Merge branch 'drm-nouveau-fixes' of git://anongit.freedesktop.org/git/nouveau/linux...
[cascardo/linux.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>             /* for local_port_range[] */
54 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
55 #include <net/net_namespace.h>
56 #include <net/netlabel.h>
57 #include <linux/uaccess.h>
58 #include <asm/ioctls.h>
59 #include <linux/atomic.h>
60 #include <linux/bitops.h>
61 #include <linux/interrupt.h>
62 #include <linux/netdevice.h>    /* for network interface checks */
63 #include <linux/netlink.h>
64 #include <linux/tcp.h>
65 #include <linux/udp.h>
66 #include <linux/dccp.h>
67 #include <linux/quota.h>
68 #include <linux/un.h>           /* for Unix socket types */
69 #include <net/af_unix.h>        /* for Unix socket types */
70 #include <linux/parser.h>
71 #include <linux/nfs_mount.h>
72 #include <net/ipv6.h>
73 #include <linux/hugetlb.h>
74 #include <linux/personality.h>
75 #include <linux/audit.h>
76 #include <linux/string.h>
77 #include <linux/selinux.h>
78 #include <linux/mutex.h>
79 #include <linux/posix-timers.h>
80 #include <linux/syslog.h>
81 #include <linux/user_namespace.h>
82 #include <linux/export.h>
83 #include <linux/msg.h>
84 #include <linux/shm.h>
85
86 #include "avc.h"
87 #include "objsec.h"
88 #include "netif.h"
89 #include "netnode.h"
90 #include "netport.h"
91 #include "xfrm.h"
92 #include "netlabel.h"
93 #include "audit.h"
94 #include "avc_ss.h"
95
96 #define NUM_SEL_MNT_OPTS 5
97
98 extern struct security_operations *security_ops;
99
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105
106 static int __init enforcing_setup(char *str)
107 {
108         unsigned long enforcing;
109         if (!strict_strtoul(str, 0, &enforcing))
110                 selinux_enforcing = enforcing ? 1 : 0;
111         return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118
119 static int __init selinux_enabled_setup(char *str)
120 {
121         unsigned long enabled;
122         if (!strict_strtoul(str, 0, &enabled))
123                 selinux_enabled = enabled ? 1 : 0;
124         return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130
131 static struct kmem_cache *sel_inode_cache;
132
133 /**
134  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135  *
136  * Description:
137  * This function checks the SECMARK reference counter to see if any SECMARK
138  * targets are currently configured, if the reference counter is greater than
139  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
140  * enabled, false (0) if SECMARK is disabled.
141  *
142  */
143 static int selinux_secmark_enabled(void)
144 {
145         return (atomic_read(&selinux_secmark_refcount) > 0);
146 }
147
148 /*
149  * initialise the security for the init task
150  */
151 static void cred_init_security(void)
152 {
153         struct cred *cred = (struct cred *) current->real_cred;
154         struct task_security_struct *tsec;
155
156         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
157         if (!tsec)
158                 panic("SELinux:  Failed to initialize initial task.\n");
159
160         tsec->osid = tsec->sid = SECINITSID_KERNEL;
161         cred->security = tsec;
162 }
163
164 /*
165  * get the security ID of a set of credentials
166  */
167 static inline u32 cred_sid(const struct cred *cred)
168 {
169         const struct task_security_struct *tsec;
170
171         tsec = cred->security;
172         return tsec->sid;
173 }
174
175 /*
176  * get the objective security ID of a task
177  */
178 static inline u32 task_sid(const struct task_struct *task)
179 {
180         u32 sid;
181
182         rcu_read_lock();
183         sid = cred_sid(__task_cred(task));
184         rcu_read_unlock();
185         return sid;
186 }
187
188 /*
189  * get the subjective security ID of the current task
190  */
191 static inline u32 current_sid(void)
192 {
193         const struct task_security_struct *tsec = current_security();
194
195         return tsec->sid;
196 }
197
198 /* Allocate and free functions for each kind of security blob. */
199
200 static int inode_alloc_security(struct inode *inode)
201 {
202         struct inode_security_struct *isec;
203         u32 sid = current_sid();
204
205         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
206         if (!isec)
207                 return -ENOMEM;
208
209         mutex_init(&isec->lock);
210         INIT_LIST_HEAD(&isec->list);
211         isec->inode = inode;
212         isec->sid = SECINITSID_UNLABELED;
213         isec->sclass = SECCLASS_FILE;
214         isec->task_sid = sid;
215         inode->i_security = isec;
216
217         return 0;
218 }
219
220 static void inode_free_security(struct inode *inode)
221 {
222         struct inode_security_struct *isec = inode->i_security;
223         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
224
225         spin_lock(&sbsec->isec_lock);
226         if (!list_empty(&isec->list))
227                 list_del_init(&isec->list);
228         spin_unlock(&sbsec->isec_lock);
229
230         inode->i_security = NULL;
231         kmem_cache_free(sel_inode_cache, isec);
232 }
233
234 static int file_alloc_security(struct file *file)
235 {
236         struct file_security_struct *fsec;
237         u32 sid = current_sid();
238
239         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
240         if (!fsec)
241                 return -ENOMEM;
242
243         fsec->sid = sid;
244         fsec->fown_sid = sid;
245         file->f_security = fsec;
246
247         return 0;
248 }
249
250 static void file_free_security(struct file *file)
251 {
252         struct file_security_struct *fsec = file->f_security;
253         file->f_security = NULL;
254         kfree(fsec);
255 }
256
257 static int superblock_alloc_security(struct super_block *sb)
258 {
259         struct superblock_security_struct *sbsec;
260
261         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
262         if (!sbsec)
263                 return -ENOMEM;
264
265         mutex_init(&sbsec->lock);
266         INIT_LIST_HEAD(&sbsec->isec_head);
267         spin_lock_init(&sbsec->isec_lock);
268         sbsec->sb = sb;
269         sbsec->sid = SECINITSID_UNLABELED;
270         sbsec->def_sid = SECINITSID_FILE;
271         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
272         sb->s_security = sbsec;
273
274         return 0;
275 }
276
277 static void superblock_free_security(struct super_block *sb)
278 {
279         struct superblock_security_struct *sbsec = sb->s_security;
280         sb->s_security = NULL;
281         kfree(sbsec);
282 }
283
284 /* The file system's label must be initialized prior to use. */
285
286 static const char *labeling_behaviors[6] = {
287         "uses xattr",
288         "uses transition SIDs",
289         "uses task SIDs",
290         "uses genfs_contexts",
291         "not configured for labeling",
292         "uses mountpoint labeling",
293 };
294
295 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
296
297 static inline int inode_doinit(struct inode *inode)
298 {
299         return inode_doinit_with_dentry(inode, NULL);
300 }
301
302 enum {
303         Opt_error = -1,
304         Opt_context = 1,
305         Opt_fscontext = 2,
306         Opt_defcontext = 3,
307         Opt_rootcontext = 4,
308         Opt_labelsupport = 5,
309 };
310
311 static const match_table_t tokens = {
312         {Opt_context, CONTEXT_STR "%s"},
313         {Opt_fscontext, FSCONTEXT_STR "%s"},
314         {Opt_defcontext, DEFCONTEXT_STR "%s"},
315         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
316         {Opt_labelsupport, LABELSUPP_STR},
317         {Opt_error, NULL},
318 };
319
320 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
321
322 static int may_context_mount_sb_relabel(u32 sid,
323                         struct superblock_security_struct *sbsec,
324                         const struct cred *cred)
325 {
326         const struct task_security_struct *tsec = cred->security;
327         int rc;
328
329         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
330                           FILESYSTEM__RELABELFROM, NULL);
331         if (rc)
332                 return rc;
333
334         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
335                           FILESYSTEM__RELABELTO, NULL);
336         return rc;
337 }
338
339 static int may_context_mount_inode_relabel(u32 sid,
340                         struct superblock_security_struct *sbsec,
341                         const struct cred *cred)
342 {
343         const struct task_security_struct *tsec = cred->security;
344         int rc;
345         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346                           FILESYSTEM__RELABELFROM, NULL);
347         if (rc)
348                 return rc;
349
350         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
351                           FILESYSTEM__ASSOCIATE, NULL);
352         return rc;
353 }
354
355 static int sb_finish_set_opts(struct super_block *sb)
356 {
357         struct superblock_security_struct *sbsec = sb->s_security;
358         struct dentry *root = sb->s_root;
359         struct inode *root_inode = root->d_inode;
360         int rc = 0;
361
362         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
363                 /* Make sure that the xattr handler exists and that no
364                    error other than -ENODATA is returned by getxattr on
365                    the root directory.  -ENODATA is ok, as this may be
366                    the first boot of the SELinux kernel before we have
367                    assigned xattr values to the filesystem. */
368                 if (!root_inode->i_op->getxattr) {
369                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
370                                "xattr support\n", sb->s_id, sb->s_type->name);
371                         rc = -EOPNOTSUPP;
372                         goto out;
373                 }
374                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
375                 if (rc < 0 && rc != -ENODATA) {
376                         if (rc == -EOPNOTSUPP)
377                                 printk(KERN_WARNING "SELinux: (dev %s, type "
378                                        "%s) has no security xattr handler\n",
379                                        sb->s_id, sb->s_type->name);
380                         else
381                                 printk(KERN_WARNING "SELinux: (dev %s, type "
382                                        "%s) getxattr errno %d\n", sb->s_id,
383                                        sb->s_type->name, -rc);
384                         goto out;
385                 }
386         }
387
388         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
389
390         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
391                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
392                        sb->s_id, sb->s_type->name);
393         else
394                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
395                        sb->s_id, sb->s_type->name,
396                        labeling_behaviors[sbsec->behavior-1]);
397
398         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
399             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
400             sbsec->behavior == SECURITY_FS_USE_NONE ||
401             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402                 sbsec->flags &= ~SE_SBLABELSUPP;
403
404         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
405         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
406                 sbsec->flags |= SE_SBLABELSUPP;
407
408         /* Initialize the root inode. */
409         rc = inode_doinit_with_dentry(root_inode, root);
410
411         /* Initialize any other inodes associated with the superblock, e.g.
412            inodes created prior to initial policy load or inodes created
413            during get_sb by a pseudo filesystem that directly
414            populates itself. */
415         spin_lock(&sbsec->isec_lock);
416 next_inode:
417         if (!list_empty(&sbsec->isec_head)) {
418                 struct inode_security_struct *isec =
419                                 list_entry(sbsec->isec_head.next,
420                                            struct inode_security_struct, list);
421                 struct inode *inode = isec->inode;
422                 spin_unlock(&sbsec->isec_lock);
423                 inode = igrab(inode);
424                 if (inode) {
425                         if (!IS_PRIVATE(inode))
426                                 inode_doinit(inode);
427                         iput(inode);
428                 }
429                 spin_lock(&sbsec->isec_lock);
430                 list_del_init(&isec->list);
431                 goto next_inode;
432         }
433         spin_unlock(&sbsec->isec_lock);
434 out:
435         return rc;
436 }
437
438 /*
439  * This function should allow an FS to ask what it's mount security
440  * options were so it can use those later for submounts, displaying
441  * mount options, or whatever.
442  */
443 static int selinux_get_mnt_opts(const struct super_block *sb,
444                                 struct security_mnt_opts *opts)
445 {
446         int rc = 0, i;
447         struct superblock_security_struct *sbsec = sb->s_security;
448         char *context = NULL;
449         u32 len;
450         char tmp;
451
452         security_init_mnt_opts(opts);
453
454         if (!(sbsec->flags & SE_SBINITIALIZED))
455                 return -EINVAL;
456
457         if (!ss_initialized)
458                 return -EINVAL;
459
460         tmp = sbsec->flags & SE_MNTMASK;
461         /* count the number of mount options for this sb */
462         for (i = 0; i < 8; i++) {
463                 if (tmp & 0x01)
464                         opts->num_mnt_opts++;
465                 tmp >>= 1;
466         }
467         /* Check if the Label support flag is set */
468         if (sbsec->flags & SE_SBLABELSUPP)
469                 opts->num_mnt_opts++;
470
471         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472         if (!opts->mnt_opts) {
473                 rc = -ENOMEM;
474                 goto out_free;
475         }
476
477         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478         if (!opts->mnt_opts_flags) {
479                 rc = -ENOMEM;
480                 goto out_free;
481         }
482
483         i = 0;
484         if (sbsec->flags & FSCONTEXT_MNT) {
485                 rc = security_sid_to_context(sbsec->sid, &context, &len);
486                 if (rc)
487                         goto out_free;
488                 opts->mnt_opts[i] = context;
489                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490         }
491         if (sbsec->flags & CONTEXT_MNT) {
492                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493                 if (rc)
494                         goto out_free;
495                 opts->mnt_opts[i] = context;
496                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497         }
498         if (sbsec->flags & DEFCONTEXT_MNT) {
499                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500                 if (rc)
501                         goto out_free;
502                 opts->mnt_opts[i] = context;
503                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504         }
505         if (sbsec->flags & ROOTCONTEXT_MNT) {
506                 struct inode *root = sbsec->sb->s_root->d_inode;
507                 struct inode_security_struct *isec = root->i_security;
508
509                 rc = security_sid_to_context(isec->sid, &context, &len);
510                 if (rc)
511                         goto out_free;
512                 opts->mnt_opts[i] = context;
513                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514         }
515         if (sbsec->flags & SE_SBLABELSUPP) {
516                 opts->mnt_opts[i] = NULL;
517                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
518         }
519
520         BUG_ON(i != opts->num_mnt_opts);
521
522         return 0;
523
524 out_free:
525         security_free_mnt_opts(opts);
526         return rc;
527 }
528
529 static int bad_option(struct superblock_security_struct *sbsec, char flag,
530                       u32 old_sid, u32 new_sid)
531 {
532         char mnt_flags = sbsec->flags & SE_MNTMASK;
533
534         /* check if the old mount command had the same options */
535         if (sbsec->flags & SE_SBINITIALIZED)
536                 if (!(sbsec->flags & flag) ||
537                     (old_sid != new_sid))
538                         return 1;
539
540         /* check if we were passed the same options twice,
541          * aka someone passed context=a,context=b
542          */
543         if (!(sbsec->flags & SE_SBINITIALIZED))
544                 if (mnt_flags & flag)
545                         return 1;
546         return 0;
547 }
548
549 /*
550  * Allow filesystems with binary mount data to explicitly set mount point
551  * labeling information.
552  */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554                                 struct security_mnt_opts *opts)
555 {
556         const struct cred *cred = current_cred();
557         int rc = 0, i;
558         struct superblock_security_struct *sbsec = sb->s_security;
559         const char *name = sb->s_type->name;
560         struct inode *inode = sbsec->sb->s_root->d_inode;
561         struct inode_security_struct *root_isec = inode->i_security;
562         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563         u32 defcontext_sid = 0;
564         char **mount_options = opts->mnt_opts;
565         int *flags = opts->mnt_opts_flags;
566         int num_opts = opts->num_mnt_opts;
567
568         mutex_lock(&sbsec->lock);
569
570         if (!ss_initialized) {
571                 if (!num_opts) {
572                         /* Defer initialization until selinux_complete_init,
573                            after the initial policy is loaded and the security
574                            server is ready to handle calls. */
575                         goto out;
576                 }
577                 rc = -EINVAL;
578                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
579                         "before the security server is initialized\n");
580                 goto out;
581         }
582
583         /*
584          * Binary mount data FS will come through this function twice.  Once
585          * from an explicit call and once from the generic calls from the vfs.
586          * Since the generic VFS calls will not contain any security mount data
587          * we need to skip the double mount verification.
588          *
589          * This does open a hole in which we will not notice if the first
590          * mount using this sb set explict options and a second mount using
591          * this sb does not set any security options.  (The first options
592          * will be used for both mounts)
593          */
594         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595             && (num_opts == 0))
596                 goto out;
597
598         /*
599          * parse the mount options, check if they are valid sids.
600          * also check if someone is trying to mount the same sb more
601          * than once with different security options.
602          */
603         for (i = 0; i < num_opts; i++) {
604                 u32 sid;
605
606                 if (flags[i] == SE_SBLABELSUPP)
607                         continue;
608                 rc = security_context_to_sid(mount_options[i],
609                                              strlen(mount_options[i]), &sid);
610                 if (rc) {
611                         printk(KERN_WARNING "SELinux: security_context_to_sid"
612                                "(%s) failed for (dev %s, type %s) errno=%d\n",
613                                mount_options[i], sb->s_id, name, rc);
614                         goto out;
615                 }
616                 switch (flags[i]) {
617                 case FSCONTEXT_MNT:
618                         fscontext_sid = sid;
619
620                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621                                         fscontext_sid))
622                                 goto out_double_mount;
623
624                         sbsec->flags |= FSCONTEXT_MNT;
625                         break;
626                 case CONTEXT_MNT:
627                         context_sid = sid;
628
629                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630                                         context_sid))
631                                 goto out_double_mount;
632
633                         sbsec->flags |= CONTEXT_MNT;
634                         break;
635                 case ROOTCONTEXT_MNT:
636                         rootcontext_sid = sid;
637
638                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639                                         rootcontext_sid))
640                                 goto out_double_mount;
641
642                         sbsec->flags |= ROOTCONTEXT_MNT;
643
644                         break;
645                 case DEFCONTEXT_MNT:
646                         defcontext_sid = sid;
647
648                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649                                         defcontext_sid))
650                                 goto out_double_mount;
651
652                         sbsec->flags |= DEFCONTEXT_MNT;
653
654                         break;
655                 default:
656                         rc = -EINVAL;
657                         goto out;
658                 }
659         }
660
661         if (sbsec->flags & SE_SBINITIALIZED) {
662                 /* previously mounted with options, but not on this attempt? */
663                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
664                         goto out_double_mount;
665                 rc = 0;
666                 goto out;
667         }
668
669         if (strcmp(sb->s_type->name, "proc") == 0)
670                 sbsec->flags |= SE_SBPROC;
671
672         /* Determine the labeling behavior to use for this filesystem type. */
673         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674         if (rc) {
675                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676                        __func__, sb->s_type->name, rc);
677                 goto out;
678         }
679
680         /* sets the context of the superblock for the fs being mounted. */
681         if (fscontext_sid) {
682                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
683                 if (rc)
684                         goto out;
685
686                 sbsec->sid = fscontext_sid;
687         }
688
689         /*
690          * Switch to using mount point labeling behavior.
691          * sets the label used on all file below the mountpoint, and will set
692          * the superblock context if not already set.
693          */
694         if (context_sid) {
695                 if (!fscontext_sid) {
696                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
697                                                           cred);
698                         if (rc)
699                                 goto out;
700                         sbsec->sid = context_sid;
701                 } else {
702                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
703                                                              cred);
704                         if (rc)
705                                 goto out;
706                 }
707                 if (!rootcontext_sid)
708                         rootcontext_sid = context_sid;
709
710                 sbsec->mntpoint_sid = context_sid;
711                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712         }
713
714         if (rootcontext_sid) {
715                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
716                                                      cred);
717                 if (rc)
718                         goto out;
719
720                 root_isec->sid = rootcontext_sid;
721                 root_isec->initialized = 1;
722         }
723
724         if (defcontext_sid) {
725                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
726                         rc = -EINVAL;
727                         printk(KERN_WARNING "SELinux: defcontext option is "
728                                "invalid for this filesystem type\n");
729                         goto out;
730                 }
731
732                 if (defcontext_sid != sbsec->def_sid) {
733                         rc = may_context_mount_inode_relabel(defcontext_sid,
734                                                              sbsec, cred);
735                         if (rc)
736                                 goto out;
737                 }
738
739                 sbsec->def_sid = defcontext_sid;
740         }
741
742         rc = sb_finish_set_opts(sb);
743 out:
744         mutex_unlock(&sbsec->lock);
745         return rc;
746 out_double_mount:
747         rc = -EINVAL;
748         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
749                "security settings for (dev %s, type %s)\n", sb->s_id, name);
750         goto out;
751 }
752
753 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
754                                         struct super_block *newsb)
755 {
756         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
757         struct superblock_security_struct *newsbsec = newsb->s_security;
758
759         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
760         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
761         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
762
763         /*
764          * if the parent was able to be mounted it clearly had no special lsm
765          * mount options.  thus we can safely deal with this superblock later
766          */
767         if (!ss_initialized)
768                 return;
769
770         /* how can we clone if the old one wasn't set up?? */
771         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
772
773         /* if fs is reusing a sb, just let its options stand... */
774         if (newsbsec->flags & SE_SBINITIALIZED)
775                 return;
776
777         mutex_lock(&newsbsec->lock);
778
779         newsbsec->flags = oldsbsec->flags;
780
781         newsbsec->sid = oldsbsec->sid;
782         newsbsec->def_sid = oldsbsec->def_sid;
783         newsbsec->behavior = oldsbsec->behavior;
784
785         if (set_context) {
786                 u32 sid = oldsbsec->mntpoint_sid;
787
788                 if (!set_fscontext)
789                         newsbsec->sid = sid;
790                 if (!set_rootcontext) {
791                         struct inode *newinode = newsb->s_root->d_inode;
792                         struct inode_security_struct *newisec = newinode->i_security;
793                         newisec->sid = sid;
794                 }
795                 newsbsec->mntpoint_sid = sid;
796         }
797         if (set_rootcontext) {
798                 const struct inode *oldinode = oldsb->s_root->d_inode;
799                 const struct inode_security_struct *oldisec = oldinode->i_security;
800                 struct inode *newinode = newsb->s_root->d_inode;
801                 struct inode_security_struct *newisec = newinode->i_security;
802
803                 newisec->sid = oldisec->sid;
804         }
805
806         sb_finish_set_opts(newsb);
807         mutex_unlock(&newsbsec->lock);
808 }
809
810 static int selinux_parse_opts_str(char *options,
811                                   struct security_mnt_opts *opts)
812 {
813         char *p;
814         char *context = NULL, *defcontext = NULL;
815         char *fscontext = NULL, *rootcontext = NULL;
816         int rc, num_mnt_opts = 0;
817
818         opts->num_mnt_opts = 0;
819
820         /* Standard string-based options. */
821         while ((p = strsep(&options, "|")) != NULL) {
822                 int token;
823                 substring_t args[MAX_OPT_ARGS];
824
825                 if (!*p)
826                         continue;
827
828                 token = match_token(p, tokens, args);
829
830                 switch (token) {
831                 case Opt_context:
832                         if (context || defcontext) {
833                                 rc = -EINVAL;
834                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
835                                 goto out_err;
836                         }
837                         context = match_strdup(&args[0]);
838                         if (!context) {
839                                 rc = -ENOMEM;
840                                 goto out_err;
841                         }
842                         break;
843
844                 case Opt_fscontext:
845                         if (fscontext) {
846                                 rc = -EINVAL;
847                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848                                 goto out_err;
849                         }
850                         fscontext = match_strdup(&args[0]);
851                         if (!fscontext) {
852                                 rc = -ENOMEM;
853                                 goto out_err;
854                         }
855                         break;
856
857                 case Opt_rootcontext:
858                         if (rootcontext) {
859                                 rc = -EINVAL;
860                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861                                 goto out_err;
862                         }
863                         rootcontext = match_strdup(&args[0]);
864                         if (!rootcontext) {
865                                 rc = -ENOMEM;
866                                 goto out_err;
867                         }
868                         break;
869
870                 case Opt_defcontext:
871                         if (context || defcontext) {
872                                 rc = -EINVAL;
873                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874                                 goto out_err;
875                         }
876                         defcontext = match_strdup(&args[0]);
877                         if (!defcontext) {
878                                 rc = -ENOMEM;
879                                 goto out_err;
880                         }
881                         break;
882                 case Opt_labelsupport:
883                         break;
884                 default:
885                         rc = -EINVAL;
886                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
887                         goto out_err;
888
889                 }
890         }
891
892         rc = -ENOMEM;
893         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894         if (!opts->mnt_opts)
895                 goto out_err;
896
897         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898         if (!opts->mnt_opts_flags) {
899                 kfree(opts->mnt_opts);
900                 goto out_err;
901         }
902
903         if (fscontext) {
904                 opts->mnt_opts[num_mnt_opts] = fscontext;
905                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906         }
907         if (context) {
908                 opts->mnt_opts[num_mnt_opts] = context;
909                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910         }
911         if (rootcontext) {
912                 opts->mnt_opts[num_mnt_opts] = rootcontext;
913                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914         }
915         if (defcontext) {
916                 opts->mnt_opts[num_mnt_opts] = defcontext;
917                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918         }
919
920         opts->num_mnt_opts = num_mnt_opts;
921         return 0;
922
923 out_err:
924         kfree(context);
925         kfree(defcontext);
926         kfree(fscontext);
927         kfree(rootcontext);
928         return rc;
929 }
930 /*
931  * string mount options parsing and call set the sbsec
932  */
933 static int superblock_doinit(struct super_block *sb, void *data)
934 {
935         int rc = 0;
936         char *options = data;
937         struct security_mnt_opts opts;
938
939         security_init_mnt_opts(&opts);
940
941         if (!data)
942                 goto out;
943
944         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945
946         rc = selinux_parse_opts_str(options, &opts);
947         if (rc)
948                 goto out_err;
949
950 out:
951         rc = selinux_set_mnt_opts(sb, &opts);
952
953 out_err:
954         security_free_mnt_opts(&opts);
955         return rc;
956 }
957
958 static void selinux_write_opts(struct seq_file *m,
959                                struct security_mnt_opts *opts)
960 {
961         int i;
962         char *prefix;
963
964         for (i = 0; i < opts->num_mnt_opts; i++) {
965                 char *has_comma;
966
967                 if (opts->mnt_opts[i])
968                         has_comma = strchr(opts->mnt_opts[i], ',');
969                 else
970                         has_comma = NULL;
971
972                 switch (opts->mnt_opts_flags[i]) {
973                 case CONTEXT_MNT:
974                         prefix = CONTEXT_STR;
975                         break;
976                 case FSCONTEXT_MNT:
977                         prefix = FSCONTEXT_STR;
978                         break;
979                 case ROOTCONTEXT_MNT:
980                         prefix = ROOTCONTEXT_STR;
981                         break;
982                 case DEFCONTEXT_MNT:
983                         prefix = DEFCONTEXT_STR;
984                         break;
985                 case SE_SBLABELSUPP:
986                         seq_putc(m, ',');
987                         seq_puts(m, LABELSUPP_STR);
988                         continue;
989                 default:
990                         BUG();
991                         return;
992                 };
993                 /* we need a comma before each option */
994                 seq_putc(m, ',');
995                 seq_puts(m, prefix);
996                 if (has_comma)
997                         seq_putc(m, '\"');
998                 seq_puts(m, opts->mnt_opts[i]);
999                 if (has_comma)
1000                         seq_putc(m, '\"');
1001         }
1002 }
1003
1004 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005 {
1006         struct security_mnt_opts opts;
1007         int rc;
1008
1009         rc = selinux_get_mnt_opts(sb, &opts);
1010         if (rc) {
1011                 /* before policy load we may get EINVAL, don't show anything */
1012                 if (rc == -EINVAL)
1013                         rc = 0;
1014                 return rc;
1015         }
1016
1017         selinux_write_opts(m, &opts);
1018
1019         security_free_mnt_opts(&opts);
1020
1021         return rc;
1022 }
1023
1024 static inline u16 inode_mode_to_security_class(umode_t mode)
1025 {
1026         switch (mode & S_IFMT) {
1027         case S_IFSOCK:
1028                 return SECCLASS_SOCK_FILE;
1029         case S_IFLNK:
1030                 return SECCLASS_LNK_FILE;
1031         case S_IFREG:
1032                 return SECCLASS_FILE;
1033         case S_IFBLK:
1034                 return SECCLASS_BLK_FILE;
1035         case S_IFDIR:
1036                 return SECCLASS_DIR;
1037         case S_IFCHR:
1038                 return SECCLASS_CHR_FILE;
1039         case S_IFIFO:
1040                 return SECCLASS_FIFO_FILE;
1041
1042         }
1043
1044         return SECCLASS_FILE;
1045 }
1046
1047 static inline int default_protocol_stream(int protocol)
1048 {
1049         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050 }
1051
1052 static inline int default_protocol_dgram(int protocol)
1053 {
1054         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055 }
1056
1057 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058 {
1059         switch (family) {
1060         case PF_UNIX:
1061                 switch (type) {
1062                 case SOCK_STREAM:
1063                 case SOCK_SEQPACKET:
1064                         return SECCLASS_UNIX_STREAM_SOCKET;
1065                 case SOCK_DGRAM:
1066                         return SECCLASS_UNIX_DGRAM_SOCKET;
1067                 }
1068                 break;
1069         case PF_INET:
1070         case PF_INET6:
1071                 switch (type) {
1072                 case SOCK_STREAM:
1073                         if (default_protocol_stream(protocol))
1074                                 return SECCLASS_TCP_SOCKET;
1075                         else
1076                                 return SECCLASS_RAWIP_SOCKET;
1077                 case SOCK_DGRAM:
1078                         if (default_protocol_dgram(protocol))
1079                                 return SECCLASS_UDP_SOCKET;
1080                         else
1081                                 return SECCLASS_RAWIP_SOCKET;
1082                 case SOCK_DCCP:
1083                         return SECCLASS_DCCP_SOCKET;
1084                 default:
1085                         return SECCLASS_RAWIP_SOCKET;
1086                 }
1087                 break;
1088         case PF_NETLINK:
1089                 switch (protocol) {
1090                 case NETLINK_ROUTE:
1091                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1092                 case NETLINK_FIREWALL:
1093                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094                 case NETLINK_SOCK_DIAG:
1095                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096                 case NETLINK_NFLOG:
1097                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1098                 case NETLINK_XFRM:
1099                         return SECCLASS_NETLINK_XFRM_SOCKET;
1100                 case NETLINK_SELINUX:
1101                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1102                 case NETLINK_AUDIT:
1103                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1104                 case NETLINK_IP6_FW:
1105                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1106                 case NETLINK_DNRTMSG:
1107                         return SECCLASS_NETLINK_DNRT_SOCKET;
1108                 case NETLINK_KOBJECT_UEVENT:
1109                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110                 default:
1111                         return SECCLASS_NETLINK_SOCKET;
1112                 }
1113         case PF_PACKET:
1114                 return SECCLASS_PACKET_SOCKET;
1115         case PF_KEY:
1116                 return SECCLASS_KEY_SOCKET;
1117         case PF_APPLETALK:
1118                 return SECCLASS_APPLETALK_SOCKET;
1119         }
1120
1121         return SECCLASS_SOCKET;
1122 }
1123
1124 #ifdef CONFIG_PROC_FS
1125 static int selinux_proc_get_sid(struct dentry *dentry,
1126                                 u16 tclass,
1127                                 u32 *sid)
1128 {
1129         int rc;
1130         char *buffer, *path;
1131
1132         buffer = (char *)__get_free_page(GFP_KERNEL);
1133         if (!buffer)
1134                 return -ENOMEM;
1135
1136         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137         if (IS_ERR(path))
1138                 rc = PTR_ERR(path);
1139         else {
1140                 /* each process gets a /proc/PID/ entry. Strip off the
1141                  * PID part to get a valid selinux labeling.
1142                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143                 while (path[1] >= '0' && path[1] <= '9') {
1144                         path[1] = '/';
1145                         path++;
1146                 }
1147                 rc = security_genfs_sid("proc", path, tclass, sid);
1148         }
1149         free_page((unsigned long)buffer);
1150         return rc;
1151 }
1152 #else
1153 static int selinux_proc_get_sid(struct dentry *dentry,
1154                                 u16 tclass,
1155                                 u32 *sid)
1156 {
1157         return -EINVAL;
1158 }
1159 #endif
1160
1161 /* The inode's security attributes must be initialized before first use. */
1162 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163 {
1164         struct superblock_security_struct *sbsec = NULL;
1165         struct inode_security_struct *isec = inode->i_security;
1166         u32 sid;
1167         struct dentry *dentry;
1168 #define INITCONTEXTLEN 255
1169         char *context = NULL;
1170         unsigned len = 0;
1171         int rc = 0;
1172
1173         if (isec->initialized)
1174                 goto out;
1175
1176         mutex_lock(&isec->lock);
1177         if (isec->initialized)
1178                 goto out_unlock;
1179
1180         sbsec = inode->i_sb->s_security;
1181         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182                 /* Defer initialization until selinux_complete_init,
1183                    after the initial policy is loaded and the security
1184                    server is ready to handle calls. */
1185                 spin_lock(&sbsec->isec_lock);
1186                 if (list_empty(&isec->list))
1187                         list_add(&isec->list, &sbsec->isec_head);
1188                 spin_unlock(&sbsec->isec_lock);
1189                 goto out_unlock;
1190         }
1191
1192         switch (sbsec->behavior) {
1193         case SECURITY_FS_USE_XATTR:
1194                 if (!inode->i_op->getxattr) {
1195                         isec->sid = sbsec->def_sid;
1196                         break;
1197                 }
1198
1199                 /* Need a dentry, since the xattr API requires one.
1200                    Life would be simpler if we could just pass the inode. */
1201                 if (opt_dentry) {
1202                         /* Called from d_instantiate or d_splice_alias. */
1203                         dentry = dget(opt_dentry);
1204                 } else {
1205                         /* Called from selinux_complete_init, try to find a dentry. */
1206                         dentry = d_find_alias(inode);
1207                 }
1208                 if (!dentry) {
1209                         /*
1210                          * this is can be hit on boot when a file is accessed
1211                          * before the policy is loaded.  When we load policy we
1212                          * may find inodes that have no dentry on the
1213                          * sbsec->isec_head list.  No reason to complain as these
1214                          * will get fixed up the next time we go through
1215                          * inode_doinit with a dentry, before these inodes could
1216                          * be used again by userspace.
1217                          */
1218                         goto out_unlock;
1219                 }
1220
1221                 len = INITCONTEXTLEN;
1222                 context = kmalloc(len+1, GFP_NOFS);
1223                 if (!context) {
1224                         rc = -ENOMEM;
1225                         dput(dentry);
1226                         goto out_unlock;
1227                 }
1228                 context[len] = '\0';
1229                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230                                            context, len);
1231                 if (rc == -ERANGE) {
1232                         kfree(context);
1233
1234                         /* Need a larger buffer.  Query for the right size. */
1235                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236                                                    NULL, 0);
1237                         if (rc < 0) {
1238                                 dput(dentry);
1239                                 goto out_unlock;
1240                         }
1241                         len = rc;
1242                         context = kmalloc(len+1, GFP_NOFS);
1243                         if (!context) {
1244                                 rc = -ENOMEM;
1245                                 dput(dentry);
1246                                 goto out_unlock;
1247                         }
1248                         context[len] = '\0';
1249                         rc = inode->i_op->getxattr(dentry,
1250                                                    XATTR_NAME_SELINUX,
1251                                                    context, len);
1252                 }
1253                 dput(dentry);
1254                 if (rc < 0) {
1255                         if (rc != -ENODATA) {
1256                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257                                        "%d for dev=%s ino=%ld\n", __func__,
1258                                        -rc, inode->i_sb->s_id, inode->i_ino);
1259                                 kfree(context);
1260                                 goto out_unlock;
1261                         }
1262                         /* Map ENODATA to the default file SID */
1263                         sid = sbsec->def_sid;
1264                         rc = 0;
1265                 } else {
1266                         rc = security_context_to_sid_default(context, rc, &sid,
1267                                                              sbsec->def_sid,
1268                                                              GFP_NOFS);
1269                         if (rc) {
1270                                 char *dev = inode->i_sb->s_id;
1271                                 unsigned long ino = inode->i_ino;
1272
1273                                 if (rc == -EINVAL) {
1274                                         if (printk_ratelimit())
1275                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1277                                                         "filesystem in question.\n", ino, dev, context);
1278                                 } else {
1279                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280                                                "returned %d for dev=%s ino=%ld\n",
1281                                                __func__, context, -rc, dev, ino);
1282                                 }
1283                                 kfree(context);
1284                                 /* Leave with the unlabeled SID */
1285                                 rc = 0;
1286                                 break;
1287                         }
1288                 }
1289                 kfree(context);
1290                 isec->sid = sid;
1291                 break;
1292         case SECURITY_FS_USE_TASK:
1293                 isec->sid = isec->task_sid;
1294                 break;
1295         case SECURITY_FS_USE_TRANS:
1296                 /* Default to the fs SID. */
1297                 isec->sid = sbsec->sid;
1298
1299                 /* Try to obtain a transition SID. */
1300                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302                                              isec->sclass, NULL, &sid);
1303                 if (rc)
1304                         goto out_unlock;
1305                 isec->sid = sid;
1306                 break;
1307         case SECURITY_FS_USE_MNTPOINT:
1308                 isec->sid = sbsec->mntpoint_sid;
1309                 break;
1310         default:
1311                 /* Default to the fs superblock SID. */
1312                 isec->sid = sbsec->sid;
1313
1314                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315                         if (opt_dentry) {
1316                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317                                 rc = selinux_proc_get_sid(opt_dentry,
1318                                                           isec->sclass,
1319                                                           &sid);
1320                                 if (rc)
1321                                         goto out_unlock;
1322                                 isec->sid = sid;
1323                         }
1324                 }
1325                 break;
1326         }
1327
1328         isec->initialized = 1;
1329
1330 out_unlock:
1331         mutex_unlock(&isec->lock);
1332 out:
1333         if (isec->sclass == SECCLASS_FILE)
1334                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335         return rc;
1336 }
1337
1338 /* Convert a Linux signal to an access vector. */
1339 static inline u32 signal_to_av(int sig)
1340 {
1341         u32 perm = 0;
1342
1343         switch (sig) {
1344         case SIGCHLD:
1345                 /* Commonly granted from child to parent. */
1346                 perm = PROCESS__SIGCHLD;
1347                 break;
1348         case SIGKILL:
1349                 /* Cannot be caught or ignored */
1350                 perm = PROCESS__SIGKILL;
1351                 break;
1352         case SIGSTOP:
1353                 /* Cannot be caught or ignored */
1354                 perm = PROCESS__SIGSTOP;
1355                 break;
1356         default:
1357                 /* All other signals. */
1358                 perm = PROCESS__SIGNAL;
1359                 break;
1360         }
1361
1362         return perm;
1363 }
1364
1365 /*
1366  * Check permission between a pair of credentials
1367  * fork check, ptrace check, etc.
1368  */
1369 static int cred_has_perm(const struct cred *actor,
1370                          const struct cred *target,
1371                          u32 perms)
1372 {
1373         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374
1375         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376 }
1377
1378 /*
1379  * Check permission between a pair of tasks, e.g. signal checks,
1380  * fork check, ptrace check, etc.
1381  * tsk1 is the actor and tsk2 is the target
1382  * - this uses the default subjective creds of tsk1
1383  */
1384 static int task_has_perm(const struct task_struct *tsk1,
1385                          const struct task_struct *tsk2,
1386                          u32 perms)
1387 {
1388         const struct task_security_struct *__tsec1, *__tsec2;
1389         u32 sid1, sid2;
1390
1391         rcu_read_lock();
1392         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1393         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1394         rcu_read_unlock();
1395         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396 }
1397
1398 /*
1399  * Check permission between current and another task, e.g. signal checks,
1400  * fork check, ptrace check, etc.
1401  * current is the actor and tsk2 is the target
1402  * - this uses current's subjective creds
1403  */
1404 static int current_has_perm(const struct task_struct *tsk,
1405                             u32 perms)
1406 {
1407         u32 sid, tsid;
1408
1409         sid = current_sid();
1410         tsid = task_sid(tsk);
1411         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412 }
1413
1414 #if CAP_LAST_CAP > 63
1415 #error Fix SELinux to handle capabilities > 63.
1416 #endif
1417
1418 /* Check whether a task is allowed to use a capability. */
1419 static int cred_has_capability(const struct cred *cred,
1420                                int cap, int audit)
1421 {
1422         struct common_audit_data ad;
1423         struct av_decision avd;
1424         u16 sclass;
1425         u32 sid = cred_sid(cred);
1426         u32 av = CAP_TO_MASK(cap);
1427         int rc;
1428
1429         ad.type = LSM_AUDIT_DATA_CAP;
1430         ad.u.cap = cap;
1431
1432         switch (CAP_TO_INDEX(cap)) {
1433         case 0:
1434                 sclass = SECCLASS_CAPABILITY;
1435                 break;
1436         case 1:
1437                 sclass = SECCLASS_CAPABILITY2;
1438                 break;
1439         default:
1440                 printk(KERN_ERR
1441                        "SELinux:  out of range capability %d\n", cap);
1442                 BUG();
1443                 return -EINVAL;
1444         }
1445
1446         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447         if (audit == SECURITY_CAP_AUDIT) {
1448                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449                 if (rc2)
1450                         return rc2;
1451         }
1452         return rc;
1453 }
1454
1455 /* Check whether a task is allowed to use a system operation. */
1456 static int task_has_system(struct task_struct *tsk,
1457                            u32 perms)
1458 {
1459         u32 sid = task_sid(tsk);
1460
1461         return avc_has_perm(sid, SECINITSID_KERNEL,
1462                             SECCLASS_SYSTEM, perms, NULL);
1463 }
1464
1465 /* Check whether a task has a particular permission to an inode.
1466    The 'adp' parameter is optional and allows other audit
1467    data to be passed (e.g. the dentry). */
1468 static int inode_has_perm(const struct cred *cred,
1469                           struct inode *inode,
1470                           u32 perms,
1471                           struct common_audit_data *adp,
1472                           unsigned flags)
1473 {
1474         struct inode_security_struct *isec;
1475         u32 sid;
1476
1477         validate_creds(cred);
1478
1479         if (unlikely(IS_PRIVATE(inode)))
1480                 return 0;
1481
1482         sid = cred_sid(cred);
1483         isec = inode->i_security;
1484
1485         return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486 }
1487
1488 /* Same as inode_has_perm, but pass explicit audit data containing
1489    the dentry to help the auditing code to more easily generate the
1490    pathname if needed. */
1491 static inline int dentry_has_perm(const struct cred *cred,
1492                                   struct dentry *dentry,
1493                                   u32 av)
1494 {
1495         struct inode *inode = dentry->d_inode;
1496         struct common_audit_data ad;
1497
1498         ad.type = LSM_AUDIT_DATA_DENTRY;
1499         ad.u.dentry = dentry;
1500         return inode_has_perm(cred, inode, av, &ad, 0);
1501 }
1502
1503 /* Same as inode_has_perm, but pass explicit audit data containing
1504    the path to help the auditing code to more easily generate the
1505    pathname if needed. */
1506 static inline int path_has_perm(const struct cred *cred,
1507                                 struct path *path,
1508                                 u32 av)
1509 {
1510         struct inode *inode = path->dentry->d_inode;
1511         struct common_audit_data ad;
1512
1513         ad.type = LSM_AUDIT_DATA_PATH;
1514         ad.u.path = *path;
1515         return inode_has_perm(cred, inode, av, &ad, 0);
1516 }
1517
1518 /* Check whether a task can use an open file descriptor to
1519    access an inode in a given way.  Check access to the
1520    descriptor itself, and then use dentry_has_perm to
1521    check a particular permission to the file.
1522    Access to the descriptor is implicitly granted if it
1523    has the same SID as the process.  If av is zero, then
1524    access to the file is not checked, e.g. for cases
1525    where only the descriptor is affected like seek. */
1526 static int file_has_perm(const struct cred *cred,
1527                          struct file *file,
1528                          u32 av)
1529 {
1530         struct file_security_struct *fsec = file->f_security;
1531         struct inode *inode = file->f_path.dentry->d_inode;
1532         struct common_audit_data ad;
1533         u32 sid = cred_sid(cred);
1534         int rc;
1535
1536         ad.type = LSM_AUDIT_DATA_PATH;
1537         ad.u.path = file->f_path;
1538
1539         if (sid != fsec->sid) {
1540                 rc = avc_has_perm(sid, fsec->sid,
1541                                   SECCLASS_FD,
1542                                   FD__USE,
1543                                   &ad);
1544                 if (rc)
1545                         goto out;
1546         }
1547
1548         /* av is zero if only checking access to the descriptor. */
1549         rc = 0;
1550         if (av)
1551                 rc = inode_has_perm(cred, inode, av, &ad, 0);
1552
1553 out:
1554         return rc;
1555 }
1556
1557 /* Check whether a task can create a file. */
1558 static int may_create(struct inode *dir,
1559                       struct dentry *dentry,
1560                       u16 tclass)
1561 {
1562         const struct task_security_struct *tsec = current_security();
1563         struct inode_security_struct *dsec;
1564         struct superblock_security_struct *sbsec;
1565         u32 sid, newsid;
1566         struct common_audit_data ad;
1567         int rc;
1568
1569         dsec = dir->i_security;
1570         sbsec = dir->i_sb->s_security;
1571
1572         sid = tsec->sid;
1573         newsid = tsec->create_sid;
1574
1575         ad.type = LSM_AUDIT_DATA_DENTRY;
1576         ad.u.dentry = dentry;
1577
1578         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1579                           DIR__ADD_NAME | DIR__SEARCH,
1580                           &ad);
1581         if (rc)
1582                 return rc;
1583
1584         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585                 rc = security_transition_sid(sid, dsec->sid, tclass,
1586                                              &dentry->d_name, &newsid);
1587                 if (rc)
1588                         return rc;
1589         }
1590
1591         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1592         if (rc)
1593                 return rc;
1594
1595         return avc_has_perm(newsid, sbsec->sid,
1596                             SECCLASS_FILESYSTEM,
1597                             FILESYSTEM__ASSOCIATE, &ad);
1598 }
1599
1600 /* Check whether a task can create a key. */
1601 static int may_create_key(u32 ksid,
1602                           struct task_struct *ctx)
1603 {
1604         u32 sid = task_sid(ctx);
1605
1606         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607 }
1608
1609 #define MAY_LINK        0
1610 #define MAY_UNLINK      1
1611 #define MAY_RMDIR       2
1612
1613 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1614 static int may_link(struct inode *dir,
1615                     struct dentry *dentry,
1616                     int kind)
1617
1618 {
1619         struct inode_security_struct *dsec, *isec;
1620         struct common_audit_data ad;
1621         u32 sid = current_sid();
1622         u32 av;
1623         int rc;
1624
1625         dsec = dir->i_security;
1626         isec = dentry->d_inode->i_security;
1627
1628         ad.type = LSM_AUDIT_DATA_DENTRY;
1629         ad.u.dentry = dentry;
1630
1631         av = DIR__SEARCH;
1632         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1634         if (rc)
1635                 return rc;
1636
1637         switch (kind) {
1638         case MAY_LINK:
1639                 av = FILE__LINK;
1640                 break;
1641         case MAY_UNLINK:
1642                 av = FILE__UNLINK;
1643                 break;
1644         case MAY_RMDIR:
1645                 av = DIR__RMDIR;
1646                 break;
1647         default:
1648                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1649                         __func__, kind);
1650                 return 0;
1651         }
1652
1653         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1654         return rc;
1655 }
1656
1657 static inline int may_rename(struct inode *old_dir,
1658                              struct dentry *old_dentry,
1659                              struct inode *new_dir,
1660                              struct dentry *new_dentry)
1661 {
1662         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663         struct common_audit_data ad;
1664         u32 sid = current_sid();
1665         u32 av;
1666         int old_is_dir, new_is_dir;
1667         int rc;
1668
1669         old_dsec = old_dir->i_security;
1670         old_isec = old_dentry->d_inode->i_security;
1671         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672         new_dsec = new_dir->i_security;
1673
1674         ad.type = LSM_AUDIT_DATA_DENTRY;
1675
1676         ad.u.dentry = old_dentry;
1677         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1678                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679         if (rc)
1680                 return rc;
1681         rc = avc_has_perm(sid, old_isec->sid,
1682                           old_isec->sclass, FILE__RENAME, &ad);
1683         if (rc)
1684                 return rc;
1685         if (old_is_dir && new_dir != old_dir) {
1686                 rc = avc_has_perm(sid, old_isec->sid,
1687                                   old_isec->sclass, DIR__REPARENT, &ad);
1688                 if (rc)
1689                         return rc;
1690         }
1691
1692         ad.u.dentry = new_dentry;
1693         av = DIR__ADD_NAME | DIR__SEARCH;
1694         if (new_dentry->d_inode)
1695                 av |= DIR__REMOVE_NAME;
1696         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1697         if (rc)
1698                 return rc;
1699         if (new_dentry->d_inode) {
1700                 new_isec = new_dentry->d_inode->i_security;
1701                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702                 rc = avc_has_perm(sid, new_isec->sid,
1703                                   new_isec->sclass,
1704                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705                 if (rc)
1706                         return rc;
1707         }
1708
1709         return 0;
1710 }
1711
1712 /* Check whether a task can perform a filesystem operation. */
1713 static int superblock_has_perm(const struct cred *cred,
1714                                struct super_block *sb,
1715                                u32 perms,
1716                                struct common_audit_data *ad)
1717 {
1718         struct superblock_security_struct *sbsec;
1719         u32 sid = cred_sid(cred);
1720
1721         sbsec = sb->s_security;
1722         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1723 }
1724
1725 /* Convert a Linux mode and permission mask to an access vector. */
1726 static inline u32 file_mask_to_av(int mode, int mask)
1727 {
1728         u32 av = 0;
1729
1730         if (!S_ISDIR(mode)) {
1731                 if (mask & MAY_EXEC)
1732                         av |= FILE__EXECUTE;
1733                 if (mask & MAY_READ)
1734                         av |= FILE__READ;
1735
1736                 if (mask & MAY_APPEND)
1737                         av |= FILE__APPEND;
1738                 else if (mask & MAY_WRITE)
1739                         av |= FILE__WRITE;
1740
1741         } else {
1742                 if (mask & MAY_EXEC)
1743                         av |= DIR__SEARCH;
1744                 if (mask & MAY_WRITE)
1745                         av |= DIR__WRITE;
1746                 if (mask & MAY_READ)
1747                         av |= DIR__READ;
1748         }
1749
1750         return av;
1751 }
1752
1753 /* Convert a Linux file to an access vector. */
1754 static inline u32 file_to_av(struct file *file)
1755 {
1756         u32 av = 0;
1757
1758         if (file->f_mode & FMODE_READ)
1759                 av |= FILE__READ;
1760         if (file->f_mode & FMODE_WRITE) {
1761                 if (file->f_flags & O_APPEND)
1762                         av |= FILE__APPEND;
1763                 else
1764                         av |= FILE__WRITE;
1765         }
1766         if (!av) {
1767                 /*
1768                  * Special file opened with flags 3 for ioctl-only use.
1769                  */
1770                 av = FILE__IOCTL;
1771         }
1772
1773         return av;
1774 }
1775
1776 /*
1777  * Convert a file to an access vector and include the correct open
1778  * open permission.
1779  */
1780 static inline u32 open_file_to_av(struct file *file)
1781 {
1782         u32 av = file_to_av(file);
1783
1784         if (selinux_policycap_openperm)
1785                 av |= FILE__OPEN;
1786
1787         return av;
1788 }
1789
1790 /* Hook functions begin here. */
1791
1792 static int selinux_ptrace_access_check(struct task_struct *child,
1793                                      unsigned int mode)
1794 {
1795         int rc;
1796
1797         rc = cap_ptrace_access_check(child, mode);
1798         if (rc)
1799                 return rc;
1800
1801         if (mode & PTRACE_MODE_READ) {
1802                 u32 sid = current_sid();
1803                 u32 csid = task_sid(child);
1804                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1805         }
1806
1807         return current_has_perm(child, PROCESS__PTRACE);
1808 }
1809
1810 static int selinux_ptrace_traceme(struct task_struct *parent)
1811 {
1812         int rc;
1813
1814         rc = cap_ptrace_traceme(parent);
1815         if (rc)
1816                 return rc;
1817
1818         return task_has_perm(parent, current, PROCESS__PTRACE);
1819 }
1820
1821 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823 {
1824         int error;
1825
1826         error = current_has_perm(target, PROCESS__GETCAP);
1827         if (error)
1828                 return error;
1829
1830         return cap_capget(target, effective, inheritable, permitted);
1831 }
1832
1833 static int selinux_capset(struct cred *new, const struct cred *old,
1834                           const kernel_cap_t *effective,
1835                           const kernel_cap_t *inheritable,
1836                           const kernel_cap_t *permitted)
1837 {
1838         int error;
1839
1840         error = cap_capset(new, old,
1841                                       effective, inheritable, permitted);
1842         if (error)
1843                 return error;
1844
1845         return cred_has_perm(old, new, PROCESS__SETCAP);
1846 }
1847
1848 /*
1849  * (This comment used to live with the selinux_task_setuid hook,
1850  * which was removed).
1851  *
1852  * Since setuid only affects the current process, and since the SELinux
1853  * controls are not based on the Linux identity attributes, SELinux does not
1854  * need to control this operation.  However, SELinux does control the use of
1855  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856  */
1857
1858 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859                            int cap, int audit)
1860 {
1861         int rc;
1862
1863         rc = cap_capable(cred, ns, cap, audit);
1864         if (rc)
1865                 return rc;
1866
1867         return cred_has_capability(cred, cap, audit);
1868 }
1869
1870 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871 {
1872         const struct cred *cred = current_cred();
1873         int rc = 0;
1874
1875         if (!sb)
1876                 return 0;
1877
1878         switch (cmds) {
1879         case Q_SYNC:
1880         case Q_QUOTAON:
1881         case Q_QUOTAOFF:
1882         case Q_SETINFO:
1883         case Q_SETQUOTA:
1884                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885                 break;
1886         case Q_GETFMT:
1887         case Q_GETINFO:
1888         case Q_GETQUOTA:
1889                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890                 break;
1891         default:
1892                 rc = 0;  /* let the kernel handle invalid cmds */
1893                 break;
1894         }
1895         return rc;
1896 }
1897
1898 static int selinux_quota_on(struct dentry *dentry)
1899 {
1900         const struct cred *cred = current_cred();
1901
1902         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903 }
1904
1905 static int selinux_syslog(int type)
1906 {
1907         int rc;
1908
1909         switch (type) {
1910         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
1911         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1912                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913                 break;
1914         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1915         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
1916         /* Set level of messages printed to console */
1917         case SYSLOG_ACTION_CONSOLE_LEVEL:
1918                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919                 break;
1920         case SYSLOG_ACTION_CLOSE:       /* Close log */
1921         case SYSLOG_ACTION_OPEN:        /* Open log */
1922         case SYSLOG_ACTION_READ:        /* Read from log */
1923         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
1924         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
1925         default:
1926                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927                 break;
1928         }
1929         return rc;
1930 }
1931
1932 /*
1933  * Check that a process has enough memory to allocate a new virtual
1934  * mapping. 0 means there is enough memory for the allocation to
1935  * succeed and -ENOMEM implies there is not.
1936  *
1937  * Do not audit the selinux permission check, as this is applied to all
1938  * processes that allocate mappings.
1939  */
1940 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941 {
1942         int rc, cap_sys_admin = 0;
1943
1944         rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945                              SECURITY_CAP_NOAUDIT);
1946         if (rc == 0)
1947                 cap_sys_admin = 1;
1948
1949         return __vm_enough_memory(mm, pages, cap_sys_admin);
1950 }
1951
1952 /* binprm security operations */
1953
1954 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955 {
1956         const struct task_security_struct *old_tsec;
1957         struct task_security_struct *new_tsec;
1958         struct inode_security_struct *isec;
1959         struct common_audit_data ad;
1960         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1961         int rc;
1962
1963         rc = cap_bprm_set_creds(bprm);
1964         if (rc)
1965                 return rc;
1966
1967         /* SELinux context only depends on initial program or script and not
1968          * the script interpreter */
1969         if (bprm->cred_prepared)
1970                 return 0;
1971
1972         old_tsec = current_security();
1973         new_tsec = bprm->cred->security;
1974         isec = inode->i_security;
1975
1976         /* Default to the current task SID. */
1977         new_tsec->sid = old_tsec->sid;
1978         new_tsec->osid = old_tsec->sid;
1979
1980         /* Reset fs, key, and sock SIDs on execve. */
1981         new_tsec->create_sid = 0;
1982         new_tsec->keycreate_sid = 0;
1983         new_tsec->sockcreate_sid = 0;
1984
1985         if (old_tsec->exec_sid) {
1986                 new_tsec->sid = old_tsec->exec_sid;
1987                 /* Reset exec SID on execve. */
1988                 new_tsec->exec_sid = 0;
1989
1990                 /*
1991                  * Minimize confusion: if no_new_privs and a transition is
1992                  * explicitly requested, then fail the exec.
1993                  */
1994                 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995                         return -EPERM;
1996         } else {
1997                 /* Check for a default transition on this program. */
1998                 rc = security_transition_sid(old_tsec->sid, isec->sid,
1999                                              SECCLASS_PROCESS, NULL,
2000                                              &new_tsec->sid);
2001                 if (rc)
2002                         return rc;
2003         }
2004
2005         ad.type = LSM_AUDIT_DATA_PATH;
2006         ad.u.path = bprm->file->f_path;
2007
2008         if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009             (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010                 new_tsec->sid = old_tsec->sid;
2011
2012         if (new_tsec->sid == old_tsec->sid) {
2013                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2014                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015                 if (rc)
2016                         return rc;
2017         } else {
2018                 /* Check permissions for the transition. */
2019                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2020                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021                 if (rc)
2022                         return rc;
2023
2024                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2025                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026                 if (rc)
2027                         return rc;
2028
2029                 /* Check for shared state */
2030                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2032                                           SECCLASS_PROCESS, PROCESS__SHARE,
2033                                           NULL);
2034                         if (rc)
2035                                 return -EPERM;
2036                 }
2037
2038                 /* Make sure that anyone attempting to ptrace over a task that
2039                  * changes its SID has the appropriate permit */
2040                 if (bprm->unsafe &
2041                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042                         struct task_struct *tracer;
2043                         struct task_security_struct *sec;
2044                         u32 ptsid = 0;
2045
2046                         rcu_read_lock();
2047                         tracer = ptrace_parent(current);
2048                         if (likely(tracer != NULL)) {
2049                                 sec = __task_cred(tracer)->security;
2050                                 ptsid = sec->sid;
2051                         }
2052                         rcu_read_unlock();
2053
2054                         if (ptsid != 0) {
2055                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2056                                                   SECCLASS_PROCESS,
2057                                                   PROCESS__PTRACE, NULL);
2058                                 if (rc)
2059                                         return -EPERM;
2060                         }
2061                 }
2062
2063                 /* Clear any possibly unsafe personality bits on exec: */
2064                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2065         }
2066
2067         return 0;
2068 }
2069
2070 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071 {
2072         const struct task_security_struct *tsec = current_security();
2073         u32 sid, osid;
2074         int atsecure = 0;
2075
2076         sid = tsec->sid;
2077         osid = tsec->osid;
2078
2079         if (osid != sid) {
2080                 /* Enable secure mode for SIDs transitions unless
2081                    the noatsecure permission is granted between
2082                    the two SIDs, i.e. ahp returns 0. */
2083                 atsecure = avc_has_perm(osid, sid,
2084                                         SECCLASS_PROCESS,
2085                                         PROCESS__NOATSECURE, NULL);
2086         }
2087
2088         return (atsecure || cap_bprm_secureexec(bprm));
2089 }
2090
2091 static int match_file(const void *p, struct file *file, unsigned fd)
2092 {
2093         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2094 }
2095
2096 /* Derived from fs/exec.c:flush_old_files. */
2097 static inline void flush_unauthorized_files(const struct cred *cred,
2098                                             struct files_struct *files)
2099 {
2100         struct file *file, *devnull = NULL;
2101         struct tty_struct *tty;
2102         int drop_tty = 0;
2103         unsigned n;
2104
2105         tty = get_current_tty();
2106         if (tty) {
2107                 spin_lock(&tty_files_lock);
2108                 if (!list_empty(&tty->tty_files)) {
2109                         struct tty_file_private *file_priv;
2110
2111                         /* Revalidate access to controlling tty.
2112                            Use path_has_perm on the tty path directly rather
2113                            than using file_has_perm, as this particular open
2114                            file may belong to another process and we are only
2115                            interested in the inode-based check here. */
2116                         file_priv = list_first_entry(&tty->tty_files,
2117                                                 struct tty_file_private, list);
2118                         file = file_priv->file;
2119                         if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2120                                 drop_tty = 1;
2121                 }
2122                 spin_unlock(&tty_files_lock);
2123                 tty_kref_put(tty);
2124         }
2125         /* Reset controlling tty. */
2126         if (drop_tty)
2127                 no_tty();
2128
2129         /* Revalidate access to inherited open files. */
2130         n = iterate_fd(files, 0, match_file, cred);
2131         if (!n) /* none found? */
2132                 return;
2133
2134         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2135         if (!IS_ERR(devnull)) {
2136                 /* replace all the matching ones with this */
2137                 do {
2138                         replace_fd(n - 1, get_file(devnull), 0);
2139                 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2140                 fput(devnull);
2141         } else {
2142                 /* just close all the matching ones */
2143                 do {
2144                         replace_fd(n - 1, NULL, 0);
2145                 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2146         }
2147 }
2148
2149 /*
2150  * Prepare a process for imminent new credential changes due to exec
2151  */
2152 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2153 {
2154         struct task_security_struct *new_tsec;
2155         struct rlimit *rlim, *initrlim;
2156         int rc, i;
2157
2158         new_tsec = bprm->cred->security;
2159         if (new_tsec->sid == new_tsec->osid)
2160                 return;
2161
2162         /* Close files for which the new task SID is not authorized. */
2163         flush_unauthorized_files(bprm->cred, current->files);
2164
2165         /* Always clear parent death signal on SID transitions. */
2166         current->pdeath_signal = 0;
2167
2168         /* Check whether the new SID can inherit resource limits from the old
2169          * SID.  If not, reset all soft limits to the lower of the current
2170          * task's hard limit and the init task's soft limit.
2171          *
2172          * Note that the setting of hard limits (even to lower them) can be
2173          * controlled by the setrlimit check.  The inclusion of the init task's
2174          * soft limit into the computation is to avoid resetting soft limits
2175          * higher than the default soft limit for cases where the default is
2176          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2177          */
2178         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2179                           PROCESS__RLIMITINH, NULL);
2180         if (rc) {
2181                 /* protect against do_prlimit() */
2182                 task_lock(current);
2183                 for (i = 0; i < RLIM_NLIMITS; i++) {
2184                         rlim = current->signal->rlim + i;
2185                         initrlim = init_task.signal->rlim + i;
2186                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2187                 }
2188                 task_unlock(current);
2189                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2190         }
2191 }
2192
2193 /*
2194  * Clean up the process immediately after the installation of new credentials
2195  * due to exec
2196  */
2197 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2198 {
2199         const struct task_security_struct *tsec = current_security();
2200         struct itimerval itimer;
2201         u32 osid, sid;
2202         int rc, i;
2203
2204         osid = tsec->osid;
2205         sid = tsec->sid;
2206
2207         if (sid == osid)
2208                 return;
2209
2210         /* Check whether the new SID can inherit signal state from the old SID.
2211          * If not, clear itimers to avoid subsequent signal generation and
2212          * flush and unblock signals.
2213          *
2214          * This must occur _after_ the task SID has been updated so that any
2215          * kill done after the flush will be checked against the new SID.
2216          */
2217         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2218         if (rc) {
2219                 memset(&itimer, 0, sizeof itimer);
2220                 for (i = 0; i < 3; i++)
2221                         do_setitimer(i, &itimer, NULL);
2222                 spin_lock_irq(&current->sighand->siglock);
2223                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2224                         __flush_signals(current);
2225                         flush_signal_handlers(current, 1);
2226                         sigemptyset(&current->blocked);
2227                 }
2228                 spin_unlock_irq(&current->sighand->siglock);
2229         }
2230
2231         /* Wake up the parent if it is waiting so that it can recheck
2232          * wait permission to the new task SID. */
2233         read_lock(&tasklist_lock);
2234         __wake_up_parent(current, current->real_parent);
2235         read_unlock(&tasklist_lock);
2236 }
2237
2238 /* superblock security operations */
2239
2240 static int selinux_sb_alloc_security(struct super_block *sb)
2241 {
2242         return superblock_alloc_security(sb);
2243 }
2244
2245 static void selinux_sb_free_security(struct super_block *sb)
2246 {
2247         superblock_free_security(sb);
2248 }
2249
2250 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2251 {
2252         if (plen > olen)
2253                 return 0;
2254
2255         return !memcmp(prefix, option, plen);
2256 }
2257
2258 static inline int selinux_option(char *option, int len)
2259 {
2260         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2261                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2262                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2263                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2264                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2265 }
2266
2267 static inline void take_option(char **to, char *from, int *first, int len)
2268 {
2269         if (!*first) {
2270                 **to = ',';
2271                 *to += 1;
2272         } else
2273                 *first = 0;
2274         memcpy(*to, from, len);
2275         *to += len;
2276 }
2277
2278 static inline void take_selinux_option(char **to, char *from, int *first,
2279                                        int len)
2280 {
2281         int current_size = 0;
2282
2283         if (!*first) {
2284                 **to = '|';
2285                 *to += 1;
2286         } else
2287                 *first = 0;
2288
2289         while (current_size < len) {
2290                 if (*from != '"') {
2291                         **to = *from;
2292                         *to += 1;
2293                 }
2294                 from += 1;
2295                 current_size += 1;
2296         }
2297 }
2298
2299 static int selinux_sb_copy_data(char *orig, char *copy)
2300 {
2301         int fnosec, fsec, rc = 0;
2302         char *in_save, *in_curr, *in_end;
2303         char *sec_curr, *nosec_save, *nosec;
2304         int open_quote = 0;
2305
2306         in_curr = orig;
2307         sec_curr = copy;
2308
2309         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2310         if (!nosec) {
2311                 rc = -ENOMEM;
2312                 goto out;
2313         }
2314
2315         nosec_save = nosec;
2316         fnosec = fsec = 1;
2317         in_save = in_end = orig;
2318
2319         do {
2320                 if (*in_end == '"')
2321                         open_quote = !open_quote;
2322                 if ((*in_end == ',' && open_quote == 0) ||
2323                                 *in_end == '\0') {
2324                         int len = in_end - in_curr;
2325
2326                         if (selinux_option(in_curr, len))
2327                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2328                         else
2329                                 take_option(&nosec, in_curr, &fnosec, len);
2330
2331                         in_curr = in_end + 1;
2332                 }
2333         } while (*in_end++);
2334
2335         strcpy(in_save, nosec_save);
2336         free_page((unsigned long)nosec_save);
2337 out:
2338         return rc;
2339 }
2340
2341 static int selinux_sb_remount(struct super_block *sb, void *data)
2342 {
2343         int rc, i, *flags;
2344         struct security_mnt_opts opts;
2345         char *secdata, **mount_options;
2346         struct superblock_security_struct *sbsec = sb->s_security;
2347
2348         if (!(sbsec->flags & SE_SBINITIALIZED))
2349                 return 0;
2350
2351         if (!data)
2352                 return 0;
2353
2354         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2355                 return 0;
2356
2357         security_init_mnt_opts(&opts);
2358         secdata = alloc_secdata();
2359         if (!secdata)
2360                 return -ENOMEM;
2361         rc = selinux_sb_copy_data(data, secdata);
2362         if (rc)
2363                 goto out_free_secdata;
2364
2365         rc = selinux_parse_opts_str(secdata, &opts);
2366         if (rc)
2367                 goto out_free_secdata;
2368
2369         mount_options = opts.mnt_opts;
2370         flags = opts.mnt_opts_flags;
2371
2372         for (i = 0; i < opts.num_mnt_opts; i++) {
2373                 u32 sid;
2374                 size_t len;
2375
2376                 if (flags[i] == SE_SBLABELSUPP)
2377                         continue;
2378                 len = strlen(mount_options[i]);
2379                 rc = security_context_to_sid(mount_options[i], len, &sid);
2380                 if (rc) {
2381                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2382                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2383                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2384                         goto out_free_opts;
2385                 }
2386                 rc = -EINVAL;
2387                 switch (flags[i]) {
2388                 case FSCONTEXT_MNT:
2389                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2390                                 goto out_bad_option;
2391                         break;
2392                 case CONTEXT_MNT:
2393                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2394                                 goto out_bad_option;
2395                         break;
2396                 case ROOTCONTEXT_MNT: {
2397                         struct inode_security_struct *root_isec;
2398                         root_isec = sb->s_root->d_inode->i_security;
2399
2400                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2401                                 goto out_bad_option;
2402                         break;
2403                 }
2404                 case DEFCONTEXT_MNT:
2405                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2406                                 goto out_bad_option;
2407                         break;
2408                 default:
2409                         goto out_free_opts;
2410                 }
2411         }
2412
2413         rc = 0;
2414 out_free_opts:
2415         security_free_mnt_opts(&opts);
2416 out_free_secdata:
2417         free_secdata(secdata);
2418         return rc;
2419 out_bad_option:
2420         printk(KERN_WARNING "SELinux: unable to change security options "
2421                "during remount (dev %s, type=%s)\n", sb->s_id,
2422                sb->s_type->name);
2423         goto out_free_opts;
2424 }
2425
2426 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2427 {
2428         const struct cred *cred = current_cred();
2429         struct common_audit_data ad;
2430         int rc;
2431
2432         rc = superblock_doinit(sb, data);
2433         if (rc)
2434                 return rc;
2435
2436         /* Allow all mounts performed by the kernel */
2437         if (flags & MS_KERNMOUNT)
2438                 return 0;
2439
2440         ad.type = LSM_AUDIT_DATA_DENTRY;
2441         ad.u.dentry = sb->s_root;
2442         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2443 }
2444
2445 static int selinux_sb_statfs(struct dentry *dentry)
2446 {
2447         const struct cred *cred = current_cred();
2448         struct common_audit_data ad;
2449
2450         ad.type = LSM_AUDIT_DATA_DENTRY;
2451         ad.u.dentry = dentry->d_sb->s_root;
2452         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2453 }
2454
2455 static int selinux_mount(const char *dev_name,
2456                          struct path *path,
2457                          const char *type,
2458                          unsigned long flags,
2459                          void *data)
2460 {
2461         const struct cred *cred = current_cred();
2462
2463         if (flags & MS_REMOUNT)
2464                 return superblock_has_perm(cred, path->dentry->d_sb,
2465                                            FILESYSTEM__REMOUNT, NULL);
2466         else
2467                 return path_has_perm(cred, path, FILE__MOUNTON);
2468 }
2469
2470 static int selinux_umount(struct vfsmount *mnt, int flags)
2471 {
2472         const struct cred *cred = current_cred();
2473
2474         return superblock_has_perm(cred, mnt->mnt_sb,
2475                                    FILESYSTEM__UNMOUNT, NULL);
2476 }
2477
2478 /* inode security operations */
2479
2480 static int selinux_inode_alloc_security(struct inode *inode)
2481 {
2482         return inode_alloc_security(inode);
2483 }
2484
2485 static void selinux_inode_free_security(struct inode *inode)
2486 {
2487         inode_free_security(inode);
2488 }
2489
2490 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2491                                        const struct qstr *qstr, char **name,
2492                                        void **value, size_t *len)
2493 {
2494         const struct task_security_struct *tsec = current_security();
2495         struct inode_security_struct *dsec;
2496         struct superblock_security_struct *sbsec;
2497         u32 sid, newsid, clen;
2498         int rc;
2499         char *namep = NULL, *context;
2500
2501         dsec = dir->i_security;
2502         sbsec = dir->i_sb->s_security;
2503
2504         sid = tsec->sid;
2505         newsid = tsec->create_sid;
2506
2507         if ((sbsec->flags & SE_SBINITIALIZED) &&
2508             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2509                 newsid = sbsec->mntpoint_sid;
2510         else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2511                 rc = security_transition_sid(sid, dsec->sid,
2512                                              inode_mode_to_security_class(inode->i_mode),
2513                                              qstr, &newsid);
2514                 if (rc) {
2515                         printk(KERN_WARNING "%s:  "
2516                                "security_transition_sid failed, rc=%d (dev=%s "
2517                                "ino=%ld)\n",
2518                                __func__,
2519                                -rc, inode->i_sb->s_id, inode->i_ino);
2520                         return rc;
2521                 }
2522         }
2523
2524         /* Possibly defer initialization to selinux_complete_init. */
2525         if (sbsec->flags & SE_SBINITIALIZED) {
2526                 struct inode_security_struct *isec = inode->i_security;
2527                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2528                 isec->sid = newsid;
2529                 isec->initialized = 1;
2530         }
2531
2532         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2533                 return -EOPNOTSUPP;
2534
2535         if (name) {
2536                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2537                 if (!namep)
2538                         return -ENOMEM;
2539                 *name = namep;
2540         }
2541
2542         if (value && len) {
2543                 rc = security_sid_to_context_force(newsid, &context, &clen);
2544                 if (rc) {
2545                         kfree(namep);
2546                         return rc;
2547                 }
2548                 *value = context;
2549                 *len = clen;
2550         }
2551
2552         return 0;
2553 }
2554
2555 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2556 {
2557         return may_create(dir, dentry, SECCLASS_FILE);
2558 }
2559
2560 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2561 {
2562         return may_link(dir, old_dentry, MAY_LINK);
2563 }
2564
2565 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2566 {
2567         return may_link(dir, dentry, MAY_UNLINK);
2568 }
2569
2570 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2571 {
2572         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2573 }
2574
2575 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2576 {
2577         return may_create(dir, dentry, SECCLASS_DIR);
2578 }
2579
2580 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2581 {
2582         return may_link(dir, dentry, MAY_RMDIR);
2583 }
2584
2585 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2586 {
2587         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2588 }
2589
2590 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2591                                 struct inode *new_inode, struct dentry *new_dentry)
2592 {
2593         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2594 }
2595
2596 static int selinux_inode_readlink(struct dentry *dentry)
2597 {
2598         const struct cred *cred = current_cred();
2599
2600         return dentry_has_perm(cred, dentry, FILE__READ);
2601 }
2602
2603 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2604 {
2605         const struct cred *cred = current_cred();
2606
2607         return dentry_has_perm(cred, dentry, FILE__READ);
2608 }
2609
2610 static noinline int audit_inode_permission(struct inode *inode,
2611                                            u32 perms, u32 audited, u32 denied,
2612                                            unsigned flags)
2613 {
2614         struct common_audit_data ad;
2615         struct inode_security_struct *isec = inode->i_security;
2616         int rc;
2617
2618         ad.type = LSM_AUDIT_DATA_INODE;
2619         ad.u.inode = inode;
2620
2621         rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2622                             audited, denied, &ad, flags);
2623         if (rc)
2624                 return rc;
2625         return 0;
2626 }
2627
2628 static int selinux_inode_permission(struct inode *inode, int mask)
2629 {
2630         const struct cred *cred = current_cred();
2631         u32 perms;
2632         bool from_access;
2633         unsigned flags = mask & MAY_NOT_BLOCK;
2634         struct inode_security_struct *isec;
2635         u32 sid;
2636         struct av_decision avd;
2637         int rc, rc2;
2638         u32 audited, denied;
2639
2640         from_access = mask & MAY_ACCESS;
2641         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2642
2643         /* No permission to check.  Existence test. */
2644         if (!mask)
2645                 return 0;
2646
2647         validate_creds(cred);
2648
2649         if (unlikely(IS_PRIVATE(inode)))
2650                 return 0;
2651
2652         perms = file_mask_to_av(inode->i_mode, mask);
2653
2654         sid = cred_sid(cred);
2655         isec = inode->i_security;
2656
2657         rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2658         audited = avc_audit_required(perms, &avd, rc,
2659                                      from_access ? FILE__AUDIT_ACCESS : 0,
2660                                      &denied);
2661         if (likely(!audited))
2662                 return rc;
2663
2664         rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2665         if (rc2)
2666                 return rc2;
2667         return rc;
2668 }
2669
2670 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2671 {
2672         const struct cred *cred = current_cred();
2673         unsigned int ia_valid = iattr->ia_valid;
2674         __u32 av = FILE__WRITE;
2675
2676         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2677         if (ia_valid & ATTR_FORCE) {
2678                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2679                               ATTR_FORCE);
2680                 if (!ia_valid)
2681                         return 0;
2682         }
2683
2684         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2685                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2686                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2687
2688         if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2689                 av |= FILE__OPEN;
2690
2691         return dentry_has_perm(cred, dentry, av);
2692 }
2693
2694 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2695 {
2696         const struct cred *cred = current_cred();
2697         struct path path;
2698
2699         path.dentry = dentry;
2700         path.mnt = mnt;
2701
2702         return path_has_perm(cred, &path, FILE__GETATTR);
2703 }
2704
2705 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2706 {
2707         const struct cred *cred = current_cred();
2708
2709         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2710                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2711                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2712                         if (!capable(CAP_SETFCAP))
2713                                 return -EPERM;
2714                 } else if (!capable(CAP_SYS_ADMIN)) {
2715                         /* A different attribute in the security namespace.
2716                            Restrict to administrator. */
2717                         return -EPERM;
2718                 }
2719         }
2720
2721         /* Not an attribute we recognize, so just check the
2722            ordinary setattr permission. */
2723         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2724 }
2725
2726 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2727                                   const void *value, size_t size, int flags)
2728 {
2729         struct inode *inode = dentry->d_inode;
2730         struct inode_security_struct *isec = inode->i_security;
2731         struct superblock_security_struct *sbsec;
2732         struct common_audit_data ad;
2733         u32 newsid, sid = current_sid();
2734         int rc = 0;
2735
2736         if (strcmp(name, XATTR_NAME_SELINUX))
2737                 return selinux_inode_setotherxattr(dentry, name);
2738
2739         sbsec = inode->i_sb->s_security;
2740         if (!(sbsec->flags & SE_SBLABELSUPP))
2741                 return -EOPNOTSUPP;
2742
2743         if (!inode_owner_or_capable(inode))
2744                 return -EPERM;
2745
2746         ad.type = LSM_AUDIT_DATA_DENTRY;
2747         ad.u.dentry = dentry;
2748
2749         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2750                           FILE__RELABELFROM, &ad);
2751         if (rc)
2752                 return rc;
2753
2754         rc = security_context_to_sid(value, size, &newsid);
2755         if (rc == -EINVAL) {
2756                 if (!capable(CAP_MAC_ADMIN)) {
2757                         struct audit_buffer *ab;
2758                         size_t audit_size;
2759                         const char *str;
2760
2761                         /* We strip a nul only if it is at the end, otherwise the
2762                          * context contains a nul and we should audit that */
2763                         if (value) {
2764                                 str = value;
2765                                 if (str[size - 1] == '\0')
2766                                         audit_size = size - 1;
2767                                 else
2768                                         audit_size = size;
2769                         } else {
2770                                 str = "";
2771                                 audit_size = 0;
2772                         }
2773                         ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2774                         audit_log_format(ab, "op=setxattr invalid_context=");
2775                         audit_log_n_untrustedstring(ab, value, audit_size);
2776                         audit_log_end(ab);
2777
2778                         return rc;
2779                 }
2780                 rc = security_context_to_sid_force(value, size, &newsid);
2781         }
2782         if (rc)
2783                 return rc;
2784
2785         rc = avc_has_perm(sid, newsid, isec->sclass,
2786                           FILE__RELABELTO, &ad);
2787         if (rc)
2788                 return rc;
2789
2790         rc = security_validate_transition(isec->sid, newsid, sid,
2791                                           isec->sclass);
2792         if (rc)
2793                 return rc;
2794
2795         return avc_has_perm(newsid,
2796                             sbsec->sid,
2797                             SECCLASS_FILESYSTEM,
2798                             FILESYSTEM__ASSOCIATE,
2799                             &ad);
2800 }
2801
2802 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2803                                         const void *value, size_t size,
2804                                         int flags)
2805 {
2806         struct inode *inode = dentry->d_inode;
2807         struct inode_security_struct *isec = inode->i_security;
2808         u32 newsid;
2809         int rc;
2810
2811         if (strcmp(name, XATTR_NAME_SELINUX)) {
2812                 /* Not an attribute we recognize, so nothing to do. */
2813                 return;
2814         }
2815
2816         rc = security_context_to_sid_force(value, size, &newsid);
2817         if (rc) {
2818                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2819                        "for (%s, %lu), rc=%d\n",
2820                        inode->i_sb->s_id, inode->i_ino, -rc);
2821                 return;
2822         }
2823
2824         isec->sid = newsid;
2825         return;
2826 }
2827
2828 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2829 {
2830         const struct cred *cred = current_cred();
2831
2832         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2833 }
2834
2835 static int selinux_inode_listxattr(struct dentry *dentry)
2836 {
2837         const struct cred *cred = current_cred();
2838
2839         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2840 }
2841
2842 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2843 {
2844         if (strcmp(name, XATTR_NAME_SELINUX))
2845                 return selinux_inode_setotherxattr(dentry, name);
2846
2847         /* No one is allowed to remove a SELinux security label.
2848            You can change the label, but all data must be labeled. */
2849         return -EACCES;
2850 }
2851
2852 /*
2853  * Copy the inode security context value to the user.
2854  *
2855  * Permission check is handled by selinux_inode_getxattr hook.
2856  */
2857 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2858 {
2859         u32 size;
2860         int error;
2861         char *context = NULL;
2862         struct inode_security_struct *isec = inode->i_security;
2863
2864         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2865                 return -EOPNOTSUPP;
2866
2867         /*
2868          * If the caller has CAP_MAC_ADMIN, then get the raw context
2869          * value even if it is not defined by current policy; otherwise,
2870          * use the in-core value under current policy.
2871          * Use the non-auditing forms of the permission checks since
2872          * getxattr may be called by unprivileged processes commonly
2873          * and lack of permission just means that we fall back to the
2874          * in-core context value, not a denial.
2875          */
2876         error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2877                                 SECURITY_CAP_NOAUDIT);
2878         if (!error)
2879                 error = security_sid_to_context_force(isec->sid, &context,
2880                                                       &size);
2881         else
2882                 error = security_sid_to_context(isec->sid, &context, &size);
2883         if (error)
2884                 return error;
2885         error = size;
2886         if (alloc) {
2887                 *buffer = context;
2888                 goto out_nofree;
2889         }
2890         kfree(context);
2891 out_nofree:
2892         return error;
2893 }
2894
2895 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2896                                      const void *value, size_t size, int flags)
2897 {
2898         struct inode_security_struct *isec = inode->i_security;
2899         u32 newsid;
2900         int rc;
2901
2902         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2903                 return -EOPNOTSUPP;
2904
2905         if (!value || !size)
2906                 return -EACCES;
2907
2908         rc = security_context_to_sid((void *)value, size, &newsid);
2909         if (rc)
2910                 return rc;
2911
2912         isec->sid = newsid;
2913         isec->initialized = 1;
2914         return 0;
2915 }
2916
2917 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2918 {
2919         const int len = sizeof(XATTR_NAME_SELINUX);
2920         if (buffer && len <= buffer_size)
2921                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2922         return len;
2923 }
2924
2925 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2926 {
2927         struct inode_security_struct *isec = inode->i_security;
2928         *secid = isec->sid;
2929 }
2930
2931 /* file security operations */
2932
2933 static int selinux_revalidate_file_permission(struct file *file, int mask)
2934 {
2935         const struct cred *cred = current_cred();
2936         struct inode *inode = file->f_path.dentry->d_inode;
2937
2938         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2939         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2940                 mask |= MAY_APPEND;
2941
2942         return file_has_perm(cred, file,
2943                              file_mask_to_av(inode->i_mode, mask));
2944 }
2945
2946 static int selinux_file_permission(struct file *file, int mask)
2947 {
2948         struct inode *inode = file->f_path.dentry->d_inode;
2949         struct file_security_struct *fsec = file->f_security;
2950         struct inode_security_struct *isec = inode->i_security;
2951         u32 sid = current_sid();
2952
2953         if (!mask)
2954                 /* No permission to check.  Existence test. */
2955                 return 0;
2956
2957         if (sid == fsec->sid && fsec->isid == isec->sid &&
2958             fsec->pseqno == avc_policy_seqno())
2959                 /* No change since file_open check. */
2960                 return 0;
2961
2962         return selinux_revalidate_file_permission(file, mask);
2963 }
2964
2965 static int selinux_file_alloc_security(struct file *file)
2966 {
2967         return file_alloc_security(file);
2968 }
2969
2970 static void selinux_file_free_security(struct file *file)
2971 {
2972         file_free_security(file);
2973 }
2974
2975 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2976                               unsigned long arg)
2977 {
2978         const struct cred *cred = current_cred();
2979         int error = 0;
2980
2981         switch (cmd) {
2982         case FIONREAD:
2983         /* fall through */
2984         case FIBMAP:
2985         /* fall through */
2986         case FIGETBSZ:
2987         /* fall through */
2988         case FS_IOC_GETFLAGS:
2989         /* fall through */
2990         case FS_IOC_GETVERSION:
2991                 error = file_has_perm(cred, file, FILE__GETATTR);
2992                 break;
2993
2994         case FS_IOC_SETFLAGS:
2995         /* fall through */
2996         case FS_IOC_SETVERSION:
2997                 error = file_has_perm(cred, file, FILE__SETATTR);
2998                 break;
2999
3000         /* sys_ioctl() checks */
3001         case FIONBIO:
3002         /* fall through */
3003         case FIOASYNC:
3004                 error = file_has_perm(cred, file, 0);
3005                 break;
3006
3007         case KDSKBENT:
3008         case KDSKBSENT:
3009                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3010                                             SECURITY_CAP_AUDIT);
3011                 break;
3012
3013         /* default case assumes that the command will go
3014          * to the file's ioctl() function.
3015          */
3016         default:
3017                 error = file_has_perm(cred, file, FILE__IOCTL);
3018         }
3019         return error;
3020 }
3021
3022 static int default_noexec;
3023
3024 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3025 {
3026         const struct cred *cred = current_cred();
3027         int rc = 0;
3028
3029         if (default_noexec &&
3030             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3031                 /*
3032                  * We are making executable an anonymous mapping or a
3033                  * private file mapping that will also be writable.
3034                  * This has an additional check.
3035                  */
3036                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3037                 if (rc)
3038                         goto error;
3039         }
3040
3041         if (file) {
3042                 /* read access is always possible with a mapping */
3043                 u32 av = FILE__READ;
3044
3045                 /* write access only matters if the mapping is shared */
3046                 if (shared && (prot & PROT_WRITE))
3047                         av |= FILE__WRITE;
3048
3049                 if (prot & PROT_EXEC)
3050                         av |= FILE__EXECUTE;
3051
3052                 return file_has_perm(cred, file, av);
3053         }
3054
3055 error:
3056         return rc;
3057 }
3058
3059 static int selinux_mmap_addr(unsigned long addr)
3060 {
3061         int rc = 0;
3062         u32 sid = current_sid();
3063
3064         /*
3065          * notice that we are intentionally putting the SELinux check before
3066          * the secondary cap_file_mmap check.  This is such a likely attempt
3067          * at bad behaviour/exploit that we always want to get the AVC, even
3068          * if DAC would have also denied the operation.
3069          */
3070         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3071                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3072                                   MEMPROTECT__MMAP_ZERO, NULL);
3073                 if (rc)
3074                         return rc;
3075         }
3076
3077         /* do DAC check on address space usage */
3078         return cap_mmap_addr(addr);
3079 }
3080
3081 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3082                              unsigned long prot, unsigned long flags)
3083 {
3084         if (selinux_checkreqprot)
3085                 prot = reqprot;
3086
3087         return file_map_prot_check(file, prot,
3088                                    (flags & MAP_TYPE) == MAP_SHARED);
3089 }
3090
3091 static int selinux_file_mprotect(struct vm_area_struct *vma,
3092                                  unsigned long reqprot,
3093                                  unsigned long prot)
3094 {
3095         const struct cred *cred = current_cred();
3096
3097         if (selinux_checkreqprot)
3098                 prot = reqprot;
3099
3100         if (default_noexec &&
3101             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3102                 int rc = 0;
3103                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3104                     vma->vm_end <= vma->vm_mm->brk) {
3105                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3106                 } else if (!vma->vm_file &&
3107                            vma->vm_start <= vma->vm_mm->start_stack &&
3108                            vma->vm_end >= vma->vm_mm->start_stack) {
3109                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3110                 } else if (vma->vm_file && vma->anon_vma) {
3111                         /*
3112                          * We are making executable a file mapping that has
3113                          * had some COW done. Since pages might have been
3114                          * written, check ability to execute the possibly
3115                          * modified content.  This typically should only
3116                          * occur for text relocations.
3117                          */
3118                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3119                 }
3120                 if (rc)
3121                         return rc;
3122         }
3123
3124         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3125 }
3126
3127 static int selinux_file_lock(struct file *file, unsigned int cmd)
3128 {
3129         const struct cred *cred = current_cred();
3130
3131         return file_has_perm(cred, file, FILE__LOCK);
3132 }
3133
3134 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3135                               unsigned long arg)
3136 {
3137         const struct cred *cred = current_cred();
3138         int err = 0;
3139
3140         switch (cmd) {
3141         case F_SETFL:
3142                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3143                         err = -EINVAL;
3144                         break;
3145                 }
3146
3147                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3148                         err = file_has_perm(cred, file, FILE__WRITE);
3149                         break;
3150                 }
3151                 /* fall through */
3152         case F_SETOWN:
3153         case F_SETSIG:
3154         case F_GETFL:
3155         case F_GETOWN:
3156         case F_GETSIG:
3157         case F_GETOWNER_UIDS:
3158                 /* Just check FD__USE permission */
3159                 err = file_has_perm(cred, file, 0);
3160                 break;
3161         case F_GETLK:
3162         case F_SETLK:
3163         case F_SETLKW:
3164 #if BITS_PER_LONG == 32
3165         case F_GETLK64:
3166         case F_SETLK64:
3167         case F_SETLKW64:
3168 #endif
3169                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3170                         err = -EINVAL;
3171                         break;
3172                 }
3173                 err = file_has_perm(cred, file, FILE__LOCK);
3174                 break;
3175         }
3176
3177         return err;
3178 }
3179
3180 static int selinux_file_set_fowner(struct file *file)
3181 {
3182         struct file_security_struct *fsec;
3183
3184         fsec = file->f_security;
3185         fsec->fown_sid = current_sid();
3186
3187         return 0;
3188 }
3189
3190 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3191                                        struct fown_struct *fown, int signum)
3192 {
3193         struct file *file;
3194         u32 sid = task_sid(tsk);
3195         u32 perm;
3196         struct file_security_struct *fsec;
3197
3198         /* struct fown_struct is never outside the context of a struct file */
3199         file = container_of(fown, struct file, f_owner);
3200
3201         fsec = file->f_security;
3202
3203         if (!signum)
3204                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3205         else
3206                 perm = signal_to_av(signum);
3207
3208         return avc_has_perm(fsec->fown_sid, sid,
3209                             SECCLASS_PROCESS, perm, NULL);
3210 }
3211
3212 static int selinux_file_receive(struct file *file)
3213 {
3214         const struct cred *cred = current_cred();
3215
3216         return file_has_perm(cred, file, file_to_av(file));
3217 }
3218
3219 static int selinux_file_open(struct file *file, const struct cred *cred)
3220 {
3221         struct file_security_struct *fsec;
3222         struct inode_security_struct *isec;
3223
3224         fsec = file->f_security;
3225         isec = file->f_path.dentry->d_inode->i_security;
3226         /*
3227          * Save inode label and policy sequence number
3228          * at open-time so that selinux_file_permission
3229          * can determine whether revalidation is necessary.
3230          * Task label is already saved in the file security
3231          * struct as its SID.
3232          */
3233         fsec->isid = isec->sid;
3234         fsec->pseqno = avc_policy_seqno();
3235         /*
3236          * Since the inode label or policy seqno may have changed
3237          * between the selinux_inode_permission check and the saving
3238          * of state above, recheck that access is still permitted.
3239          * Otherwise, access might never be revalidated against the
3240          * new inode label or new policy.
3241          * This check is not redundant - do not remove.
3242          */
3243         return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3244 }
3245
3246 /* task security operations */
3247
3248 static int selinux_task_create(unsigned long clone_flags)
3249 {
3250         return current_has_perm(current, PROCESS__FORK);
3251 }
3252
3253 /*
3254  * allocate the SELinux part of blank credentials
3255  */
3256 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3257 {
3258         struct task_security_struct *tsec;
3259
3260         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3261         if (!tsec)
3262                 return -ENOMEM;
3263
3264         cred->security = tsec;
3265         return 0;
3266 }
3267
3268 /*
3269  * detach and free the LSM part of a set of credentials
3270  */
3271 static void selinux_cred_free(struct cred *cred)
3272 {
3273         struct task_security_struct *tsec = cred->security;
3274
3275         /*
3276          * cred->security == NULL if security_cred_alloc_blank() or
3277          * security_prepare_creds() returned an error.
3278          */
3279         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3280         cred->security = (void *) 0x7UL;
3281         kfree(tsec);
3282 }
3283
3284 /*
3285  * prepare a new set of credentials for modification
3286  */
3287 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3288                                 gfp_t gfp)
3289 {
3290         const struct task_security_struct *old_tsec;
3291         struct task_security_struct *tsec;
3292
3293         old_tsec = old->security;
3294
3295         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3296         if (!tsec)
3297                 return -ENOMEM;
3298
3299         new->security = tsec;
3300         return 0;
3301 }
3302
3303 /*
3304  * transfer the SELinux data to a blank set of creds
3305  */
3306 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3307 {
3308         const struct task_security_struct *old_tsec = old->security;
3309         struct task_security_struct *tsec = new->security;
3310
3311         *tsec = *old_tsec;
3312 }
3313
3314 /*
3315  * set the security data for a kernel service
3316  * - all the creation contexts are set to unlabelled
3317  */
3318 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3319 {
3320         struct task_security_struct *tsec = new->security;
3321         u32 sid = current_sid();
3322         int ret;
3323
3324         ret = avc_has_perm(sid, secid,
3325                            SECCLASS_KERNEL_SERVICE,
3326                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3327                            NULL);
3328         if (ret == 0) {
3329                 tsec->sid = secid;
3330                 tsec->create_sid = 0;
3331                 tsec->keycreate_sid = 0;
3332                 tsec->sockcreate_sid = 0;
3333         }
3334         return ret;
3335 }
3336
3337 /*
3338  * set the file creation context in a security record to the same as the
3339  * objective context of the specified inode
3340  */
3341 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3342 {
3343         struct inode_security_struct *isec = inode->i_security;
3344         struct task_security_struct *tsec = new->security;
3345         u32 sid = current_sid();
3346         int ret;
3347
3348         ret = avc_has_perm(sid, isec->sid,
3349                            SECCLASS_KERNEL_SERVICE,
3350                            KERNEL_SERVICE__CREATE_FILES_AS,
3351                            NULL);
3352
3353         if (ret == 0)
3354                 tsec->create_sid = isec->sid;
3355         return ret;
3356 }
3357
3358 static int selinux_kernel_module_request(char *kmod_name)
3359 {
3360         u32 sid;
3361         struct common_audit_data ad;
3362
3363         sid = task_sid(current);
3364
3365         ad.type = LSM_AUDIT_DATA_KMOD;
3366         ad.u.kmod_name = kmod_name;
3367
3368         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3369                             SYSTEM__MODULE_REQUEST, &ad);
3370 }
3371
3372 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3373 {
3374         return current_has_perm(p, PROCESS__SETPGID);
3375 }
3376
3377 static int selinux_task_getpgid(struct task_struct *p)
3378 {
3379         return current_has_perm(p, PROCESS__GETPGID);
3380 }
3381
3382 static int selinux_task_getsid(struct task_struct *p)
3383 {
3384         return current_has_perm(p, PROCESS__GETSESSION);
3385 }
3386
3387 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3388 {
3389         *secid = task_sid(p);
3390 }
3391
3392 static int selinux_task_setnice(struct task_struct *p, int nice)
3393 {
3394         int rc;
3395
3396         rc = cap_task_setnice(p, nice);
3397         if (rc)
3398                 return rc;
3399
3400         return current_has_perm(p, PROCESS__SETSCHED);
3401 }
3402
3403 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3404 {
3405         int rc;
3406
3407         rc = cap_task_setioprio(p, ioprio);
3408         if (rc)
3409                 return rc;
3410
3411         return current_has_perm(p, PROCESS__SETSCHED);
3412 }
3413
3414 static int selinux_task_getioprio(struct task_struct *p)
3415 {
3416         return current_has_perm(p, PROCESS__GETSCHED);
3417 }
3418
3419 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3420                 struct rlimit *new_rlim)
3421 {
3422         struct rlimit *old_rlim = p->signal->rlim + resource;
3423
3424         /* Control the ability to change the hard limit (whether
3425            lowering or raising it), so that the hard limit can
3426            later be used as a safe reset point for the soft limit
3427            upon context transitions.  See selinux_bprm_committing_creds. */
3428         if (old_rlim->rlim_max != new_rlim->rlim_max)
3429                 return current_has_perm(p, PROCESS__SETRLIMIT);
3430
3431         return 0;
3432 }
3433
3434 static int selinux_task_setscheduler(struct task_struct *p)
3435 {
3436         int rc;
3437
3438         rc = cap_task_setscheduler(p);
3439         if (rc)
3440                 return rc;
3441
3442         return current_has_perm(p, PROCESS__SETSCHED);
3443 }
3444
3445 static int selinux_task_getscheduler(struct task_struct *p)
3446 {
3447         return current_has_perm(p, PROCESS__GETSCHED);
3448 }
3449
3450 static int selinux_task_movememory(struct task_struct *p)
3451 {
3452         return current_has_perm(p, PROCESS__SETSCHED);
3453 }
3454
3455 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3456                                 int sig, u32 secid)
3457 {
3458         u32 perm;
3459         int rc;
3460
3461         if (!sig)
3462                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3463         else
3464                 perm = signal_to_av(sig);
3465         if (secid)
3466                 rc = avc_has_perm(secid, task_sid(p),
3467                                   SECCLASS_PROCESS, perm, NULL);
3468         else
3469                 rc = current_has_perm(p, perm);
3470         return rc;
3471 }
3472
3473 static int selinux_task_wait(struct task_struct *p)
3474 {
3475         return task_has_perm(p, current, PROCESS__SIGCHLD);
3476 }
3477
3478 static void selinux_task_to_inode(struct task_struct *p,
3479                                   struct inode *inode)
3480 {
3481         struct inode_security_struct *isec = inode->i_security;
3482         u32 sid = task_sid(p);
3483
3484         isec->sid = sid;
3485         isec->initialized = 1;
3486 }
3487
3488 /* Returns error only if unable to parse addresses */
3489 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3490                         struct common_audit_data *ad, u8 *proto)
3491 {
3492         int offset, ihlen, ret = -EINVAL;
3493         struct iphdr _iph, *ih;
3494
3495         offset = skb_network_offset(skb);
3496         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3497         if (ih == NULL)
3498                 goto out;
3499
3500         ihlen = ih->ihl * 4;
3501         if (ihlen < sizeof(_iph))
3502                 goto out;
3503
3504         ad->u.net->v4info.saddr = ih->saddr;
3505         ad->u.net->v4info.daddr = ih->daddr;
3506         ret = 0;
3507
3508         if (proto)
3509                 *proto = ih->protocol;
3510
3511         switch (ih->protocol) {
3512         case IPPROTO_TCP: {
3513                 struct tcphdr _tcph, *th;
3514
3515                 if (ntohs(ih->frag_off) & IP_OFFSET)
3516                         break;
3517
3518                 offset += ihlen;
3519                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3520                 if (th == NULL)
3521                         break;
3522
3523                 ad->u.net->sport = th->source;
3524                 ad->u.net->dport = th->dest;
3525                 break;
3526         }
3527
3528         case IPPROTO_UDP: {
3529                 struct udphdr _udph, *uh;
3530
3531                 if (ntohs(ih->frag_off) & IP_OFFSET)
3532                         break;
3533
3534                 offset += ihlen;
3535                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3536                 if (uh == NULL)
3537                         break;
3538
3539                 ad->u.net->sport = uh->source;
3540                 ad->u.net->dport = uh->dest;
3541                 break;
3542         }
3543
3544         case IPPROTO_DCCP: {
3545                 struct dccp_hdr _dccph, *dh;
3546
3547                 if (ntohs(ih->frag_off) & IP_OFFSET)
3548                         break;
3549
3550                 offset += ihlen;
3551                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3552                 if (dh == NULL)
3553                         break;
3554
3555                 ad->u.net->sport = dh->dccph_sport;
3556                 ad->u.net->dport = dh->dccph_dport;
3557                 break;
3558         }
3559
3560         default:
3561                 break;
3562         }
3563 out:
3564         return ret;
3565 }
3566
3567 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3568
3569 /* Returns error only if unable to parse addresses */
3570 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3571                         struct common_audit_data *ad, u8 *proto)
3572 {
3573         u8 nexthdr;
3574         int ret = -EINVAL, offset;
3575         struct ipv6hdr _ipv6h, *ip6;
3576         __be16 frag_off;
3577
3578         offset = skb_network_offset(skb);
3579         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3580         if (ip6 == NULL)
3581                 goto out;
3582
3583         ad->u.net->v6info.saddr = ip6->saddr;
3584         ad->u.net->v6info.daddr = ip6->daddr;
3585         ret = 0;
3586
3587         nexthdr = ip6->nexthdr;
3588         offset += sizeof(_ipv6h);
3589         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3590         if (offset < 0)
3591                 goto out;
3592
3593         if (proto)
3594                 *proto = nexthdr;
3595
3596         switch (nexthdr) {
3597         case IPPROTO_TCP: {
3598                 struct tcphdr _tcph, *th;
3599
3600                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3601                 if (th == NULL)
3602                         break;
3603
3604                 ad->u.net->sport = th->source;
3605                 ad->u.net->dport = th->dest;
3606                 break;
3607         }
3608
3609         case IPPROTO_UDP: {
3610                 struct udphdr _udph, *uh;
3611
3612                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3613                 if (uh == NULL)
3614                         break;
3615
3616                 ad->u.net->sport = uh->source;
3617                 ad->u.net->dport = uh->dest;
3618                 break;
3619         }
3620
3621         case IPPROTO_DCCP: {
3622                 struct dccp_hdr _dccph, *dh;
3623
3624                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3625                 if (dh == NULL)
3626                         break;
3627
3628                 ad->u.net->sport = dh->dccph_sport;
3629                 ad->u.net->dport = dh->dccph_dport;
3630                 break;
3631         }
3632
3633         /* includes fragments */
3634         default:
3635                 break;
3636         }
3637 out:
3638         return ret;
3639 }
3640
3641 #endif /* IPV6 */
3642
3643 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3644                              char **_addrp, int src, u8 *proto)
3645 {
3646         char *addrp;
3647         int ret;
3648
3649         switch (ad->u.net->family) {
3650         case PF_INET:
3651                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3652                 if (ret)
3653                         goto parse_error;
3654                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3655                                        &ad->u.net->v4info.daddr);
3656                 goto okay;
3657
3658 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3659         case PF_INET6:
3660                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3661                 if (ret)
3662                         goto parse_error;
3663                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3664                                        &ad->u.net->v6info.daddr);
3665                 goto okay;
3666 #endif  /* IPV6 */
3667         default:
3668                 addrp = NULL;
3669                 goto okay;
3670         }
3671
3672 parse_error:
3673         printk(KERN_WARNING
3674                "SELinux: failure in selinux_parse_skb(),"
3675                " unable to parse packet\n");
3676         return ret;
3677
3678 okay:
3679         if (_addrp)
3680                 *_addrp = addrp;
3681         return 0;
3682 }
3683
3684 /**
3685  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3686  * @skb: the packet
3687  * @family: protocol family
3688  * @sid: the packet's peer label SID
3689  *
3690  * Description:
3691  * Check the various different forms of network peer labeling and determine
3692  * the peer label/SID for the packet; most of the magic actually occurs in
3693  * the security server function security_net_peersid_cmp().  The function
3694  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3695  * or -EACCES if @sid is invalid due to inconsistencies with the different
3696  * peer labels.
3697  *
3698  */
3699 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3700 {
3701         int err;
3702         u32 xfrm_sid;
3703         u32 nlbl_sid;
3704         u32 nlbl_type;
3705
3706         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3707         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3708
3709         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3710         if (unlikely(err)) {
3711                 printk(KERN_WARNING
3712                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3713                        " unable to determine packet's peer label\n");
3714                 return -EACCES;
3715         }
3716
3717         return 0;
3718 }
3719
3720 /* socket security operations */
3721
3722 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3723                                  u16 secclass, u32 *socksid)
3724 {
3725         if (tsec->sockcreate_sid > SECSID_NULL) {
3726                 *socksid = tsec->sockcreate_sid;
3727                 return 0;
3728         }
3729
3730         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3731                                        socksid);
3732 }
3733
3734 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3735 {
3736         struct sk_security_struct *sksec = sk->sk_security;
3737         struct common_audit_data ad;
3738         struct lsm_network_audit net = {0,};
3739         u32 tsid = task_sid(task);
3740
3741         if (sksec->sid == SECINITSID_KERNEL)
3742                 return 0;
3743
3744         ad.type = LSM_AUDIT_DATA_NET;
3745         ad.u.net = &net;
3746         ad.u.net->sk = sk;
3747
3748         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3749 }
3750
3751 static int selinux_socket_create(int family, int type,
3752                                  int protocol, int kern)
3753 {
3754         const struct task_security_struct *tsec = current_security();
3755         u32 newsid;
3756         u16 secclass;
3757         int rc;
3758
3759         if (kern)
3760                 return 0;
3761
3762         secclass = socket_type_to_security_class(family, type, protocol);
3763         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3764         if (rc)
3765                 return rc;
3766
3767         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3768 }
3769
3770 static int selinux_socket_post_create(struct socket *sock, int family,
3771                                       int type, int protocol, int kern)
3772 {
3773         const struct task_security_struct *tsec = current_security();
3774         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3775         struct sk_security_struct *sksec;
3776         int err = 0;
3777
3778         isec->sclass = socket_type_to_security_class(family, type, protocol);
3779
3780         if (kern)
3781                 isec->sid = SECINITSID_KERNEL;
3782         else {
3783                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3784                 if (err)
3785                         return err;
3786         }
3787
3788         isec->initialized = 1;
3789
3790         if (sock->sk) {
3791                 sksec = sock->sk->sk_security;
3792                 sksec->sid = isec->sid;
3793                 sksec->sclass = isec->sclass;
3794                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3795         }
3796
3797         return err;
3798 }
3799
3800 /* Range of port numbers used to automatically bind.
3801    Need to determine whether we should perform a name_bind
3802    permission check between the socket and the port number. */
3803
3804 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3805 {
3806         struct sock *sk = sock->sk;
3807         u16 family;
3808         int err;
3809
3810         err = sock_has_perm(current, sk, SOCKET__BIND);
3811         if (err)
3812                 goto out;
3813
3814         /*
3815          * If PF_INET or PF_INET6, check name_bind permission for the port.
3816          * Multiple address binding for SCTP is not supported yet: we just
3817          * check the first address now.
3818          */
3819         family = sk->sk_family;
3820         if (family == PF_INET || family == PF_INET6) {
3821                 char *addrp;
3822                 struct sk_security_struct *sksec = sk->sk_security;
3823                 struct common_audit_data ad;
3824                 struct lsm_network_audit net = {0,};
3825                 struct sockaddr_in *addr4 = NULL;
3826                 struct sockaddr_in6 *addr6 = NULL;
3827                 unsigned short snum;
3828                 u32 sid, node_perm;
3829
3830                 if (family == PF_INET) {
3831                         addr4 = (struct sockaddr_in *)address;
3832                         snum = ntohs(addr4->sin_port);
3833                         addrp = (char *)&addr4->sin_addr.s_addr;
3834                 } else {
3835                         addr6 = (struct sockaddr_in6 *)address;
3836                         snum = ntohs(addr6->sin6_port);
3837                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3838                 }
3839
3840                 if (snum) {
3841                         int low, high;
3842
3843                         inet_get_local_port_range(&low, &high);
3844
3845                         if (snum < max(PROT_SOCK, low) || snum > high) {
3846                                 err = sel_netport_sid(sk->sk_protocol,
3847                                                       snum, &sid);
3848                                 if (err)
3849                                         goto out;
3850                                 ad.type = LSM_AUDIT_DATA_NET;
3851                                 ad.u.net = &net;
3852                                 ad.u.net->sport = htons(snum);
3853                                 ad.u.net->family = family;
3854                                 err = avc_has_perm(sksec->sid, sid,
3855                                                    sksec->sclass,
3856                                                    SOCKET__NAME_BIND, &ad);
3857                                 if (err)
3858                                         goto out;
3859                         }
3860                 }
3861
3862                 switch (sksec->sclass) {
3863                 case SECCLASS_TCP_SOCKET:
3864                         node_perm = TCP_SOCKET__NODE_BIND;
3865                         break;
3866
3867                 case SECCLASS_UDP_SOCKET:
3868                         node_perm = UDP_SOCKET__NODE_BIND;
3869                         break;
3870
3871                 case SECCLASS_DCCP_SOCKET:
3872                         node_perm = DCCP_SOCKET__NODE_BIND;
3873                         break;
3874
3875                 default:
3876                         node_perm = RAWIP_SOCKET__NODE_BIND;
3877                         break;
3878                 }
3879
3880                 err = sel_netnode_sid(addrp, family, &sid);
3881                 if (err)
3882                         goto out;
3883
3884                 ad.type = LSM_AUDIT_DATA_NET;
3885                 ad.u.net = &net;
3886                 ad.u.net->sport = htons(snum);
3887                 ad.u.net->family = family;
3888
3889                 if (family == PF_INET)
3890                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3891                 else
3892                         ad.u.net->v6info.saddr = addr6->sin6_addr;
3893
3894                 err = avc_has_perm(sksec->sid, sid,
3895                                    sksec->sclass, node_perm, &ad);
3896                 if (err)
3897                         goto out;
3898         }
3899 out:
3900         return err;
3901 }
3902
3903 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3904 {
3905         struct sock *sk = sock->sk;
3906         struct sk_security_struct *sksec = sk->sk_security;
3907         int err;
3908
3909         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3910         if (err)
3911                 return err;
3912
3913         /*
3914          * If a TCP or DCCP socket, check name_connect permission for the port.
3915          */
3916         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3917             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3918                 struct common_audit_data ad;
3919                 struct lsm_network_audit net = {0,};
3920                 struct sockaddr_in *addr4 = NULL;
3921                 struct sockaddr_in6 *addr6 = NULL;
3922                 unsigned short snum;
3923                 u32 sid, perm;
3924
3925                 if (sk->sk_family == PF_INET) {
3926                         addr4 = (struct sockaddr_in *)address;
3927                         if (addrlen < sizeof(struct sockaddr_in))
3928                                 return -EINVAL;
3929                         snum = ntohs(addr4->sin_port);
3930                 } else {
3931                         addr6 = (struct sockaddr_in6 *)address;
3932                         if (addrlen < SIN6_LEN_RFC2133)
3933                                 return -EINVAL;
3934                         snum = ntohs(addr6->sin6_port);
3935                 }
3936
3937                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3938                 if (err)
3939                         goto out;
3940
3941                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3942                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3943
3944                 ad.type = LSM_AUDIT_DATA_NET;
3945                 ad.u.net = &net;
3946                 ad.u.net->dport = htons(snum);
3947                 ad.u.net->family = sk->sk_family;
3948                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3949                 if (err)
3950                         goto out;
3951         }
3952
3953         err = selinux_netlbl_socket_connect(sk, address);
3954
3955 out:
3956         return err;
3957 }
3958
3959 static int selinux_socket_listen(struct socket *sock, int backlog)
3960 {
3961         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3962 }
3963
3964 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3965 {
3966         int err;
3967         struct inode_security_struct *isec;
3968         struct inode_security_struct *newisec;
3969
3970         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3971         if (err)
3972                 return err;
3973
3974         newisec = SOCK_INODE(newsock)->i_security;
3975
3976         isec = SOCK_INODE(sock)->i_security;
3977         newisec->sclass = isec->sclass;
3978         newisec->sid = isec->sid;
3979         newisec->initialized = 1;
3980
3981         return 0;
3982 }
3983
3984 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3985                                   int size)
3986 {
3987         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3988 }
3989
3990 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3991                                   int size, int flags)
3992 {
3993         return sock_has_perm(current, sock->sk, SOCKET__READ);
3994 }
3995
3996 static int selinux_socket_getsockname(struct socket *sock)
3997 {
3998         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3999 }
4000
4001 static int selinux_socket_getpeername(struct socket *sock)
4002 {
4003         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4004 }
4005
4006 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4007 {
4008         int err;
4009
4010         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4011         if (err)
4012                 return err;
4013
4014         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4015 }
4016
4017 static int selinux_socket_getsockopt(struct socket *sock, int level,
4018                                      int optname)
4019 {
4020         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4021 }
4022
4023 static int selinux_socket_shutdown(struct socket *sock, int how)
4024 {
4025         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4026 }
4027
4028 static int selinux_socket_unix_stream_connect(struct sock *sock,
4029                                               struct sock *other,
4030                                               struct sock *newsk)
4031 {
4032         struct sk_security_struct *sksec_sock = sock->sk_security;
4033         struct sk_security_struct *sksec_other = other->sk_security;
4034         struct sk_security_struct *sksec_new = newsk->sk_security;
4035         struct common_audit_data ad;
4036         struct lsm_network_audit net = {0,};
4037         int err;
4038
4039         ad.type = LSM_AUDIT_DATA_NET;
4040         ad.u.net = &net;
4041         ad.u.net->sk = other;
4042
4043         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4044                            sksec_other->sclass,
4045                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4046         if (err)
4047                 return err;
4048
4049         /* server child socket */
4050         sksec_new->peer_sid = sksec_sock->sid;
4051         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4052                                     &sksec_new->sid);
4053         if (err)
4054                 return err;
4055
4056         /* connecting socket */
4057         sksec_sock->peer_sid = sksec_new->sid;
4058
4059         return 0;
4060 }
4061
4062 static int selinux_socket_unix_may_send(struct socket *sock,
4063                                         struct socket *other)
4064 {
4065         struct sk_security_struct *ssec = sock->sk->sk_security;
4066         struct sk_security_struct *osec = other->sk->sk_security;
4067         struct common_audit_data ad;
4068         struct lsm_network_audit net = {0,};
4069
4070         ad.type = LSM_AUDIT_DATA_NET;
4071         ad.u.net = &net;
4072         ad.u.net->sk = other->sk;
4073
4074         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4075                             &ad);
4076 }
4077
4078 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4079                                     u32 peer_sid,
4080                                     struct common_audit_data *ad)
4081 {
4082         int err;
4083         u32 if_sid;
4084         u32 node_sid;
4085
4086         err = sel_netif_sid(ifindex, &if_sid);
4087         if (err)
4088                 return err;
4089         err = avc_has_perm(peer_sid, if_sid,
4090                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4091         if (err)
4092                 return err;
4093
4094         err = sel_netnode_sid(addrp, family, &node_sid);
4095         if (err)
4096                 return err;
4097         return avc_has_perm(peer_sid, node_sid,
4098                             SECCLASS_NODE, NODE__RECVFROM, ad);
4099 }
4100
4101 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4102                                        u16 family)
4103 {
4104         int err = 0;
4105         struct sk_security_struct *sksec = sk->sk_security;
4106         u32 sk_sid = sksec->sid;
4107         struct common_audit_data ad;
4108         struct lsm_network_audit net = {0,};
4109         char *addrp;
4110
4111         ad.type = LSM_AUDIT_DATA_NET;
4112         ad.u.net = &net;
4113         ad.u.net->netif = skb->skb_iif;
4114         ad.u.net->family = family;
4115         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4116         if (err)
4117                 return err;
4118
4119         if (selinux_secmark_enabled()) {
4120                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4121                                    PACKET__RECV, &ad);
4122                 if (err)
4123                         return err;
4124         }
4125
4126         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4127         if (err)
4128                 return err;
4129         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4130
4131         return err;
4132 }
4133
4134 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4135 {
4136         int err;
4137         struct sk_security_struct *sksec = sk->sk_security;
4138         u16 family = sk->sk_family;
4139         u32 sk_sid = sksec->sid;
4140         struct common_audit_data ad;
4141         struct lsm_network_audit net = {0,};
4142         char *addrp;
4143         u8 secmark_active;
4144         u8 peerlbl_active;
4145
4146         if (family != PF_INET && family != PF_INET6)
4147                 return 0;
4148
4149         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4150         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4151                 family = PF_INET;
4152
4153         /* If any sort of compatibility mode is enabled then handoff processing
4154          * to the selinux_sock_rcv_skb_compat() function to deal with the
4155          * special handling.  We do this in an attempt to keep this function
4156          * as fast and as clean as possible. */
4157         if (!selinux_policycap_netpeer)
4158                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4159
4160         secmark_active = selinux_secmark_enabled();
4161         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4162         if (!secmark_active && !peerlbl_active)
4163                 return 0;
4164
4165         ad.type = LSM_AUDIT_DATA_NET;
4166         ad.u.net = &net;
4167         ad.u.net->netif = skb->skb_iif;
4168         ad.u.net->family = family;
4169         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4170         if (err)
4171                 return err;
4172
4173         if (peerlbl_active) {
4174                 u32 peer_sid;
4175
4176                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4177                 if (err)
4178                         return err;
4179                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4180                                                peer_sid, &ad);
4181                 if (err) {
4182                         selinux_netlbl_err(skb, err, 0);
4183                         return err;
4184                 }
4185                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4186                                    PEER__RECV, &ad);
4187                 if (err)
4188                         selinux_netlbl_err(skb, err, 0);
4189         }
4190
4191         if (secmark_active) {
4192                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4193                                    PACKET__RECV, &ad);
4194                 if (err)
4195                         return err;
4196         }
4197
4198         return err;
4199 }
4200
4201 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4202                                             int __user *optlen, unsigned len)
4203 {
4204         int err = 0;
4205         char *scontext;
4206         u32 scontext_len;
4207         struct sk_security_struct *sksec = sock->sk->sk_security;
4208         u32 peer_sid = SECSID_NULL;
4209
4210         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4211             sksec->sclass == SECCLASS_TCP_SOCKET)
4212                 peer_sid = sksec->peer_sid;
4213         if (peer_sid == SECSID_NULL)
4214                 return -ENOPROTOOPT;
4215
4216         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4217         if (err)
4218                 return err;
4219
4220         if (scontext_len > len) {
4221                 err = -ERANGE;
4222                 goto out_len;
4223         }
4224
4225         if (copy_to_user(optval, scontext, scontext_len))
4226                 err = -EFAULT;
4227
4228 out_len:
4229         if (put_user(scontext_len, optlen))
4230                 err = -EFAULT;
4231         kfree(scontext);
4232         return err;
4233 }
4234
4235 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4236 {
4237         u32 peer_secid = SECSID_NULL;
4238         u16 family;
4239
4240         if (skb && skb->protocol == htons(ETH_P_IP))
4241                 family = PF_INET;
4242         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4243                 family = PF_INET6;
4244         else if (sock)
4245                 family = sock->sk->sk_family;
4246         else
4247                 goto out;
4248
4249         if (sock && family == PF_UNIX)
4250                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4251         else if (skb)
4252                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4253
4254 out:
4255         *secid = peer_secid;
4256         if (peer_secid == SECSID_NULL)
4257                 return -EINVAL;
4258         return 0;
4259 }
4260
4261 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4262 {
4263         struct sk_security_struct *sksec;
4264
4265         sksec = kzalloc(sizeof(*sksec), priority);
4266         if (!sksec)
4267                 return -ENOMEM;
4268
4269         sksec->peer_sid = SECINITSID_UNLABELED;
4270         sksec->sid = SECINITSID_UNLABELED;
4271         selinux_netlbl_sk_security_reset(sksec);
4272         sk->sk_security = sksec;
4273
4274         return 0;
4275 }
4276
4277 static void selinux_sk_free_security(struct sock *sk)
4278 {
4279         struct sk_security_struct *sksec = sk->sk_security;
4280
4281         sk->sk_security = NULL;
4282         selinux_netlbl_sk_security_free(sksec);
4283         kfree(sksec);
4284 }
4285
4286 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4287 {
4288         struct sk_security_struct *sksec = sk->sk_security;
4289         struct sk_security_struct *newsksec = newsk->sk_security;
4290
4291         newsksec->sid = sksec->sid;
4292         newsksec->peer_sid = sksec->peer_sid;
4293         newsksec->sclass = sksec->sclass;
4294
4295         selinux_netlbl_sk_security_reset(newsksec);
4296 }
4297
4298 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4299 {
4300         if (!sk)
4301                 *secid = SECINITSID_ANY_SOCKET;
4302         else {
4303                 struct sk_security_struct *sksec = sk->sk_security;
4304
4305                 *secid = sksec->sid;
4306         }
4307 }
4308
4309 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4310 {
4311         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4312         struct sk_security_struct *sksec = sk->sk_security;
4313
4314         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4315             sk->sk_family == PF_UNIX)
4316                 isec->sid = sksec->sid;
4317         sksec->sclass = isec->sclass;
4318 }
4319
4320 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4321                                      struct request_sock *req)
4322 {
4323         struct sk_security_struct *sksec = sk->sk_security;
4324         int err;
4325         u16 family = sk->sk_family;
4326         u32 newsid;
4327         u32 peersid;
4328
4329         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4330         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4331                 family = PF_INET;
4332
4333         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4334         if (err)
4335                 return err;
4336         if (peersid == SECSID_NULL) {
4337                 req->secid = sksec->sid;
4338                 req->peer_secid = SECSID_NULL;
4339         } else {
4340                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4341                 if (err)
4342                         return err;
4343                 req->secid = newsid;
4344                 req->peer_secid = peersid;
4345         }
4346
4347         return selinux_netlbl_inet_conn_request(req, family);
4348 }
4349
4350 static void selinux_inet_csk_clone(struct sock *newsk,
4351                                    const struct request_sock *req)
4352 {
4353         struct sk_security_struct *newsksec = newsk->sk_security;
4354
4355         newsksec->sid = req->secid;
4356         newsksec->peer_sid = req->peer_secid;
4357         /* NOTE: Ideally, we should also get the isec->sid for the
4358            new socket in sync, but we don't have the isec available yet.
4359            So we will wait until sock_graft to do it, by which
4360            time it will have been created and available. */
4361
4362         /* We don't need to take any sort of lock here as we are the only
4363          * thread with access to newsksec */
4364         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4365 }
4366
4367 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4368 {
4369         u16 family = sk->sk_family;
4370         struct sk_security_struct *sksec = sk->sk_security;
4371
4372         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4373         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4374                 family = PF_INET;
4375
4376         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4377 }
4378
4379 static int selinux_secmark_relabel_packet(u32 sid)
4380 {
4381         const struct task_security_struct *__tsec;
4382         u32 tsid;
4383
4384         __tsec = current_security();
4385         tsid = __tsec->sid;
4386
4387         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4388 }
4389
4390 static void selinux_secmark_refcount_inc(void)
4391 {
4392         atomic_inc(&selinux_secmark_refcount);
4393 }
4394
4395 static void selinux_secmark_refcount_dec(void)
4396 {
4397         atomic_dec(&selinux_secmark_refcount);
4398 }
4399
4400 static void selinux_req_classify_flow(const struct request_sock *req,
4401                                       struct flowi *fl)
4402 {
4403         fl->flowi_secid = req->secid;
4404 }
4405
4406 static int selinux_tun_dev_create(void)
4407 {
4408         u32 sid = current_sid();
4409
4410         /* we aren't taking into account the "sockcreate" SID since the socket
4411          * that is being created here is not a socket in the traditional sense,
4412          * instead it is a private sock, accessible only to the kernel, and
4413          * representing a wide range of network traffic spanning multiple
4414          * connections unlike traditional sockets - check the TUN driver to
4415          * get a better understanding of why this socket is special */
4416
4417         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4418                             NULL);
4419 }
4420
4421 static void selinux_tun_dev_post_create(struct sock *sk)
4422 {
4423         struct sk_security_struct *sksec = sk->sk_security;
4424
4425         /* we don't currently perform any NetLabel based labeling here and it
4426          * isn't clear that we would want to do so anyway; while we could apply
4427          * labeling without the support of the TUN user the resulting labeled
4428          * traffic from the other end of the connection would almost certainly
4429          * cause confusion to the TUN user that had no idea network labeling
4430          * protocols were being used */
4431
4432         /* see the comments in selinux_tun_dev_create() about why we don't use
4433          * the sockcreate SID here */
4434
4435         sksec->sid = current_sid();
4436         sksec->sclass = SECCLASS_TUN_SOCKET;
4437 }
4438
4439 static int selinux_tun_dev_attach(struct sock *sk)
4440 {
4441         struct sk_security_struct *sksec = sk->sk_security;
4442         u32 sid = current_sid();
4443         int err;
4444
4445         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4446                            TUN_SOCKET__RELABELFROM, NULL);
4447         if (err)
4448                 return err;
4449         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4450                            TUN_SOCKET__RELABELTO, NULL);
4451         if (err)
4452                 return err;
4453
4454         sksec->sid = sid;
4455
4456         return 0;
4457 }
4458
4459 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4460 {
4461         int err = 0;
4462         u32 perm;
4463         struct nlmsghdr *nlh;
4464         struct sk_security_struct *sksec = sk->sk_security;
4465
4466         if (skb->len < NLMSG_SPACE(0)) {
4467                 err = -EINVAL;
4468                 goto out;
4469         }
4470         nlh = nlmsg_hdr(skb);
4471
4472         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4473         if (err) {
4474                 if (err == -EINVAL) {
4475                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4476                                   "SELinux:  unrecognized netlink message"
4477                                   " type=%hu for sclass=%hu\n",
4478                                   nlh->nlmsg_type, sksec->sclass);
4479                         if (!selinux_enforcing || security_get_allow_unknown())
4480                                 err = 0;
4481                 }
4482
4483                 /* Ignore */
4484                 if (err == -ENOENT)
4485                         err = 0;
4486                 goto out;
4487         }
4488
4489         err = sock_has_perm(current, sk, perm);
4490 out:
4491         return err;
4492 }
4493
4494 #ifdef CONFIG_NETFILTER
4495
4496 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4497                                        u16 family)
4498 {
4499         int err;
4500         char *addrp;
4501         u32 peer_sid;
4502         struct common_audit_data ad;
4503         struct lsm_network_audit net = {0,};
4504         u8 secmark_active;
4505         u8 netlbl_active;
4506         u8 peerlbl_active;
4507
4508         if (!selinux_policycap_netpeer)
4509                 return NF_ACCEPT;
4510
4511         secmark_active = selinux_secmark_enabled();
4512         netlbl_active = netlbl_enabled();
4513         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4514         if (!secmark_active && !peerlbl_active)
4515                 return NF_ACCEPT;
4516
4517         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4518                 return NF_DROP;
4519
4520         ad.type = LSM_AUDIT_DATA_NET;
4521         ad.u.net = &net;
4522         ad.u.net->netif = ifindex;
4523         ad.u.net->family = family;
4524         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4525                 return NF_DROP;
4526
4527         if (peerlbl_active) {
4528                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4529                                                peer_sid, &ad);
4530                 if (err) {
4531                         selinux_netlbl_err(skb, err, 1);
4532                         return NF_DROP;
4533                 }
4534         }
4535
4536         if (secmark_active)
4537                 if (avc_has_perm(peer_sid, skb->secmark,
4538                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4539                         return NF_DROP;
4540
4541         if (netlbl_active)
4542                 /* we do this in the FORWARD path and not the POST_ROUTING
4543                  * path because we want to make sure we apply the necessary
4544                  * labeling before IPsec is applied so we can leverage AH
4545                  * protection */
4546                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4547                         return NF_DROP;
4548
4549         return NF_ACCEPT;
4550 }
4551
4552 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4553                                          struct sk_buff *skb,
4554                                          const struct net_device *in,
4555                                          const struct net_device *out,
4556                                          int (*okfn)(struct sk_buff *))
4557 {
4558         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4559 }
4560
4561 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4562 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4563                                          struct sk_buff *skb,
4564                                          const struct net_device *in,
4565                                          const struct net_device *out,
4566                                          int (*okfn)(struct sk_buff *))
4567 {
4568         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4569 }
4570 #endif  /* IPV6 */
4571
4572 static unsigned int selinux_ip_output(struct sk_buff *skb,
4573                                       u16 family)
4574 {
4575         u32 sid;
4576
4577         if (!netlbl_enabled())
4578                 return NF_ACCEPT;
4579
4580         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4581          * because we want to make sure we apply the necessary labeling
4582          * before IPsec is applied so we can leverage AH protection */
4583         if (skb->sk) {
4584                 struct sk_security_struct *sksec = skb->sk->sk_security;
4585                 sid = sksec->sid;
4586         } else
4587                 sid = SECINITSID_KERNEL;
4588         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4589                 return NF_DROP;
4590
4591         return NF_ACCEPT;
4592 }
4593
4594 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4595                                         struct sk_buff *skb,
4596                                         const struct net_device *in,
4597                                         const struct net_device *out,
4598                                         int (*okfn)(struct sk_buff *))
4599 {
4600         return selinux_ip_output(skb, PF_INET);
4601 }
4602
4603 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4604                                                 int ifindex,
4605                                                 u16 family)
4606 {
4607         struct sock *sk = skb->sk;
4608         struct sk_security_struct *sksec;
4609         struct common_audit_data ad;
4610         struct lsm_network_audit net = {0,};
4611         char *addrp;
4612         u8 proto;
4613
4614         if (sk == NULL)
4615                 return NF_ACCEPT;
4616         sksec = sk->sk_security;
4617
4618         ad.type = LSM_AUDIT_DATA_NET;
4619         ad.u.net = &net;
4620         ad.u.net->netif = ifindex;
4621         ad.u.net->family = family;
4622         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4623                 return NF_DROP;
4624
4625         if (selinux_secmark_enabled())
4626                 if (avc_has_perm(sksec->sid, skb->secmark,
4627                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4628                         return NF_DROP_ERR(-ECONNREFUSED);
4629
4630         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4631                 return NF_DROP_ERR(-ECONNREFUSED);
4632
4633         return NF_ACCEPT;
4634 }
4635
4636 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4637                                          u16 family)
4638 {
4639         u32 secmark_perm;
4640         u32 peer_sid;
4641         struct sock *sk;
4642         struct common_audit_data ad;
4643         struct lsm_network_audit net = {0,};
4644         char *addrp;
4645         u8 secmark_active;
4646         u8 peerlbl_active;
4647
4648         /* If any sort of compatibility mode is enabled then handoff processing
4649          * to the selinux_ip_postroute_compat() function to deal with the
4650          * special handling.  We do this in an attempt to keep this function
4651          * as fast and as clean as possible. */
4652         if (!selinux_policycap_netpeer)
4653                 return selinux_ip_postroute_compat(skb, ifindex, family);
4654 #ifdef CONFIG_XFRM
4655         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4656          * packet transformation so allow the packet to pass without any checks
4657          * since we'll have another chance to perform access control checks
4658          * when the packet is on it's final way out.
4659          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4660          *       is NULL, in this case go ahead and apply access control. */
4661         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4662                 return NF_ACCEPT;
4663 #endif
4664         secmark_active = selinux_secmark_enabled();
4665         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4666         if (!secmark_active && !peerlbl_active)
4667                 return NF_ACCEPT;
4668
4669         /* if the packet is being forwarded then get the peer label from the
4670          * packet itself; otherwise check to see if it is from a local
4671          * application or the kernel, if from an application get the peer label
4672          * from the sending socket, otherwise use the kernel's sid */
4673         sk = skb->sk;
4674         if (sk == NULL) {
4675                 if (skb->skb_iif) {
4676                         secmark_perm = PACKET__FORWARD_OUT;
4677                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4678                                 return NF_DROP;
4679                 } else {
4680                         secmark_perm = PACKET__SEND;
4681                         peer_sid = SECINITSID_KERNEL;
4682                 }
4683         } else {
4684                 struct sk_security_struct *sksec = sk->sk_security;
4685                 peer_sid = sksec->sid;
4686                 secmark_perm = PACKET__SEND;
4687         }
4688
4689         ad.type = LSM_AUDIT_DATA_NET;
4690         ad.u.net = &net;
4691         ad.u.net->netif = ifindex;
4692         ad.u.net->family = family;
4693         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4694                 return NF_DROP;
4695
4696         if (secmark_active)
4697                 if (avc_has_perm(peer_sid, skb->secmark,
4698                                  SECCLASS_PACKET, secmark_perm, &ad))
4699                         return NF_DROP_ERR(-ECONNREFUSED);
4700
4701         if (peerlbl_active) {
4702                 u32 if_sid;
4703                 u32 node_sid;
4704
4705                 if (sel_netif_sid(ifindex, &if_sid))
4706                         return NF_DROP;
4707                 if (avc_has_perm(peer_sid, if_sid,
4708                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4709                         return NF_DROP_ERR(-ECONNREFUSED);
4710
4711                 if (sel_netnode_sid(addrp, family, &node_sid))
4712                         return NF_DROP;
4713                 if (avc_has_perm(peer_sid, node_sid,
4714                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4715                         return NF_DROP_ERR(-ECONNREFUSED);
4716         }
4717
4718         return NF_ACCEPT;
4719 }
4720
4721 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4722                                            struct sk_buff *skb,
4723                                            const struct net_device *in,
4724                                            const struct net_device *out,
4725                                            int (*okfn)(struct sk_buff *))
4726 {
4727         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4728 }
4729
4730 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4731 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4732                                            struct sk_buff *skb,
4733                                            const struct net_device *in,
4734                                            const struct net_device *out,
4735                                            int (*okfn)(struct sk_buff *))
4736 {
4737         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4738 }
4739 #endif  /* IPV6 */
4740
4741 #endif  /* CONFIG_NETFILTER */
4742
4743 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4744 {
4745         int err;
4746
4747         err = cap_netlink_send(sk, skb);
4748         if (err)
4749                 return err;
4750
4751         return selinux_nlmsg_perm(sk, skb);
4752 }
4753
4754 static int ipc_alloc_security(struct task_struct *task,
4755                               struct kern_ipc_perm *perm,
4756                               u16 sclass)
4757 {
4758         struct ipc_security_struct *isec;
4759         u32 sid;
4760
4761         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4762         if (!isec)
4763                 return -ENOMEM;
4764
4765         sid = task_sid(task);
4766         isec->sclass = sclass;
4767         isec->sid = sid;
4768         perm->security = isec;
4769
4770         return 0;
4771 }
4772
4773 static void ipc_free_security(struct kern_ipc_perm *perm)
4774 {
4775         struct ipc_security_struct *isec = perm->security;
4776         perm->security = NULL;
4777         kfree(isec);
4778 }
4779
4780 static int msg_msg_alloc_security(struct msg_msg *msg)
4781 {
4782         struct msg_security_struct *msec;
4783
4784         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4785         if (!msec)
4786                 return -ENOMEM;
4787
4788         msec->sid = SECINITSID_UNLABELED;
4789         msg->security = msec;
4790
4791         return 0;
4792 }
4793
4794 static void msg_msg_free_security(struct msg_msg *msg)
4795 {
4796         struct msg_security_struct *msec = msg->security;
4797
4798         msg->security = NULL;
4799         kfree(msec);
4800 }
4801
4802 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4803                         u32 perms)
4804 {
4805         struct ipc_security_struct *isec;
4806         struct common_audit_data ad;
4807         u32 sid = current_sid();
4808
4809         isec = ipc_perms->security;
4810
4811         ad.type = LSM_AUDIT_DATA_IPC;
4812         ad.u.ipc_id = ipc_perms->key;
4813
4814         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4815 }
4816
4817 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4818 {
4819         return msg_msg_alloc_security(msg);
4820 }
4821
4822 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4823 {
4824         msg_msg_free_security(msg);
4825 }
4826
4827 /* message queue security operations */
4828 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4829 {
4830         struct ipc_security_struct *isec;
4831         struct common_audit_data ad;
4832         u32 sid = current_sid();
4833         int rc;
4834
4835         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4836         if (rc)
4837                 return rc;
4838
4839         isec = msq->q_perm.security;
4840
4841         ad.type = LSM_AUDIT_DATA_IPC;
4842         ad.u.ipc_id = msq->q_perm.key;
4843
4844         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4845                           MSGQ__CREATE, &ad);
4846         if (rc) {
4847                 ipc_free_security(&msq->q_perm);
4848                 return rc;
4849         }
4850         return 0;
4851 }
4852
4853 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4854 {
4855         ipc_free_security(&msq->q_perm);
4856 }
4857
4858 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4859 {
4860         struct ipc_security_struct *isec;
4861         struct common_audit_data ad;
4862         u32 sid = current_sid();
4863
4864         isec = msq->q_perm.security;
4865
4866         ad.type = LSM_AUDIT_DATA_IPC;
4867         ad.u.ipc_id = msq->q_perm.key;
4868
4869         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4870                             MSGQ__ASSOCIATE, &ad);
4871 }
4872
4873 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4874 {
4875         int err;
4876         int perms;
4877
4878         switch (cmd) {
4879         case IPC_INFO:
4880         case MSG_INFO:
4881                 /* No specific object, just general system-wide information. */
4882                 return task_has_system(current, SYSTEM__IPC_INFO);
4883         case IPC_STAT:
4884         case MSG_STAT:
4885                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4886                 break;
4887         case IPC_SET:
4888                 perms = MSGQ__SETATTR;
4889                 break;
4890         case IPC_RMID:
4891                 perms = MSGQ__DESTROY;
4892                 break;
4893         default:
4894                 return 0;
4895         }
4896
4897         err = ipc_has_perm(&msq->q_perm, perms);
4898         return err;
4899 }
4900
4901 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4902 {
4903         struct ipc_security_struct *isec;
4904         struct msg_security_struct *msec;
4905         struct common_audit_data ad;
4906         u32 sid = current_sid();
4907         int rc;
4908
4909         isec = msq->q_perm.security;
4910         msec = msg->security;
4911
4912         /*
4913          * First time through, need to assign label to the message
4914          */
4915         if (msec->sid == SECINITSID_UNLABELED) {
4916                 /*
4917                  * Compute new sid based on current process and
4918                  * message queue this message will be stored in
4919                  */
4920                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4921                                              NULL, &msec->sid);
4922                 if (rc)
4923                         return rc;
4924         }
4925
4926         ad.type = LSM_AUDIT_DATA_IPC;
4927         ad.u.ipc_id = msq->q_perm.key;
4928
4929         /* Can this process write to the queue? */
4930         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4931                           MSGQ__WRITE, &ad);
4932         if (!rc)
4933                 /* Can this process send the message */
4934                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4935                                   MSG__SEND, &ad);
4936         if (!rc)
4937                 /* Can the message be put in the queue? */
4938                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4939                                   MSGQ__ENQUEUE, &ad);
4940
4941         return rc;
4942 }
4943
4944 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4945                                     struct task_struct *target,
4946                                     long type, int mode)
4947 {
4948         struct ipc_security_struct *isec;
4949         struct msg_security_struct *msec;
4950         struct common_audit_data ad;
4951         u32 sid = task_sid(target);
4952         int rc;
4953
4954         isec = msq->q_perm.security;
4955         msec = msg->security;
4956
4957         ad.type = LSM_AUDIT_DATA_IPC;
4958         ad.u.ipc_id = msq->q_perm.key;
4959
4960         rc = avc_has_perm(sid, isec->sid,
4961                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4962         if (!rc)
4963                 rc = avc_has_perm(sid, msec->sid,
4964                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4965         return rc;
4966 }
4967
4968 /* Shared Memory security operations */
4969 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4970 {
4971         struct ipc_security_struct *isec;
4972         struct common_audit_data ad;
4973         u32 sid = current_sid();
4974         int rc;
4975
4976         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4977         if (rc)
4978                 return rc;
4979
4980         isec = shp->shm_perm.security;
4981
4982         ad.type = LSM_AUDIT_DATA_IPC;
4983         ad.u.ipc_id = shp->shm_perm.key;
4984
4985         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4986                           SHM__CREATE, &ad);
4987         if (rc) {
4988                 ipc_free_security(&shp->shm_perm);
4989                 return rc;
4990         }
4991         return 0;
4992 }
4993
4994 static void selinux_shm_free_security(struct shmid_kernel *shp)
4995 {
4996         ipc_free_security(&shp->shm_perm);
4997 }
4998
4999 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5000 {
5001         struct ipc_security_struct *isec;
5002         struct common_audit_data ad;
5003         u32 sid = current_sid();
5004
5005         isec = shp->shm_perm.security;
5006
5007         ad.type = LSM_AUDIT_DATA_IPC;
5008         ad.u.ipc_id = shp->shm_perm.key;
5009
5010         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5011                             SHM__ASSOCIATE, &ad);
5012 }
5013
5014 /* Note, at this point, shp is locked down */
5015 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5016 {
5017         int perms;
5018         int err;
5019
5020         switch (cmd) {
5021         case IPC_INFO:
5022         case SHM_INFO:
5023                 /* No specific object, just general system-wide information. */
5024                 return task_has_system(current, SYSTEM__IPC_INFO);
5025         case IPC_STAT:
5026         case SHM_STAT:
5027                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5028                 break;
5029         case IPC_SET:
5030                 perms = SHM__SETATTR;
5031                 break;
5032         case SHM_LOCK:
5033         case SHM_UNLOCK:
5034                 perms = SHM__LOCK;
5035                 break;
5036         case IPC_RMID:
5037                 perms = SHM__DESTROY;
5038                 break;
5039         default:
5040                 return 0;
5041         }
5042
5043         err = ipc_has_perm(&shp->shm_perm, perms);
5044         return err;
5045 }
5046
5047 static int selinux_shm_shmat(struct shmid_kernel *shp,
5048                              char __user *shmaddr, int shmflg)
5049 {
5050         u32 perms;
5051
5052         if (shmflg & SHM_RDONLY)
5053                 perms = SHM__READ;
5054         else
5055                 perms = SHM__READ | SHM__WRITE;
5056
5057         return ipc_has_perm(&shp->shm_perm, perms);
5058 }
5059
5060 /* Semaphore security operations */
5061 static int selinux_sem_alloc_security(struct sem_array *sma)
5062 {
5063         struct ipc_security_struct *isec;
5064         struct common_audit_data ad;
5065         u32 sid = current_sid();
5066         int rc;
5067
5068         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5069         if (rc)
5070                 return rc;
5071
5072         isec = sma->sem_perm.security;
5073
5074         ad.type = LSM_AUDIT_DATA_IPC;
5075         ad.u.ipc_id = sma->sem_perm.key;
5076
5077         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5078                           SEM__CREATE, &ad);
5079         if (rc) {
5080                 ipc_free_security(&sma->sem_perm);
5081                 return rc;
5082         }
5083         return 0;
5084 }
5085
5086 static void selinux_sem_free_security(struct sem_array *sma)
5087 {
5088         ipc_free_security(&sma->sem_perm);
5089 }
5090
5091 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5092 {
5093         struct ipc_security_struct *isec;
5094         struct common_audit_data ad;
5095         u32 sid = current_sid();
5096
5097         isec = sma->sem_perm.security;
5098
5099         ad.type = LSM_AUDIT_DATA_IPC;
5100         ad.u.ipc_id = sma->sem_perm.key;
5101
5102         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5103                             SEM__ASSOCIATE, &ad);
5104 }
5105
5106 /* Note, at this point, sma is locked down */
5107 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5108 {
5109         int err;
5110         u32 perms;
5111
5112         switch (cmd) {
5113         case IPC_INFO:
5114         case SEM_INFO:
5115                 /* No specific object, just general system-wide information. */
5116                 return task_has_system(current, SYSTEM__IPC_INFO);
5117         case GETPID:
5118         case GETNCNT:
5119         case GETZCNT:
5120                 perms = SEM__GETATTR;
5121                 break;
5122         case GETVAL:
5123         case GETALL:
5124                 perms = SEM__READ;
5125                 break;
5126         case SETVAL:
5127         case SETALL:
5128                 perms = SEM__WRITE;
5129                 break;
5130         case IPC_RMID:
5131                 perms = SEM__DESTROY;
5132                 break;
5133         case IPC_SET:
5134                 perms = SEM__SETATTR;
5135                 break;
5136         case IPC_STAT:
5137         case SEM_STAT:
5138                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5139                 break;
5140         default:
5141                 return 0;
5142         }
5143
5144         err = ipc_has_perm(&sma->sem_perm, perms);
5145         return err;
5146 }
5147
5148 static int selinux_sem_semop(struct sem_array *sma,
5149                              struct sembuf *sops, unsigned nsops, int alter)
5150 {
5151         u32 perms;
5152
5153         if (alter)
5154                 perms = SEM__READ | SEM__WRITE;
5155         else
5156                 perms = SEM__READ;
5157
5158         return ipc_has_perm(&sma->sem_perm, perms);
5159 }
5160
5161 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5162 {
5163         u32 av = 0;
5164
5165         av = 0;
5166         if (flag & S_IRUGO)
5167                 av |= IPC__UNIX_READ;
5168         if (flag & S_IWUGO)
5169                 av |= IPC__UNIX_WRITE;
5170
5171         if (av == 0)
5172                 return 0;
5173
5174         return ipc_has_perm(ipcp, av);
5175 }
5176
5177 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5178 {
5179         struct ipc_security_struct *isec = ipcp->security;
5180         *secid = isec->sid;
5181 }
5182
5183 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5184 {
5185         if (inode)
5186                 inode_doinit_with_dentry(inode, dentry);
5187 }
5188
5189 static int selinux_getprocattr(struct task_struct *p,
5190                                char *name, char **value)
5191 {
5192         const struct task_security_struct *__tsec;
5193         u32 sid;
5194         int error;
5195         unsigned len;
5196
5197         if (current != p) {
5198                 error = current_has_perm(p, PROCESS__GETATTR);
5199                 if (error)
5200                         return error;
5201         }
5202
5203         rcu_read_lock();
5204         __tsec = __task_cred(p)->security;
5205
5206         if (!strcmp(name, "current"))
5207                 sid = __tsec->sid;
5208         else if (!strcmp(name, "prev"))
5209                 sid = __tsec->osid;
5210         else if (!strcmp(name, "exec"))
5211                 sid = __tsec->exec_sid;
5212         else if (!strcmp(name, "fscreate"))
5213                 sid = __tsec->create_sid;
5214         else if (!strcmp(name, "keycreate"))
5215                 sid = __tsec->keycreate_sid;
5216         else if (!strcmp(name, "sockcreate"))
5217                 sid = __tsec->sockcreate_sid;
5218         else
5219                 goto invalid;
5220         rcu_read_unlock();
5221
5222         if (!sid)
5223                 return 0;
5224
5225         error = security_sid_to_context(sid, value, &len);
5226         if (error)
5227                 return error;
5228         return len;
5229
5230 invalid:
5231         rcu_read_unlock();
5232         return -EINVAL;
5233 }
5234
5235 static int selinux_setprocattr(struct task_struct *p,
5236                                char *name, void *value, size_t size)
5237 {
5238         struct task_security_struct *tsec;
5239         struct task_struct *tracer;
5240         struct cred *new;
5241         u32 sid = 0, ptsid;
5242         int error;
5243         char *str = value;
5244
5245         if (current != p) {
5246                 /* SELinux only allows a process to change its own
5247                    security attributes. */
5248                 return -EACCES;
5249         }
5250
5251         /*
5252          * Basic control over ability to set these attributes at all.
5253          * current == p, but we'll pass them separately in case the
5254          * above restriction is ever removed.
5255          */
5256         if (!strcmp(name, "exec"))
5257                 error = current_has_perm(p, PROCESS__SETEXEC);
5258         else if (!strcmp(name, "fscreate"))
5259                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5260         else if (!strcmp(name, "keycreate"))
5261                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5262         else if (!strcmp(name, "sockcreate"))
5263                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5264         else if (!strcmp(name, "current"))
5265                 error = current_has_perm(p, PROCESS__SETCURRENT);
5266         else
5267                 error = -EINVAL;
5268         if (error)
5269                 return error;
5270
5271         /* Obtain a SID for the context, if one was specified. */
5272         if (size && str[1] && str[1] != '\n') {
5273                 if (str[size-1] == '\n') {
5274                         str[size-1] = 0;
5275                         size--;
5276                 }
5277                 error = security_context_to_sid(value, size, &sid);
5278                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5279                         if (!capable(CAP_MAC_ADMIN)) {
5280                                 struct audit_buffer *ab;
5281                                 size_t audit_size;
5282
5283                                 /* We strip a nul only if it is at the end, otherwise the
5284                                  * context contains a nul and we should audit that */
5285                                 if (str[size - 1] == '\0')
5286                                         audit_size = size - 1;
5287                                 else
5288                                         audit_size = size;
5289                                 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5290                                 audit_log_format(ab, "op=fscreate invalid_context=");
5291                                 audit_log_n_untrustedstring(ab, value, audit_size);
5292                                 audit_log_end(ab);
5293
5294                                 return error;
5295                         }
5296                         error = security_context_to_sid_force(value, size,
5297                                                               &sid);
5298                 }
5299                 if (error)
5300                         return error;
5301         }
5302
5303         new = prepare_creds();
5304         if (!new)
5305                 return -ENOMEM;
5306
5307         /* Permission checking based on the specified context is
5308            performed during the actual operation (execve,
5309            open/mkdir/...), when we know the full context of the
5310            operation.  See selinux_bprm_set_creds for the execve
5311            checks and may_create for the file creation checks. The
5312            operation will then fail if the context is not permitted. */
5313         tsec = new->security;
5314         if (!strcmp(name, "exec")) {
5315                 tsec->exec_sid = sid;
5316         } else if (!strcmp(name, "fscreate")) {
5317                 tsec->create_sid = sid;
5318         } else if (!strcmp(name, "keycreate")) {
5319                 error = may_create_key(sid, p);
5320                 if (error)
5321                         goto abort_change;
5322                 tsec->keycreate_sid = sid;
5323         } else if (!strcmp(name, "sockcreate")) {
5324                 tsec->sockcreate_sid = sid;
5325         } else if (!strcmp(name, "current")) {
5326                 error = -EINVAL;
5327                 if (sid == 0)
5328                         goto abort_change;
5329
5330                 /* Only allow single threaded processes to change context */
5331                 error = -EPERM;
5332                 if (!current_is_single_threaded()) {
5333                         error = security_bounded_transition(tsec->sid, sid);
5334                         if (error)
5335                                 goto abort_change;
5336                 }
5337
5338                 /* Check permissions for the transition. */
5339                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5340                                      PROCESS__DYNTRANSITION, NULL);
5341                 if (error)
5342                         goto abort_change;
5343
5344                 /* Check for ptracing, and update the task SID if ok.
5345                    Otherwise, leave SID unchanged and fail. */
5346                 ptsid = 0;
5347                 task_lock(p);
5348                 tracer = ptrace_parent(p);
5349                 if (tracer)
5350                         ptsid = task_sid(tracer);
5351                 task_unlock(p);
5352
5353                 if (tracer) {
5354                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5355                                              PROCESS__PTRACE, NULL);
5356                         if (error)
5357                                 goto abort_change;
5358                 }
5359
5360                 tsec->sid = sid;
5361         } else {
5362                 error = -EINVAL;
5363                 goto abort_change;
5364         }
5365
5366         commit_creds(new);
5367         return size;
5368
5369 abort_change:
5370         abort_creds(new);
5371         return error;
5372 }
5373
5374 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5375 {
5376         return security_sid_to_context(secid, secdata, seclen);
5377 }
5378
5379 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5380 {
5381         return security_context_to_sid(secdata, seclen, secid);
5382 }
5383
5384 static void selinux_release_secctx(char *secdata, u32 seclen)
5385 {
5386         kfree(secdata);
5387 }
5388
5389 /*
5390  *      called with inode->i_mutex locked
5391  */
5392 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5393 {
5394         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5395 }
5396
5397 /*
5398  *      called with inode->i_mutex locked
5399  */
5400 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5401 {
5402         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5403 }
5404
5405 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5406 {
5407         int len = 0;
5408         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5409                                                 ctx, true);
5410         if (len < 0)
5411                 return len;
5412         *ctxlen = len;
5413         return 0;
5414 }
5415 #ifdef CONFIG_KEYS
5416
5417 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5418                              unsigned long flags)
5419 {
5420         const struct task_security_struct *tsec;
5421         struct key_security_struct *ksec;
5422
5423         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5424         if (!ksec)
5425                 return -ENOMEM;
5426
5427         tsec = cred->security;
5428         if (tsec->keycreate_sid)
5429                 ksec->sid = tsec->keycreate_sid;
5430         else
5431                 ksec->sid = tsec->sid;
5432
5433         k->security = ksec;
5434         return 0;
5435 }
5436
5437 static void selinux_key_free(struct key *k)
5438 {
5439         struct key_security_struct *ksec = k->security;
5440
5441         k->security = NULL;
5442         kfree(ksec);
5443 }
5444
5445 static int selinux_key_permission(key_ref_t key_ref,
5446                                   const struct cred *cred,
5447                                   key_perm_t perm)
5448 {
5449         struct key *key;
5450         struct key_security_struct *ksec;
5451         u32 sid;
5452
5453         /* if no specific permissions are requested, we skip the
5454            permission check. No serious, additional covert channels
5455            appear to be created. */
5456         if (perm == 0)
5457                 return 0;
5458
5459         sid = cred_sid(cred);
5460
5461         key = key_ref_to_ptr(key_ref);
5462         ksec = key->security;
5463
5464         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5465 }
5466
5467 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5468 {
5469         struct key_security_struct *ksec = key->security;
5470         char *context = NULL;
5471         unsigned len;
5472         int rc;
5473
5474         rc = security_sid_to_context(ksec->sid, &context, &len);
5475         if (!rc)
5476                 rc = len;
5477         *_buffer = context;
5478         return rc;
5479 }
5480
5481 #endif
5482
5483 static struct security_operations selinux_ops = {
5484         .name =                         "selinux",
5485
5486         .ptrace_access_check =          selinux_ptrace_access_check,
5487         .ptrace_traceme =               selinux_ptrace_traceme,
5488         .capget =                       selinux_capget,
5489         .capset =                       selinux_capset,
5490         .capable =                      selinux_capable,
5491         .quotactl =                     selinux_quotactl,
5492         .quota_on =                     selinux_quota_on,
5493         .syslog =                       selinux_syslog,
5494         .vm_enough_memory =             selinux_vm_enough_memory,
5495
5496         .netlink_send =                 selinux_netlink_send,
5497
5498         .bprm_set_creds =               selinux_bprm_set_creds,
5499         .bprm_committing_creds =        selinux_bprm_committing_creds,
5500         .bprm_committed_creds =         selinux_bprm_committed_creds,
5501         .bprm_secureexec =              selinux_bprm_secureexec,
5502
5503         .sb_alloc_security =            selinux_sb_alloc_security,
5504         .sb_free_security =             selinux_sb_free_security,
5505         .sb_copy_data =                 selinux_sb_copy_data,
5506         .sb_remount =                   selinux_sb_remount,
5507         .sb_kern_mount =                selinux_sb_kern_mount,
5508         .sb_show_options =              selinux_sb_show_options,
5509         .sb_statfs =                    selinux_sb_statfs,
5510         .sb_mount =                     selinux_mount,
5511         .sb_umount =                    selinux_umount,
5512         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5513         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5514         .sb_parse_opts_str =            selinux_parse_opts_str,
5515
5516
5517         .inode_alloc_security =         selinux_inode_alloc_security,
5518         .inode_free_security =          selinux_inode_free_security,
5519         .inode_init_security =          selinux_inode_init_security,
5520         .inode_create =                 selinux_inode_create,
5521         .inode_link =                   selinux_inode_link,
5522         .inode_unlink =                 selinux_inode_unlink,
5523         .inode_symlink =                selinux_inode_symlink,
5524         .inode_mkdir =                  selinux_inode_mkdir,
5525         .inode_rmdir =                  selinux_inode_rmdir,
5526         .inode_mknod =                  selinux_inode_mknod,
5527         .inode_rename =                 selinux_inode_rename,
5528         .inode_readlink =               selinux_inode_readlink,
5529         .inode_follow_link =            selinux_inode_follow_link,
5530         .inode_permission =             selinux_inode_permission,
5531         .inode_setattr =                selinux_inode_setattr,
5532         .inode_getattr =                selinux_inode_getattr,
5533         .inode_setxattr =               selinux_inode_setxattr,
5534         .inode_post_setxattr =          selinux_inode_post_setxattr,
5535         .inode_getxattr =               selinux_inode_getxattr,
5536         .inode_listxattr =              selinux_inode_listxattr,
5537         .inode_removexattr =            selinux_inode_removexattr,
5538         .inode_getsecurity =            selinux_inode_getsecurity,
5539         .inode_setsecurity =            selinux_inode_setsecurity,
5540         .inode_listsecurity =           selinux_inode_listsecurity,
5541         .inode_getsecid =               selinux_inode_getsecid,
5542
5543         .file_permission =              selinux_file_permission,
5544         .file_alloc_security =          selinux_file_alloc_security,
5545         .file_free_security =           selinux_file_free_security,
5546         .file_ioctl =                   selinux_file_ioctl,
5547         .mmap_file =                    selinux_mmap_file,
5548         .mmap_addr =                    selinux_mmap_addr,
5549         .file_mprotect =                selinux_file_mprotect,
5550         .file_lock =                    selinux_file_lock,
5551         .file_fcntl =                   selinux_file_fcntl,
5552         .file_set_fowner =              selinux_file_set_fowner,
5553         .file_send_sigiotask =          selinux_file_send_sigiotask,
5554         .file_receive =                 selinux_file_receive,
5555
5556         .file_open =                    selinux_file_open,
5557
5558         .task_create =                  selinux_task_create,
5559         .cred_alloc_blank =             selinux_cred_alloc_blank,
5560         .cred_free =                    selinux_cred_free,
5561         .cred_prepare =                 selinux_cred_prepare,
5562         .cred_transfer =                selinux_cred_transfer,
5563         .kernel_act_as =                selinux_kernel_act_as,
5564         .kernel_create_files_as =       selinux_kernel_create_files_as,
5565         .kernel_module_request =        selinux_kernel_module_request,
5566         .task_setpgid =                 selinux_task_setpgid,
5567         .task_getpgid =                 selinux_task_getpgid,
5568         .task_getsid =                  selinux_task_getsid,
5569         .task_getsecid =                selinux_task_getsecid,
5570         .task_setnice =                 selinux_task_setnice,
5571         .task_setioprio =               selinux_task_setioprio,
5572         .task_getioprio =               selinux_task_getioprio,
5573         .task_setrlimit =               selinux_task_setrlimit,
5574         .task_setscheduler =            selinux_task_setscheduler,
5575         .task_getscheduler =            selinux_task_getscheduler,
5576         .task_movememory =              selinux_task_movememory,
5577         .task_kill =                    selinux_task_kill,
5578         .task_wait =                    selinux_task_wait,
5579         .task_to_inode =                selinux_task_to_inode,
5580
5581         .ipc_permission =               selinux_ipc_permission,
5582         .ipc_getsecid =                 selinux_ipc_getsecid,
5583
5584         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5585         .msg_msg_free_security =        selinux_msg_msg_free_security,
5586
5587         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5588         .msg_queue_free_security =      selinux_msg_queue_free_security,
5589         .msg_queue_associate =          selinux_msg_queue_associate,
5590         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5591         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5592         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5593
5594         .shm_alloc_security =           selinux_shm_alloc_security,
5595         .shm_free_security =            selinux_shm_free_security,
5596         .shm_associate =                selinux_shm_associate,
5597         .shm_shmctl =                   selinux_shm_shmctl,
5598         .shm_shmat =                    selinux_shm_shmat,
5599
5600         .sem_alloc_security =           selinux_sem_alloc_security,
5601         .sem_free_security =            selinux_sem_free_security,
5602         .sem_associate =                selinux_sem_associate,
5603         .sem_semctl =                   selinux_sem_semctl,
5604         .sem_semop =                    selinux_sem_semop,
5605
5606         .d_instantiate =                selinux_d_instantiate,
5607
5608         .getprocattr =                  selinux_getprocattr,
5609         .setprocattr =                  selinux_setprocattr,
5610
5611         .secid_to_secctx =              selinux_secid_to_secctx,
5612         .secctx_to_secid =              selinux_secctx_to_secid,
5613         .release_secctx =               selinux_release_secctx,
5614         .inode_notifysecctx =           selinux_inode_notifysecctx,
5615         .inode_setsecctx =              selinux_inode_setsecctx,
5616         .inode_getsecctx =              selinux_inode_getsecctx,
5617
5618         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5619         .unix_may_send =                selinux_socket_unix_may_send,
5620
5621         .socket_create =                selinux_socket_create,
5622         .socket_post_create =           selinux_socket_post_create,
5623         .socket_bind =                  selinux_socket_bind,
5624         .socket_connect =               selinux_socket_connect,
5625         .socket_listen =                selinux_socket_listen,
5626         .socket_accept =                selinux_socket_accept,
5627         .socket_sendmsg =               selinux_socket_sendmsg,
5628         .socket_recvmsg =               selinux_socket_recvmsg,
5629         .socket_getsockname =           selinux_socket_getsockname,
5630         .socket_getpeername =           selinux_socket_getpeername,
5631         .socket_getsockopt =            selinux_socket_getsockopt,
5632         .socket_setsockopt =            selinux_socket_setsockopt,
5633         .socket_shutdown =              selinux_socket_shutdown,
5634         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5635         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5636         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5637         .sk_alloc_security =            selinux_sk_alloc_security,
5638         .sk_free_security =             selinux_sk_free_security,
5639         .sk_clone_security =            selinux_sk_clone_security,
5640         .sk_getsecid =                  selinux_sk_getsecid,
5641         .sock_graft =                   selinux_sock_graft,
5642         .inet_conn_request =            selinux_inet_conn_request,
5643         .inet_csk_clone =               selinux_inet_csk_clone,
5644         .inet_conn_established =        selinux_inet_conn_established,
5645         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5646         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5647         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5648         .req_classify_flow =            selinux_req_classify_flow,
5649         .tun_dev_create =               selinux_tun_dev_create,
5650         .tun_dev_post_create =          selinux_tun_dev_post_create,
5651         .tun_dev_attach =               selinux_tun_dev_attach,
5652
5653 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5654         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5655         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5656         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5657         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5658         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5659         .xfrm_state_free_security =     selinux_xfrm_state_free,
5660         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5661         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5662         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5663         .xfrm_decode_session =          selinux_xfrm_decode_session,
5664 #endif
5665
5666 #ifdef CONFIG_KEYS
5667         .key_alloc =                    selinux_key_alloc,
5668         .key_free =                     selinux_key_free,
5669         .key_permission =               selinux_key_permission,
5670         .key_getsecurity =              selinux_key_getsecurity,
5671 #endif
5672
5673 #ifdef CONFIG_AUDIT
5674         .audit_rule_init =              selinux_audit_rule_init,
5675         .audit_rule_known =             selinux_audit_rule_known,
5676         .audit_rule_match =             selinux_audit_rule_match,
5677         .audit_rule_free =              selinux_audit_rule_free,
5678 #endif
5679 };
5680
5681 static __init int selinux_init(void)
5682 {
5683         if (!security_module_enable(&selinux_ops)) {
5684                 selinux_enabled = 0;
5685                 return 0;
5686         }
5687
5688         if (!selinux_enabled) {
5689                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5690                 return 0;
5691         }
5692
5693         printk(KERN_INFO "SELinux:  Initializing.\n");
5694
5695         /* Set the security state for the initial task. */
5696         cred_init_security();
5697
5698         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5699
5700         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5701                                             sizeof(struct inode_security_struct),
5702                                             0, SLAB_PANIC, NULL);
5703         avc_init();
5704
5705         if (register_security(&selinux_ops))
5706                 panic("SELinux: Unable to register with kernel.\n");
5707
5708         if (selinux_enforcing)
5709                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5710         else
5711                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5712
5713         return 0;
5714 }
5715
5716 static void delayed_superblock_init(struct super_block *sb, void *unused)
5717 {
5718         superblock_doinit(sb, NULL);
5719 }
5720
5721 void selinux_complete_init(void)
5722 {
5723         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5724
5725         /* Set up any superblocks initialized prior to the policy load. */
5726         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5727         iterate_supers(delayed_superblock_init, NULL);
5728 }
5729
5730 /* SELinux requires early initialization in order to label
5731    all processes and objects when they are created. */
5732 security_initcall(selinux_init);
5733
5734 #if defined(CONFIG_NETFILTER)
5735
5736 static struct nf_hook_ops selinux_ipv4_ops[] = {
5737         {
5738                 .hook =         selinux_ipv4_postroute,
5739                 .owner =        THIS_MODULE,
5740                 .pf =           NFPROTO_IPV4,
5741                 .hooknum =      NF_INET_POST_ROUTING,
5742                 .priority =     NF_IP_PRI_SELINUX_LAST,
5743         },
5744         {
5745                 .hook =         selinux_ipv4_forward,
5746                 .owner =        THIS_MODULE,
5747                 .pf =           NFPROTO_IPV4,
5748                 .hooknum =      NF_INET_FORWARD,
5749                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5750         },
5751         {
5752                 .hook =         selinux_ipv4_output,
5753                 .owner =        THIS_MODULE,
5754                 .pf =           NFPROTO_IPV4,
5755                 .hooknum =      NF_INET_LOCAL_OUT,
5756                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5757         }
5758 };
5759
5760 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5761
5762 static struct nf_hook_ops selinux_ipv6_ops[] = {
5763         {
5764                 .hook =         selinux_ipv6_postroute,
5765                 .owner =        THIS_MODULE,
5766                 .pf =           NFPROTO_IPV6,
5767                 .hooknum =      NF_INET_POST_ROUTING,
5768                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5769         },
5770         {
5771                 .hook =         selinux_ipv6_forward,
5772                 .owner =        THIS_MODULE,
5773                 .pf =           NFPROTO_IPV6,
5774                 .hooknum =      NF_INET_FORWARD,
5775                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5776         }
5777 };
5778
5779 #endif  /* IPV6 */
5780
5781 static int __init selinux_nf_ip_init(void)
5782 {
5783         int err = 0;
5784
5785         if (!selinux_enabled)
5786                 goto out;
5787
5788         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5789
5790         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5791         if (err)
5792                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5793
5794 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5795         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5796         if (err)
5797                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5798 #endif  /* IPV6 */
5799
5800 out:
5801         return err;
5802 }
5803
5804 __initcall(selinux_nf_ip_init);
5805
5806 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5807 static void selinux_nf_ip_exit(void)
5808 {
5809         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5810
5811         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5812 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5813         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5814 #endif  /* IPV6 */
5815 }
5816 #endif
5817
5818 #else /* CONFIG_NETFILTER */
5819
5820 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5821 #define selinux_nf_ip_exit()
5822 #endif
5823
5824 #endif /* CONFIG_NETFILTER */
5825
5826 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5827 static int selinux_disabled;
5828
5829 int selinux_disable(void)
5830 {
5831         if (ss_initialized) {
5832                 /* Not permitted after initial policy load. */
5833                 return -EINVAL;
5834         }
5835
5836         if (selinux_disabled) {
5837                 /* Only do this once. */
5838                 return -EINVAL;
5839         }
5840
5841         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5842
5843         selinux_disabled = 1;
5844         selinux_enabled = 0;
5845
5846         reset_security_ops();
5847
5848         /* Try to destroy the avc node cache */
5849         avc_disable();
5850
5851         /* Unregister netfilter hooks. */
5852         selinux_nf_ip_exit();
5853
5854         /* Unregister selinuxfs. */
5855         exit_sel_fs();
5856
5857         return 0;
5858 }
5859 #endif