Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[cascardo/linux.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
36 #define CREATE_TRACE_POINTS
37 #include "pcm_trace.h"
38 #else
39 #define trace_hwptr(substream, pos, in_interrupt)
40 #define trace_xrun(substream)
41 #define trace_hw_ptr_error(substream, reason)
42 #endif
43
44 /*
45  * fill ring buffer with silence
46  * runtime->silence_start: starting pointer to silence area
47  * runtime->silence_filled: size filled with silence
48  * runtime->silence_threshold: threshold from application
49  * runtime->silence_size: maximal size from application
50  *
51  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
52  */
53 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
54 {
55         struct snd_pcm_runtime *runtime = substream->runtime;
56         snd_pcm_uframes_t frames, ofs, transfer;
57
58         if (runtime->silence_size < runtime->boundary) {
59                 snd_pcm_sframes_t noise_dist, n;
60                 if (runtime->silence_start != runtime->control->appl_ptr) {
61                         n = runtime->control->appl_ptr - runtime->silence_start;
62                         if (n < 0)
63                                 n += runtime->boundary;
64                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
65                                 runtime->silence_filled -= n;
66                         else
67                                 runtime->silence_filled = 0;
68                         runtime->silence_start = runtime->control->appl_ptr;
69                 }
70                 if (runtime->silence_filled >= runtime->buffer_size)
71                         return;
72                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
73                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
74                         return;
75                 frames = runtime->silence_threshold - noise_dist;
76                 if (frames > runtime->silence_size)
77                         frames = runtime->silence_size;
78         } else {
79                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
80                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
81                         if (avail > runtime->buffer_size)
82                                 avail = runtime->buffer_size;
83                         runtime->silence_filled = avail > 0 ? avail : 0;
84                         runtime->silence_start = (runtime->status->hw_ptr +
85                                                   runtime->silence_filled) %
86                                                  runtime->boundary;
87                 } else {
88                         ofs = runtime->status->hw_ptr;
89                         frames = new_hw_ptr - ofs;
90                         if ((snd_pcm_sframes_t)frames < 0)
91                                 frames += runtime->boundary;
92                         runtime->silence_filled -= frames;
93                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
94                                 runtime->silence_filled = 0;
95                                 runtime->silence_start = new_hw_ptr;
96                         } else {
97                                 runtime->silence_start = ofs;
98                         }
99                 }
100                 frames = runtime->buffer_size - runtime->silence_filled;
101         }
102         if (snd_BUG_ON(frames > runtime->buffer_size))
103                 return;
104         if (frames == 0)
105                 return;
106         ofs = runtime->silence_start % runtime->buffer_size;
107         while (frames > 0) {
108                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
109                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
110                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
111                         if (substream->ops->silence) {
112                                 int err;
113                                 err = substream->ops->silence(substream, -1, ofs, transfer);
114                                 snd_BUG_ON(err < 0);
115                         } else {
116                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
117                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
118                         }
119                 } else {
120                         unsigned int c;
121                         unsigned int channels = runtime->channels;
122                         if (substream->ops->silence) {
123                                 for (c = 0; c < channels; ++c) {
124                                         int err;
125                                         err = substream->ops->silence(substream, c, ofs, transfer);
126                                         snd_BUG_ON(err < 0);
127                                 }
128                         } else {
129                                 size_t dma_csize = runtime->dma_bytes / channels;
130                                 for (c = 0; c < channels; ++c) {
131                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
132                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
133                                 }
134                         }
135                 }
136                 runtime->silence_filled += transfer;
137                 frames -= transfer;
138                 ofs = 0;
139         }
140 }
141
142 #ifdef CONFIG_SND_DEBUG
143 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
144                            char *name, size_t len)
145 {
146         snprintf(name, len, "pcmC%dD%d%c:%d",
147                  substream->pcm->card->number,
148                  substream->pcm->device,
149                  substream->stream ? 'c' : 'p',
150                  substream->number);
151 }
152 EXPORT_SYMBOL(snd_pcm_debug_name);
153 #endif
154
155 #define XRUN_DEBUG_BASIC        (1<<0)
156 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
157 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
158
159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
160
161 #define xrun_debug(substream, mask) \
162                         ((substream)->pstr->xrun_debug & (mask))
163 #else
164 #define xrun_debug(substream, mask)     0
165 #endif
166
167 #define dump_stack_on_xrun(substream) do {                      \
168                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
169                         dump_stack();                           \
170         } while (0)
171
172 static void xrun(struct snd_pcm_substream *substream)
173 {
174         struct snd_pcm_runtime *runtime = substream->runtime;
175
176         trace_xrun(substream);
177         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
178                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
179         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
180         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
181                 char name[16];
182                 snd_pcm_debug_name(substream, name, sizeof(name));
183                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
184                 dump_stack_on_xrun(substream);
185         }
186 }
187
188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
190         do {                                                            \
191                 trace_hw_ptr_error(substream, reason);  \
192                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
193                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194                                            (in_interrupt) ? 'Q' : 'P', ##args); \
195                         dump_stack_on_xrun(substream);                  \
196                 }                                                       \
197         } while (0)
198
199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
200
201 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
202
203 #endif
204
205 int snd_pcm_update_state(struct snd_pcm_substream *substream,
206                          struct snd_pcm_runtime *runtime)
207 {
208         snd_pcm_uframes_t avail;
209
210         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
211                 avail = snd_pcm_playback_avail(runtime);
212         else
213                 avail = snd_pcm_capture_avail(runtime);
214         if (avail > runtime->avail_max)
215                 runtime->avail_max = avail;
216         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
217                 if (avail >= runtime->buffer_size) {
218                         snd_pcm_drain_done(substream);
219                         return -EPIPE;
220                 }
221         } else {
222                 if (avail >= runtime->stop_threshold) {
223                         xrun(substream);
224                         return -EPIPE;
225                 }
226         }
227         if (runtime->twake) {
228                 if (avail >= runtime->twake)
229                         wake_up(&runtime->tsleep);
230         } else if (avail >= runtime->control->avail_min)
231                 wake_up(&runtime->sleep);
232         return 0;
233 }
234
235 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
236                                   unsigned int in_interrupt)
237 {
238         struct snd_pcm_runtime *runtime = substream->runtime;
239         snd_pcm_uframes_t pos;
240         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
241         snd_pcm_sframes_t hdelta, delta;
242         unsigned long jdelta;
243         unsigned long curr_jiffies;
244         struct timespec curr_tstamp;
245         struct timespec audio_tstamp;
246         int crossed_boundary = 0;
247
248         old_hw_ptr = runtime->status->hw_ptr;
249
250         /*
251          * group pointer, time and jiffies reads to allow for more
252          * accurate correlations/corrections.
253          * The values are stored at the end of this routine after
254          * corrections for hw_ptr position
255          */
256         pos = substream->ops->pointer(substream);
257         curr_jiffies = jiffies;
258         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
259                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
260
261                 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
262                         (substream->ops->wall_clock))
263                         substream->ops->wall_clock(substream, &audio_tstamp);
264         }
265
266         if (pos == SNDRV_PCM_POS_XRUN) {
267                 xrun(substream);
268                 return -EPIPE;
269         }
270         if (pos >= runtime->buffer_size) {
271                 if (printk_ratelimit()) {
272                         char name[16];
273                         snd_pcm_debug_name(substream, name, sizeof(name));
274                         pcm_err(substream->pcm,
275                                 "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
276                                 name, pos, runtime->buffer_size,
277                                 runtime->period_size);
278                 }
279                 pos = 0;
280         }
281         pos -= pos % runtime->min_align;
282         trace_hwptr(substream, pos, in_interrupt);
283         hw_base = runtime->hw_ptr_base;
284         new_hw_ptr = hw_base + pos;
285         if (in_interrupt) {
286                 /* we know that one period was processed */
287                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
288                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
289                 if (delta > new_hw_ptr) {
290                         /* check for double acknowledged interrupts */
291                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
292                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
293                                 hw_base += runtime->buffer_size;
294                                 if (hw_base >= runtime->boundary) {
295                                         hw_base = 0;
296                                         crossed_boundary++;
297                                 }
298                                 new_hw_ptr = hw_base + pos;
299                                 goto __delta;
300                         }
301                 }
302         }
303         /* new_hw_ptr might be lower than old_hw_ptr in case when */
304         /* pointer crosses the end of the ring buffer */
305         if (new_hw_ptr < old_hw_ptr) {
306                 hw_base += runtime->buffer_size;
307                 if (hw_base >= runtime->boundary) {
308                         hw_base = 0;
309                         crossed_boundary++;
310                 }
311                 new_hw_ptr = hw_base + pos;
312         }
313       __delta:
314         delta = new_hw_ptr - old_hw_ptr;
315         if (delta < 0)
316                 delta += runtime->boundary;
317
318         if (runtime->no_period_wakeup) {
319                 snd_pcm_sframes_t xrun_threshold;
320                 /*
321                  * Without regular period interrupts, we have to check
322                  * the elapsed time to detect xruns.
323                  */
324                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
325                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
326                         goto no_delta_check;
327                 hdelta = jdelta - delta * HZ / runtime->rate;
328                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
329                 while (hdelta > xrun_threshold) {
330                         delta += runtime->buffer_size;
331                         hw_base += runtime->buffer_size;
332                         if (hw_base >= runtime->boundary) {
333                                 hw_base = 0;
334                                 crossed_boundary++;
335                         }
336                         new_hw_ptr = hw_base + pos;
337                         hdelta -= runtime->hw_ptr_buffer_jiffies;
338                 }
339                 goto no_delta_check;
340         }
341
342         /* something must be really wrong */
343         if (delta >= runtime->buffer_size + runtime->period_size) {
344                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
345                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
346                              substream->stream, (long)pos,
347                              (long)new_hw_ptr, (long)old_hw_ptr);
348                 return 0;
349         }
350
351         /* Do jiffies check only in xrun_debug mode */
352         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
353                 goto no_jiffies_check;
354
355         /* Skip the jiffies check for hardwares with BATCH flag.
356          * Such hardware usually just increases the position at each IRQ,
357          * thus it can't give any strange position.
358          */
359         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
360                 goto no_jiffies_check;
361         hdelta = delta;
362         if (hdelta < runtime->delay)
363                 goto no_jiffies_check;
364         hdelta -= runtime->delay;
365         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
366         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
367                 delta = jdelta /
368                         (((runtime->period_size * HZ) / runtime->rate)
369                                                                 + HZ/100);
370                 /* move new_hw_ptr according jiffies not pos variable */
371                 new_hw_ptr = old_hw_ptr;
372                 hw_base = delta;
373                 /* use loop to avoid checks for delta overflows */
374                 /* the delta value is small or zero in most cases */
375                 while (delta > 0) {
376                         new_hw_ptr += runtime->period_size;
377                         if (new_hw_ptr >= runtime->boundary) {
378                                 new_hw_ptr -= runtime->boundary;
379                                 crossed_boundary--;
380                         }
381                         delta--;
382                 }
383                 /* align hw_base to buffer_size */
384                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
385                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
386                              (long)pos, (long)hdelta,
387                              (long)runtime->period_size, jdelta,
388                              ((hdelta * HZ) / runtime->rate), hw_base,
389                              (unsigned long)old_hw_ptr,
390                              (unsigned long)new_hw_ptr);
391                 /* reset values to proper state */
392                 delta = 0;
393                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
394         }
395  no_jiffies_check:
396         if (delta > runtime->period_size + runtime->period_size / 2) {
397                 hw_ptr_error(substream, in_interrupt,
398                              "Lost interrupts?",
399                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
400                              substream->stream, (long)delta,
401                              (long)new_hw_ptr,
402                              (long)old_hw_ptr);
403         }
404
405  no_delta_check:
406         if (runtime->status->hw_ptr == new_hw_ptr)
407                 return 0;
408
409         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
410             runtime->silence_size > 0)
411                 snd_pcm_playback_silence(substream, new_hw_ptr);
412
413         if (in_interrupt) {
414                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
415                 if (delta < 0)
416                         delta += runtime->boundary;
417                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
418                 runtime->hw_ptr_interrupt += delta;
419                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
420                         runtime->hw_ptr_interrupt -= runtime->boundary;
421         }
422         runtime->hw_ptr_base = hw_base;
423         runtime->status->hw_ptr = new_hw_ptr;
424         runtime->hw_ptr_jiffies = curr_jiffies;
425         if (crossed_boundary) {
426                 snd_BUG_ON(crossed_boundary != 1);
427                 runtime->hw_ptr_wrap += runtime->boundary;
428         }
429         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
430                 runtime->status->tstamp = curr_tstamp;
431
432                 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
433                         /*
434                          * no wall clock available, provide audio timestamp
435                          * derived from pointer position+delay
436                          */
437                         u64 audio_frames, audio_nsecs;
438
439                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440                                 audio_frames = runtime->hw_ptr_wrap
441                                         + runtime->status->hw_ptr
442                                         - runtime->delay;
443                         else
444                                 audio_frames = runtime->hw_ptr_wrap
445                                         + runtime->status->hw_ptr
446                                         + runtime->delay;
447                         audio_nsecs = div_u64(audio_frames * 1000000000LL,
448                                         runtime->rate);
449                         audio_tstamp = ns_to_timespec(audio_nsecs);
450                 }
451                 runtime->status->audio_tstamp = audio_tstamp;
452         }
453
454         return snd_pcm_update_state(substream, runtime);
455 }
456
457 /* CAUTION: call it with irq disabled */
458 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
459 {
460         return snd_pcm_update_hw_ptr0(substream, 0);
461 }
462
463 /**
464  * snd_pcm_set_ops - set the PCM operators
465  * @pcm: the pcm instance
466  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
467  * @ops: the operator table
468  *
469  * Sets the given PCM operators to the pcm instance.
470  */
471 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
472                      const struct snd_pcm_ops *ops)
473 {
474         struct snd_pcm_str *stream = &pcm->streams[direction];
475         struct snd_pcm_substream *substream;
476         
477         for (substream = stream->substream; substream != NULL; substream = substream->next)
478                 substream->ops = ops;
479 }
480
481 EXPORT_SYMBOL(snd_pcm_set_ops);
482
483 /**
484  * snd_pcm_sync - set the PCM sync id
485  * @substream: the pcm substream
486  *
487  * Sets the PCM sync identifier for the card.
488  */
489 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
490 {
491         struct snd_pcm_runtime *runtime = substream->runtime;
492         
493         runtime->sync.id32[0] = substream->pcm->card->number;
494         runtime->sync.id32[1] = -1;
495         runtime->sync.id32[2] = -1;
496         runtime->sync.id32[3] = -1;
497 }
498
499 EXPORT_SYMBOL(snd_pcm_set_sync);
500
501 /*
502  *  Standard ioctl routine
503  */
504
505 static inline unsigned int div32(unsigned int a, unsigned int b, 
506                                  unsigned int *r)
507 {
508         if (b == 0) {
509                 *r = 0;
510                 return UINT_MAX;
511         }
512         *r = a % b;
513         return a / b;
514 }
515
516 static inline unsigned int div_down(unsigned int a, unsigned int b)
517 {
518         if (b == 0)
519                 return UINT_MAX;
520         return a / b;
521 }
522
523 static inline unsigned int div_up(unsigned int a, unsigned int b)
524 {
525         unsigned int r;
526         unsigned int q;
527         if (b == 0)
528                 return UINT_MAX;
529         q = div32(a, b, &r);
530         if (r)
531                 ++q;
532         return q;
533 }
534
535 static inline unsigned int mul(unsigned int a, unsigned int b)
536 {
537         if (a == 0)
538                 return 0;
539         if (div_down(UINT_MAX, a) < b)
540                 return UINT_MAX;
541         return a * b;
542 }
543
544 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
545                                     unsigned int c, unsigned int *r)
546 {
547         u_int64_t n = (u_int64_t) a * b;
548         if (c == 0) {
549                 snd_BUG_ON(!n);
550                 *r = 0;
551                 return UINT_MAX;
552         }
553         n = div_u64_rem(n, c, r);
554         if (n >= UINT_MAX) {
555                 *r = 0;
556                 return UINT_MAX;
557         }
558         return n;
559 }
560
561 /**
562  * snd_interval_refine - refine the interval value of configurator
563  * @i: the interval value to refine
564  * @v: the interval value to refer to
565  *
566  * Refines the interval value with the reference value.
567  * The interval is changed to the range satisfying both intervals.
568  * The interval status (min, max, integer, etc.) are evaluated.
569  *
570  * Return: Positive if the value is changed, zero if it's not changed, or a
571  * negative error code.
572  */
573 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
574 {
575         int changed = 0;
576         if (snd_BUG_ON(snd_interval_empty(i)))
577                 return -EINVAL;
578         if (i->min < v->min) {
579                 i->min = v->min;
580                 i->openmin = v->openmin;
581                 changed = 1;
582         } else if (i->min == v->min && !i->openmin && v->openmin) {
583                 i->openmin = 1;
584                 changed = 1;
585         }
586         if (i->max > v->max) {
587                 i->max = v->max;
588                 i->openmax = v->openmax;
589                 changed = 1;
590         } else if (i->max == v->max && !i->openmax && v->openmax) {
591                 i->openmax = 1;
592                 changed = 1;
593         }
594         if (!i->integer && v->integer) {
595                 i->integer = 1;
596                 changed = 1;
597         }
598         if (i->integer) {
599                 if (i->openmin) {
600                         i->min++;
601                         i->openmin = 0;
602                 }
603                 if (i->openmax) {
604                         i->max--;
605                         i->openmax = 0;
606                 }
607         } else if (!i->openmin && !i->openmax && i->min == i->max)
608                 i->integer = 1;
609         if (snd_interval_checkempty(i)) {
610                 snd_interval_none(i);
611                 return -EINVAL;
612         }
613         return changed;
614 }
615
616 EXPORT_SYMBOL(snd_interval_refine);
617
618 static int snd_interval_refine_first(struct snd_interval *i)
619 {
620         if (snd_BUG_ON(snd_interval_empty(i)))
621                 return -EINVAL;
622         if (snd_interval_single(i))
623                 return 0;
624         i->max = i->min;
625         i->openmax = i->openmin;
626         if (i->openmax)
627                 i->max++;
628         return 1;
629 }
630
631 static int snd_interval_refine_last(struct snd_interval *i)
632 {
633         if (snd_BUG_ON(snd_interval_empty(i)))
634                 return -EINVAL;
635         if (snd_interval_single(i))
636                 return 0;
637         i->min = i->max;
638         i->openmin = i->openmax;
639         if (i->openmin)
640                 i->min--;
641         return 1;
642 }
643
644 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
645 {
646         if (a->empty || b->empty) {
647                 snd_interval_none(c);
648                 return;
649         }
650         c->empty = 0;
651         c->min = mul(a->min, b->min);
652         c->openmin = (a->openmin || b->openmin);
653         c->max = mul(a->max,  b->max);
654         c->openmax = (a->openmax || b->openmax);
655         c->integer = (a->integer && b->integer);
656 }
657
658 /**
659  * snd_interval_div - refine the interval value with division
660  * @a: dividend
661  * @b: divisor
662  * @c: quotient
663  *
664  * c = a / b
665  *
666  * Returns non-zero if the value is changed, zero if not changed.
667  */
668 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
669 {
670         unsigned int r;
671         if (a->empty || b->empty) {
672                 snd_interval_none(c);
673                 return;
674         }
675         c->empty = 0;
676         c->min = div32(a->min, b->max, &r);
677         c->openmin = (r || a->openmin || b->openmax);
678         if (b->min > 0) {
679                 c->max = div32(a->max, b->min, &r);
680                 if (r) {
681                         c->max++;
682                         c->openmax = 1;
683                 } else
684                         c->openmax = (a->openmax || b->openmin);
685         } else {
686                 c->max = UINT_MAX;
687                 c->openmax = 0;
688         }
689         c->integer = 0;
690 }
691
692 /**
693  * snd_interval_muldivk - refine the interval value
694  * @a: dividend 1
695  * @b: dividend 2
696  * @k: divisor (as integer)
697  * @c: result
698   *
699  * c = a * b / k
700  *
701  * Returns non-zero if the value is changed, zero if not changed.
702  */
703 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
704                       unsigned int k, struct snd_interval *c)
705 {
706         unsigned int r;
707         if (a->empty || b->empty) {
708                 snd_interval_none(c);
709                 return;
710         }
711         c->empty = 0;
712         c->min = muldiv32(a->min, b->min, k, &r);
713         c->openmin = (r || a->openmin || b->openmin);
714         c->max = muldiv32(a->max, b->max, k, &r);
715         if (r) {
716                 c->max++;
717                 c->openmax = 1;
718         } else
719                 c->openmax = (a->openmax || b->openmax);
720         c->integer = 0;
721 }
722
723 /**
724  * snd_interval_mulkdiv - refine the interval value
725  * @a: dividend 1
726  * @k: dividend 2 (as integer)
727  * @b: divisor
728  * @c: result
729  *
730  * c = a * k / b
731  *
732  * Returns non-zero if the value is changed, zero if not changed.
733  */
734 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
735                       const struct snd_interval *b, struct snd_interval *c)
736 {
737         unsigned int r;
738         if (a->empty || b->empty) {
739                 snd_interval_none(c);
740                 return;
741         }
742         c->empty = 0;
743         c->min = muldiv32(a->min, k, b->max, &r);
744         c->openmin = (r || a->openmin || b->openmax);
745         if (b->min > 0) {
746                 c->max = muldiv32(a->max, k, b->min, &r);
747                 if (r) {
748                         c->max++;
749                         c->openmax = 1;
750                 } else
751                         c->openmax = (a->openmax || b->openmin);
752         } else {
753                 c->max = UINT_MAX;
754                 c->openmax = 0;
755         }
756         c->integer = 0;
757 }
758
759 /* ---- */
760
761
762 /**
763  * snd_interval_ratnum - refine the interval value
764  * @i: interval to refine
765  * @rats_count: number of ratnum_t 
766  * @rats: ratnum_t array
767  * @nump: pointer to store the resultant numerator
768  * @denp: pointer to store the resultant denominator
769  *
770  * Return: Positive if the value is changed, zero if it's not changed, or a
771  * negative error code.
772  */
773 int snd_interval_ratnum(struct snd_interval *i,
774                         unsigned int rats_count, struct snd_ratnum *rats,
775                         unsigned int *nump, unsigned int *denp)
776 {
777         unsigned int best_num, best_den;
778         int best_diff;
779         unsigned int k;
780         struct snd_interval t;
781         int err;
782         unsigned int result_num, result_den;
783         int result_diff;
784
785         best_num = best_den = best_diff = 0;
786         for (k = 0; k < rats_count; ++k) {
787                 unsigned int num = rats[k].num;
788                 unsigned int den;
789                 unsigned int q = i->min;
790                 int diff;
791                 if (q == 0)
792                         q = 1;
793                 den = div_up(num, q);
794                 if (den < rats[k].den_min)
795                         continue;
796                 if (den > rats[k].den_max)
797                         den = rats[k].den_max;
798                 else {
799                         unsigned int r;
800                         r = (den - rats[k].den_min) % rats[k].den_step;
801                         if (r != 0)
802                                 den -= r;
803                 }
804                 diff = num - q * den;
805                 if (diff < 0)
806                         diff = -diff;
807                 if (best_num == 0 ||
808                     diff * best_den < best_diff * den) {
809                         best_diff = diff;
810                         best_den = den;
811                         best_num = num;
812                 }
813         }
814         if (best_den == 0) {
815                 i->empty = 1;
816                 return -EINVAL;
817         }
818         t.min = div_down(best_num, best_den);
819         t.openmin = !!(best_num % best_den);
820         
821         result_num = best_num;
822         result_diff = best_diff;
823         result_den = best_den;
824         best_num = best_den = best_diff = 0;
825         for (k = 0; k < rats_count; ++k) {
826                 unsigned int num = rats[k].num;
827                 unsigned int den;
828                 unsigned int q = i->max;
829                 int diff;
830                 if (q == 0) {
831                         i->empty = 1;
832                         return -EINVAL;
833                 }
834                 den = div_down(num, q);
835                 if (den > rats[k].den_max)
836                         continue;
837                 if (den < rats[k].den_min)
838                         den = rats[k].den_min;
839                 else {
840                         unsigned int r;
841                         r = (den - rats[k].den_min) % rats[k].den_step;
842                         if (r != 0)
843                                 den += rats[k].den_step - r;
844                 }
845                 diff = q * den - num;
846                 if (diff < 0)
847                         diff = -diff;
848                 if (best_num == 0 ||
849                     diff * best_den < best_diff * den) {
850                         best_diff = diff;
851                         best_den = den;
852                         best_num = num;
853                 }
854         }
855         if (best_den == 0) {
856                 i->empty = 1;
857                 return -EINVAL;
858         }
859         t.max = div_up(best_num, best_den);
860         t.openmax = !!(best_num % best_den);
861         t.integer = 0;
862         err = snd_interval_refine(i, &t);
863         if (err < 0)
864                 return err;
865
866         if (snd_interval_single(i)) {
867                 if (best_diff * result_den < result_diff * best_den) {
868                         result_num = best_num;
869                         result_den = best_den;
870                 }
871                 if (nump)
872                         *nump = result_num;
873                 if (denp)
874                         *denp = result_den;
875         }
876         return err;
877 }
878
879 EXPORT_SYMBOL(snd_interval_ratnum);
880
881 /**
882  * snd_interval_ratden - refine the interval value
883  * @i: interval to refine
884  * @rats_count: number of struct ratden
885  * @rats: struct ratden array
886  * @nump: pointer to store the resultant numerator
887  * @denp: pointer to store the resultant denominator
888  *
889  * Return: Positive if the value is changed, zero if it's not changed, or a
890  * negative error code.
891  */
892 static int snd_interval_ratden(struct snd_interval *i,
893                                unsigned int rats_count, struct snd_ratden *rats,
894                                unsigned int *nump, unsigned int *denp)
895 {
896         unsigned int best_num, best_diff, best_den;
897         unsigned int k;
898         struct snd_interval t;
899         int err;
900
901         best_num = best_den = best_diff = 0;
902         for (k = 0; k < rats_count; ++k) {
903                 unsigned int num;
904                 unsigned int den = rats[k].den;
905                 unsigned int q = i->min;
906                 int diff;
907                 num = mul(q, den);
908                 if (num > rats[k].num_max)
909                         continue;
910                 if (num < rats[k].num_min)
911                         num = rats[k].num_max;
912                 else {
913                         unsigned int r;
914                         r = (num - rats[k].num_min) % rats[k].num_step;
915                         if (r != 0)
916                                 num += rats[k].num_step - r;
917                 }
918                 diff = num - q * den;
919                 if (best_num == 0 ||
920                     diff * best_den < best_diff * den) {
921                         best_diff = diff;
922                         best_den = den;
923                         best_num = num;
924                 }
925         }
926         if (best_den == 0) {
927                 i->empty = 1;
928                 return -EINVAL;
929         }
930         t.min = div_down(best_num, best_den);
931         t.openmin = !!(best_num % best_den);
932         
933         best_num = best_den = best_diff = 0;
934         for (k = 0; k < rats_count; ++k) {
935                 unsigned int num;
936                 unsigned int den = rats[k].den;
937                 unsigned int q = i->max;
938                 int diff;
939                 num = mul(q, den);
940                 if (num < rats[k].num_min)
941                         continue;
942                 if (num > rats[k].num_max)
943                         num = rats[k].num_max;
944                 else {
945                         unsigned int r;
946                         r = (num - rats[k].num_min) % rats[k].num_step;
947                         if (r != 0)
948                                 num -= r;
949                 }
950                 diff = q * den - num;
951                 if (best_num == 0 ||
952                     diff * best_den < best_diff * den) {
953                         best_diff = diff;
954                         best_den = den;
955                         best_num = num;
956                 }
957         }
958         if (best_den == 0) {
959                 i->empty = 1;
960                 return -EINVAL;
961         }
962         t.max = div_up(best_num, best_den);
963         t.openmax = !!(best_num % best_den);
964         t.integer = 0;
965         err = snd_interval_refine(i, &t);
966         if (err < 0)
967                 return err;
968
969         if (snd_interval_single(i)) {
970                 if (nump)
971                         *nump = best_num;
972                 if (denp)
973                         *denp = best_den;
974         }
975         return err;
976 }
977
978 /**
979  * snd_interval_list - refine the interval value from the list
980  * @i: the interval value to refine
981  * @count: the number of elements in the list
982  * @list: the value list
983  * @mask: the bit-mask to evaluate
984  *
985  * Refines the interval value from the list.
986  * When mask is non-zero, only the elements corresponding to bit 1 are
987  * evaluated.
988  *
989  * Return: Positive if the value is changed, zero if it's not changed, or a
990  * negative error code.
991  */
992 int snd_interval_list(struct snd_interval *i, unsigned int count,
993                       const unsigned int *list, unsigned int mask)
994 {
995         unsigned int k;
996         struct snd_interval list_range;
997
998         if (!count) {
999                 i->empty = 1;
1000                 return -EINVAL;
1001         }
1002         snd_interval_any(&list_range);
1003         list_range.min = UINT_MAX;
1004         list_range.max = 0;
1005         for (k = 0; k < count; k++) {
1006                 if (mask && !(mask & (1 << k)))
1007                         continue;
1008                 if (!snd_interval_test(i, list[k]))
1009                         continue;
1010                 list_range.min = min(list_range.min, list[k]);
1011                 list_range.max = max(list_range.max, list[k]);
1012         }
1013         return snd_interval_refine(i, &list_range);
1014 }
1015
1016 EXPORT_SYMBOL(snd_interval_list);
1017
1018 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1019 {
1020         unsigned int n;
1021         int changed = 0;
1022         n = i->min % step;
1023         if (n != 0 || i->openmin) {
1024                 i->min += step - n;
1025                 i->openmin = 0;
1026                 changed = 1;
1027         }
1028         n = i->max % step;
1029         if (n != 0 || i->openmax) {
1030                 i->max -= n;
1031                 i->openmax = 0;
1032                 changed = 1;
1033         }
1034         if (snd_interval_checkempty(i)) {
1035                 i->empty = 1;
1036                 return -EINVAL;
1037         }
1038         return changed;
1039 }
1040
1041 /* Info constraints helpers */
1042
1043 /**
1044  * snd_pcm_hw_rule_add - add the hw-constraint rule
1045  * @runtime: the pcm runtime instance
1046  * @cond: condition bits
1047  * @var: the variable to evaluate
1048  * @func: the evaluation function
1049  * @private: the private data pointer passed to function
1050  * @dep: the dependent variables
1051  *
1052  * Return: Zero if successful, or a negative error code on failure.
1053  */
1054 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1055                         int var,
1056                         snd_pcm_hw_rule_func_t func, void *private,
1057                         int dep, ...)
1058 {
1059         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1060         struct snd_pcm_hw_rule *c;
1061         unsigned int k;
1062         va_list args;
1063         va_start(args, dep);
1064         if (constrs->rules_num >= constrs->rules_all) {
1065                 struct snd_pcm_hw_rule *new;
1066                 unsigned int new_rules = constrs->rules_all + 16;
1067                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1068                 if (!new) {
1069                         va_end(args);
1070                         return -ENOMEM;
1071                 }
1072                 if (constrs->rules) {
1073                         memcpy(new, constrs->rules,
1074                                constrs->rules_num * sizeof(*c));
1075                         kfree(constrs->rules);
1076                 }
1077                 constrs->rules = new;
1078                 constrs->rules_all = new_rules;
1079         }
1080         c = &constrs->rules[constrs->rules_num];
1081         c->cond = cond;
1082         c->func = func;
1083         c->var = var;
1084         c->private = private;
1085         k = 0;
1086         while (1) {
1087                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1088                         va_end(args);
1089                         return -EINVAL;
1090                 }
1091                 c->deps[k++] = dep;
1092                 if (dep < 0)
1093                         break;
1094                 dep = va_arg(args, int);
1095         }
1096         constrs->rules_num++;
1097         va_end(args);
1098         return 0;
1099 }
1100
1101 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1102
1103 /**
1104  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1105  * @runtime: PCM runtime instance
1106  * @var: hw_params variable to apply the mask
1107  * @mask: the bitmap mask
1108  *
1109  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1110  *
1111  * Return: Zero if successful, or a negative error code on failure.
1112  */
1113 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1114                                u_int32_t mask)
1115 {
1116         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1117         struct snd_mask *maskp = constrs_mask(constrs, var);
1118         *maskp->bits &= mask;
1119         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1120         if (*maskp->bits == 0)
1121                 return -EINVAL;
1122         return 0;
1123 }
1124
1125 /**
1126  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1127  * @runtime: PCM runtime instance
1128  * @var: hw_params variable to apply the mask
1129  * @mask: the 64bit bitmap mask
1130  *
1131  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1132  *
1133  * Return: Zero if successful, or a negative error code on failure.
1134  */
1135 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1136                                  u_int64_t mask)
1137 {
1138         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1139         struct snd_mask *maskp = constrs_mask(constrs, var);
1140         maskp->bits[0] &= (u_int32_t)mask;
1141         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1142         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1143         if (! maskp->bits[0] && ! maskp->bits[1])
1144                 return -EINVAL;
1145         return 0;
1146 }
1147 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1148
1149 /**
1150  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1151  * @runtime: PCM runtime instance
1152  * @var: hw_params variable to apply the integer constraint
1153  *
1154  * Apply the constraint of integer to an interval parameter.
1155  *
1156  * Return: Positive if the value is changed, zero if it's not changed, or a
1157  * negative error code.
1158  */
1159 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1160 {
1161         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1162         return snd_interval_setinteger(constrs_interval(constrs, var));
1163 }
1164
1165 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1166
1167 /**
1168  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1169  * @runtime: PCM runtime instance
1170  * @var: hw_params variable to apply the range
1171  * @min: the minimal value
1172  * @max: the maximal value
1173  * 
1174  * Apply the min/max range constraint to an interval parameter.
1175  *
1176  * Return: Positive if the value is changed, zero if it's not changed, or a
1177  * negative error code.
1178  */
1179 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1180                                  unsigned int min, unsigned int max)
1181 {
1182         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1183         struct snd_interval t;
1184         t.min = min;
1185         t.max = max;
1186         t.openmin = t.openmax = 0;
1187         t.integer = 0;
1188         return snd_interval_refine(constrs_interval(constrs, var), &t);
1189 }
1190
1191 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1192
1193 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1194                                 struct snd_pcm_hw_rule *rule)
1195 {
1196         struct snd_pcm_hw_constraint_list *list = rule->private;
1197         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1198 }               
1199
1200
1201 /**
1202  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1203  * @runtime: PCM runtime instance
1204  * @cond: condition bits
1205  * @var: hw_params variable to apply the list constraint
1206  * @l: list
1207  * 
1208  * Apply the list of constraints to an interval parameter.
1209  *
1210  * Return: Zero if successful, or a negative error code on failure.
1211  */
1212 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1213                                unsigned int cond,
1214                                snd_pcm_hw_param_t var,
1215                                const struct snd_pcm_hw_constraint_list *l)
1216 {
1217         return snd_pcm_hw_rule_add(runtime, cond, var,
1218                                    snd_pcm_hw_rule_list, (void *)l,
1219                                    var, -1);
1220 }
1221
1222 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1223
1224 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1225                                    struct snd_pcm_hw_rule *rule)
1226 {
1227         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1228         unsigned int num = 0, den = 0;
1229         int err;
1230         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1231                                   r->nrats, r->rats, &num, &den);
1232         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1233                 params->rate_num = num;
1234                 params->rate_den = den;
1235         }
1236         return err;
1237 }
1238
1239 /**
1240  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1241  * @runtime: PCM runtime instance
1242  * @cond: condition bits
1243  * @var: hw_params variable to apply the ratnums constraint
1244  * @r: struct snd_ratnums constriants
1245  *
1246  * Return: Zero if successful, or a negative error code on failure.
1247  */
1248 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1249                                   unsigned int cond,
1250                                   snd_pcm_hw_param_t var,
1251                                   struct snd_pcm_hw_constraint_ratnums *r)
1252 {
1253         return snd_pcm_hw_rule_add(runtime, cond, var,
1254                                    snd_pcm_hw_rule_ratnums, r,
1255                                    var, -1);
1256 }
1257
1258 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1259
1260 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1261                                    struct snd_pcm_hw_rule *rule)
1262 {
1263         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1264         unsigned int num = 0, den = 0;
1265         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1266                                   r->nrats, r->rats, &num, &den);
1267         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1268                 params->rate_num = num;
1269                 params->rate_den = den;
1270         }
1271         return err;
1272 }
1273
1274 /**
1275  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1276  * @runtime: PCM runtime instance
1277  * @cond: condition bits
1278  * @var: hw_params variable to apply the ratdens constraint
1279  * @r: struct snd_ratdens constriants
1280  *
1281  * Return: Zero if successful, or a negative error code on failure.
1282  */
1283 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1284                                   unsigned int cond,
1285                                   snd_pcm_hw_param_t var,
1286                                   struct snd_pcm_hw_constraint_ratdens *r)
1287 {
1288         return snd_pcm_hw_rule_add(runtime, cond, var,
1289                                    snd_pcm_hw_rule_ratdens, r,
1290                                    var, -1);
1291 }
1292
1293 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1294
1295 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1296                                   struct snd_pcm_hw_rule *rule)
1297 {
1298         unsigned int l = (unsigned long) rule->private;
1299         int width = l & 0xffff;
1300         unsigned int msbits = l >> 16;
1301         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1302         if (snd_interval_single(i) && snd_interval_value(i) == width)
1303                 params->msbits = msbits;
1304         return 0;
1305 }
1306
1307 /**
1308  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1309  * @runtime: PCM runtime instance
1310  * @cond: condition bits
1311  * @width: sample bits width
1312  * @msbits: msbits width
1313  *
1314  * Return: Zero if successful, or a negative error code on failure.
1315  */
1316 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1317                                  unsigned int cond,
1318                                  unsigned int width,
1319                                  unsigned int msbits)
1320 {
1321         unsigned long l = (msbits << 16) | width;
1322         return snd_pcm_hw_rule_add(runtime, cond, -1,
1323                                     snd_pcm_hw_rule_msbits,
1324                                     (void*) l,
1325                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1326 }
1327
1328 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1329
1330 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1331                                 struct snd_pcm_hw_rule *rule)
1332 {
1333         unsigned long step = (unsigned long) rule->private;
1334         return snd_interval_step(hw_param_interval(params, rule->var), step);
1335 }
1336
1337 /**
1338  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1339  * @runtime: PCM runtime instance
1340  * @cond: condition bits
1341  * @var: hw_params variable to apply the step constraint
1342  * @step: step size
1343  *
1344  * Return: Zero if successful, or a negative error code on failure.
1345  */
1346 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1347                                unsigned int cond,
1348                                snd_pcm_hw_param_t var,
1349                                unsigned long step)
1350 {
1351         return snd_pcm_hw_rule_add(runtime, cond, var, 
1352                                    snd_pcm_hw_rule_step, (void *) step,
1353                                    var, -1);
1354 }
1355
1356 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1357
1358 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1359 {
1360         static unsigned int pow2_sizes[] = {
1361                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1362                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1363                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1364                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1365         };
1366         return snd_interval_list(hw_param_interval(params, rule->var),
1367                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1368 }               
1369
1370 /**
1371  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1372  * @runtime: PCM runtime instance
1373  * @cond: condition bits
1374  * @var: hw_params variable to apply the power-of-2 constraint
1375  *
1376  * Return: Zero if successful, or a negative error code on failure.
1377  */
1378 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1379                                unsigned int cond,
1380                                snd_pcm_hw_param_t var)
1381 {
1382         return snd_pcm_hw_rule_add(runtime, cond, var, 
1383                                    snd_pcm_hw_rule_pow2, NULL,
1384                                    var, -1);
1385 }
1386
1387 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1388
1389 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1390                                            struct snd_pcm_hw_rule *rule)
1391 {
1392         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1393         struct snd_interval *rate;
1394
1395         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1396         return snd_interval_list(rate, 1, &base_rate, 0);
1397 }
1398
1399 /**
1400  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1401  * @runtime: PCM runtime instance
1402  * @base_rate: the rate at which the hardware does not resample
1403  *
1404  * Return: Zero if successful, or a negative error code on failure.
1405  */
1406 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1407                                unsigned int base_rate)
1408 {
1409         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1410                                    SNDRV_PCM_HW_PARAM_RATE,
1411                                    snd_pcm_hw_rule_noresample_func,
1412                                    (void *)(uintptr_t)base_rate,
1413                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1414 }
1415 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1416
1417 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1418                                   snd_pcm_hw_param_t var)
1419 {
1420         if (hw_is_mask(var)) {
1421                 snd_mask_any(hw_param_mask(params, var));
1422                 params->cmask |= 1 << var;
1423                 params->rmask |= 1 << var;
1424                 return;
1425         }
1426         if (hw_is_interval(var)) {
1427                 snd_interval_any(hw_param_interval(params, var));
1428                 params->cmask |= 1 << var;
1429                 params->rmask |= 1 << var;
1430                 return;
1431         }
1432         snd_BUG();
1433 }
1434
1435 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1436 {
1437         unsigned int k;
1438         memset(params, 0, sizeof(*params));
1439         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1440                 _snd_pcm_hw_param_any(params, k);
1441         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1442                 _snd_pcm_hw_param_any(params, k);
1443         params->info = ~0U;
1444 }
1445
1446 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1447
1448 /**
1449  * snd_pcm_hw_param_value - return @params field @var value
1450  * @params: the hw_params instance
1451  * @var: parameter to retrieve
1452  * @dir: pointer to the direction (-1,0,1) or %NULL
1453  *
1454  * Return: The value for field @var if it's fixed in configuration space
1455  * defined by @params. -%EINVAL otherwise.
1456  */
1457 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1458                            snd_pcm_hw_param_t var, int *dir)
1459 {
1460         if (hw_is_mask(var)) {
1461                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1462                 if (!snd_mask_single(mask))
1463                         return -EINVAL;
1464                 if (dir)
1465                         *dir = 0;
1466                 return snd_mask_value(mask);
1467         }
1468         if (hw_is_interval(var)) {
1469                 const struct snd_interval *i = hw_param_interval_c(params, var);
1470                 if (!snd_interval_single(i))
1471                         return -EINVAL;
1472                 if (dir)
1473                         *dir = i->openmin;
1474                 return snd_interval_value(i);
1475         }
1476         return -EINVAL;
1477 }
1478
1479 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1480
1481 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1482                                 snd_pcm_hw_param_t var)
1483 {
1484         if (hw_is_mask(var)) {
1485                 snd_mask_none(hw_param_mask(params, var));
1486                 params->cmask |= 1 << var;
1487                 params->rmask |= 1 << var;
1488         } else if (hw_is_interval(var)) {
1489                 snd_interval_none(hw_param_interval(params, var));
1490                 params->cmask |= 1 << var;
1491                 params->rmask |= 1 << var;
1492         } else {
1493                 snd_BUG();
1494         }
1495 }
1496
1497 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1498
1499 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1500                                    snd_pcm_hw_param_t var)
1501 {
1502         int changed;
1503         if (hw_is_mask(var))
1504                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1505         else if (hw_is_interval(var))
1506                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1507         else
1508                 return -EINVAL;
1509         if (changed) {
1510                 params->cmask |= 1 << var;
1511                 params->rmask |= 1 << var;
1512         }
1513         return changed;
1514 }
1515
1516
1517 /**
1518  * snd_pcm_hw_param_first - refine config space and return minimum value
1519  * @pcm: PCM instance
1520  * @params: the hw_params instance
1521  * @var: parameter to retrieve
1522  * @dir: pointer to the direction (-1,0,1) or %NULL
1523  *
1524  * Inside configuration space defined by @params remove from @var all
1525  * values > minimum. Reduce configuration space accordingly.
1526  *
1527  * Return: The minimum, or a negative error code on failure.
1528  */
1529 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1530                            struct snd_pcm_hw_params *params, 
1531                            snd_pcm_hw_param_t var, int *dir)
1532 {
1533         int changed = _snd_pcm_hw_param_first(params, var);
1534         if (changed < 0)
1535                 return changed;
1536         if (params->rmask) {
1537                 int err = snd_pcm_hw_refine(pcm, params);
1538                 if (snd_BUG_ON(err < 0))
1539                         return err;
1540         }
1541         return snd_pcm_hw_param_value(params, var, dir);
1542 }
1543
1544 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1545
1546 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1547                                   snd_pcm_hw_param_t var)
1548 {
1549         int changed;
1550         if (hw_is_mask(var))
1551                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1552         else if (hw_is_interval(var))
1553                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1554         else
1555                 return -EINVAL;
1556         if (changed) {
1557                 params->cmask |= 1 << var;
1558                 params->rmask |= 1 << var;
1559         }
1560         return changed;
1561 }
1562
1563
1564 /**
1565  * snd_pcm_hw_param_last - refine config space and return maximum value
1566  * @pcm: PCM instance
1567  * @params: the hw_params instance
1568  * @var: parameter to retrieve
1569  * @dir: pointer to the direction (-1,0,1) or %NULL
1570  *
1571  * Inside configuration space defined by @params remove from @var all
1572  * values < maximum. Reduce configuration space accordingly.
1573  *
1574  * Return: The maximum, or a negative error code on failure.
1575  */
1576 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1577                           struct snd_pcm_hw_params *params,
1578                           snd_pcm_hw_param_t var, int *dir)
1579 {
1580         int changed = _snd_pcm_hw_param_last(params, var);
1581         if (changed < 0)
1582                 return changed;
1583         if (params->rmask) {
1584                 int err = snd_pcm_hw_refine(pcm, params);
1585                 if (snd_BUG_ON(err < 0))
1586                         return err;
1587         }
1588         return snd_pcm_hw_param_value(params, var, dir);
1589 }
1590
1591 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1592
1593 /**
1594  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1595  * @pcm: PCM instance
1596  * @params: the hw_params instance
1597  *
1598  * Choose one configuration from configuration space defined by @params.
1599  * The configuration chosen is that obtained fixing in this order:
1600  * first access, first format, first subformat, min channels,
1601  * min rate, min period time, max buffer size, min tick time
1602  *
1603  * Return: Zero if successful, or a negative error code on failure.
1604  */
1605 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1606                              struct snd_pcm_hw_params *params)
1607 {
1608         static int vars[] = {
1609                 SNDRV_PCM_HW_PARAM_ACCESS,
1610                 SNDRV_PCM_HW_PARAM_FORMAT,
1611                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1612                 SNDRV_PCM_HW_PARAM_CHANNELS,
1613                 SNDRV_PCM_HW_PARAM_RATE,
1614                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1615                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1616                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1617                 -1
1618         };
1619         int err, *v;
1620
1621         for (v = vars; *v != -1; v++) {
1622                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1623                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1624                 else
1625                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1626                 if (snd_BUG_ON(err < 0))
1627                         return err;
1628         }
1629         return 0;
1630 }
1631
1632 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1633                                    void *arg)
1634 {
1635         struct snd_pcm_runtime *runtime = substream->runtime;
1636         unsigned long flags;
1637         snd_pcm_stream_lock_irqsave(substream, flags);
1638         if (snd_pcm_running(substream) &&
1639             snd_pcm_update_hw_ptr(substream) >= 0)
1640                 runtime->status->hw_ptr %= runtime->buffer_size;
1641         else {
1642                 runtime->status->hw_ptr = 0;
1643                 runtime->hw_ptr_wrap = 0;
1644         }
1645         snd_pcm_stream_unlock_irqrestore(substream, flags);
1646         return 0;
1647 }
1648
1649 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1650                                           void *arg)
1651 {
1652         struct snd_pcm_channel_info *info = arg;
1653         struct snd_pcm_runtime *runtime = substream->runtime;
1654         int width;
1655         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1656                 info->offset = -1;
1657                 return 0;
1658         }
1659         width = snd_pcm_format_physical_width(runtime->format);
1660         if (width < 0)
1661                 return width;
1662         info->offset = 0;
1663         switch (runtime->access) {
1664         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1665         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1666                 info->first = info->channel * width;
1667                 info->step = runtime->channels * width;
1668                 break;
1669         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1670         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1671         {
1672                 size_t size = runtime->dma_bytes / runtime->channels;
1673                 info->first = info->channel * size * 8;
1674                 info->step = width;
1675                 break;
1676         }
1677         default:
1678                 snd_BUG();
1679                 break;
1680         }
1681         return 0;
1682 }
1683
1684 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1685                                        void *arg)
1686 {
1687         struct snd_pcm_hw_params *params = arg;
1688         snd_pcm_format_t format;
1689         int channels;
1690         ssize_t frame_size;
1691
1692         params->fifo_size = substream->runtime->hw.fifo_size;
1693         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1694                 format = params_format(params);
1695                 channels = params_channels(params);
1696                 frame_size = snd_pcm_format_size(format, channels);
1697                 if (frame_size > 0)
1698                         params->fifo_size /= (unsigned)frame_size;
1699         }
1700         return 0;
1701 }
1702
1703 /**
1704  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1705  * @substream: the pcm substream instance
1706  * @cmd: ioctl command
1707  * @arg: ioctl argument
1708  *
1709  * Processes the generic ioctl commands for PCM.
1710  * Can be passed as the ioctl callback for PCM ops.
1711  *
1712  * Return: Zero if successful, or a negative error code on failure.
1713  */
1714 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1715                       unsigned int cmd, void *arg)
1716 {
1717         switch (cmd) {
1718         case SNDRV_PCM_IOCTL1_INFO:
1719                 return 0;
1720         case SNDRV_PCM_IOCTL1_RESET:
1721                 return snd_pcm_lib_ioctl_reset(substream, arg);
1722         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1723                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1724         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1725                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1726         }
1727         return -ENXIO;
1728 }
1729
1730 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1731
1732 /**
1733  * snd_pcm_period_elapsed - update the pcm status for the next period
1734  * @substream: the pcm substream instance
1735  *
1736  * This function is called from the interrupt handler when the
1737  * PCM has processed the period size.  It will update the current
1738  * pointer, wake up sleepers, etc.
1739  *
1740  * Even if more than one periods have elapsed since the last call, you
1741  * have to call this only once.
1742  */
1743 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1744 {
1745         struct snd_pcm_runtime *runtime;
1746         unsigned long flags;
1747
1748         if (PCM_RUNTIME_CHECK(substream))
1749                 return;
1750         runtime = substream->runtime;
1751
1752         if (runtime->transfer_ack_begin)
1753                 runtime->transfer_ack_begin(substream);
1754
1755         snd_pcm_stream_lock_irqsave(substream, flags);
1756         if (!snd_pcm_running(substream) ||
1757             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1758                 goto _end;
1759
1760         if (substream->timer_running)
1761                 snd_timer_interrupt(substream->timer, 1);
1762  _end:
1763         snd_pcm_stream_unlock_irqrestore(substream, flags);
1764         if (runtime->transfer_ack_end)
1765                 runtime->transfer_ack_end(substream);
1766         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1767 }
1768
1769 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1770
1771 /*
1772  * Wait until avail_min data becomes available
1773  * Returns a negative error code if any error occurs during operation.
1774  * The available space is stored on availp.  When err = 0 and avail = 0
1775  * on the capture stream, it indicates the stream is in DRAINING state.
1776  */
1777 static int wait_for_avail(struct snd_pcm_substream *substream,
1778                               snd_pcm_uframes_t *availp)
1779 {
1780         struct snd_pcm_runtime *runtime = substream->runtime;
1781         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1782         wait_queue_t wait;
1783         int err = 0;
1784         snd_pcm_uframes_t avail = 0;
1785         long wait_time, tout;
1786
1787         init_waitqueue_entry(&wait, current);
1788         set_current_state(TASK_INTERRUPTIBLE);
1789         add_wait_queue(&runtime->tsleep, &wait);
1790
1791         if (runtime->no_period_wakeup)
1792                 wait_time = MAX_SCHEDULE_TIMEOUT;
1793         else {
1794                 wait_time = 10;
1795                 if (runtime->rate) {
1796                         long t = runtime->period_size * 2 / runtime->rate;
1797                         wait_time = max(t, wait_time);
1798                 }
1799                 wait_time = msecs_to_jiffies(wait_time * 1000);
1800         }
1801
1802         for (;;) {
1803                 if (signal_pending(current)) {
1804                         err = -ERESTARTSYS;
1805                         break;
1806                 }
1807
1808                 /*
1809                  * We need to check if space became available already
1810                  * (and thus the wakeup happened already) first to close
1811                  * the race of space already having become available.
1812                  * This check must happen after been added to the waitqueue
1813                  * and having current state be INTERRUPTIBLE.
1814                  */
1815                 if (is_playback)
1816                         avail = snd_pcm_playback_avail(runtime);
1817                 else
1818                         avail = snd_pcm_capture_avail(runtime);
1819                 if (avail >= runtime->twake)
1820                         break;
1821                 snd_pcm_stream_unlock_irq(substream);
1822
1823                 tout = schedule_timeout(wait_time);
1824
1825                 snd_pcm_stream_lock_irq(substream);
1826                 set_current_state(TASK_INTERRUPTIBLE);
1827                 switch (runtime->status->state) {
1828                 case SNDRV_PCM_STATE_SUSPENDED:
1829                         err = -ESTRPIPE;
1830                         goto _endloop;
1831                 case SNDRV_PCM_STATE_XRUN:
1832                         err = -EPIPE;
1833                         goto _endloop;
1834                 case SNDRV_PCM_STATE_DRAINING:
1835                         if (is_playback)
1836                                 err = -EPIPE;
1837                         else 
1838                                 avail = 0; /* indicate draining */
1839                         goto _endloop;
1840                 case SNDRV_PCM_STATE_OPEN:
1841                 case SNDRV_PCM_STATE_SETUP:
1842                 case SNDRV_PCM_STATE_DISCONNECTED:
1843                         err = -EBADFD;
1844                         goto _endloop;
1845                 case SNDRV_PCM_STATE_PAUSED:
1846                         continue;
1847                 }
1848                 if (!tout) {
1849                         pcm_dbg(substream->pcm,
1850                                 "%s write error (DMA or IRQ trouble?)\n",
1851                                 is_playback ? "playback" : "capture");
1852                         err = -EIO;
1853                         break;
1854                 }
1855         }
1856  _endloop:
1857         set_current_state(TASK_RUNNING);
1858         remove_wait_queue(&runtime->tsleep, &wait);
1859         *availp = avail;
1860         return err;
1861 }
1862         
1863 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1864                                       unsigned int hwoff,
1865                                       unsigned long data, unsigned int off,
1866                                       snd_pcm_uframes_t frames)
1867 {
1868         struct snd_pcm_runtime *runtime = substream->runtime;
1869         int err;
1870         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1871         if (substream->ops->copy) {
1872                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1873                         return err;
1874         } else {
1875                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1876                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1877                         return -EFAULT;
1878         }
1879         return 0;
1880 }
1881  
1882 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1883                           unsigned long data, unsigned int off,
1884                           snd_pcm_uframes_t size);
1885
1886 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1887                                             unsigned long data,
1888                                             snd_pcm_uframes_t size,
1889                                             int nonblock,
1890                                             transfer_f transfer)
1891 {
1892         struct snd_pcm_runtime *runtime = substream->runtime;
1893         snd_pcm_uframes_t xfer = 0;
1894         snd_pcm_uframes_t offset = 0;
1895         snd_pcm_uframes_t avail;
1896         int err = 0;
1897
1898         if (size == 0)
1899                 return 0;
1900
1901         snd_pcm_stream_lock_irq(substream);
1902         switch (runtime->status->state) {
1903         case SNDRV_PCM_STATE_PREPARED:
1904         case SNDRV_PCM_STATE_RUNNING:
1905         case SNDRV_PCM_STATE_PAUSED:
1906                 break;
1907         case SNDRV_PCM_STATE_XRUN:
1908                 err = -EPIPE;
1909                 goto _end_unlock;
1910         case SNDRV_PCM_STATE_SUSPENDED:
1911                 err = -ESTRPIPE;
1912                 goto _end_unlock;
1913         default:
1914                 err = -EBADFD;
1915                 goto _end_unlock;
1916         }
1917
1918         runtime->twake = runtime->control->avail_min ? : 1;
1919         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1920                 snd_pcm_update_hw_ptr(substream);
1921         avail = snd_pcm_playback_avail(runtime);
1922         while (size > 0) {
1923                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1924                 snd_pcm_uframes_t cont;
1925                 if (!avail) {
1926                         if (nonblock) {
1927                                 err = -EAGAIN;
1928                                 goto _end_unlock;
1929                         }
1930                         runtime->twake = min_t(snd_pcm_uframes_t, size,
1931                                         runtime->control->avail_min ? : 1);
1932                         err = wait_for_avail(substream, &avail);
1933                         if (err < 0)
1934                                 goto _end_unlock;
1935                 }
1936                 frames = size > avail ? avail : size;
1937                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1938                 if (frames > cont)
1939                         frames = cont;
1940                 if (snd_BUG_ON(!frames)) {
1941                         runtime->twake = 0;
1942                         snd_pcm_stream_unlock_irq(substream);
1943                         return -EINVAL;
1944                 }
1945                 appl_ptr = runtime->control->appl_ptr;
1946                 appl_ofs = appl_ptr % runtime->buffer_size;
1947                 snd_pcm_stream_unlock_irq(substream);
1948                 err = transfer(substream, appl_ofs, data, offset, frames);
1949                 snd_pcm_stream_lock_irq(substream);
1950                 if (err < 0)
1951                         goto _end_unlock;
1952                 switch (runtime->status->state) {
1953                 case SNDRV_PCM_STATE_XRUN:
1954                         err = -EPIPE;
1955                         goto _end_unlock;
1956                 case SNDRV_PCM_STATE_SUSPENDED:
1957                         err = -ESTRPIPE;
1958                         goto _end_unlock;
1959                 default:
1960                         break;
1961                 }
1962                 appl_ptr += frames;
1963                 if (appl_ptr >= runtime->boundary)
1964                         appl_ptr -= runtime->boundary;
1965                 runtime->control->appl_ptr = appl_ptr;
1966                 if (substream->ops->ack)
1967                         substream->ops->ack(substream);
1968
1969                 offset += frames;
1970                 size -= frames;
1971                 xfer += frames;
1972                 avail -= frames;
1973                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1974                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1975                         err = snd_pcm_start(substream);
1976                         if (err < 0)
1977                                 goto _end_unlock;
1978                 }
1979         }
1980  _end_unlock:
1981         runtime->twake = 0;
1982         if (xfer > 0 && err >= 0)
1983                 snd_pcm_update_state(substream, runtime);
1984         snd_pcm_stream_unlock_irq(substream);
1985         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1986 }
1987
1988 /* sanity-check for read/write methods */
1989 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1990 {
1991         struct snd_pcm_runtime *runtime;
1992         if (PCM_RUNTIME_CHECK(substream))
1993                 return -ENXIO;
1994         runtime = substream->runtime;
1995         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1996                 return -EINVAL;
1997         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1998                 return -EBADFD;
1999         return 0;
2000 }
2001
2002 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2003 {
2004         struct snd_pcm_runtime *runtime;
2005         int nonblock;
2006         int err;
2007
2008         err = pcm_sanity_check(substream);
2009         if (err < 0)
2010                 return err;
2011         runtime = substream->runtime;
2012         nonblock = !!(substream->f_flags & O_NONBLOCK);
2013
2014         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2015             runtime->channels > 1)
2016                 return -EINVAL;
2017         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2018                                   snd_pcm_lib_write_transfer);
2019 }
2020
2021 EXPORT_SYMBOL(snd_pcm_lib_write);
2022
2023 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2024                                        unsigned int hwoff,
2025                                        unsigned long data, unsigned int off,
2026                                        snd_pcm_uframes_t frames)
2027 {
2028         struct snd_pcm_runtime *runtime = substream->runtime;
2029         int err;
2030         void __user **bufs = (void __user **)data;
2031         int channels = runtime->channels;
2032         int c;
2033         if (substream->ops->copy) {
2034                 if (snd_BUG_ON(!substream->ops->silence))
2035                         return -EINVAL;
2036                 for (c = 0; c < channels; ++c, ++bufs) {
2037                         if (*bufs == NULL) {
2038                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2039                                         return err;
2040                         } else {
2041                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2042                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2043                                         return err;
2044                         }
2045                 }
2046         } else {
2047                 /* default transfer behaviour */
2048                 size_t dma_csize = runtime->dma_bytes / channels;
2049                 for (c = 0; c < channels; ++c, ++bufs) {
2050                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2051                         if (*bufs == NULL) {
2052                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2053                         } else {
2054                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2055                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2056                                         return -EFAULT;
2057                         }
2058                 }
2059         }
2060         return 0;
2061 }
2062  
2063 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2064                                      void __user **bufs,
2065                                      snd_pcm_uframes_t frames)
2066 {
2067         struct snd_pcm_runtime *runtime;
2068         int nonblock;
2069         int err;
2070
2071         err = pcm_sanity_check(substream);
2072         if (err < 0)
2073                 return err;
2074         runtime = substream->runtime;
2075         nonblock = !!(substream->f_flags & O_NONBLOCK);
2076
2077         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2078                 return -EINVAL;
2079         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2080                                   nonblock, snd_pcm_lib_writev_transfer);
2081 }
2082
2083 EXPORT_SYMBOL(snd_pcm_lib_writev);
2084
2085 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2086                                      unsigned int hwoff,
2087                                      unsigned long data, unsigned int off,
2088                                      snd_pcm_uframes_t frames)
2089 {
2090         struct snd_pcm_runtime *runtime = substream->runtime;
2091         int err;
2092         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2093         if (substream->ops->copy) {
2094                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2095                         return err;
2096         } else {
2097                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2098                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2099                         return -EFAULT;
2100         }
2101         return 0;
2102 }
2103
2104 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2105                                            unsigned long data,
2106                                            snd_pcm_uframes_t size,
2107                                            int nonblock,
2108                                            transfer_f transfer)
2109 {
2110         struct snd_pcm_runtime *runtime = substream->runtime;
2111         snd_pcm_uframes_t xfer = 0;
2112         snd_pcm_uframes_t offset = 0;
2113         snd_pcm_uframes_t avail;
2114         int err = 0;
2115
2116         if (size == 0)
2117                 return 0;
2118
2119         snd_pcm_stream_lock_irq(substream);
2120         switch (runtime->status->state) {
2121         case SNDRV_PCM_STATE_PREPARED:
2122                 if (size >= runtime->start_threshold) {
2123                         err = snd_pcm_start(substream);
2124                         if (err < 0)
2125                                 goto _end_unlock;
2126                 }
2127                 break;
2128         case SNDRV_PCM_STATE_DRAINING:
2129         case SNDRV_PCM_STATE_RUNNING:
2130         case SNDRV_PCM_STATE_PAUSED:
2131                 break;
2132         case SNDRV_PCM_STATE_XRUN:
2133                 err = -EPIPE;
2134                 goto _end_unlock;
2135         case SNDRV_PCM_STATE_SUSPENDED:
2136                 err = -ESTRPIPE;
2137                 goto _end_unlock;
2138         default:
2139                 err = -EBADFD;
2140                 goto _end_unlock;
2141         }
2142
2143         runtime->twake = runtime->control->avail_min ? : 1;
2144         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2145                 snd_pcm_update_hw_ptr(substream);
2146         avail = snd_pcm_capture_avail(runtime);
2147         while (size > 0) {
2148                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2149                 snd_pcm_uframes_t cont;
2150                 if (!avail) {
2151                         if (runtime->status->state ==
2152                             SNDRV_PCM_STATE_DRAINING) {
2153                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2154                                 goto _end_unlock;
2155                         }
2156                         if (nonblock) {
2157                                 err = -EAGAIN;
2158                                 goto _end_unlock;
2159                         }
2160                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2161                                         runtime->control->avail_min ? : 1);
2162                         err = wait_for_avail(substream, &avail);
2163                         if (err < 0)
2164                                 goto _end_unlock;
2165                         if (!avail)
2166                                 continue; /* draining */
2167                 }
2168                 frames = size > avail ? avail : size;
2169                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2170                 if (frames > cont)
2171                         frames = cont;
2172                 if (snd_BUG_ON(!frames)) {
2173                         runtime->twake = 0;
2174                         snd_pcm_stream_unlock_irq(substream);
2175                         return -EINVAL;
2176                 }
2177                 appl_ptr = runtime->control->appl_ptr;
2178                 appl_ofs = appl_ptr % runtime->buffer_size;
2179                 snd_pcm_stream_unlock_irq(substream);
2180                 err = transfer(substream, appl_ofs, data, offset, frames);
2181                 snd_pcm_stream_lock_irq(substream);
2182                 if (err < 0)
2183                         goto _end_unlock;
2184                 switch (runtime->status->state) {
2185                 case SNDRV_PCM_STATE_XRUN:
2186                         err = -EPIPE;
2187                         goto _end_unlock;
2188                 case SNDRV_PCM_STATE_SUSPENDED:
2189                         err = -ESTRPIPE;
2190                         goto _end_unlock;
2191                 default:
2192                         break;
2193                 }
2194                 appl_ptr += frames;
2195                 if (appl_ptr >= runtime->boundary)
2196                         appl_ptr -= runtime->boundary;
2197                 runtime->control->appl_ptr = appl_ptr;
2198                 if (substream->ops->ack)
2199                         substream->ops->ack(substream);
2200
2201                 offset += frames;
2202                 size -= frames;
2203                 xfer += frames;
2204                 avail -= frames;
2205         }
2206  _end_unlock:
2207         runtime->twake = 0;
2208         if (xfer > 0 && err >= 0)
2209                 snd_pcm_update_state(substream, runtime);
2210         snd_pcm_stream_unlock_irq(substream);
2211         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2212 }
2213
2214 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2215 {
2216         struct snd_pcm_runtime *runtime;
2217         int nonblock;
2218         int err;
2219         
2220         err = pcm_sanity_check(substream);
2221         if (err < 0)
2222                 return err;
2223         runtime = substream->runtime;
2224         nonblock = !!(substream->f_flags & O_NONBLOCK);
2225         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2226                 return -EINVAL;
2227         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2228 }
2229
2230 EXPORT_SYMBOL(snd_pcm_lib_read);
2231
2232 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2233                                       unsigned int hwoff,
2234                                       unsigned long data, unsigned int off,
2235                                       snd_pcm_uframes_t frames)
2236 {
2237         struct snd_pcm_runtime *runtime = substream->runtime;
2238         int err;
2239         void __user **bufs = (void __user **)data;
2240         int channels = runtime->channels;
2241         int c;
2242         if (substream->ops->copy) {
2243                 for (c = 0; c < channels; ++c, ++bufs) {
2244                         char __user *buf;
2245                         if (*bufs == NULL)
2246                                 continue;
2247                         buf = *bufs + samples_to_bytes(runtime, off);
2248                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2249                                 return err;
2250                 }
2251         } else {
2252                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2253                 for (c = 0; c < channels; ++c, ++bufs) {
2254                         char *hwbuf;
2255                         char __user *buf;
2256                         if (*bufs == NULL)
2257                                 continue;
2258
2259                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2260                         buf = *bufs + samples_to_bytes(runtime, off);
2261                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2262                                 return -EFAULT;
2263                 }
2264         }
2265         return 0;
2266 }
2267  
2268 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2269                                     void __user **bufs,
2270                                     snd_pcm_uframes_t frames)
2271 {
2272         struct snd_pcm_runtime *runtime;
2273         int nonblock;
2274         int err;
2275
2276         err = pcm_sanity_check(substream);
2277         if (err < 0)
2278                 return err;
2279         runtime = substream->runtime;
2280         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2281                 return -EBADFD;
2282
2283         nonblock = !!(substream->f_flags & O_NONBLOCK);
2284         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2285                 return -EINVAL;
2286         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2287 }
2288
2289 EXPORT_SYMBOL(snd_pcm_lib_readv);
2290
2291 /*
2292  * standard channel mapping helpers
2293  */
2294
2295 /* default channel maps for multi-channel playbacks, up to 8 channels */
2296 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2297         { .channels = 1,
2298           .map = { SNDRV_CHMAP_MONO } },
2299         { .channels = 2,
2300           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2301         { .channels = 4,
2302           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2303                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2304         { .channels = 6,
2305           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2306                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2307                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2308         { .channels = 8,
2309           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2310                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2311                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2312                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2313         { }
2314 };
2315 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2316
2317 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2318 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2319         { .channels = 1,
2320           .map = { SNDRV_CHMAP_MONO } },
2321         { .channels = 2,
2322           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2323         { .channels = 4,
2324           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2325                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2326         { .channels = 6,
2327           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2328                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2329                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2330         { .channels = 8,
2331           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2332                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2333                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2334                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2335         { }
2336 };
2337 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2338
2339 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2340 {
2341         if (ch > info->max_channels)
2342                 return false;
2343         return !info->channel_mask || (info->channel_mask & (1U << ch));
2344 }
2345
2346 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2347                               struct snd_ctl_elem_info *uinfo)
2348 {
2349         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2350
2351         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2352         uinfo->count = 0;
2353         uinfo->count = info->max_channels;
2354         uinfo->value.integer.min = 0;
2355         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2356         return 0;
2357 }
2358
2359 /* get callback for channel map ctl element
2360  * stores the channel position firstly matching with the current channels
2361  */
2362 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2363                              struct snd_ctl_elem_value *ucontrol)
2364 {
2365         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2366         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2367         struct snd_pcm_substream *substream;
2368         const struct snd_pcm_chmap_elem *map;
2369
2370         if (snd_BUG_ON(!info->chmap))
2371                 return -EINVAL;
2372         substream = snd_pcm_chmap_substream(info, idx);
2373         if (!substream)
2374                 return -ENODEV;
2375         memset(ucontrol->value.integer.value, 0,
2376                sizeof(ucontrol->value.integer.value));
2377         if (!substream->runtime)
2378                 return 0; /* no channels set */
2379         for (map = info->chmap; map->channels; map++) {
2380                 int i;
2381                 if (map->channels == substream->runtime->channels &&
2382                     valid_chmap_channels(info, map->channels)) {
2383                         for (i = 0; i < map->channels; i++)
2384                                 ucontrol->value.integer.value[i] = map->map[i];
2385                         return 0;
2386                 }
2387         }
2388         return -EINVAL;
2389 }
2390
2391 /* tlv callback for channel map ctl element
2392  * expands the pre-defined channel maps in a form of TLV
2393  */
2394 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2395                              unsigned int size, unsigned int __user *tlv)
2396 {
2397         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2398         const struct snd_pcm_chmap_elem *map;
2399         unsigned int __user *dst;
2400         int c, count = 0;
2401
2402         if (snd_BUG_ON(!info->chmap))
2403                 return -EINVAL;
2404         if (size < 8)
2405                 return -ENOMEM;
2406         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2407                 return -EFAULT;
2408         size -= 8;
2409         dst = tlv + 2;
2410         for (map = info->chmap; map->channels; map++) {
2411                 int chs_bytes = map->channels * 4;
2412                 if (!valid_chmap_channels(info, map->channels))
2413                         continue;
2414                 if (size < 8)
2415                         return -ENOMEM;
2416                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2417                     put_user(chs_bytes, dst + 1))
2418                         return -EFAULT;
2419                 dst += 2;
2420                 size -= 8;
2421                 count += 8;
2422                 if (size < chs_bytes)
2423                         return -ENOMEM;
2424                 size -= chs_bytes;
2425                 count += chs_bytes;
2426                 for (c = 0; c < map->channels; c++) {
2427                         if (put_user(map->map[c], dst))
2428                                 return -EFAULT;
2429                         dst++;
2430                 }
2431         }
2432         if (put_user(count, tlv + 1))
2433                 return -EFAULT;
2434         return 0;
2435 }
2436
2437 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2438 {
2439         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2440         info->pcm->streams[info->stream].chmap_kctl = NULL;
2441         kfree(info);
2442 }
2443
2444 /**
2445  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2446  * @pcm: the assigned PCM instance
2447  * @stream: stream direction
2448  * @chmap: channel map elements (for query)
2449  * @max_channels: the max number of channels for the stream
2450  * @private_value: the value passed to each kcontrol's private_value field
2451  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2452  *
2453  * Create channel-mapping control elements assigned to the given PCM stream(s).
2454  * Return: Zero if successful, or a negative error value.
2455  */
2456 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2457                            const struct snd_pcm_chmap_elem *chmap,
2458                            int max_channels,
2459                            unsigned long private_value,
2460                            struct snd_pcm_chmap **info_ret)
2461 {
2462         struct snd_pcm_chmap *info;
2463         struct snd_kcontrol_new knew = {
2464                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2465                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2466                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2467                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2468                 .info = pcm_chmap_ctl_info,
2469                 .get = pcm_chmap_ctl_get,
2470                 .tlv.c = pcm_chmap_ctl_tlv,
2471         };
2472         int err;
2473
2474         info = kzalloc(sizeof(*info), GFP_KERNEL);
2475         if (!info)
2476                 return -ENOMEM;
2477         info->pcm = pcm;
2478         info->stream = stream;
2479         info->chmap = chmap;
2480         info->max_channels = max_channels;
2481         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2482                 knew.name = "Playback Channel Map";
2483         else
2484                 knew.name = "Capture Channel Map";
2485         knew.device = pcm->device;
2486         knew.count = pcm->streams[stream].substream_count;
2487         knew.private_value = private_value;
2488         info->kctl = snd_ctl_new1(&knew, info);
2489         if (!info->kctl) {
2490                 kfree(info);
2491                 return -ENOMEM;
2492         }
2493         info->kctl->private_free = pcm_chmap_ctl_private_free;
2494         err = snd_ctl_add(pcm->card, info->kctl);
2495         if (err < 0)
2496                 return err;
2497         pcm->streams[stream].chmap_kctl = info->kctl;
2498         if (info_ret)
2499                 *info_ret = info;
2500         return 0;
2501 }
2502 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);