is
2241          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2242          */
2243         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2244                           PROCESS__RLIMITINH, NULL);
2245         if (rc) {
2246                 /* protect against do_prlimit() */
2247                 task_lock(current);
2248                 for (i = 0; i < RLIM_NLIMITS; i++) {
2249                         rlim = current->signal->rlim + i;
2250                         initrlim = init_task.signal->rlim + i;
2251                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2252                 }
2253                 task_unlock(current);
2254                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2255         }
2256 }
2257
2258 /*
2259  * Clean up the process immediately after the installation of new credentials
2260  * due to exec
2261  */
2262 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2263 {
2264         const struct task_security_struct *tsec = current_security();
2265         struct itimerval itimer;
2266         u32 osid, sid;
2267         int rc, i;
2268
2269         osid = tsec->osid;
2270         sid = tsec->sid;
2271
2272         if (sid == osid)
2273                 return;
2274
2275         /* Check whether the new SID can inherit signal state from the old SID.
2276          * If not, clear itimers to avoid subsequent signal generation and
2277          * flush and unblock signals.
2278          *
2279          * This must occur _after_ the task SID has been updated so that any
2280          * kill done after the flush will be checked against the new SID.
2281          */
2282         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2283         if (rc) {
2284                 memset(&itimer, 0, sizeof itimer);
2285                 for (i = 0; i < 3; i++)
2286                         do_setitimer(i, &itimer, NULL);
2287                 spin_lock_irq(&current->sighand->siglock);
2288                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2289                         __flush_signals(current);
2290                         flush_signal_handlers(current, 1);
2291                         sigemptyset(&current->blocked);
2292                 }
2293                 spin_unlock_irq(&current->sighand->siglock);
2294         }
2295
2296         /* Wake up the parent if it is waiting so that it can recheck
2297          * wait permission to the new task SID. */
2298         read_lock(&tasklist_lock);
2299         __wake_up_parent(current, current->real_parent);
2300         read_unlock(&tasklist_lock);
2301 }
2302
2303 /* superblock security operations */
2304
2305 static int selinux_sb_alloc_security(struct super_block *sb)
2306 {
2307         return superblock_alloc_security(sb);
2308 }
2309
2310 static void selinux_sb_free_security(struct super_block *sb)
2311 {
2312         superblock_free_security(sb);
2313 }
2314
2315 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2316 {
2317         if (plen > olen)
2318                 return 0;
2319
2320         return !memcmp(prefix, option, plen);
2321 }
2322
2323 static inline int selinux_option(char *option, int len)
2324 {
2325         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2326                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2327                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2328                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2329                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2330 }
2331
2332 static inline void take_option(char **to, char *from, int *first, int len)
2333 {
2334         if (!*first) {
2335                 **to = ',';
2336                 *to += 1;
2337         } else
2338                 *first = 0;
2339         memcpy(*to, from, len);
2340         *to += len;
2341 }
2342
2343 static inline void take_selinux_option(char **to, char *from, int *first,
2344                                        int len)
2345 {
2346         int current_size = 0;
2347
2348         if (!*first) {
2349                 **to = '|';
2350                 *to += 1;
2351         } else
2352                 *first = 0;
2353
2354         while (current_size < len) {
2355                 if (*from != '"') {
2356                         **to = *from;
2357                         *to += 1;
2358                 }
2359                 from += 1;
2360                 current_size += 1;
2361         }
2362 }
2363
2364 static int selinux_sb_copy_data(char *orig, char *copy)
2365 {
2366         int fnosec, fsec, rc = 0;
2367         char *in_save, *in_curr, *in_end;
2368         char *sec_curr, *nosec_save, *nosec;
2369         int open_quote = 0;
2370
2371         in_curr = orig;
2372         sec_curr = copy;
2373
2374         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2375         if (!nosec) {
2376                 rc = -ENOMEM;
2377                 goto out;
2378         }
2379
2380         nosec_save = nosec;
2381         fnosec = fsec = 1;
2382         in_save = in_end = orig;
2383
2384         do {
2385                 if (*in_end == '"')
2386                         open_quote = !open_quote;
2387                 if ((*in_end == ',' && open_quote == 0) ||
2388                                 *in_end == '\0') {
2389                         int len = in_end - in_curr;
2390
2391                         if (selinux_option(in_curr, len))
2392                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2393                         else
2394                                 take_option(&nosec, in_curr, &fnosec, len);
2395
2396                         in_curr = in_end + 1;
2397                 }
2398         } while (*in_end++);
2399
2400         strcpy(in_save, nosec_save);
2401         free_page((unsigned long)nosec_save);
2402 out:
2403         return rc;
2404 }
2405
2406 static int selinux_sb_remount(struct super_block *sb, void *data)
2407 {
2408         int rc, i, *flags;
2409         struct security_mnt_opts opts;
2410         char *secdata, **mount_options;
2411         struct superblock_security_struct *sbsec = sb->s_security;
2412
2413         if (!(sbsec->flags & SE_SBINITIALIZED))
2414                 return 0;
2415
2416         if (!data)
2417                 return 0;
2418
2419         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2420                 return 0;
2421
2422         security_init_mnt_opts(&opts);
2423         secdata = alloc_secdata();
2424         if (!secdata)
2425                 return -ENOMEM;
2426         rc = selinux_sb_copy_data(data, secdata);
2427         if (rc)
2428                 goto out_free_secdata;
2429
2430         rc = selinux_parse_opts_str(secdata, &opts);
2431         if (rc)
2432                 goto out_free_secdata;
2433
2434         mount_options = opts.mnt_opts;
2435         flags = opts.mnt_opts_flags;
2436
2437         for (i = 0; i < opts.num_mnt_opts; i++) {
2438                 u32 sid;
2439                 size_t len;
2440
2441                 if (flags[i] == SE_SBLABELSUPP)
2442                         continue;
2443                 len = strlen(mount_options[i]);
2444                 rc = security_context_to_sid(mount_options[i], len, &sid);
2445                 if (rc) {
2446                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2447                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2448                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2449                         goto out_free_opts;
2450                 }
2451                 rc = -EINVAL;
2452                 switch (flags[i]) {
2453                 case FSCONTEXT_MNT:
2454                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2455                                 goto out_bad_option;
2456                         break;
2457                 case CONTEXT_MNT:
2458                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2459                                 goto out_bad_option;
2460                         break;
2461                 case ROOTCONTEXT_MNT: {
2462                         struct inode_security_struct *root_isec;
2463                         root_isec = sb->s_root->d_inode->i_security;
2464
2465                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2466                                 goto out_bad_option;
2467                         break;
2468                 }
2469                 case DEFCONTEXT_MNT:
2470                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2471                                 goto out_bad_option;
2472                         break;
2473                 default:
2474                         goto out_free_opts;
2475                 }
2476         }
2477
2478         rc = 0;
2479 out_free_opts:
2480         security_free_mnt_opts(&opts);
2481 out_free_secdata:
2482         free_secdata(secdata);
2483         return rc;
2484 out_bad_option:
2485         printk(KERN_WARNING "SELinux: unable to change security options "
2486                "during remount (dev %s, type=%s)\n", sb->s_id,
2487                sb->s_type->name);
2488         goto out_free_opts;
2489 }
2490
2491 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2492 {
2493         const struct cred *cred = current_cred();
2494         struct common_audit_data ad;
2495         int rc;
2496
2497         rc = superblock_doinit(sb, data);
2498         if (rc)
2499                 return rc;
2500
2501         /* Allow all mounts performed by the kernel */
2502         if (flags & MS_KERNMOUNT)
2503                 return 0;
2504
2505         ad.type = LSM_AUDIT_DATA_DENTRY;
2506         ad.u.dentry = sb->s_root;
2507         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2508 }
2509
2510 static int selinux_sb_statfs(struct dentry *dentry)
2511 {
2512         const struct cred *cred = current_cred();
2513         struct common_audit_data ad;
2514
2515         ad.type = LSM_AUDIT_DATA_DENTRY;
2516         ad.u.dentry = dentry->d_sb->s_root;
2517         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2518 }
2519
2520 static int selinux_mount(const char *dev_name,
2521                          struct path *path,
2522                          const char *type,
2523                          unsigned long flags,
2524                          void *data)
2525 {
2526         const struct cred *cred = current_cred();
2527
2528         if (flags & MS_REMOUNT)
2529                 return superblock_has_perm(cred, path->dentry->d_sb,
2530                                            FILESYSTEM__REMOUNT, NULL);
2531         else
2532                 return path_has_perm(cred, path, FILE__MOUNTON);
2533 }
2534
2535 static int selinux_umount(struct vfsmount *mnt, int flags)
2536 {
2537         const struct cred *cred = current_cred();
2538
2539         return superblock_has_perm(cred, mnt->mnt_sb,
2540                                    FILESYSTEM__UNMOUNT, NULL);
2541 }
2542
2543 /* inode security operations */
2544
2545 static int selinux_inode_alloc_security(struct inode *inode)
2546 {
2547         return inode_alloc_security(inode);
2548 }
2549
2550 static void selinux_inode_free_security(struct inode *inode)
2551 {
2552         inode_free_security(inode);
2553 }
2554
2555 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2556                                         struct qstr *name, void **ctx,
2557                                         u32 *ctxlen)
2558 {
2559         const struct cred *cred = current_cred();
2560         struct task_security_struct *tsec;
2561         struct inode_security_struct *dsec;
2562         struct superblock_security_struct *sbsec;
2563         struct inode *dir = dentry->d_parent->d_inode;
2564         u32 newsid;
2565         int rc;
2566
2567         tsec = cred->security;
2568         dsec = dir->i_security;
2569         sbsec = dir->i_sb->s_security;
2570
2571         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2572                 newsid = tsec->create_sid;
2573         } else {
2574                 rc = security_transition_sid(tsec->sid, dsec->sid,
2575                                              inode_mode_to_security_class(mode),
2576                                              name,
2577                                              &newsid);
2578                 if (rc) {
2579                         printk(KERN_WARNING
2580                                 "%s: security_transition_sid failed, rc=%d\n",
2581                                __func__, -rc);
2582                         return rc;
2583                 }
2584         }
2585
2586         return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2587 }
2588
2589 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2590                                        const struct qstr *qstr, char **name,
2591                                        void **value, size_t *len)
2592 {
2593         const struct task_security_struct *tsec = current_security();
2594         struct inode_security_struct *dsec;
2595         struct superblock_security_struct *sbsec;
2596         u32 sid, newsid, clen;
2597         int rc;
2598         char *namep = NULL, *context;
2599
2600         dsec = dir->i_security;
2601         sbsec = dir->i_sb->s_security;
2602
2603         sid = tsec->sid;
2604         newsid = tsec->create_sid;
2605
2606         if ((sbsec->flags & SE_SBINITIALIZED) &&
2607             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2608                 newsid = sbsec->mntpoint_sid;
2609         else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2610                 rc = security_transition_sid(sid, dsec->sid,
2611                                              inode_mode_to_security_class(inode->i_mode),
2612                                              qstr, &newsid);
2613                 if (rc) {
2614                         printk(KERN_WARNING "%s:  "
2615                                "security_transition_sid failed, rc=%d (dev=%s "
2616                                "ino=%ld)\n",
2617                                __func__,
2618                                -rc, inode->i_sb->s_id, inode->i_ino);
2619                         return rc;
2620                 }
2621         }
2622
2623         /* Possibly defer initialization to selinux_complete_init. */
2624         if (sbsec->flags & SE_SBINITIALIZED) {
2625                 struct inode_security_struct *isec = inode->i_security;
2626                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2627                 isec->sid = newsid;
2628                 isec->initialized = 1;
2629         }
2630
2631         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2632                 return -EOPNOTSUPP;
2633
2634         if (name) {
2635                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2636                 if (!namep)
2637                         return -ENOMEM;
2638                 *name = namep;
2639         }
2640
2641         if (value && len) {
2642                 rc = security_sid_to_context_force(newsid, &context, &clen);
2643                 if (rc) {
2644                         kfree(namep);
2645                         return rc;
2646                 }
2647                 *value = context;
2648                 *len = clen;
2649         }
2650
2651         return 0;
2652 }
2653
2654 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2655 {
2656         return may_create(dir, dentry, SECCLASS_FILE);
2657 }
2658
2659 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2660 {
2661         return may_link(dir, old_dentry, MAY_LINK);
2662 }
2663
2664 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2665 {
2666         return may_link(dir, dentry, MAY_UNLINK);
2667 }
2668
2669 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2670 {
2671         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2672 }
2673
2674 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2675 {
2676         return may_create(dir, dentry, SECCLASS_DIR);
2677 }
2678
2679 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2680 {
2681         return may_link(dir, dentry, MAY_RMDIR);
2682 }
2683
2684 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2685 {
2686         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2687 }
2688
2689 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2690                                 struct inode *new_inode, struct dentry *new_dentry)
2691 {
2692         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2693 }
2694
2695 static int selinux_inode_readlink(struct dentry *dentry)
2696 {
2697         const struct cred *cred = current_cred();
2698
2699         return dentry_has_perm(cred, dentry, FILE__READ);
2700 }
2701
2702 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2703 {
2704         const struct cred *cred = current_cred();
2705
2706         return dentry_has_perm(cred, dentry, FILE__READ);
2707 }
2708
2709 static noinline int audit_inode_permission(struct inode *inode,
2710                                            u32 perms, u32 audited, u32 denied,
2711                                            unsigned flags)
2712 {
2713         struct common_audit_data ad;
2714         struct inode_security_struct *isec = inode->i_security;
2715         int rc;
2716
2717         ad.type = LSM_AUDIT_DATA_INODE;
2718         ad.u.inode = inode;
2719
2720         rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2721                             audited, denied, &ad, flags);
2722         if (rc)
2723                 return rc;
2724         return 0;
2725 }
2726
2727 static int selinux_inode_permission(struct inode *inode, int mask)
2728 {
2729         const struct cred *cred = current_cred();
2730         u32 perms;
2731         bool from_access;
2732         unsigned flags = mask & MAY_NOT_BLOCK;
2733         struct inode_security_struct *isec;
2734         u32 sid;
2735         struct av_decision avd;
2736         int rc, rc2;
2737         u32 audited, denied;
2738
2739         from_access = mask & MAY_ACCESS;
2740         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2741
2742         /* No permission to check.  Existence test. */
2743         if (!mask)
2744                 return 0;
2745
2746         validate_creds(cred);
2747
2748         if (unlikely(IS_PRIVATE(inode)))
2749                 return 0;
2750
2751         perms = file_mask_to_av(inode->i_mode, mask);
2752
2753         sid = cred_sid(cred);
2754         isec = inode->i_security;
2755
2756         rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2757         audited = avc_audit_required(perms, &avd, rc,
2758                                      from_access ? FILE__AUDIT_ACCESS : 0,
2759                                      &denied);
2760         if (likely(!audited))
2761                 return rc;
2762
2763         rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2764         if (rc2)
2765                 return rc2;
2766         return rc;
2767 }
2768
2769 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2770 {
2771         const struct cred *cred = current_cred();
2772         unsigned int ia_valid = iattr->ia_valid;
2773         __u32 av = FILE__WRITE;
2774
2775         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2776         if (ia_valid & ATTR_FORCE) {
2777                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2778                               ATTR_FORCE);
2779                 if (!ia_valid)
2780                         return 0;
2781         }
2782
2783         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2784                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2785                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2786
2787         if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2788                 av |= FILE__OPEN;
2789
2790         return dentry_has_perm(cred, dentry, av);
2791 }
2792
2793 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2794 {
2795         const struct cred *cred = current_cred();
2796         struct path path;
2797
2798         path.dentry = dentry;
2799         path.mnt = mnt;
2800
2801         return path_has_perm(cred, &path, FILE__GETATTR);
2802 }
2803
2804 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2805 {
2806         const struct cred *cred = current_cred();
2807
2808         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2809                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2810                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2811                         if (!capable(CAP_SETFCAP))
2812                                 return -EPERM;
2813                 } else if (!capable(CAP_SYS_ADMIN)) {
2814                         /* A different attribute in the security namespace.
2815                            Restrict to administrator. */
2816                         return -EPERM;
2817                 }
2818         }
2819
2820         /* Not an attribute we recognize, so just check the
2821            ordinary setattr permission. */
2822         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2823 }
2824
2825 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2826                                   const void *value, size_t size, int flags)
2827 {
2828         struct inode *inode = dentry->d_inode;
2829         struct inode_security_struct *isec = inode->i_security;
2830         struct superblock_security_struct *sbsec;
2831         struct common_audit_data ad;
2832         u32 newsid, sid = current_sid();
2833         int rc = 0;
2834
2835         if (strcmp(name, XATTR_NAME_SELINUX))
2836                 return selinux_inode_setotherxattr(dentry, name);
2837
2838         sbsec = inode->i_sb->s_security;
2839         if (!(sbsec->flags & SE_SBLABELSUPP))
2840                 return -EOPNOTSUPP;
2841
2842         if (!inode_owner_or_capable(inode))
2843                 return -EPERM;
2844
2845         ad.type = LSM_AUDIT_DATA_DENTRY;
2846         ad.u.dentry = dentry;
2847
2848         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2849                           FILE__RELABELFROM, &ad);
2850         if (rc)
2851                 return rc;
2852
2853         rc = security_context_to_sid(value, size, &newsid);
2854         if (rc == -EINVAL) {
2855                 if (!capable(CAP_MAC_ADMIN)) {
2856                         struct audit_buffer *ab;
2857                         size_t audit_size;
2858                         const char *str;
2859
2860                         /* We strip a nul only if it is at the end, otherwise the
2861                          * context contains a nul and we should audit that */
2862                         if (value) {
2863                                 str = value;
2864                                 if (str[size - 1] == '\0')
2865                                         audit_size = size - 1;
2866                                 else
2867                                         audit_size = size;
2868                         } else {
2869                                 str = "";
2870                                 audit_size = 0;
2871                         }
2872                         ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2873                         audit_log_format(ab, "op=setxattr invalid_context=");
2874                         audit_log_n_untrustedstring(ab, value, audit_size);
2875                         audit_log_end(ab);
2876
2877                         return rc;
2878                 }
2879                 rc = security_context_to_sid_force(value, size, &newsid);
2880         }
2881         if (rc)
2882                 return rc;
2883
2884         rc = avc_has_perm(sid, newsid, isec->sclass,
2885                           FILE__RELABELTO, &ad);
2886         if (rc)
2887                 return rc;
2888
2889         rc = security_validate_transition(isec->sid, newsid, sid,
2890                                           isec->sclass);
2891         if (rc)
2892                 return rc;
2893
2894         return avc_has_perm(newsid,
2895                             sbsec->sid,
2896                             SECCLASS_FILESYSTEM,
2897                             FILESYSTEM__ASSOCIATE,
2898                             &ad);
2899 }
2900
2901 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2902                                         const void *value, size_t size,
2903                                         int flags)
2904 {
2905         struct inode *inode = dentry->d_inode;
2906         struct inode_security_struct *isec = inode->i_security;
2907         u32 newsid;
2908         int rc;
2909
2910         if (strcmp(name, XATTR_NAME_SELINUX)) {
2911                 /* Not an attribute we recognize, so nothing to do. */
2912                 return;
2913         }
2914
2915         rc = security_context_to_sid_force(value, size, &newsid);
2916         if (rc) {
2917                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2918                        "for (%s, %lu), rc=%d\n",
2919                        inode->i_sb->s_id, inode->i_ino, -rc);
2920                 return;
2921         }
2922
2923         isec->sclass = inode_mode_to_security_class(inode->i_mode);
2924         isec->sid = newsid;
2925         isec->initialized = 1;
2926
2927         return;
2928 }
2929
2930 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2931 {
2932         const struct cred *cred = current_cred();
2933
2934         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2935 }
2936
2937 static int selinux_inode_listxattr(struct dentry *dentry)
2938 {
2939         const struct cred *cred = current_cred();
2940
2941         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2942 }
2943
2944 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2945 {
2946         if (strcmp(name, XATTR_NAME_SELINUX))
2947                 return selinux_inode_setotherxattr(dentry, name);
2948
2949         /* No one is allowed to remove a SELinux security label.
2950            You can change the label, but all data must be labeled. */
2951         return -EACCES;
2952 }
2953
2954 /*
2955  * Copy the inode security context value to the user.
2956  *
2957  * Permission check is handled by selinux_inode_getxattr hook.
2958  */
2959 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2960 {
2961         u32 size;
2962         int error;
2963         char *context = NULL;
2964         struct inode_security_struct *isec = inode->i_security;
2965
2966         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2967                 return -EOPNOTSUPP;
2968
2969         /*
2970          * If the caller has CAP_MAC_ADMIN, then get the raw context
2971          * value even if it is not defined by current policy; otherwise,
2972          * use the in-core value under current policy.
2973          * Use the non-auditing forms of the permission checks since
2974          * getxattr may be called by unprivileged processes commonly
2975          * and lack of permission just means that we fall back to the
2976          * in-core context value, not a denial.
2977          */
2978         error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2979                                 SECURITY_CAP_NOAUDIT);
2980         if (!error)
2981                 error = security_sid_to_context_force(isec->sid, &context,
2982                                                       &size);
2983         else
2984                 error = security_sid_to_context(isec->sid, &context, &size);
2985         if (error)
2986                 return error;
2987         error = size;
2988         if (alloc) {
2989                 *buffer = context;
2990                 goto out_nofree;
2991         }
2992         kfree(context);
2993 out_nofree:
2994         return error;
2995 }
2996
2997 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2998                                      const void *value, size_t size, int flags)
2999 {
3000         struct inode_security_struct *isec = inode->i_security;
3001         u32 newsid;
3002         int rc;
3003
3004         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3005                 return -EOPNOTSUPP;
3006
3007         if (!value || !size)
3008                 return -EACCES;
3009
3010         rc = security_context_to_sid((void *)value, size, &newsid);
3011         if (rc)
3012                 return rc;
3013
3014         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3015         isec->sid = newsid;
3016         isec->initialized = 1;
3017         return 0;
3018 }
3019
3020 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3021 {
3022         const int len = sizeof(XATTR_NAME_SELINUX);
3023         if (buffer && len <= buffer_size)
3024                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3025         return len;
3026 }
3027
3028 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3029 {
3030         struct inode_security_struct *isec = inode->i_security;
3031         *secid = isec->sid;
3032 }
3033
3034 /* file security operations */
3035
3036 static int selinux_revalidate_file_permission(struct file *file, int mask)
3037 {
3038         const struct cred *cred = current_cred();
3039         struct inode *inode = file_inode(file);
3040
3041         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3042         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3043                 mask |= MAY_APPEND;
3044
3045         return file_has_perm(cred, file,
3046                              file_mask_to_av(inode->i_mode, mask));
3047 }
3048
3049 static int selinux_file_permission(struct file *file, int mask)
3050 {
3051         struct inode *inode = file_inode(file);
3052         struct file_security_struct *fsec = file->f_security;
3053         struct inode_security_struct *isec = inode->i_security;
3054         u32 sid = current_sid();
3055
3056         if (!mask)
3057                 /* No permission to check.  Existence test. */
3058                 return 0;
3059
3060         if (sid == fsec->sid && fsec->isid == isec->sid &&
3061             fsec->pseqno == avc_policy_seqno())
3062                 /* No change since file_open check. */
3063                 return 0;
3064
3065         return selinux_revalidate_file_permission(file, mask);
3066 }
3067
3068 static int selinux_file_alloc_security(struct file *file)
3069 {
3070         return file_alloc_security(file);
3071 }
3072
3073 static void selinux_file_free_security(struct file *file)
3074 {
3075         file_free_security(file);
3076 }
3077
3078 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3079                               unsigned long arg)
3080 {
3081         const struct cred *cred = current_cred();
3082         int error = 0;
3083
3084         switch (cmd) {
3085         case FIONREAD:
3086         /* fall through */
3087         case FIBMAP:
3088         /* fall through */
3089         case FIGETBSZ:
3090         /* fall through */
3091         case FS_IOC_GETFLAGS:
3092         /* fall through */
3093         case FS_IOC_GETVERSION:
3094                 error = file_has_perm(cred, file, FILE__GETATTR);
3095                 break;
3096
3097         case FS_IOC_SETFLAGS:
3098         /* fall through */
3099         case FS_IOC_SETVERSION:
3100                 error = file_has_perm(cred, file, FILE__SETATTR);
3101                 break;
3102
3103         /* sys_ioctl() checks */
3104         case FIONBIO:
3105         /* fall through */
3106         case FIOASYNC:
3107                 error = file_has_perm(cred, file, 0);
3108                 break;
3109
3110         case KDSKBENT:
3111         case KDSKBSENT:
3112                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3113                                             SECURITY_CAP_AUDIT);
3114                 break;
3115
3116         /* default case assumes that the command will go
3117          * to the file's ioctl() function.
3118          */
3119         default:
3120                 error = file_has_perm(cred, file, FILE__IOCTL);
3121         }
3122         return error;
3123 }
3124
3125 static int default_noexec;
3126
3127 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3128 {
3129         const struct cred *cred = current_cred();
3130         int rc = 0;
3131
3132         if (default_noexec &&
3133             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3134                 /*
3135                  * We are making executable an anonymous mapping or a
3136                  * private file mapping that will also be writable.
3137                  * This has an additional check.
3138                  */
3139                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3140                 if (rc)
3141                         goto error;
3142         }
3143
3144         if (file) {
3145                 /* read access is always possible with a mapping */
3146                 u32 av = FILE__READ;
3147
3148                 /* write access only matters if the mapping is shared */
3149                 if (shared && (prot & PROT_WRITE))
3150                         av |= FILE__WRITE;
3151
3152                 if (prot & PROT_EXEC)
3153                         av |= FILE__EXECUTE;
3154
3155                 return file_has_perm(cred, file, av);
3156         }
3157
3158 error:
3159         return rc;
3160 }
3161
3162 static int selinux_mmap_addr(unsigned long addr)
3163 {
3164         int rc = 0;
3165         u32 sid = current_sid();
3166
3167         /*
3168          * notice that we are intentionally putting the SELinux check before
3169          * the secondary cap_file_mmap check.  This is such a likely attempt
3170          * at bad behaviour/exploit that we always want to get the AVC, even
3171          * if DAC would have also denied the operation.
3172          */
3173         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3174                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3175                                   MEMPROTECT__MMAP_ZERO, NULL);
3176                 if (rc)
3177                         return rc;
3178         }
3179
3180         /* do DAC check on address space usage */
3181         return cap_mmap_addr(addr);
3182 }
3183
3184 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3185                              unsigned long prot, unsigned long flags)
3186 {
3187         if (selinux_checkreqprot)
3188                 prot = reqprot;
3189
3190         return file_map_prot_check(file, prot,
3191                                    (flags & MAP_TYPE) == MAP_SHARED);
3192 }
3193
3194 static int selinux_file_mprotect(struct vm_area_struct *vma,
3195                                  unsigned long reqprot,
3196                                  unsigned long prot)
3197 {
3198         const struct cred *cred = current_cred();
3199
3200         if (selinux_checkreqprot)
3201                 prot = reqprot;
3202
3203         if (default_noexec &&
3204             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3205                 int rc = 0;
3206                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3207                     vma->vm_end <= vma->vm_mm->brk) {
3208                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3209                 } else if (!vma->vm_file &&
3210                            vma->vm_start <= vma->vm_mm->start_stack &&
3211                            vma->vm_end >= vma->vm_mm->start_stack) {
3212                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3213                 } else if (vma->vm_file && vma->anon_vma) {
3214                         /*
3215                          * We are making executable a file mapping that has
3216                          * had some COW done. Since pages might have been
3217                          * written, check ability to execute the possibly
3218                          * modified content.  This typically should only
3219                          * occur for text relocations.
3220                          */
3221                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3222                 }
3223                 if (rc)
3224                         return rc;
3225         }
3226
3227         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3228 }
3229
3230 static int selinux_file_lock(struct file *file, unsigned int cmd)
3231 {
3232         const struct cred *cred = current_cred();
3233
3234         return file_has_perm(cred, file, FILE__LOCK);
3235 }
3236
3237 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3238                               unsigned long arg)
3239 {
3240         const struct cred *cred = current_cred();
3241         int err = 0;
3242
3243         switch (cmd) {
3244         case F_SETFL:
3245                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3246                         err = file_has_perm(cred, file, FILE__WRITE);
3247                         break;
3248                 }
3249                 /* fall through */
3250         case F_SETOWN:
3251         case F_SETSIG:
3252         case F_GETFL:
3253         case F_GETOWN:
3254         case F_GETSIG:
3255         case F_GETOWNER_UIDS:
3256                 /* Just check FD__USE permission */
3257                 err = file_has_perm(cred, file, 0);
3258                 break;
3259         case F_GETLK:
3260         case F_SETLK:
3261         case F_SETLKW:
3262 #if BITS_PER_LONG == 32
3263         case F_GETLK64:
3264         case F_SETLK64:
3265         case F_SETLKW64:
3266 #endif
3267                 err = file_has_perm(cred, file, FILE__LOCK);
3268                 break;
3269         }
3270
3271         return err;
3272 }
3273
3274 static int selinux_file_set_fowner(struct file *file)
3275 {
3276         struct file_security_struct *fsec;
3277
3278         fsec = file->f_security;
3279         fsec->fown_sid = current_sid();
3280
3281         return 0;
3282 }
3283
3284 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3285                                        struct fown_struct *fown, int signum)
3286 {
3287         struct file *file;
3288         u32 sid = task_sid(tsk);
3289         u32 perm;
3290         struct file_security_struct *fsec;
3291
3292         /* struct fown_struct is never outside the context of a struct file */
3293         file = container_of(fown, struct file, f_owner);
3294
3295         fsec = file->f_security;
3296
3297         if (!signum)
3298                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3299         else
3300                 perm = signal_to_av(signum);
3301
3302         return avc_has_perm(fsec->fown_sid, sid,
3303                             SECCLASS_PROCESS, perm, NULL);
3304 }
3305
3306 static int selinux_file_receive(struct file *file)
3307 {
3308         const struct cred *cred = current_cred();
3309
3310         return file_has_perm(cred, file, file_to_av(file));
3311 }
3312
3313 static int selinux_file_open(struct file *file, const struct cred *cred)
3314 {
3315         struct file_security_struct *fsec;
3316         struct inode_security_struct *isec;
3317
3318         fsec = file->f_security;
3319         isec = file_inode(file)->i_security;
3320         /*
3321          * Save inode label and policy sequence number
3322          * at open-time so that selinux_file_permission
3323          * can determine whether revalidation is necessary.
3324          * Task label is already saved in the file security
3325          * struct as its SID.
3326          */
3327         fsec->isid = isec->sid;
3328         fsec->pseqno = avc_policy_seqno();
3329         /*
3330          * Since the inode label or policy seqno may have changed
3331          * between the selinux_inode_permission check and the saving
3332          * of state above, recheck that access is still permitted.
3333          * Otherwise, access might never be revalidated against the
3334          * new inode label or new policy.
3335          * This check is not redundant - do not remove.
3336          */
3337         return file_path_has_perm(cred, file, open_file_to_av(file));
3338 }
3339
3340 /* task security operations */
3341
3342 static int selinux_task_create(unsigned long clone_flags)
3343 {
3344         return current_has_perm(current, PROCESS__FORK);
3345 }
3346
3347 /*
3348  * allocate the SELinux part of blank credentials
3349  */
3350 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3351 {
3352         struct task_security_struct *tsec;
3353
3354         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3355         if (!tsec)
3356                 return -ENOMEM;
3357
3358         cred->security = tsec;
3359         return 0;
3360 }
3361
3362 /*
3363  * detach and free the LSM part of a set of credentials
3364  */
3365 static void selinux_cred_free(struct cred *cred)
3366 {
3367         struct task_security_struct *tsec = cred->security;
3368
3369         /*
3370          * cred->security == NULL if security_cred_alloc_blank() or
3371          * security_prepare_creds() returned an error.
3372          */
3373         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3374         cred->security = (void *) 0x7UL;
3375         kfree(tsec);
3376 }
3377
3378 /*
3379  * prepare a new set of credentials for modification
3380  */
3381 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3382                                 gfp_t gfp)
3383 {
3384         const struct task_security_struct *old_tsec;
3385         struct task_security_struct *tsec;
3386
3387         old_tsec = old->security;
3388
3389         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3390         if (!tsec)
3391                 return -ENOMEM;
3392
3393         new->security = tsec;
3394         return 0;
3395 }
3396
3397 /*
3398  * transfer the SELinux data to a blank set of creds
3399  */
3400 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3401 {
3402         const struct task_security_struct *old_tsec = old->security;
3403         struct task_security_struct *tsec = new->security;
3404
3405         *tsec = *old_tsec;
3406 }
3407
3408 /*
3409  * set the security data for a kernel service
3410  * - all the creation contexts are set to unlabelled
3411  */
3412 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3413 {
3414         struct task_security_struct *tsec = new->security;
3415         u32 sid = current_sid();
3416         int ret;
3417
3418         ret = avc_has_perm(sid, secid,
3419                            SECCLASS_KERNEL_SERVICE,
3420                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3421                            NULL);
3422         if (ret == 0) {
3423                 tsec->sid = secid;
3424                 tsec->create_sid = 0;
3425                 tsec->keycreate_sid = 0;
3426                 tsec->sockcreate_sid = 0;
3427         }
3428         return ret;
3429 }
3430
3431 /*
3432  * set the file creation context in a security record to the same as the
3433  * objective context of the specified inode
3434  */
3435 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3436 {
3437         struct inode_security_struct *isec = inode->i_security;
3438         struct task_security_struct *tsec = new->security;
3439         u32 sid = current_sid();
3440         int ret;
3441
3442         ret = avc_has_perm(sid, isec->sid,
3443                            SECCLASS_KERNEL_SERVICE,
3444                            KERNEL_SERVICE__CREATE_FILES_AS,
3445                            NULL);
3446
3447         if (ret == 0)
3448                 tsec->create_sid = isec->sid;
3449         return ret;
3450 }
3451
3452 static int selinux_kernel_module_request(char *kmod_name)
3453 {
3454         u32 sid;
3455         struct common_audit_data ad;
3456
3457         sid = task_sid(current);
3458
3459         ad.type = LSM_AUDIT_DATA_KMOD;
3460         ad.u.kmod_name = kmod_name;
3461
3462         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3463                             SYSTEM__MODULE_REQUEST, &ad);
3464 }
3465
3466 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3467 {
3468         return current_has_perm(p, PROCESS__SETPGID);
3469 }
3470
3471 static int selinux_task_getpgid(struct task_struct *p)
3472 {
3473         return current_has_perm(p, PROCESS__GETPGID);
3474 }
3475
3476 static int selinux_task_getsid(struct task_struct *p)
3477 {
3478         return current_has_perm(p, PROCESS__GETSESSION);
3479 }
3480
3481 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3482 {
3483         *secid = task_sid(p);
3484 }
3485
3486 static int selinux_task_setnice(struct task_struct *p, int nice)
3487 {
3488         int rc;
3489
3490         rc = cap_task_setnice(p, nice);
3491         if (rc)
3492                 return rc;
3493
3494         return current_has_perm(p, PROCESS__SETSCHED);
3495 }
3496
3497 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3498 {
3499         int rc;
3500
3501         rc = cap_task_setioprio(p, ioprio);
3502         if (rc)
3503                 return rc;
3504
3505         return current_has_perm(p, PROCESS__SETSCHED);
3506 }
3507
3508 static int selinux_task_getioprio(struct task_struct *p)
3509 {
3510         return current_has_perm(p, PROCESS__GETSCHED);
3511 }
3512
3513 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3514                 struct rlimit *new_rlim)
3515 {
3516         struct rlimit *old_rlim = p->signal->rlim + resource;
3517
3518         /* Control the ability to change the hard limit (whether
3519            lowering or raising it), so that the hard limit can
3520            later be used as a safe reset point for the soft limit
3521            upon context transitions.  See selinux_bprm_committing_creds. */
3522         if (old_rlim->rlim_max != new_rlim->rlim_max)
3523                 return current_has_perm(p, PROCESS__SETRLIMIT);
3524
3525         return 0;
3526 }
3527
3528 static int selinux_task_setscheduler(struct task_struct *p)
3529 {
3530         int rc;
3531
3532         rc = cap_task_setscheduler(p);
3533         if (rc)
3534                 return rc;
3535
3536         return current_has_perm(p, PROCESS__SETSCHED);
3537 }
3538
3539 static int selinux_task_getscheduler(struct task_struct *p)
3540 {
3541         return current_has_perm(p, PROCESS__GETSCHED);
3542 }
3543
3544 static int selinux_task_movememory(struct task_struct *p)
3545 {
3546         return current_has_perm(p, PROCESS__SETSCHED);
3547 }
3548
3549 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3550                                 int sig, u32 secid)
3551 {
3552         u32 perm;
3553         int rc;
3554
3555         if (!sig)
3556                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3557         else
3558                 perm = signal_to_av(sig);
3559         if (secid)
3560                 rc = avc_has_perm(secid, task_sid(p),
3561                                   SECCLASS_PROCESS, perm, NULL);
3562         else
3563                 rc = current_has_perm(p, perm);
3564         return rc;
3565 }
3566
3567 static int selinux_task_wait(struct task_struct *p)
3568 {
3569         return task_has_perm(p, current, PROCESS__SIGCHLD);
3570 }
3571
3572 static void selinux_task_to_inode(struct task_struct *p,
3573                                   struct inode *inode)
3574 {
3575         struct inode_security_struct *isec = inode->i_security;
3576         u32 sid = task_sid(p);
3577
3578         isec->sid = sid;
3579         isec->initialized = 1;
3580 }
3581
3582 /* Returns error only if unable to parse addresses */
3583 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3584                         struct common_audit_data *ad, u8 *proto)
3585 {
3586         int offset, ihlen, ret = -EINVAL;
3587         struct iphdr _iph, *ih;
3588
3589         offset = skb_network_offset(skb);
3590         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3591         if (ih == NULL)
3592                 goto out;
3593
3594         ihlen = ih->ihl * 4;
3595         if (ihlen < sizeof(_iph))
3596                 goto out;
3597
3598         ad->u.net->v4info.saddr = ih->saddr;
3599         ad->u.net->v4info.daddr = ih->daddr;
3600         ret = 0;
3601
3602         if (proto)
3603                 *proto = ih->protocol;
3604
3605         switch (ih->protocol) {
3606         case IPPROTO_TCP: {
3607                 struct tcphdr _tcph, *th;
3608
3609                 if (ntohs(ih->frag_off) & IP_OFFSET)
3610                         break;
3611
3612                 offset += ihlen;
3613                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3614                 if (th == NULL)
3615                         break;
3616
3617                 ad->u.net->sport = th->source;
3618                 ad->u.net->dport = th->dest;
3619                 break;
3620         }
3621
3622         case IPPROTO_UDP: {
3623                 struct udphdr _udph, *uh;
3624
3625                 if (ntohs(ih->frag_off) & IP_OFFSET)
3626                         break;
3627
3628                 offset += ihlen;
3629                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3630                 if (uh == NULL)
3631                         break;
3632
3633                 ad->u.net->sport = uh->source;
3634                 ad->u.net->dport = uh->dest;
3635                 break;
3636         }
3637
3638         case IPPROTO_DCCP: {
3639                 struct dccp_hdr _dccph, *dh;
3640
3641                 if (ntohs(ih->frag_off) & IP_OFFSET)
3642                         break;
3643
3644                 offset += ihlen;
3645                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3646                 if (dh == NULL)
3647                         break;
3648
3649                 ad->u.net->sport = dh->dccph_sport;
3650                 ad->u.net->dport = dh->dccph_dport;
3651                 break;
3652         }
3653
3654         default:
3655                 break;
3656         }
3657 out:
3658         return ret;
3659 }
3660
3661 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3662
3663 /* Returns error only if unable to parse addresses */
3664 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3665                         struct common_audit_data *ad, u8 *proto)
3666 {
3667         u8 nexthdr;
3668         int ret = -EINVAL, offset;
3669         struct ipv6hdr _ipv6h, *ip6;
3670         __be16 frag_off;
3671
3672         offset = skb_network_offset(skb);
3673         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3674         if (ip6 == NULL)
3675                 goto out;
3676
3677         ad->u.net->v6info.saddr = ip6->saddr;
3678         ad->u.net->v6info.daddr = ip6->daddr;
3679         ret = 0;
3680
3681         nexthdr = ip6->nexthdr;
3682         offset += sizeof(_ipv6h);
3683         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3684         if (offset < 0)
3685                 goto out;
3686
3687         if (proto)
3688                 *proto = nexthdr;
3689
3690         switch (nexthdr) {
3691         case IPPROTO_TCP: {
3692                 struct tcphdr _tcph, *th;
3693
3694                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3695                 if (th == NULL)
3696                         break;
3697
3698                 ad->u.net->sport = th->source;
3699                 ad->u.net->dport = th->dest;
3700                 break;
3701         }
3702
3703         case IPPROTO_UDP: {
3704                 struct udphdr _udph, *uh;
3705
3706                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3707                 if (uh == NULL)
3708                         break;
3709
3710                 ad->u.net->sport = uh->source;
3711                 ad->u.net->dport = uh->dest;
3712                 break;
3713         }
3714
3715         case IPPROTO_DCCP: {
3716                 struct dccp_hdr _dccph, *dh;
3717
3718                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3719                 if (dh == NULL)
3720                         break;
3721
3722                 ad->u.net->sport = dh->dccph_sport;
3723                 ad->u.net->dport = dh->dccph_dport;
3724                 break;
3725         }
3726
3727         /* includes fragments */
3728         default:
3729                 break;
3730         }
3731 out:
3732         return ret;
3733 }
3734
3735 #endif /* IPV6 */
3736
3737 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3738                              char **_addrp, int src, u8 *proto)
3739 {
3740         char *addrp;
3741         int ret;
3742
3743         switch (ad->u.net->family) {
3744         case PF_INET:
3745                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3746                 if (ret)
3747                         goto parse_error;
3748                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3749                                        &ad->u.net->v4info.daddr);
3750                 goto okay;
3751
3752 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3753         case PF_INET6:
3754                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3755                 if (ret)
3756                         goto parse_error;
3757                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3758                                        &ad->u.net->v6info.daddr);
3759                 goto okay;
3760 #endif  /* IPV6 */
3761         default:
3762                 addrp = NULL;
3763                 goto okay;
3764         }
3765
3766 parse_error:
3767         printk(KERN_WARNING
3768                "SELinux: failure in selinux_parse_skb(),"
3769                " unable to parse packet\n");
3770         return ret;
3771
3772 okay:
3773         if (_addrp)
3774                 *_addrp = addrp;
3775         return 0;
3776 }
3777
3778 /**
3779  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3780  * @skb: the packet
3781  * @family: protocol family
3782  * @sid: the packet's peer label SID
3783  *
3784  * Description:
3785  * Check the various different forms of network peer labeling and determine
3786  * the peer label/SID for the packet; most of the magic actually occurs in
3787  * the security server function security_net_peersid_cmp().  The function
3788  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3789  * or -EACCES if @sid is invalid due to inconsistencies with the different
3790  * peer labels.
3791  *
3792  */
3793 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3794 {
3795         int err;
3796         u32 xfrm_sid;
3797         u32 nlbl_sid;
3798         u32 nlbl_type;
3799
3800         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3801         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3802
3803         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3804         if (unlikely(err)) {
3805                 printk(KERN_WARNING
3806                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3807                        " unable to determine packet's peer label\n");
3808                 return -EACCES;
3809         }
3810
3811         return 0;
3812 }
3813
3814 /* socket security operations */
3815
3816 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3817                                  u16 secclass, u32 *socksid)
3818 {
3819         if (tsec->sockcreate_sid > SECSID_NULL) {
3820                 *socksid = tsec->sockcreate_sid;
3821                 return 0;
3822         }
3823
3824         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3825                                        socksid);
3826 }
3827
3828 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3829 {
3830         struct sk_security_struct *sksec = sk->sk_security;
3831         struct common_audit_data ad;
3832         struct lsm_network_audit net = {0,};
3833         u32 tsid = task_sid(task);
3834
3835         if (sksec->sid == SECINITSID_KERNEL)
3836                 return 0;
3837
3838         ad.type = LSM_AUDIT_DATA_NET;
3839         ad.u.net = &net;
3840         ad.u.net->sk = sk;
3841
3842         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3843 }
3844
3845 static int selinux_socket_create(int family, int type,
3846                                  int protocol, int kern)
3847 {
3848         const struct task_security_struct *tsec = current_security();
3849         u32 newsid;
3850         u16 secclass;
3851         int rc;
3852
3853         if (kern)
3854                 return 0;
3855
3856         secclass = socket_type_to_security_class(family, type, protocol);
3857         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3858         if (rc)
3859                 return rc;
3860
3861         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3862 }
3863
3864 static int selinux_socket_post_create(struct socket *sock, int family,
3865                                       int type, int protocol, int kern)
3866 {
3867         const struct task_security_struct *tsec = current_security();
3868         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3869         struct sk_security_struct *sksec;
3870         int err = 0;
3871
3872         isec->sclass = socket_type_to_security_class(family, type, protocol);
3873
3874         if (kern)
3875                 isec->sid = SECINITSID_KERNEL;
3876         else {
3877                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3878                 if (err)
3879                         return err;
3880         }
3881
3882         isec->initialized = 1;
3883
3884         if (sock->sk) {
3885                 sksec = sock->sk->sk_security;
3886                 sksec->sid = isec->sid;
3887                 sksec->sclass = isec->sclass;
3888                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3889         }
3890
3891         return err;
3892 }
3893
3894 /* Range of port numbers used to automatically bind.
3895    Need to determine whether we should perform a name_bind
3896    permission check between the socket and the port number. */
3897
3898 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3899 {
3900         struct sock *sk = sock->sk;
3901         u16 family;
3902         int err;
3903
3904         err = sock_has_perm(current, sk, SOCKET__BIND);
3905         if (err)
3906                 goto out;
3907
3908         /*
3909          * If PF_INET or PF_INET6, check name_bind permission for the port.
3910          * Multiple address binding for SCTP is not supported yet: we just
3911          * check the first address now.
3912          */
3913         family = sk->sk_family;
3914         if (family == PF_INET || family == PF_INET6) {
3915                 char *addrp;
3916                 struct sk_security_struct *sksec = sk->sk_security;
3917                 struct common_audit_data ad;
3918                 struct lsm_network_audit net = {0,};
3919                 struct sockaddr_in *addr4 = NULL;
3920                 struct sockaddr_in6 *addr6 = NULL;
3921                 unsigned short snum;
3922                 u32 sid, node_perm;
3923
3924                 if (family == PF_INET) {
3925                         addr4 = (struct sockaddr_in *)address;
3926                         snum = ntohs(addr4->sin_port);
3927                         addrp = (char *)&addr4->sin_addr.s_addr;
3928                 } else {
3929                         addr6 = (struct sockaddr_in6 *)address;
3930                         snum = ntohs(addr6->sin6_port);
3931                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3932                 }
3933
3934                 if (snum) {
3935                         int low, high;
3936
3937                         inet_get_local_port_range(&low, &high);
3938
3939                         if (snum < max(PROT_SOCK, low) || snum > high) {
3940                                 err = sel_netport_sid(sk->sk_protocol,
3941                                                       snum, &sid);
3942                                 if (err)
3943                                         goto out;
3944                                 ad.type = LSM_AUDIT_DATA_NET;
3945                                 ad.u.net = &net;
3946                                 ad.u.net->sport = htons(snum);
3947                                 ad.u.net->family = family;
3948                                 err = avc_has_perm(sksec->sid, sid,
3949                                                    sksec->sclass,
3950                                                    SOCKET__NAME_BIND, &ad);
3951                                 if (err)
3952                                         goto out;
3953                         }
3954                 }
3955
3956                 switch (sksec->sclass) {
3957                 case SECCLASS_TCP_SOCKET:
3958                         node_perm = TCP_SOCKET__NODE_BIND;
3959                         break;
3960
3961                 case SECCLASS_UDP_SOCKET:
3962                         node_perm = UDP_SOCKET__NODE_BIND;
3963                         break;
3964
3965                 case SECCLASS_DCCP_SOCKET:
3966                         node_perm = DCCP_SOCKET__NODE_BIND;
3967                         break;
3968
3969                 default:
3970                         node_perm = RAWIP_SOCKET__NODE_BIND;
3971                         break;
3972                 }
3973
3974                 err = sel_netnode_sid(addrp, family, &sid);
3975                 if (err)
3976                         goto out;
3977
3978                 ad.type = LSM_AUDIT_DATA_NET;
3979                 ad.u.net = &net;
3980                 ad.u.net->sport = htons(snum);
3981                 ad.u.net->family = family;
3982
3983                 if (family == PF_INET)
3984                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3985                 else
3986                         ad.u.net->v6info.saddr = addr6->sin6_addr;
3987
3988                 err = avc_has_perm(sksec->sid, sid,
3989                                    sksec->sclass, node_perm, &ad);
3990                 if (err)
3991                         goto out;
3992         }
3993 out:
3994         return err;
3995 }
3996
3997 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3998 {
3999         struct sock *sk = sock->sk;
4000         struct sk_security_struct *sksec = sk->sk_security;
4001         int err;
4002
4003         err = sock_has_perm(current, sk, SOCKET__CONNECT);
4004         if (err)
4005                 return err;
4006
4007         /*
4008          * If a TCP or DCCP socket, check name_connect permission for the port.
4009          */
4010         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4011             sksec->sclass == SECCLASS_DCCP_SOCKET) {
4012                 struct common_audit_data ad;
4013                 struct lsm_network_audit net = {0,};
4014                 struct sockaddr_in *addr4 = NULL;
4015                 struct sockaddr_in6 *addr6 = NULL;
4016                 unsigned short snum;
4017                 u32 sid, perm;
4018
4019                 if (sk->sk_family == PF_INET) {
4020                         addr4 = (struct sockaddr_in *)address;
4021                         if (addrlen < sizeof(struct sockaddr_in))
4022                                 return -EINVAL;
4023                         snum = ntohs(addr4->sin_port);
4024                 } else {
4025                         addr6 = (struct sockaddr_in6 *)address;
4026                         if (addrlen < SIN6_LEN_RFC2133)
4027                                 return -EINVAL;
4028                         snum = ntohs(addr6->sin6_port);
4029                 }
4030
4031                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4032                 if (err)
4033                         goto out;
4034
4035                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4036                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4037
4038                 ad.type = LSM_AUDIT_DATA_NET;
4039                 ad.u.net = &net;
4040                 ad.u.net->dport = htons(snum);
4041                 ad.u.net->family = sk->sk_family;
4042                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4043                 if (err)
4044                         goto out;
4045         }
4046
4047         err = selinux_netlbl_socket_connect(sk, address);
4048
4049 out:
4050         return err;
4051 }
4052
4053 static int selinux_socket_listen(struct socket *sock, int backlog)
4054 {
4055         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4056 }
4057
4058 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4059 {
4060         int err;
4061         struct inode_security_struct *isec;
4062         struct inode_security_struct *newisec;
4063
4064         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4065         if (err)
4066                 return err;
4067
4068         newisec = SOCK_INODE(newsock)->i_security;
4069
4070         isec = SOCK_INODE(sock)->i_security;
4071         newisec->sclass = isec->sclass;
4072         newisec->sid = isec->sid;
4073         newisec->initialized = 1;
4074
4075         return 0;
4076 }
4077
4078 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4079                                   int size)
4080 {
4081         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4082 }
4083
4084 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4085                                   int size, int flags)
4086 {
4087         return sock_has_perm(current, sock->sk, SOCKET__READ);
4088 }
4089
4090 static int selinux_socket_getsockname(struct socket *sock)
4091 {
4092         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4093 }
4094
4095 static int selinux_socket_getpeername(struct socket *sock)
4096 {
4097         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4098 }
4099
4100 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4101 {
4102         int err;
4103
4104         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4105         if (err)
4106                 return err;
4107
4108         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4109 }
4110
4111 static int selinux_socket_getsockopt(struct socket *sock, int level,
4112                                      int optname)
4113 {
4114         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4115 }
4116
4117 static int selinux_socket_shutdown(struct socket *sock, int how)
4118 {
4119         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4120 }
4121
4122 static int selinux_socket_unix_stream_connect(struct sock *sock,
4123                                               struct sock *other,
4124                                               struct sock *newsk)
4125 {
4126         struct sk_security_struct *sksec_sock = sock->sk_security;
4127         struct sk_security_struct *sksec_other = other->sk_security;
4128         struct sk_security_struct *sksec_new = newsk->sk_security;
4129         struct common_audit_data ad;
4130         struct lsm_network_audit net = {0,};
4131         int err;
4132
4133         ad.type = LSM_AUDIT_DATA_NET;
4134         ad.u.net = &net;
4135         ad.u.net->sk = other;
4136
4137         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4138                            sksec_other->sclass,
4139                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4140         if (err)
4141                 return err;
4142
4143         /* server child socket */
4144         sksec_new->peer_sid = sksec_sock->sid;
4145         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4146                                     &sksec_new->sid);
4147         if (err)
4148                 return err;
4149
4150         /* connecting socket */
4151         sksec_sock->peer_sid = sksec_new->sid;
4152
4153         return 0;
4154 }
4155
4156 static int selinux_socket_unix_may_send(struct socket *sock,
4157                                         struct socket *other)
4158 {
4159         struct sk_security_struct *ssec = sock->sk->sk_security;
4160         struct sk_security_struct *osec = other->sk->sk_security;
4161         struct common_audit_data ad;
4162         struct lsm_network_audit net = {0,};
4163
4164         ad.type = LSM_AUDIT_DATA_NET;
4165         ad.u.net = &net;
4166         ad.u.net->sk = other->sk;
4167
4168         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4169                             &ad);
4170 }
4171
4172 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4173                                     u32 peer_sid,
4174                                     struct common_audit_data *ad)
4175 {
4176         int err;
4177         u32 if_sid;
4178         u32 node_sid;
4179
4180         err = sel_netif_sid(ifindex, &if_sid);
4181         if (err)
4182                 return err;
4183         err = avc_has_perm(peer_sid, if_sid,
4184                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4185         if (err)
4186                 return err;
4187
4188         err = sel_netnode_sid(addrp, family, &node_sid);
4189         if (err)
4190                 return err;
4191         return avc_has_perm(peer_sid, node_sid,
4192                             SECCLASS_NODE, NODE__RECVFROM, ad);
4193 }
4194
4195 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4196                                        u16 family)
4197 {
4198         int err = 0;
4199         struct sk_security_struct *sksec = sk->sk_security;
4200         u32 sk_sid = sksec->sid;
4201         struct common_audit_data ad;
4202         struct lsm_network_audit net = {0,};
4203         char *addrp;
4204
4205         ad.type = LSM_AUDIT_DATA_NET;
4206         ad.u.net = &net;
4207         ad.u.net->netif = skb->skb_iif;
4208         ad.u.net->family = family;
4209         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4210         if (err)
4211                 return err;
4212
4213         if (selinux_secmark_enabled()) {
4214                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4215                                    PACKET__RECV, &ad);
4216                 if (err)
4217                         return err;
4218         }
4219
4220         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4221         if (err)
4222                 return err;
4223         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4224
4225         return err;
4226 }
4227
4228 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4229 {
4230         int err;
4231         struct sk_security_struct *sksec = sk->sk_security;
4232         u16 family = sk->sk_family;
4233         u32 sk_sid = sksec->sid;
4234         struct common_audit_data ad;
4235         struct lsm_network_audit net = {0,};
4236         char *addrp;
4237         u8 secmark_active;
4238         u8 peerlbl_active;
4239
4240         if (family != PF_INET && family != PF_INET6)
4241                 return 0;
4242
4243         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4244         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4245                 family = PF_INET;
4246
4247         /* If any sort of compatibility mode is enabled then handoff processing
4248          * to the selinux_sock_rcv_skb_compat() function to deal with the
4249          * special handling.  We do this in an attempt to keep this function
4250          * as fast and as clean as possible. */
4251         if (!selinux_policycap_netpeer)
4252                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4253
4254         secmark_active = selinux_secmark_enabled();
4255         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4256         if (!secmark_active && !peerlbl_active)
4257                 return 0;
4258
4259         ad.type = LSM_AUDIT_DATA_NET;
4260         ad.u.net = &net;
4261         ad.u.net->netif = skb->skb_iif;
4262         ad.u.net->family = family;
4263         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4264         if (err)
4265                 return err;
4266
4267         if (peerlbl_active) {
4268                 u32 peer_sid;
4269
4270                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4271                 if (err)
4272                         return err;
4273                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4274                                                peer_sid, &ad);
4275                 if (err) {
4276                         selinux_netlbl_err(skb, err, 0);
4277                         return err;
4278                 }
4279                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4280                                    PEER__RECV, &ad);
4281                 if (err)
4282                         selinux_netlbl_err(skb, err, 0);
4283         }
4284
4285         if (secmark_active) {
4286                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4287                                    PACKET__RECV, &ad);
4288                 if (err)
4289                         return err;
4290         }
4291
4292         return err;
4293 }
4294
4295 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4296                                             int __user *optlen, unsigned len)
4297 {
4298         int err = 0;
4299         char *scontext;
4300         u32 scontext_len;
4301         struct sk_security_struct *sksec = sock->sk->sk_security;
4302         u32 peer_sid = SECSID_NULL;
4303
4304         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4305             sksec->sclass == SECCLASS_TCP_SOCKET)
4306                 peer_sid = sksec->peer_sid;
4307         if (peer_sid == SECSID_NULL)
4308                 return -ENOPROTOOPT;
4309
4310         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4311         if (err)
4312                 return err;
4313
4314         if (scontext_len > len) {
4315                 err = -ERANGE;
4316                 goto out_len;
4317         }
4318
4319         if (copy_to_user(optval, scontext, scontext_len))
4320                 err = -EFAULT;
4321
4322 out_len:
4323         if (put_user(scontext_len, optlen))
4324                 err = -EFAULT;
4325         kfree(scontext);
4326         return err;
4327 }
4328
4329 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4330 {
4331         u32 peer_secid = SECSID_NULL;
4332         u16 family;
4333
4334         if (skb && skb->protocol == htons(ETH_P_IP))
4335                 family = PF_INET;
4336         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4337                 family = PF_INET6;
4338         else if (sock)
4339                 family = sock->sk->sk_family;
4340         else
4341                 goto out;
4342
4343         if (sock && family == PF_UNIX)
4344                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4345         else if (skb)
4346                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4347
4348 out:
4349         *secid = peer_secid;
4350         if (peer_secid == SECSID_NULL)
4351                 return -EINVAL;
4352         return 0;
4353 }
4354
4355 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4356 {
4357         struct sk_security_struct *sksec;
4358
4359         sksec = kzalloc(sizeof(*sksec), priority);
4360         if (!sksec)
4361                 return -ENOMEM;
4362
4363         sksec->peer_sid = SECINITSID_UNLABELED;
4364         sksec->sid = SECINITSID_UNLABELED;
4365         selinux_netlbl_sk_security_reset(sksec);
4366         sk->sk_security = sksec;
4367
4368         return 0;
4369 }
4370
4371 static void selinux_sk_free_security(struct sock *sk)
4372 {
4373         struct sk_security_struct *sksec = sk->sk_security;
4374
4375         sk->sk_security = NULL;
4376         selinux_netlbl_sk_security_free(sksec);
4377         kfree(sksec);
4378 }
4379
4380 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4381 {
4382         struct sk_security_struct *sksec = sk->sk_security;
4383         struct sk_security_struct *newsksec = newsk->sk_security;
4384
4385         newsksec->sid = sksec->sid;
4386         newsksec->peer_sid = sksec->peer_sid;
4387         newsksec->sclass = sksec->sclass;
4388
4389         selinux_netlbl_sk_security_reset(newsksec);
4390 }
4391
4392 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4393 {
4394         if (!sk)
4395                 *secid = SECINITSID_ANY_SOCKET;
4396         else {
4397                 struct sk_security_struct *sksec = sk->sk_security;
4398
4399                 *secid = sksec->sid;
4400         }
4401 }
4402
4403 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4404 {
4405         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4406         struct sk_security_struct *sksec = sk->sk_security;
4407
4408         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4409             sk->sk_family == PF_UNIX)
4410                 isec->sid = sksec->sid;
4411         sksec->sclass = isec->sclass;
4412 }
4413
4414 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4415                                      struct request_sock *req)
4416 {
4417         struct sk_security_struct *sksec = sk->sk_security;
4418         int err;
4419         u16 family = sk->sk_family;
4420         u32 newsid;
4421         u32 peersid;
4422
4423         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4424         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4425                 family = PF_INET;
4426
4427         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4428         if (err)
4429                 return err;
4430         if (peersid == SECSID_NULL) {
4431                 req->secid = sksec->sid;
4432                 req->peer_secid = SECSID_NULL;
4433         } else {
4434                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4435                 if (err)
4436                         return err;
4437                 req->secid = newsid;
4438                 req->peer_secid = peersid;
4439         }
4440
4441         return selinux_netlbl_inet_conn_request(req, family);
4442 }
4443
4444 static void selinux_inet_csk_clone(struct sock *newsk,
4445                                    const struct request_sock *req)
4446 {
4447         struct sk_security_struct *newsksec = newsk->sk_security;
4448
4449         newsksec->sid = req->secid;
4450         newsksec->peer_sid = req->peer_secid;
4451         /* NOTE: Ideally, we should also get the isec->sid for the
4452            new socket in sync, but we don't have the isec available yet.
4453            So we will wait until sock_graft to do it, by which
4454            time it will have been created and available. */
4455
4456         /* We don't need to take any sort of lock here as we are the only
4457          * thread with access to newsksec */
4458         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4459 }
4460
4461 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4462 {
4463         u16 family = sk->sk_family;
4464         struct sk_security_struct *sksec = sk->sk_security;
4465
4466         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4467         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4468                 family = PF_INET;
4469
4470         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4471 }
4472
4473 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4474 {
4475         skb_set_owner_w(skb, sk);
4476 }
4477
4478 static int selinux_secmark_relabel_packet(u32 sid)
4479 {
4480         const struct task_security_struct *__tsec;
4481         u32 tsid;
4482
4483         __tsec = current_security();
4484         tsid = __tsec->sid;
4485
4486         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4487 }
4488
4489 static void selinux_secmark_refcount_inc(void)
4490 {
4491         atomic_inc(&selinux_secmark_refcount);
4492 }
4493
4494 static void selinux_secmark_refcount_dec(void)
4495 {
4496         atomic_dec(&selinux_secmark_refcount);
4497 }
4498
4499 static void selinux_req_classify_flow(const struct request_sock *req,
4500                                       struct flowi *fl)
4501 {
4502         fl->flowi_secid = req->secid;
4503 }
4504
4505 static int selinux_tun_dev_alloc_security(void **security)
4506 {
4507         struct tun_security_struct *tunsec;
4508
4509         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4510         if (!tunsec)
4511                 return -ENOMEM;
4512         tunsec->sid = current_sid();
4513
4514         *security = tunsec;
4515         return 0;
4516 }
4517
4518 static void selinux_tun_dev_free_security(void *security)
4519 {
4520         kfree(security);
4521 }
4522
4523 static int selinux_tun_dev_create(void)
4524 {
4525         u32 sid = current_sid();
4526
4527         /* we aren't taking into account the "sockcreate" SID since the socket
4528          * that is being created here is not a socket in the traditional sense,
4529          * instead it is a private sock, accessible only to the kernel, and
4530          * representing a wide range of network traffic spanning multiple
4531          * connections unlike traditional sockets - check the TUN driver to
4532          * get a better understanding of why this socket is special */
4533
4534         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4535                             NULL);
4536 }
4537
4538 static int selinux_tun_dev_attach_queue(void *security)
4539 {
4540         struct tun_security_struct *tunsec = security;
4541
4542         return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4543                             TUN_SOCKET__ATTACH_QUEUE, NULL);
4544 }
4545
4546 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4547 {
4548         struct tun_security_struct *tunsec = security;
4549         struct sk_security_struct *sksec = sk->sk_security;
4550
4551         /* we don't currently perform any NetLabel based labeling here and it
4552          * isn't clear that we would want to do so anyway; while we could apply
4553          * labeling without the support of the TUN user the resulting labeled
4554          * traffic from the other end of the connection would almost certainly
4555          * cause confusion to the TUN user that had no idea network labeling
4556          * protocols were being used */
4557
4558         sksec->sid = tunsec->sid;
4559         sksec->sclass = SECCLASS_TUN_SOCKET;
4560
4561         return 0;
4562 }
4563
4564 static int selinux_tun_dev_open(void *security)
4565 {
4566         struct tun_security_struct *tunsec = security;
4567         u32 sid = current_sid();
4568         int err;
4569
4570         err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4571                            TUN_SOCKET__RELABELFROM, NULL);
4572         if (err)
4573                 return err;
4574         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4575                            TUN_SOCKET__RELABELTO, NULL);
4576         if (err)
4577                 return err;
4578         tunsec->sid = sid;
4579
4580         return 0;
4581 }
4582
4583 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4584 {
4585         int err = 0;
4586         u32 perm;
4587         struct nlmsghdr *nlh;
4588         struct sk_security_struct *sksec = sk->sk_security;
4589
4590         if (skb->len < NLMSG_HDRLEN) {
4591                 err = -EINVAL;
4592                 goto out;
4593         }
4594         nlh = nlmsg_hdr(skb);
4595
4596         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4597         if (err) {
4598                 if (err == -EINVAL) {
4599                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4600                                   "SELinux:  unrecognized netlink message"
4601                                   " type=%hu for sclass=%hu\n",
4602                                   nlh->nlmsg_type, sksec->sclass);
4603                         if (!selinux_enforcing || security_get_allow_unknown())
4604                                 err = 0;
4605                 }
4606
4607                 /* Ignore */
4608                 if (err == -ENOENT)
4609                         err = 0;
4610                 goto out;
4611         }
4612
4613         err = sock_has_perm(current, sk, perm);
4614 out:
4615         return err;
4616 }
4617
4618 #ifdef CONFIG_NETFILTER
4619
4620 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4621                                        u16 family)
4622 {
4623         int err;
4624         char *addrp;
4625         u32 peer_sid;
4626         struct common_audit_data ad;
4627         struct lsm_network_audit net = {0,};
4628         u8 secmark_active;
4629         u8 netlbl_active;
4630         u8 peerlbl_active;
4631
4632         if (!selinux_policycap_netpeer)
4633                 return NF_ACCEPT;
4634
4635         secmark_active = selinux_secmark_enabled();
4636         netlbl_active = netlbl_enabled();
4637         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4638         if (!secmark_active && !peerlbl_active)
4639                 return NF_ACCEPT;
4640
4641         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4642                 return NF_DROP;
4643
4644         ad.type = LSM_AUDIT_DATA_NET;
4645         ad.u.net = &net;
4646         ad.u.net->netif = ifindex;
4647         ad.u.net->family = family;
4648         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4649                 return NF_DROP;
4650
4651         if (peerlbl_active) {
4652                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4653                                                peer_sid, &ad);
4654                 if (err) {
4655                         selinux_netlbl_err(skb, err, 1);
4656                         return NF_DROP;
4657                 }
4658         }
4659
4660         if (secmark_active)
4661                 if (avc_has_perm(peer_sid, skb->secmark,
4662                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4663                         return NF_DROP;
4664
4665         if (netlbl_active)
4666                 /* we do this in the FORWARD path and not the POST_ROUTING
4667                  * path because we want to make sure we apply the necessary
4668                  * labeling before IPsec is applied so we can leverage AH
4669                  * protection */
4670                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4671                         return NF_DROP;
4672
4673         return NF_ACCEPT;
4674 }
4675
4676 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4677                                          struct sk_buff *skb,
4678                                          const struct net_device *in,
4679                                          const struct net_device *out,
4680                                          int (*okfn)(struct sk_buff *))
4681 {
4682         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4683 }
4684
4685 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4686 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4687                                          struct sk_buff *skb,
4688                                          const struct net_device *in,
4689                                          const struct net_device *out,
4690                                          int (*okfn)(struct sk_buff *))
4691 {
4692         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4693 }
4694 #endif  /* IPV6 */
4695
4696 static unsigned int selinux_ip_output(struct sk_buff *skb,
4697                                       u16 family)
4698 {
4699         u32 sid;
4700
4701         if (!netlbl_enabled())
4702                 return NF_ACCEPT;
4703
4704         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4705          * because we want to make sure we apply the necessary labeling
4706          * before IPsec is applied so we can leverage AH protection */
4707         if (skb->sk) {
4708                 struct sk_security_struct *sksec = skb->sk->sk_security;
4709                 sid = sksec->sid;
4710         } else
4711                 sid = SECINITSID_KERNEL;
4712         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4713                 return NF_DROP;
4714
4715         return NF_ACCEPT;
4716 }
4717
4718 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4719                                         struct sk_buff *skb,
4720                                         const struct net_device *in,
4721                                         const struct net_device *out,
4722                                         int (*okfn)(struct sk_buff *))
4723 {
4724         return selinux_ip_output(skb, PF_INET);
4725 }
4726
4727 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4728                                                 int ifindex,
4729                                                 u16 family)
4730 {
4731         struct sock *sk = skb->sk;
4732         struct sk_security_struct *sksec;
4733         struct common_audit_data ad;
4734         struct lsm_network_audit net = {0,};
4735         char *addrp;
4736         u8 proto;
4737
4738         if (sk == NULL)
4739                 return NF_ACCEPT;
4740         sksec = sk->sk_security;
4741
4742         ad.type = LSM_AUDIT_DATA_NET;
4743         ad.u.net = &net;
4744         ad.u.net->netif = ifindex;
4745         ad.u.net->family = family;
4746         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4747                 return NF_DROP;
4748
4749         if (selinux_secmark_enabled())
4750                 if (avc_has_perm(sksec->sid, skb->secmark,
4751                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4752                         return NF_DROP_ERR(-ECONNREFUSED);
4753
4754         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4755                 return NF_DROP_ERR(-ECONNREFUSED);
4756
4757         return NF_ACCEPT;
4758 }
4759
4760 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4761                                          u16 family)
4762 {
4763         u32 secmark_perm;
4764         u32 peer_sid;
4765         struct sock *sk;
4766         struct common_audit_data ad;
4767         struct lsm_network_audit net = {0,};
4768         char *addrp;
4769         u8 secmark_active;
4770         u8 peerlbl_active;
4771
4772         /* If any sort of compatibility mode is enabled then handoff processing
4773          * to the selinux_ip_postroute_compat() function to deal with the
4774          * special handling.  We do this in an attempt to keep this function
4775          * as fast and as clean as possible. */
4776         if (!selinux_policycap_netpeer)
4777                 return selinux_ip_postroute_compat(skb, ifindex, family);
4778 #ifdef CONFIG_XFRM
4779         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4780          * packet transformation so allow the packet to pass without any checks
4781          * since we'll have another chance to perform access control checks
4782          * when the packet is on it's final way out.
4783          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4784          *       is NULL, in this case go ahead and apply access control. */
4785         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4786                 return NF_ACCEPT;
4787 #endif
4788         secmark_active = selinux_secmark_enabled();
4789         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4790         if (!secmark_active && !peerlbl_active)
4791                 return NF_ACCEPT;
4792
4793         /* if the packet is being forwarded then get the peer label from the
4794          * packet itself; otherwise check to see if it is from a local
4795          * application or the kernel, if from an application get the peer label
4796          * from the sending socket, otherwise use the kernel's sid */
4797         sk = skb->sk;
4798         if (sk == NULL) {
4799                 if (skb->skb_iif) {
4800                         secmark_perm = PACKET__FORWARD_OUT;
4801                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4802                                 return NF_DROP;
4803                 } else {
4804                         secmark_perm = PACKET__SEND;
4805                         peer_sid = SECINITSID_KERNEL;
4806                 }
4807         } else {
4808                 struct sk_security_struct *sksec = sk->sk_security;
4809                 peer_sid = sksec->sid;
4810                 secmark_perm = PACKET__SEND;
4811         }
4812
4813         ad.type = LSM_AUDIT_DATA_NET;
4814         ad.u.net = &net;
4815         ad.u.net->netif = ifindex;
4816         ad.u.net->family = family;
4817         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4818                 return NF_DROP;
4819
4820         if (secmark_active)
4821                 if (avc_has_perm(peer_sid, skb->secmark,
4822                                  SECCLASS_PACKET, secmark_perm, &ad))
4823                         return NF_DROP_ERR(-ECONNREFUSED);
4824
4825         if (peerlbl_active) {
4826                 u32 if_sid;
4827                 u32 node_sid;
4828
4829                 if (sel_netif_sid(ifindex, &if_sid))
4830                         return NF_DROP;
4831                 if (avc_has_perm(peer_sid, if_sid,
4832                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4833                         return NF_DROP_ERR(-ECONNREFUSED);
4834
4835                 if (sel_netnode_sid(addrp, family, &node_sid))
4836                         return NF_DROP;
4837                 if (avc_has_perm(peer_sid, node_sid,
4838                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4839                         return NF_DROP_ERR(-ECONNREFUSED);
4840         }
4841
4842         return NF_ACCEPT;
4843 }
4844
4845 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4846                                            struct sk_buff *skb,
4847                                            const struct net_device *in,
4848                                            const struct net_device *out,
4849                                            int (*okfn)(struct sk_buff *))
4850 {
4851         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4852 }
4853
4854 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4855 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4856                                            struct sk_buff *skb,
4857                                            const struct net_device *in,
4858                                            const struct net_device *out,
4859                                            int (*okfn)(struct sk_buff *))
4860 {
4861         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4862 }
4863 #endif  /* IPV6 */
4864
4865 #endif  /* CONFIG_NETFILTER */
4866
4867 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4868 {
4869         int err;
4870
4871         err = cap_netlink_send(sk, skb);
4872         if (err)
4873                 return err;
4874
4875         return selinux_nlmsg_perm(sk, skb);
4876 }
4877
4878 static int ipc_alloc_security(struct task_struct *task,
4879                               struct kern_ipc_perm *perm,
4880                               u16 sclass)
4881 {
4882         struct ipc_security_struct *isec;
4883         u32 sid;
4884
4885         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4886         if (!isec)
4887                 return -ENOMEM;
4888
4889         sid = task_sid(task);
4890         isec->sclass = sclass;
4891         isec->sid = sid;
4892         perm->security = isec;
4893
4894         return 0;
4895 }
4896
4897 static void ipc_free_security(struct kern_ipc_perm *perm)
4898 {
4899         struct ipc_security_struct *isec = perm->security;
4900         perm->security = NULL;
4901         kfree(isec);
4902 }
4903
4904 static int msg_msg_alloc_security(struct msg_msg *msg)
4905 {
4906         struct msg_security_struct *msec;
4907
4908         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4909         if (!msec)
4910                 return -ENOMEM;
4911
4912         msec->sid = SECINITSID_UNLABELED;
4913         msg->security = msec;
4914
4915         return 0;
4916 }
4917
4918 static void msg_msg_free_security(struct msg_msg *msg)
4919 {
4920         struct msg_security_struct *msec = msg->security;
4921
4922         msg->security = NULL;
4923         kfree(msec);
4924 }
4925
4926 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4927                         u32 perms)
4928 {
4929         struct ipc_security_struct *isec;
4930         struct common_audit_data ad;
4931         u32 sid = current_sid();
4932
4933         isec = ipc_perms->security;
4934
4935         ad.type = LSM_AUDIT_DATA_IPC;
4936         ad.u.ipc_id = ipc_perms->key;
4937
4938         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4939 }
4940
4941 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4942 {
4943         return msg_msg_alloc_security(msg);
4944 }
4945
4946 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4947 {
4948         msg_msg_free_security(msg);
4949 }
4950
4951 /* message queue security operations */
4952 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4953 {
4954         struct ipc_security_struct *isec;
4955         struct common_audit_data ad;
4956         u32 sid = current_sid();
4957         int rc;
4958
4959         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4960         if (rc)
4961                 return rc;
4962
4963         isec = msq->q_perm.security;
4964
4965         ad.type = LSM_AUDIT_DATA_IPC;
4966         ad.u.ipc_id = msq->q_perm.key;
4967
4968         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4969                           MSGQ__CREATE, &ad);
4970         if (rc) {
4971                 ipc_free_security(&msq->q_perm);
4972                 return rc;
4973         }
4974         return 0;
4975 }
4976
4977 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4978 {
4979         ipc_free_security(&msq->q_perm);
4980 }
4981
4982 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4983 {
4984         struct ipc_security_struct *isec;
4985         struct common_audit_data ad;
4986         u32 sid = current_sid();
4987
4988         isec = msq->q_perm.security;
4989
4990         ad.type = LSM_AUDIT_DATA_IPC;
4991         ad.u.ipc_id = msq->q_perm.key;
4992
4993         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4994                             MSGQ__ASSOCIATE, &ad);
4995 }
4996
4997 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4998 {
4999         int err;
5000         int perms;
5001
5002         switch (cmd) {
5003         case IPC_INFO:
5004         case MSG_INFO:
5005                 /* No specific object, just general system-wide information. */
5006                 return task_has_system(current, SYSTEM__IPC_INFO);
5007         case IPC_STAT:
5008         case MSG_STAT:
5009                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5010                 break;
5011         case IPC_SET:
5012                 perms = MSGQ__SETATTR;
5013                 break;
5014         case IPC_RMID:
5015                 perms = MSGQ__DESTROY;
5016                 break;
5017         default:
5018                 return 0;
5019         }
5020
5021         err = ipc_has_perm(&msq->q_perm, perms);
5022         return err;
5023 }
5024
5025 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5026 {
5027         struct ipc_security_struct *isec;
5028         struct msg_security_struct *msec;
5029         struct common_audit_data ad;
5030         u32 sid = current_sid();
5031         int rc;
5032
5033         isec = msq->q_perm.security;
5034         msec = msg->security;
5035
5036         /*
5037          * First time through, need to assign label to the message
5038          */
5039         if (msec->sid == SECINITSID_UNLABELED) {
5040                 /*
5041                  * Compute new sid based on current process and
5042                  * message queue this message will be stored in
5043                  */
5044                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5045                                              NULL, &msec->sid);
5046                 if (rc)
5047                         return rc;
5048         }
5049
5050         ad.type = LSM_AUDIT_DATA_IPC;
5051         ad.u.ipc_id = msq->q_perm.key;
5052
5053         /* Can this process write to the queue? */
5054         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5055                           MSGQ__WRITE, &ad);
5056         if (!rc)
5057                 /* Can this process send the message */
5058                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5059                                   MSG__SEND, &ad);
5060         if (!rc)
5061                 /* Can the message be put in the queue? */
5062                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5063                                   MSGQ__ENQUEUE, &ad);
5064
5065         return rc;
5066 }
5067
5068 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5069                                     struct task_struct *target,
5070                                     long type, int mode)
5071 {
5072         struct ipc_security_struct *isec;
5073         struct msg_security_struct *msec;
5074         struct common_audit_data ad;
5075         u32 sid = task_sid(target);
5076         int rc;
5077
5078         isec = msq->q_perm.security;
5079         msec = msg->security;
5080
5081         ad.type = LSM_AUDIT_DATA_IPC;
5082         ad.u.ipc_id = msq->q_perm.key;
5083
5084         rc = avc_has_perm(sid, isec->sid,
5085                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5086         if (!rc)
5087                 rc = avc_has_perm(sid, msec->sid,
5088                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5089         return rc;
5090 }
5091
5092 /* Shared Memory security operations */
5093 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5094 {
5095         struct ipc_security_struct *isec;
5096         struct common_audit_data ad;
5097         u32 sid = current_sid();
5098         int rc;
5099
5100         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5101         if (rc)
5102                 return rc;
5103
5104         isec = shp->shm_perm.security;
5105
5106         ad.type = LSM_AUDIT_DATA_IPC;
5107         ad.u.ipc_id = shp->shm_perm.key;
5108
5109         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5110                           SHM__CREATE, &ad);
5111         if (rc) {
5112                 ipc_free_security(&shp->shm_perm);
5113                 return rc;
5114         }
5115         return 0;
5116 }
5117
5118 static void selinux_shm_free_security(struct shmid_kernel *shp)
5119 {
5120         ipc_free_security(&shp->shm_perm);
5121 }
5122
5123 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5124 {
5125         struct ipc_security_struct *isec;
5126         struct common_audit_data ad;
5127         u32 sid = current_sid();
5128
5129         isec = shp->shm_perm.security;
5130
5131         ad.type = LSM_AUDIT_DATA_IPC;
5132         ad.u.ipc_id = shp->shm_perm.key;
5133
5134         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5135                             SHM__ASSOCIATE, &ad);
5136 }
5137
5138 /* Note, at this point, shp is locked down */
5139 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5140 {
5141         int perms;
5142         int err;
5143
5144         switch (cmd) {
5145         case IPC_INFO:
5146         case SHM_INFO:
5147                 /* No specific object, just general system-wide information. */
5148                 return task_has_system(current, SYSTEM__IPC_INFO);
5149         case IPC_STAT:
5150         case SHM_STAT:
5151                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5152                 break;
5153         case IPC_SET:
5154                 perms = SHM__SETATTR;
5155                 break;
5156         case SHM_LOCK:
5157         case SHM_UNLOCK:
5158                 perms = SHM__LOCK;
5159                 break;
5160         case IPC_RMID:
5161                 perms = SHM__DESTROY;
5162                 break;
5163         default:
5164                 return 0;
5165         }
5166
5167         err = ipc_has_perm(&shp->shm_perm, perms);
5168         return err;
5169 }
5170
5171 static int selinux_shm_shmat(struct shmid_kernel *shp,
5172                              char __user *shmaddr, int shmflg)
5173 {
5174         u32 perms;
5175
5176         if (shmflg & SHM_RDONLY)
5177                 perms = SHM__READ;
5178         else
5179                 perms = SHM__READ | SHM__WRITE;
5180
5181         return ipc_has_perm(&shp->shm_perm, perms);
5182 }
5183
5184 /* Semaphore security operations */
5185 static int selinux_sem_alloc_security(struct sem_array *sma)
5186 {
5187         struct ipc_security_struct *isec;
5188         struct common_audit_data ad;
5189         u32 sid = current_sid();
5190         int rc;
5191
5192         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5193         if (rc)
5194                 return rc;
5195
5196         isec = sma->sem_perm.security;
5197
5198         ad.type = LSM_AUDIT_DATA_IPC;
5199         ad.u.ipc_id = sma->sem_perm.key;
5200
5201         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5202                           SEM__CREATE, &ad);
5203         if (rc) {
5204                 ipc_free_security(&sma->sem_perm);
5205                 return rc;
5206         }
5207         return 0;
5208 }
5209
5210 static void selinux_sem_free_security(struct sem_array *sma)
5211 {
5212         ipc_free_security(&sma->sem_perm);
5213 }
5214
5215 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5216 {
5217         struct ipc_security_struct *isec;
5218         struct common_audit_data ad;
5219         u32 sid = current_sid();
5220
5221         isec = sma->sem_perm.security;
5222
5223         ad.type = LSM_AUDIT_DATA_IPC;
5224         ad.u.ipc_id = sma->sem_perm.key;
5225
5226         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5227                             SEM__ASSOCIATE, &ad);
5228 }
5229
5230 /* Note, at this point, sma is locked down */
5231 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5232 {
5233         int err;
5234         u32 perms;
5235
5236         switch (cmd) {
5237         case IPC_INFO:
5238         case SEM_INFO:
5239                 /* No specific object, just general system-wide information. */
5240                 return task_has_system(current, SYSTEM__IPC_INFO);
5241         case GETPID:
5242         case GETNCNT:
5243         case GETZCNT:
5244                 perms = SEM__GETATTR;
5245                 break;
5246         case GETVAL:
5247         case GETALL:
5248                 perms = SEM__READ;
5249                 break;
5250         case SETVAL:
5251         case SETALL:
5252                 perms = SEM__WRITE;
5253                 break;
5254         case IPC_RMID:
5255                 perms = SEM__DESTROY;
5256                 break;
5257         case IPC_SET:
5258                 perms = SEM__SETATTR;
5259                 break;
5260         case IPC_STAT:
5261         case SEM_STAT:
5262                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5263                 break;
5264         default:
5265                 return 0;
5266         }
5267
5268         err = ipc_has_perm(&sma->sem_perm, perms);
5269         return err;
5270 }
5271
5272 static int selinux_sem_semop(struct sem_array *sma,
5273                              struct sembuf *sops, unsigned nsops, int alter)
5274 {
5275         u32 perms;
5276
5277         if (alter)
5278                 perms = SEM__READ | SEM__WRITE;
5279         else
5280                 perms = SEM__READ;
5281
5282         return ipc_has_perm(&sma->sem_perm, perms);
5283 }
5284
5285 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5286 {
5287         u32 av = 0;
5288
5289         av = 0;
5290         if (flag & S_IRUGO)
5291                 av |= IPC__UNIX_READ;
5292         if (flag & S_IWUGO)
5293                 av |= IPC__UNIX_WRITE;
5294
5295         if (av == 0)
5296                 return 0;
5297
5298         return ipc_has_perm(ipcp, av);
5299 }
5300
5301 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5302 {
5303         struct ipc_security_struct *isec = ipcp->security;
5304         *secid = isec->sid;
5305 }
5306
5307 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5308 {
5309         if (inode)
5310                 inode_doinit_with_dentry(inode, dentry);
5311 }
5312
5313 static int selinux_getprocattr(struct task_struct *p,
5314                                char *name, char **value)
5315 {
5316         const struct task_security_struct *__tsec;
5317         u32 sid;
5318         int error;
5319         unsigned len;
5320
5321         if (current != p) {
5322                 error = current_has_perm(p, PROCESS__GETATTR);
5323                 if (error)
5324                         return error;
5325         }
5326
5327         rcu_read_lock();
5328         __tsec = __task_cred(p)->security;
5329
5330         if (!strcmp(name, "current"))
5331                 sid = __tsec->sid;
5332         else if (!strcmp(name, "prev"))
5333                 sid = __tsec->osid;
5334         else if (!strcmp(name, "exec"))
5335                 sid = __tsec->exec_sid;
5336         else if (!strcmp(name, "fscreate"))
5337                 sid = __tsec->create_sid;
5338         else if (!strcmp(name, "keycreate"))
5339                 sid = __tsec->keycreate_sid;
5340         else if (!strcmp(name, "sockcreate"))
5341                 sid = __tsec->sockcreate_sid;
5342         else
5343                 goto invalid;
5344         rcu_read_unlock();
5345
5346         if (!sid)
5347                 return 0;
5348
5349         error = security_sid_to_context(sid, value, &len);
5350         if (error)
5351                 return error;
5352         return len;
5353
5354 invalid:
5355         rcu_read_unlock();
5356         return -EINVAL;
5357 }
5358
5359 static int selinux_setprocattr(struct task_struct *p,
5360                                char *name, void *value, size_t size)
5361 {
5362         struct task_security_struct *tsec;
5363         struct task_struct *tracer;
5364         struct cred *new;
5365         u32 sid = 0, ptsid;
5366         int error;
5367         char *str = value;
5368
5369         if (current != p) {
5370                 /* SELinux only allows a process to change its own
5371                    security attributes. */
5372                 return -EACCES;
5373         }
5374
5375         /*
5376          * Basic control over ability to set these attributes at all.
5377          * current == p, but we'll pass them separately in case the
5378          * above restriction is ever removed.
5379          */
5380         if (!strcmp(name, "exec"))
5381                 error = current_has_perm(p, PROCESS__SETEXEC);
5382         else if (!strcmp(name, "fscreate"))
5383                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5384         else if (!strcmp(name, "keycreate"))
5385                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5386         else if (!strcmp(name, "sockcreate"))
5387                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5388         else if (!strcmp(name, "current"))
5389                 error = current_has_perm(p, PROCESS__SETCURRENT);
5390         else
5391                 error = -EINVAL;
5392         if (error)
5393                 return error;
5394
5395         /* Obtain a SID for the context, if one was specified. */
5396         if (size && str[1] && str[1] != '\n') {
5397                 if (str[size-1] == '\n') {
5398                         str[size-1] = 0;
5399                         size--;
5400                 }
5401                 error = security_context_to_sid(value, size, &sid);
5402                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5403                         if (!capable(CAP_MAC_ADMIN)) {
5404                                 struct audit_buffer *ab;
5405                                 size_t audit_size;
5406
5407                                 /* We strip a nul only if it is at the end, otherwise the
5408                                  * context contains a nul and we should audit that */
5409                                 if (str[size - 1] == '\0')
5410                                         audit_size = size - 1;
5411                                 else
5412                                         audit_size = size;
5413                                 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5414                                 audit_log_format(ab, "op=fscreate invalid_context=");
5415                                 audit_log_n_untrustedstring(ab, value, audit_size);
5416                                 audit_log_end(ab);
5417
5418                                 return error;
5419                         }
5420                         error = security_context_to_sid_force(value, size,
5421                                                               &sid);
5422                 }
5423                 if (error)
5424                         return error;
5425         }
5426
5427         new = prepare_creds();
5428         if (!new)
5429                 return -ENOMEM;
5430
5431         /* Permission checking based on the specified context is
5432            performed during the actual operation (execve,
5433            open/mkdir/...), when we know the full context of the
5434            operation.  See selinux_bprm_set_creds for the execve
5435            checks and may_create for the file creation checks. The
5436            operation will then fail if the context is not permitted. */
5437         tsec = new->security;
5438         if (!strcmp(name, "exec")) {
5439                 tsec->exec_sid = sid;
5440         } else if (!strcmp(name, "fscreate")) {
5441                 tsec->create_sid = sid;
5442         } else if (!strcmp(name, "keycreate")) {
5443                 error = may_create_key(sid, p);
5444                 if (error)
5445                         goto abort_change;
5446                 tsec->keycreate_sid = sid;
5447         } else if (!strcmp(name, "sockcreate")) {
5448                 tsec->sockcreate_sid = sid;
5449         } else if (!strcmp(name, "current")) {
5450                 error = -EINVAL;
5451                 if (sid == 0)
5452                         goto abort_change;
5453
5454                 /* Only allow single threaded processes to change context */
5455                 error = -EPERM;
5456                 if (!current_is_single_threaded()) {
5457                         error = security_bounded_transition(tsec->sid, sid);
5458                         if (error)
5459                                 goto abort_change;
5460                 }
5461
5462                 /* Check permissions for the transition. */
5463                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5464                                      PROCESS__DYNTRANSITION, NULL);
5465                 if (error)
5466                         goto abort_change;
5467
5468                 /* Check for ptracing, and update the task SID if ok.
5469                    Otherwise, leave SID unchanged and fail. */
5470                 ptsid = 0;
5471                 task_lock(p);
5472                 tracer = ptrace_parent(p);
5473                 if (tracer)
5474                         ptsid = task_sid(tracer);
5475                 task_unlock(p);
5476
5477                 if (tracer) {
5478                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5479                                              PROCESS__PTRACE, NULL);
5480                         if (error)
5481                                 goto abort_change;
5482                 }
5483
5484                 tsec->sid = sid;
5485         } else {
5486                 error = -EINVAL;
5487                 goto abort_change;
5488         }
5489
5490         commit_creds(new);
5491         return size;
5492
5493 abort_change:
5494         abort_creds(new);
5495         return error;
5496 }
5497
5498 static int selinux_ismaclabel(const char *name)
5499 {
5500         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5501 }
5502
5503 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5504 {
5505         return security_sid_to_context(secid, secdata, seclen);
5506 }
5507
5508 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5509 {
5510         return security_context_to_sid(secdata, seclen, secid);
5511 }
5512
5513 static void selinux_release_secctx(char *secdata, u32 seclen)
5514 {
5515         kfree(secdata);
5516 }
5517
5518 /*
5519  *      called with inode->i_mutex locked
5520  */
5521 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5522 {
5523         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5524 }
5525
5526 /*
5527  *      called with inode->i_mutex locked
5528  */
5529 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5530 {
5531         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5532 }
5533
5534 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5535 {
5536         int len = 0;
5537         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5538                                                 ctx, true);
5539         if (len < 0)
5540                 return len;
5541         *ctxlen = len;
5542         return 0;
5543 }
5544 #ifdef CONFIG_KEYS
5545
5546 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5547                              unsigned long flags)
5548 {
5549         const struct task_security_struct *tsec;
5550         struct key_security_struct *ksec;
5551
5552         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5553         if (!ksec)
5554                 return -ENOMEM;
5555
5556         tsec = cred->security;
5557         if (tsec->keycreate_sid)
5558                 ksec->sid = tsec->keycreate_sid;
5559         else
5560                 ksec->sid = tsec->sid;
5561
5562         k->security = ksec;
5563         return 0;
5564 }
5565
5566 static void selinux_key_free(struct key *k)
5567 {
5568         struct key_security_struct *ksec = k->security;
5569
5570         k->security = NULL;
5571         kfree(ksec);
5572 }
5573
5574 static int selinux_key_permission(key_ref_t key_ref,
5575                                   const struct cred *cred,
5576                                   key_perm_t perm)
5577 {
5578         struct key *key;
5579         struct key_security_struct *ksec;
5580         u32 sid;
5581
5582         /* if no specific permissions are requested, we skip the
5583            permission check. No serious, additional covert channels
5584            appear to be created. */
5585         if (perm == 0)
5586                 return 0;
5587
5588         sid = cred_sid(cred);
5589
5590         key = key_ref_to_ptr(key_ref);
5591         ksec = key->security;
5592
5593         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5594 }
5595
5596 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5597 {
5598         struct key_security_struct *ksec = key->security;
5599         char *context = NULL;
5600         unsigned len;
5601         int rc;
5602
5603         rc = security_sid_to_context(ksec->sid, &context, &len);
5604         if (!rc)
5605                 rc = len;
5606         *_buffer = context;
5607         return rc;
5608 }
5609
5610 #endif
5611
5612 static struct security_operations selinux_ops = {
5613         .name =                         "selinux",
5614
5615         .ptrace_access_check =          selinux_ptrace_access_check,
5616         .ptrace_traceme =               selinux_ptrace_traceme,
5617         .capget =                       selinux_capget,
5618         .capset =                       selinux_capset,
5619         .capable =                      selinux_capable,
5620         .quotactl =                     selinux_quotactl,
5621         .quota_on =                     selinux_quota_on,
5622         .syslog =                       selinux_syslog,
5623         .vm_enough_memory =             selinux_vm_enough_memory,
5624
5625         .netlink_send =                 selinux_netlink_send,
5626
5627         .bprm_set_creds =               selinux_bprm_set_creds,
5628         .bprm_committing_creds =        selinux_bprm_committing_creds,
5629         .bprm_committed_creds =         selinux_bprm_committed_creds,
5630         .bprm_secureexec =              selinux_bprm_secureexec,
5631
5632         .sb_alloc_security =            selinux_sb_alloc_security,
5633         .sb_free_security =             selinux_sb_free_security,
5634         .sb_copy_data =                 selinux_sb_copy_data,
5635         .sb_remount =                   selinux_sb_remount,
5636         .sb_kern_mount =                selinux_sb_kern_mount,
5637         .sb_show_options =              selinux_sb_show_options,
5638         .sb_statfs =                    selinux_sb_statfs,
5639         .sb_mount =                     selinux_mount,
5640         .sb_umount =                    selinux_umount,
5641         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5642         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5643         .sb_parse_opts_str =            selinux_parse_opts_str,
5644
5645         .dentry_init_security =         selinux_dentry_init_security,
5646
5647         .inode_alloc_security =         selinux_inode_alloc_security,
5648         .inode_free_security =          selinux_inode_free_security,
5649         .inode_init_security =          selinux_inode_init_security,
5650         .inode_create =                 selinux_inode_create,
5651         .inode_link =                   selinux_inode_link,
5652         .inode_unlink =                 selinux_inode_unlink,
5653         .inode_symlink =                selinux_inode_symlink,
5654         .inode_mkdir =                  selinux_inode_mkdir,
5655         .inode_rmdir =                  selinux_inode_rmdir,
5656         .inode_mknod =                  selinux_inode_mknod,
5657         .inode_rename =                 selinux_inode_rename,
5658         .inode_readlink =               selinux_inode_readlink,
5659         .inode_follow_link =            selinux_inode_follow_link,
5660         .inode_permission =             selinux_inode_permission,
5661         .inode_setattr =                selinux_inode_setattr,
5662         .inode_getattr =                selinux_inode_getattr,
5663         .inode_setxattr =               selinux_inode_setxattr,
5664         .inode_post_setxattr =          selinux_inode_post_setxattr,
5665         .inode_getxattr =               selinux_inode_getxattr,
5666         .inode_listxattr =              selinux_inode_listxattr,
5667         .inode_removexattr =            selinux_inode_removexattr,
5668         .inode_getsecurity =            selinux_inode_getsecurity,
5669         .inode_setsecurity =            selinux_inode_setsecurity,
5670         .inode_listsecurity =           selinux_inode_listsecurity,
5671         .inode_getsecid =               selinux_inode_getsecid,
5672
5673         .file_permission =              selinux_file_permission,
5674         .file_alloc_security =          selinux_file_alloc_security,
5675         .file_free_security =           selinux_file_free_security,
5676         .file_ioctl =                   selinux_file_ioctl,
5677         .mmap_file =                    selinux_mmap_file,
5678         .mmap_addr =                    selinux_mmap_addr,
5679         .file_mprotect =                selinux_file_mprotect,
5680         .file_lock =                    selinux_file_lock,
5681         .file_fcntl =                   selinux_file_fcntl,
5682         .file_set_fowner =              selinux_file_set_fowner,
5683         .file_send_sigiotask =          selinux_file_send_sigiotask,
5684         .file_receive =                 selinux_file_receive,
5685
5686         .file_open =                    selinux_file_open,
5687
5688         .task_create =                  selinux_task_create,
5689         .cred_alloc_blank =             selinux_cred_alloc_blank,
5690         .cred_free =                    selinux_cred_free,
5691         .cred_prepare =                 selinux_cred_prepare,
5692         .cred_transfer =                selinux_cred_transfer,
5693         .kernel_act_as =                selinux_kernel_act_as,
5694         .kernel_create_files_as =       selinux_kernel_create_files_as,
5695         .kernel_module_request =        selinux_kernel_module_request,
5696         .task_setpgid =                 selinux_task_setpgid,
5697         .task_getpgid =                 selinux_task_getpgid,
5698         .task_getsid =                  selinux_task_getsid,
5699         .task_getsecid =                selinux_task_getsecid,
5700         .task_setnice =                 selinux_task_setnice,
5701         .task_setioprio =               selinux_task_setioprio,
5702         .task_getioprio =               selinux_task_getioprio,
5703         .task_setrlimit =               selinux_task_setrlimit,
5704         .task_setscheduler =            selinux_task_setscheduler,
5705         .task_getscheduler =            selinux_task_getscheduler,
5706         .task_movememory =              selinux_task_movememory,
5707         .task_kill =                    selinux_task_kill,
5708         .task_wait =                    selinux_task_wait,
5709         .task_to_inode =                selinux_task_to_inode,
5710
5711         .ipc_permission =               selinux_ipc_permission,
5712         .ipc_getsecid =                 selinux_ipc_getsecid,
5713
5714         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5715         .msg_msg_free_security =        selinux_msg_msg_free_security,
5716
5717         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5718         .msg_queue_free_security =      selinux_msg_queue_free_security,
5719         .msg_queue_associate =          selinux_msg_queue_associate,
5720         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5721         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5722         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5723
5724         .shm_alloc_security =           selinux_shm_alloc_security,
5725         .shm_free_security =            selinux_shm_free_security,
5726         .shm_associate =                selinux_shm_associate,
5727         .shm_shmctl =                   selinux_shm_shmctl,
5728         .shm_shmat =                    selinux_shm_shmat,
5729
5730         .sem_alloc_security =           selinux_sem_alloc_security,
5731         .sem_free_security =            selinux_sem_free_security,
5732         .sem_associate =                selinux_sem_associate,
5733         .sem_semctl =                   selinux_sem_semctl,
5734         .sem_semop =                    selinux_sem_semop,
5735
5736         .d_instantiate =                selinux_d_instantiate,
5737
5738         .getprocattr =                  selinux_getprocattr,
5739         .setprocattr =                  selinux_setprocattr,
5740
5741         .ismaclabel =                   selinux_ismaclabel,
5742         .secid_to_secctx =              selinux_secid_to_secctx,
5743         .secctx_to_secid =              selinux_secctx_to_secid,
5744         .release_secctx =               selinux_release_secctx,
5745         .inode_notifysecctx =           selinux_inode_notifysecctx,
5746         .inode_setsecctx =              selinux_inode_setsecctx,
5747         .inode_getsecctx =              selinux_inode_getsecctx,
5748
5749         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5750         .unix_may_send =                selinux_socket_unix_may_send,
5751
5752         .socket_create =                selinux_socket_create,
5753         .socket_post_create =           selinux_socket_post_create,
5754         .socket_bind =                  selinux_socket_bind,
5755         .socket_connect =               selinux_socket_connect,
5756         .socket_listen =                selinux_socket_listen,
5757         .socket_accept =                selinux_socket_accept,
5758         .socket_sendmsg =               selinux_socket_sendmsg,
5759         .socket_recvmsg =               selinux_socket_recvmsg,
5760         .socket_getsockname =           selinux_socket_getsockname,
5761         .socket_getpeername =           selinux_socket_getpeername,
5762         .socket_getsockopt =            selinux_socket_getsockopt,
5763         .socket_setsockopt =            selinux_socket_setsockopt,
5764         .socket_shutdown =              selinux_socket_shutdown,
5765         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5766         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5767         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5768         .sk_alloc_security =            selinux_sk_alloc_security,
5769         .sk_free_security =             selinux_sk_free_security,
5770         .sk_clone_security =            selinux_sk_clone_security,
5771         .sk_getsecid =                  selinux_sk_getsecid,
5772         .sock_graft =                   selinux_sock_graft,
5773         .inet_conn_request =            selinux_inet_conn_request,
5774         .inet_csk_clone =               selinux_inet_csk_clone,
5775         .inet_conn_established =        selinux_inet_conn_established,
5776         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5777         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5778         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5779         .req_classify_flow =            selinux_req_classify_flow,
5780         .tun_dev_alloc_security =       selinux_tun_dev_alloc_security,
5781         .tun_dev_free_security =        selinux_tun_dev_free_security,
5782         .tun_dev_create =               selinux_tun_dev_create,
5783         .tun_dev_attach_queue =         selinux_tun_dev_attach_queue,
5784         .tun_dev_attach =               selinux_tun_dev_attach,
5785         .tun_dev_open =                 selinux_tun_dev_open,
5786         .skb_owned_by =                 selinux_skb_owned_by,
5787
5788 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5789         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5790         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5791         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5792         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5793         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5794         .xfrm_state_free_security =     selinux_xfrm_state_free,
5795         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5796         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5797         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5798         .xfrm_decode_session =          selinux_xfrm_decode_session,
5799 #endif
5800
5801 #ifdef CONFIG_KEYS
5802         .key_alloc =                    selinux_key_alloc,
5803         .key_free =                     selinux_key_free,
5804         .key_permission =               selinux_key_permission,
5805         .key_getsecurity =              selinux_key_getsecurity,
5806 #endif
5807
5808 #ifdef CONFIG_AUDIT
5809         .audit_rule_init =              selinux_audit_rule_init,
5810         .audit_rule_known =             selinux_audit_rule_known,
5811         .audit_rule_match =             selinux_audit_rule_match,
5812         .audit_rule_free =              selinux_audit_rule_free,
5813 #endif
5814 };
5815
5816 static __init int selinux_init(void)
5817 {
5818         if (!security_module_enable(&selinux_ops)) {
5819                 selinux_enabled = 0;
5820                 return 0;
5821         }
5822
5823         if (!selinux_enabled) {
5824                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5825                 return 0;
5826         }
5827
5828         printk(KERN_INFO "SELinux:  Initializing.\n");
5829
5830         /* Set the security state for the initial task. */
5831         cred_init_security();
5832
5833         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5834
5835         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5836                                             sizeof(struct inode_security_struct),
5837                                             0, SLAB_PANIC, NULL);
5838         avc_init();
5839
5840         if (register_security(&selinux_ops))
5841                 panic("SELinux: Unable to register with kernel.\n");
5842
5843         if (selinux_enforcing)
5844                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5845         else
5846                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5847
5848         return 0;
5849 }
5850
5851 static void delayed_superblock_init(struct super_block *sb, void *unused)
5852 {
5853         superblock_doinit(sb, NULL);
5854 }
5855
5856 void selinux_complete_init(void)
5857 {
5858         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5859
5860         /* Set up any superblocks initialized prior to the policy load. */
5861         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5862         iterate_supers(delayed_superblock_init, NULL);
5863 }
5864
5865 /* SELinux requires early initialization in order to label
5866    all processes and objects when they are created. */
5867 security_initcall(selinux_init);
5868
5869 #if defined(CONFIG_NETFILTER)
5870
5871 static struct nf_hook_ops selinux_ipv4_ops[] = {
5872         {
5873                 .hook =         selinux_ipv4_postroute,
5874                 .owner =        THIS_MODULE,
5875                 .pf =           NFPROTO_IPV4,
5876                 .hooknum =      NF_INET_POST_ROUTING,
5877                 .priority =     NF_IP_PRI_SELINUX_LAST,
5878         },
5879         {
5880                 .hook =         selinux_ipv4_forward,
5881                 .owner =        THIS_MODULE,
5882                 .pf =           NFPROTO_IPV4,
5883                 .hooknum =      NF_INET_FORWARD,
5884                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5885         },
5886         {
5887                 .hook =         selinux_ipv4_output,
5888                 .owner =        THIS_MODULE,
5889                 .pf =           NFPROTO_IPV4,
5890                 .hooknum =      NF_INET_LOCAL_OUT,
5891                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5892         }
5893 };
5894
5895 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5896
5897 static struct nf_hook_ops selinux_ipv6_ops[] = {
5898         {
5899                 .hook =         selinux_ipv6_postroute,
5900                 .owner =        THIS_MODULE,
5901                 .pf =           NFPROTO_IPV6,
5902                 .hooknum =      NF_INET_POST_ROUTING,
5903                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5904         },
5905         {
5906                 .hook =         selinux_ipv6_forward,
5907                 .owner =        THIS_MODULE,
5908                 .pf =           NFPROTO_IPV6,
5909                 .hooknum =      NF_INET_FORWARD,
5910                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5911         }
5912 };
5913
5914 #endif  /* IPV6 */
5915
5916 static int __init selinux_nf_ip_init(void)
5917 {
5918         int err = 0;
5919
5920         if (!selinux_enabled)
5921                 goto out;
5922
5923         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5924
5925         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5926         if (err)
5927                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5928
5929 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5930         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5931         if (err)
5932                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5933 #endif  /* IPV6 */
5934
5935 out:
5936         return err;
5937 }
5938
5939 __initcall(selinux_nf_ip_init);
5940
5941 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5942 static void selinux_nf_ip_exit(void)
5943 {
5944         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5945
5946         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5947 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5948         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5949 #endif  /* IPV6 */
5950 }
5951 #endif
5952
5953 #else /* CONFIG_NETFILTER */
5954
5955 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5956 #define selinux_nf_ip_exit()
5957 #endif
5958
5959 #endif /* CONFIG_NETFILTER */
5960
5961 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5962 static int selinux_disabled;
5963
5964 int selinux_disable(void)
5965 {
5966         if (ss_initialized) {
5967                 /* Not permitted after initial policy load. */
5968                 return -EINVAL;
5969         }
5970
5971         if (selinux_disabled) {
5972                 /* Only do this once. */
5973                 return -EINVAL;
5974         }
5975
5976         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5977
5978         selinux_disabled = 1;
5979         selinux_enabled = 0;
5980
5981         reset_security_ops();
5982
5983         /* Try to destroy the avc node cache */
5984         avc_disable();
5985
5986         /* Unregister netfilter hooks. */
5987         selinux_nf_ip_exit();
5988
5989         /* Unregister selinuxfs. */
5990         exit_sel_fs();
5991
5992         return 0;
5993 }
5994 #endif