Merge branch 'next' into for-linus
[cascardo/linux.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 /*
36  * fill ring buffer with silence
37  * runtime->silence_start: starting pointer to silence area
38  * runtime->silence_filled: size filled with silence
39  * runtime->silence_threshold: threshold from application
40  * runtime->silence_size: maximal size from application
41  *
42  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
43  */
44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
45 {
46         struct snd_pcm_runtime *runtime = substream->runtime;
47         snd_pcm_uframes_t frames, ofs, transfer;
48
49         if (runtime->silence_size < runtime->boundary) {
50                 snd_pcm_sframes_t noise_dist, n;
51                 if (runtime->silence_start != runtime->control->appl_ptr) {
52                         n = runtime->control->appl_ptr - runtime->silence_start;
53                         if (n < 0)
54                                 n += runtime->boundary;
55                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
56                                 runtime->silence_filled -= n;
57                         else
58                                 runtime->silence_filled = 0;
59                         runtime->silence_start = runtime->control->appl_ptr;
60                 }
61                 if (runtime->silence_filled >= runtime->buffer_size)
62                         return;
63                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
64                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
65                         return;
66                 frames = runtime->silence_threshold - noise_dist;
67                 if (frames > runtime->silence_size)
68                         frames = runtime->silence_size;
69         } else {
70                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
71                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
72                         if (avail > runtime->buffer_size)
73                                 avail = runtime->buffer_size;
74                         runtime->silence_filled = avail > 0 ? avail : 0;
75                         runtime->silence_start = (runtime->status->hw_ptr +
76                                                   runtime->silence_filled) %
77                                                  runtime->boundary;
78                 } else {
79                         ofs = runtime->status->hw_ptr;
80                         frames = new_hw_ptr - ofs;
81                         if ((snd_pcm_sframes_t)frames < 0)
82                                 frames += runtime->boundary;
83                         runtime->silence_filled -= frames;
84                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
85                                 runtime->silence_filled = 0;
86                                 runtime->silence_start = new_hw_ptr;
87                         } else {
88                                 runtime->silence_start = ofs;
89                         }
90                 }
91                 frames = runtime->buffer_size - runtime->silence_filled;
92         }
93         if (snd_BUG_ON(frames > runtime->buffer_size))
94                 return;
95         if (frames == 0)
96                 return;
97         ofs = runtime->silence_start % runtime->buffer_size;
98         while (frames > 0) {
99                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
100                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
101                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
102                         if (substream->ops->silence) {
103                                 int err;
104                                 err = substream->ops->silence(substream, -1, ofs, transfer);
105                                 snd_BUG_ON(err < 0);
106                         } else {
107                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
108                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
109                         }
110                 } else {
111                         unsigned int c;
112                         unsigned int channels = runtime->channels;
113                         if (substream->ops->silence) {
114                                 for (c = 0; c < channels; ++c) {
115                                         int err;
116                                         err = substream->ops->silence(substream, c, ofs, transfer);
117                                         snd_BUG_ON(err < 0);
118                                 }
119                         } else {
120                                 size_t dma_csize = runtime->dma_bytes / channels;
121                                 for (c = 0; c < channels; ++c) {
122                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
123                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
124                                 }
125                         }
126                 }
127                 runtime->silence_filled += transfer;
128                 frames -= transfer;
129                 ofs = 0;
130         }
131 }
132
133 #ifdef CONFIG_SND_DEBUG
134 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
135                            char *name, size_t len)
136 {
137         snprintf(name, len, "pcmC%dD%d%c:%d",
138                  substream->pcm->card->number,
139                  substream->pcm->device,
140                  substream->stream ? 'c' : 'p',
141                  substream->number);
142 }
143 EXPORT_SYMBOL(snd_pcm_debug_name);
144 #endif
145
146 #define XRUN_DEBUG_BASIC        (1<<0)
147 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
151 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
153
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156 #define xrun_debug(substream, mask) \
157                         ((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask)     0
160 #endif
161
162 #define dump_stack_on_xrun(substream) do {                      \
163                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
164                         dump_stack();                           \
165         } while (0)
166
167 static void xrun(struct snd_pcm_substream *substream)
168 {
169         struct snd_pcm_runtime *runtime = substream->runtime;
170
171         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
172                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
173         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
174         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
175                 char name[16];
176                 snd_pcm_debug_name(substream, name, sizeof(name));
177                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
178                 dump_stack_on_xrun(substream);
179         }
180 }
181
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...)                           \
184         do {                                                            \
185                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
186                         xrun_log_show(substream);                       \
187                         pr_err_ratelimited("ALSA: PCM: " fmt, ##args);  \
188                         dump_stack_on_xrun(substream);                  \
189                 }                                                       \
190         } while (0)
191
192 #define XRUN_LOG_CNT    10
193
194 struct hwptr_log_entry {
195         unsigned int in_interrupt;
196         unsigned long jiffies;
197         snd_pcm_uframes_t pos;
198         snd_pcm_uframes_t period_size;
199         snd_pcm_uframes_t buffer_size;
200         snd_pcm_uframes_t old_hw_ptr;
201         snd_pcm_uframes_t hw_ptr_base;
202 };
203
204 struct snd_pcm_hwptr_log {
205         unsigned int idx;
206         unsigned int hit: 1;
207         struct hwptr_log_entry entries[XRUN_LOG_CNT];
208 };
209
210 static void xrun_log(struct snd_pcm_substream *substream,
211                      snd_pcm_uframes_t pos, int in_interrupt)
212 {
213         struct snd_pcm_runtime *runtime = substream->runtime;
214         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
215         struct hwptr_log_entry *entry;
216
217         if (log == NULL) {
218                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
219                 if (log == NULL)
220                         return;
221                 runtime->hwptr_log = log;
222         } else {
223                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
224                         return;
225         }
226         entry = &log->entries[log->idx];
227         entry->in_interrupt = in_interrupt;
228         entry->jiffies = jiffies;
229         entry->pos = pos;
230         entry->period_size = runtime->period_size;
231         entry->buffer_size = runtime->buffer_size;
232         entry->old_hw_ptr = runtime->status->hw_ptr;
233         entry->hw_ptr_base = runtime->hw_ptr_base;
234         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
235 }
236
237 static void xrun_log_show(struct snd_pcm_substream *substream)
238 {
239         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
240         struct hwptr_log_entry *entry;
241         char name[16];
242         unsigned int idx;
243         int cnt;
244
245         if (log == NULL)
246                 return;
247         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
248                 return;
249         snd_pcm_debug_name(substream, name, sizeof(name));
250         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
251                 entry = &log->entries[idx];
252                 if (entry->period_size == 0)
253                         break;
254                 pr_info("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
255                            "hwptr=%ld/%ld\n",
256                            name, entry->in_interrupt ? "[Q] " : "",
257                            entry->jiffies,
258                            (unsigned long)entry->pos,
259                            (unsigned long)entry->period_size,
260                            (unsigned long)entry->buffer_size,
261                            (unsigned long)entry->old_hw_ptr,
262                            (unsigned long)entry->hw_ptr_base);
263                 idx++;
264                 idx %= XRUN_LOG_CNT;
265         }
266         log->hit = 1;
267 }
268
269 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
270
271 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
272 #define xrun_log(substream, pos, in_interrupt)  do { } while (0)
273 #define xrun_log_show(substream)        do { } while (0)
274
275 #endif
276
277 int snd_pcm_update_state(struct snd_pcm_substream *substream,
278                          struct snd_pcm_runtime *runtime)
279 {
280         snd_pcm_uframes_t avail;
281
282         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
283                 avail = snd_pcm_playback_avail(runtime);
284         else
285                 avail = snd_pcm_capture_avail(runtime);
286         if (avail > runtime->avail_max)
287                 runtime->avail_max = avail;
288         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
289                 if (avail >= runtime->buffer_size) {
290                         snd_pcm_drain_done(substream);
291                         return -EPIPE;
292                 }
293         } else {
294                 if (avail >= runtime->stop_threshold) {
295                         xrun(substream);
296                         return -EPIPE;
297                 }
298         }
299         if (runtime->twake) {
300                 if (avail >= runtime->twake)
301                         wake_up(&runtime->tsleep);
302         } else if (avail >= runtime->control->avail_min)
303                 wake_up(&runtime->sleep);
304         return 0;
305 }
306
307 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
308                                   unsigned int in_interrupt)
309 {
310         struct snd_pcm_runtime *runtime = substream->runtime;
311         snd_pcm_uframes_t pos;
312         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
313         snd_pcm_sframes_t hdelta, delta;
314         unsigned long jdelta;
315         unsigned long curr_jiffies;
316         struct timespec curr_tstamp;
317         struct timespec audio_tstamp;
318         int crossed_boundary = 0;
319
320         old_hw_ptr = runtime->status->hw_ptr;
321
322         /*
323          * group pointer, time and jiffies reads to allow for more
324          * accurate correlations/corrections.
325          * The values are stored at the end of this routine after
326          * corrections for hw_ptr position
327          */
328         pos = substream->ops->pointer(substream);
329         curr_jiffies = jiffies;
330         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
331                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
332
333                 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
334                         (substream->ops->wall_clock))
335                         substream->ops->wall_clock(substream, &audio_tstamp);
336         }
337
338         if (pos == SNDRV_PCM_POS_XRUN) {
339                 xrun(substream);
340                 return -EPIPE;
341         }
342         if (pos >= runtime->buffer_size) {
343                 if (printk_ratelimit()) {
344                         char name[16];
345                         snd_pcm_debug_name(substream, name, sizeof(name));
346                         xrun_log_show(substream);
347                         pcm_err(substream->pcm,
348                                 "XRUN: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
349                                 name, pos, runtime->buffer_size,
350                                 runtime->period_size);
351                 }
352                 pos = 0;
353         }
354         pos -= pos % runtime->min_align;
355         if (xrun_debug(substream, XRUN_DEBUG_LOG))
356                 xrun_log(substream, pos, in_interrupt);
357         hw_base = runtime->hw_ptr_base;
358         new_hw_ptr = hw_base + pos;
359         if (in_interrupt) {
360                 /* we know that one period was processed */
361                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
362                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
363                 if (delta > new_hw_ptr) {
364                         /* check for double acknowledged interrupts */
365                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
366                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
367                                 hw_base += runtime->buffer_size;
368                                 if (hw_base >= runtime->boundary) {
369                                         hw_base = 0;
370                                         crossed_boundary++;
371                                 }
372                                 new_hw_ptr = hw_base + pos;
373                                 goto __delta;
374                         }
375                 }
376         }
377         /* new_hw_ptr might be lower than old_hw_ptr in case when */
378         /* pointer crosses the end of the ring buffer */
379         if (new_hw_ptr < old_hw_ptr) {
380                 hw_base += runtime->buffer_size;
381                 if (hw_base >= runtime->boundary) {
382                         hw_base = 0;
383                         crossed_boundary++;
384                 }
385                 new_hw_ptr = hw_base + pos;
386         }
387       __delta:
388         delta = new_hw_ptr - old_hw_ptr;
389         if (delta < 0)
390                 delta += runtime->boundary;
391         if (xrun_debug(substream, in_interrupt ?
392                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
393                 char name[16];
394                 snd_pcm_debug_name(substream, name, sizeof(name));
395                 pcm_dbg(substream->pcm,
396                         "%s_update: %s: pos=%u/%u/%u, hwptr=%ld/%ld/%ld/%ld\n",
397                            in_interrupt ? "period" : "hwptr",
398                            name,
399                            (unsigned int)pos,
400                            (unsigned int)runtime->period_size,
401                            (unsigned int)runtime->buffer_size,
402                            (unsigned long)delta,
403                            (unsigned long)old_hw_ptr,
404                            (unsigned long)new_hw_ptr,
405                            (unsigned long)runtime->hw_ptr_base);
406         }
407
408         if (runtime->no_period_wakeup) {
409                 snd_pcm_sframes_t xrun_threshold;
410                 /*
411                  * Without regular period interrupts, we have to check
412                  * the elapsed time to detect xruns.
413                  */
414                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
415                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
416                         goto no_delta_check;
417                 hdelta = jdelta - delta * HZ / runtime->rate;
418                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
419                 while (hdelta > xrun_threshold) {
420                         delta += runtime->buffer_size;
421                         hw_base += runtime->buffer_size;
422                         if (hw_base >= runtime->boundary) {
423                                 hw_base = 0;
424                                 crossed_boundary++;
425                         }
426                         new_hw_ptr = hw_base + pos;
427                         hdelta -= runtime->hw_ptr_buffer_jiffies;
428                 }
429                 goto no_delta_check;
430         }
431
432         /* something must be really wrong */
433         if (delta >= runtime->buffer_size + runtime->period_size) {
434                 hw_ptr_error(substream,
435                                "Unexpected hw_pointer value %s"
436                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
437                                "old_hw_ptr=%ld)\n",
438                                      in_interrupt ? "[Q] " : "[P]",
439                                      substream->stream, (long)pos,
440                                      (long)new_hw_ptr, (long)old_hw_ptr);
441                 return 0;
442         }
443
444         /* Do jiffies check only in xrun_debug mode */
445         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
446                 goto no_jiffies_check;
447
448         /* Skip the jiffies check for hardwares with BATCH flag.
449          * Such hardware usually just increases the position at each IRQ,
450          * thus it can't give any strange position.
451          */
452         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
453                 goto no_jiffies_check;
454         hdelta = delta;
455         if (hdelta < runtime->delay)
456                 goto no_jiffies_check;
457         hdelta -= runtime->delay;
458         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
459         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
460                 delta = jdelta /
461                         (((runtime->period_size * HZ) / runtime->rate)
462                                                                 + HZ/100);
463                 /* move new_hw_ptr according jiffies not pos variable */
464                 new_hw_ptr = old_hw_ptr;
465                 hw_base = delta;
466                 /* use loop to avoid checks for delta overflows */
467                 /* the delta value is small or zero in most cases */
468                 while (delta > 0) {
469                         new_hw_ptr += runtime->period_size;
470                         if (new_hw_ptr >= runtime->boundary) {
471                                 new_hw_ptr -= runtime->boundary;
472                                 crossed_boundary--;
473                         }
474                         delta--;
475                 }
476                 /* align hw_base to buffer_size */
477                 hw_ptr_error(substream,
478                              "hw_ptr skipping! %s"
479                              "(pos=%ld, delta=%ld, period=%ld, "
480                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
481                              in_interrupt ? "[Q] " : "",
482                              (long)pos, (long)hdelta,
483                              (long)runtime->period_size, jdelta,
484                              ((hdelta * HZ) / runtime->rate), hw_base,
485                              (unsigned long)old_hw_ptr,
486                              (unsigned long)new_hw_ptr);
487                 /* reset values to proper state */
488                 delta = 0;
489                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
490         }
491  no_jiffies_check:
492         if (delta > runtime->period_size + runtime->period_size / 2) {
493                 hw_ptr_error(substream,
494                              "Lost interrupts? %s"
495                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
496                              "old_hw_ptr=%ld)\n",
497                              in_interrupt ? "[Q] " : "",
498                              substream->stream, (long)delta,
499                              (long)new_hw_ptr,
500                              (long)old_hw_ptr);
501         }
502
503  no_delta_check:
504         if (runtime->status->hw_ptr == new_hw_ptr)
505                 return 0;
506
507         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
508             runtime->silence_size > 0)
509                 snd_pcm_playback_silence(substream, new_hw_ptr);
510
511         if (in_interrupt) {
512                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
513                 if (delta < 0)
514                         delta += runtime->boundary;
515                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
516                 runtime->hw_ptr_interrupt += delta;
517                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
518                         runtime->hw_ptr_interrupt -= runtime->boundary;
519         }
520         runtime->hw_ptr_base = hw_base;
521         runtime->status->hw_ptr = new_hw_ptr;
522         runtime->hw_ptr_jiffies = curr_jiffies;
523         if (crossed_boundary) {
524                 snd_BUG_ON(crossed_boundary != 1);
525                 runtime->hw_ptr_wrap += runtime->boundary;
526         }
527         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
528                 runtime->status->tstamp = curr_tstamp;
529
530                 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
531                         /*
532                          * no wall clock available, provide audio timestamp
533                          * derived from pointer position+delay
534                          */
535                         u64 audio_frames, audio_nsecs;
536
537                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
538                                 audio_frames = runtime->hw_ptr_wrap
539                                         + runtime->status->hw_ptr
540                                         - runtime->delay;
541                         else
542                                 audio_frames = runtime->hw_ptr_wrap
543                                         + runtime->status->hw_ptr
544                                         + runtime->delay;
545                         audio_nsecs = div_u64(audio_frames * 1000000000LL,
546                                         runtime->rate);
547                         audio_tstamp = ns_to_timespec(audio_nsecs);
548                 }
549                 runtime->status->audio_tstamp = audio_tstamp;
550         }
551
552         return snd_pcm_update_state(substream, runtime);
553 }
554
555 /* CAUTION: call it with irq disabled */
556 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
557 {
558         return snd_pcm_update_hw_ptr0(substream, 0);
559 }
560
561 /**
562  * snd_pcm_set_ops - set the PCM operators
563  * @pcm: the pcm instance
564  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
565  * @ops: the operator table
566  *
567  * Sets the given PCM operators to the pcm instance.
568  */
569 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
570                      const struct snd_pcm_ops *ops)
571 {
572         struct snd_pcm_str *stream = &pcm->streams[direction];
573         struct snd_pcm_substream *substream;
574         
575         for (substream = stream->substream; substream != NULL; substream = substream->next)
576                 substream->ops = ops;
577 }
578
579 EXPORT_SYMBOL(snd_pcm_set_ops);
580
581 /**
582  * snd_pcm_sync - set the PCM sync id
583  * @substream: the pcm substream
584  *
585  * Sets the PCM sync identifier for the card.
586  */
587 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
588 {
589         struct snd_pcm_runtime *runtime = substream->runtime;
590         
591         runtime->sync.id32[0] = substream->pcm->card->number;
592         runtime->sync.id32[1] = -1;
593         runtime->sync.id32[2] = -1;
594         runtime->sync.id32[3] = -1;
595 }
596
597 EXPORT_SYMBOL(snd_pcm_set_sync);
598
599 /*
600  *  Standard ioctl routine
601  */
602
603 static inline unsigned int div32(unsigned int a, unsigned int b, 
604                                  unsigned int *r)
605 {
606         if (b == 0) {
607                 *r = 0;
608                 return UINT_MAX;
609         }
610         *r = a % b;
611         return a / b;
612 }
613
614 static inline unsigned int div_down(unsigned int a, unsigned int b)
615 {
616         if (b == 0)
617                 return UINT_MAX;
618         return a / b;
619 }
620
621 static inline unsigned int div_up(unsigned int a, unsigned int b)
622 {
623         unsigned int r;
624         unsigned int q;
625         if (b == 0)
626                 return UINT_MAX;
627         q = div32(a, b, &r);
628         if (r)
629                 ++q;
630         return q;
631 }
632
633 static inline unsigned int mul(unsigned int a, unsigned int b)
634 {
635         if (a == 0)
636                 return 0;
637         if (div_down(UINT_MAX, a) < b)
638                 return UINT_MAX;
639         return a * b;
640 }
641
642 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
643                                     unsigned int c, unsigned int *r)
644 {
645         u_int64_t n = (u_int64_t) a * b;
646         if (c == 0) {
647                 snd_BUG_ON(!n);
648                 *r = 0;
649                 return UINT_MAX;
650         }
651         n = div_u64_rem(n, c, r);
652         if (n >= UINT_MAX) {
653                 *r = 0;
654                 return UINT_MAX;
655         }
656         return n;
657 }
658
659 /**
660  * snd_interval_refine - refine the interval value of configurator
661  * @i: the interval value to refine
662  * @v: the interval value to refer to
663  *
664  * Refines the interval value with the reference value.
665  * The interval is changed to the range satisfying both intervals.
666  * The interval status (min, max, integer, etc.) are evaluated.
667  *
668  * Return: Positive if the value is changed, zero if it's not changed, or a
669  * negative error code.
670  */
671 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
672 {
673         int changed = 0;
674         if (snd_BUG_ON(snd_interval_empty(i)))
675                 return -EINVAL;
676         if (i->min < v->min) {
677                 i->min = v->min;
678                 i->openmin = v->openmin;
679                 changed = 1;
680         } else if (i->min == v->min && !i->openmin && v->openmin) {
681                 i->openmin = 1;
682                 changed = 1;
683         }
684         if (i->max > v->max) {
685                 i->max = v->max;
686                 i->openmax = v->openmax;
687                 changed = 1;
688         } else if (i->max == v->max && !i->openmax && v->openmax) {
689                 i->openmax = 1;
690                 changed = 1;
691         }
692         if (!i->integer && v->integer) {
693                 i->integer = 1;
694                 changed = 1;
695         }
696         if (i->integer) {
697                 if (i->openmin) {
698                         i->min++;
699                         i->openmin = 0;
700                 }
701                 if (i->openmax) {
702                         i->max--;
703                         i->openmax = 0;
704                 }
705         } else if (!i->openmin && !i->openmax && i->min == i->max)
706                 i->integer = 1;
707         if (snd_interval_checkempty(i)) {
708                 snd_interval_none(i);
709                 return -EINVAL;
710         }
711         return changed;
712 }
713
714 EXPORT_SYMBOL(snd_interval_refine);
715
716 static int snd_interval_refine_first(struct snd_interval *i)
717 {
718         if (snd_BUG_ON(snd_interval_empty(i)))
719                 return -EINVAL;
720         if (snd_interval_single(i))
721                 return 0;
722         i->max = i->min;
723         i->openmax = i->openmin;
724         if (i->openmax)
725                 i->max++;
726         return 1;
727 }
728
729 static int snd_interval_refine_last(struct snd_interval *i)
730 {
731         if (snd_BUG_ON(snd_interval_empty(i)))
732                 return -EINVAL;
733         if (snd_interval_single(i))
734                 return 0;
735         i->min = i->max;
736         i->openmin = i->openmax;
737         if (i->openmin)
738                 i->min--;
739         return 1;
740 }
741
742 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
743 {
744         if (a->empty || b->empty) {
745                 snd_interval_none(c);
746                 return;
747         }
748         c->empty = 0;
749         c->min = mul(a->min, b->min);
750         c->openmin = (a->openmin || b->openmin);
751         c->max = mul(a->max,  b->max);
752         c->openmax = (a->openmax || b->openmax);
753         c->integer = (a->integer && b->integer);
754 }
755
756 /**
757  * snd_interval_div - refine the interval value with division
758  * @a: dividend
759  * @b: divisor
760  * @c: quotient
761  *
762  * c = a / b
763  *
764  * Returns non-zero if the value is changed, zero if not changed.
765  */
766 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
767 {
768         unsigned int r;
769         if (a->empty || b->empty) {
770                 snd_interval_none(c);
771                 return;
772         }
773         c->empty = 0;
774         c->min = div32(a->min, b->max, &r);
775         c->openmin = (r || a->openmin || b->openmax);
776         if (b->min > 0) {
777                 c->max = div32(a->max, b->min, &r);
778                 if (r) {
779                         c->max++;
780                         c->openmax = 1;
781                 } else
782                         c->openmax = (a->openmax || b->openmin);
783         } else {
784                 c->max = UINT_MAX;
785                 c->openmax = 0;
786         }
787         c->integer = 0;
788 }
789
790 /**
791  * snd_interval_muldivk - refine the interval value
792  * @a: dividend 1
793  * @b: dividend 2
794  * @k: divisor (as integer)
795  * @c: result
796   *
797  * c = a * b / k
798  *
799  * Returns non-zero if the value is changed, zero if not changed.
800  */
801 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
802                       unsigned int k, struct snd_interval *c)
803 {
804         unsigned int r;
805         if (a->empty || b->empty) {
806                 snd_interval_none(c);
807                 return;
808         }
809         c->empty = 0;
810         c->min = muldiv32(a->min, b->min, k, &r);
811         c->openmin = (r || a->openmin || b->openmin);
812         c->max = muldiv32(a->max, b->max, k, &r);
813         if (r) {
814                 c->max++;
815                 c->openmax = 1;
816         } else
817                 c->openmax = (a->openmax || b->openmax);
818         c->integer = 0;
819 }
820
821 /**
822  * snd_interval_mulkdiv - refine the interval value
823  * @a: dividend 1
824  * @k: dividend 2 (as integer)
825  * @b: divisor
826  * @c: result
827  *
828  * c = a * k / b
829  *
830  * Returns non-zero if the value is changed, zero if not changed.
831  */
832 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
833                       const struct snd_interval *b, struct snd_interval *c)
834 {
835         unsigned int r;
836         if (a->empty || b->empty) {
837                 snd_interval_none(c);
838                 return;
839         }
840         c->empty = 0;
841         c->min = muldiv32(a->min, k, b->max, &r);
842         c->openmin = (r || a->openmin || b->openmax);
843         if (b->min > 0) {
844                 c->max = muldiv32(a->max, k, b->min, &r);
845                 if (r) {
846                         c->max++;
847                         c->openmax = 1;
848                 } else
849                         c->openmax = (a->openmax || b->openmin);
850         } else {
851                 c->max = UINT_MAX;
852                 c->openmax = 0;
853         }
854         c->integer = 0;
855 }
856
857 /* ---- */
858
859
860 /**
861  * snd_interval_ratnum - refine the interval value
862  * @i: interval to refine
863  * @rats_count: number of ratnum_t 
864  * @rats: ratnum_t array
865  * @nump: pointer to store the resultant numerator
866  * @denp: pointer to store the resultant denominator
867  *
868  * Return: Positive if the value is changed, zero if it's not changed, or a
869  * negative error code.
870  */
871 int snd_interval_ratnum(struct snd_interval *i,
872                         unsigned int rats_count, struct snd_ratnum *rats,
873                         unsigned int *nump, unsigned int *denp)
874 {
875         unsigned int best_num, best_den;
876         int best_diff;
877         unsigned int k;
878         struct snd_interval t;
879         int err;
880         unsigned int result_num, result_den;
881         int result_diff;
882
883         best_num = best_den = best_diff = 0;
884         for (k = 0; k < rats_count; ++k) {
885                 unsigned int num = rats[k].num;
886                 unsigned int den;
887                 unsigned int q = i->min;
888                 int diff;
889                 if (q == 0)
890                         q = 1;
891                 den = div_up(num, q);
892                 if (den < rats[k].den_min)
893                         continue;
894                 if (den > rats[k].den_max)
895                         den = rats[k].den_max;
896                 else {
897                         unsigned int r;
898                         r = (den - rats[k].den_min) % rats[k].den_step;
899                         if (r != 0)
900                                 den -= r;
901                 }
902                 diff = num - q * den;
903                 if (diff < 0)
904                         diff = -diff;
905                 if (best_num == 0 ||
906                     diff * best_den < best_diff * den) {
907                         best_diff = diff;
908                         best_den = den;
909                         best_num = num;
910                 }
911         }
912         if (best_den == 0) {
913                 i->empty = 1;
914                 return -EINVAL;
915         }
916         t.min = div_down(best_num, best_den);
917         t.openmin = !!(best_num % best_den);
918         
919         result_num = best_num;
920         result_diff = best_diff;
921         result_den = best_den;
922         best_num = best_den = best_diff = 0;
923         for (k = 0; k < rats_count; ++k) {
924                 unsigned int num = rats[k].num;
925                 unsigned int den;
926                 unsigned int q = i->max;
927                 int diff;
928                 if (q == 0) {
929                         i->empty = 1;
930                         return -EINVAL;
931                 }
932                 den = div_down(num, q);
933                 if (den > rats[k].den_max)
934                         continue;
935                 if (den < rats[k].den_min)
936                         den = rats[k].den_min;
937                 else {
938                         unsigned int r;
939                         r = (den - rats[k].den_min) % rats[k].den_step;
940                         if (r != 0)
941                                 den += rats[k].den_step - r;
942                 }
943                 diff = q * den - num;
944                 if (diff < 0)
945                         diff = -diff;
946                 if (best_num == 0 ||
947                     diff * best_den < best_diff * den) {
948                         best_diff = diff;
949                         best_den = den;
950                         best_num = num;
951                 }
952         }
953         if (best_den == 0) {
954                 i->empty = 1;
955                 return -EINVAL;
956         }
957         t.max = div_up(best_num, best_den);
958         t.openmax = !!(best_num % best_den);
959         t.integer = 0;
960         err = snd_interval_refine(i, &t);
961         if (err < 0)
962                 return err;
963
964         if (snd_interval_single(i)) {
965                 if (best_diff * result_den < result_diff * best_den) {
966                         result_num = best_num;
967                         result_den = best_den;
968                 }
969                 if (nump)
970                         *nump = result_num;
971                 if (denp)
972                         *denp = result_den;
973         }
974         return err;
975 }
976
977 EXPORT_SYMBOL(snd_interval_ratnum);
978
979 /**
980  * snd_interval_ratden - refine the interval value
981  * @i: interval to refine
982  * @rats_count: number of struct ratden
983  * @rats: struct ratden array
984  * @nump: pointer to store the resultant numerator
985  * @denp: pointer to store the resultant denominator
986  *
987  * Return: Positive if the value is changed, zero if it's not changed, or a
988  * negative error code.
989  */
990 static int snd_interval_ratden(struct snd_interval *i,
991                                unsigned int rats_count, struct snd_ratden *rats,
992                                unsigned int *nump, unsigned int *denp)
993 {
994         unsigned int best_num, best_diff, best_den;
995         unsigned int k;
996         struct snd_interval t;
997         int err;
998
999         best_num = best_den = best_diff = 0;
1000         for (k = 0; k < rats_count; ++k) {
1001                 unsigned int num;
1002                 unsigned int den = rats[k].den;
1003                 unsigned int q = i->min;
1004                 int diff;
1005                 num = mul(q, den);
1006                 if (num > rats[k].num_max)
1007                         continue;
1008                 if (num < rats[k].num_min)
1009                         num = rats[k].num_max;
1010                 else {
1011                         unsigned int r;
1012                         r = (num - rats[k].num_min) % rats[k].num_step;
1013                         if (r != 0)
1014                                 num += rats[k].num_step - r;
1015                 }
1016                 diff = num - q * den;
1017                 if (best_num == 0 ||
1018                     diff * best_den < best_diff * den) {
1019                         best_diff = diff;
1020                         best_den = den;
1021                         best_num = num;
1022                 }
1023         }
1024         if (best_den == 0) {
1025                 i->empty = 1;
1026                 return -EINVAL;
1027         }
1028         t.min = div_down(best_num, best_den);
1029         t.openmin = !!(best_num % best_den);
1030         
1031         best_num = best_den = best_diff = 0;
1032         for (k = 0; k < rats_count; ++k) {
1033                 unsigned int num;
1034                 unsigned int den = rats[k].den;
1035                 unsigned int q = i->max;
1036                 int diff;
1037                 num = mul(q, den);
1038                 if (num < rats[k].num_min)
1039                         continue;
1040                 if (num > rats[k].num_max)
1041                         num = rats[k].num_max;
1042                 else {
1043                         unsigned int r;
1044                         r = (num - rats[k].num_min) % rats[k].num_step;
1045                         if (r != 0)
1046                                 num -= r;
1047                 }
1048                 diff = q * den - num;
1049                 if (best_num == 0 ||
1050                     diff * best_den < best_diff * den) {
1051                         best_diff = diff;
1052                         best_den = den;
1053                         best_num = num;
1054                 }
1055         }
1056         if (best_den == 0) {
1057                 i->empty = 1;
1058                 return -EINVAL;
1059         }
1060         t.max = div_up(best_num, best_den);
1061         t.openmax = !!(best_num % best_den);
1062         t.integer = 0;
1063         err = snd_interval_refine(i, &t);
1064         if (err < 0)
1065                 return err;
1066
1067         if (snd_interval_single(i)) {
1068                 if (nump)
1069                         *nump = best_num;
1070                 if (denp)
1071                         *denp = best_den;
1072         }
1073         return err;
1074 }
1075
1076 /**
1077  * snd_interval_list - refine the interval value from the list
1078  * @i: the interval value to refine
1079  * @count: the number of elements in the list
1080  * @list: the value list
1081  * @mask: the bit-mask to evaluate
1082  *
1083  * Refines the interval value from the list.
1084  * When mask is non-zero, only the elements corresponding to bit 1 are
1085  * evaluated.
1086  *
1087  * Return: Positive if the value is changed, zero if it's not changed, or a
1088  * negative error code.
1089  */
1090 int snd_interval_list(struct snd_interval *i, unsigned int count,
1091                       const unsigned int *list, unsigned int mask)
1092 {
1093         unsigned int k;
1094         struct snd_interval list_range;
1095
1096         if (!count) {
1097                 i->empty = 1;
1098                 return -EINVAL;
1099         }
1100         snd_interval_any(&list_range);
1101         list_range.min = UINT_MAX;
1102         list_range.max = 0;
1103         for (k = 0; k < count; k++) {
1104                 if (mask && !(mask & (1 << k)))
1105                         continue;
1106                 if (!snd_interval_test(i, list[k]))
1107                         continue;
1108                 list_range.min = min(list_range.min, list[k]);
1109                 list_range.max = max(list_range.max, list[k]);
1110         }
1111         return snd_interval_refine(i, &list_range);
1112 }
1113
1114 EXPORT_SYMBOL(snd_interval_list);
1115
1116 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1117 {
1118         unsigned int n;
1119         int changed = 0;
1120         n = (i->min - min) % step;
1121         if (n != 0 || i->openmin) {
1122                 i->min += step - n;
1123                 changed = 1;
1124         }
1125         n = (i->max - min) % step;
1126         if (n != 0 || i->openmax) {
1127                 i->max -= n;
1128                 changed = 1;
1129         }
1130         if (snd_interval_checkempty(i)) {
1131                 i->empty = 1;
1132                 return -EINVAL;
1133         }
1134         return changed;
1135 }
1136
1137 /* Info constraints helpers */
1138
1139 /**
1140  * snd_pcm_hw_rule_add - add the hw-constraint rule
1141  * @runtime: the pcm runtime instance
1142  * @cond: condition bits
1143  * @var: the variable to evaluate
1144  * @func: the evaluation function
1145  * @private: the private data pointer passed to function
1146  * @dep: the dependent variables
1147  *
1148  * Return: Zero if successful, or a negative error code on failure.
1149  */
1150 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1151                         int var,
1152                         snd_pcm_hw_rule_func_t func, void *private,
1153                         int dep, ...)
1154 {
1155         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1156         struct snd_pcm_hw_rule *c;
1157         unsigned int k;
1158         va_list args;
1159         va_start(args, dep);
1160         if (constrs->rules_num >= constrs->rules_all) {
1161                 struct snd_pcm_hw_rule *new;
1162                 unsigned int new_rules = constrs->rules_all + 16;
1163                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1164                 if (!new) {
1165                         va_end(args);
1166                         return -ENOMEM;
1167                 }
1168                 if (constrs->rules) {
1169                         memcpy(new, constrs->rules,
1170                                constrs->rules_num * sizeof(*c));
1171                         kfree(constrs->rules);
1172                 }
1173                 constrs->rules = new;
1174                 constrs->rules_all = new_rules;
1175         }
1176         c = &constrs->rules[constrs->rules_num];
1177         c->cond = cond;
1178         c->func = func;
1179         c->var = var;
1180         c->private = private;
1181         k = 0;
1182         while (1) {
1183                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1184                         va_end(args);
1185                         return -EINVAL;
1186                 }
1187                 c->deps[k++] = dep;
1188                 if (dep < 0)
1189                         break;
1190                 dep = va_arg(args, int);
1191         }
1192         constrs->rules_num++;
1193         va_end(args);
1194         return 0;
1195 }
1196
1197 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1198
1199 /**
1200  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1201  * @runtime: PCM runtime instance
1202  * @var: hw_params variable to apply the mask
1203  * @mask: the bitmap mask
1204  *
1205  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1206  *
1207  * Return: Zero if successful, or a negative error code on failure.
1208  */
1209 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1210                                u_int32_t mask)
1211 {
1212         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1213         struct snd_mask *maskp = constrs_mask(constrs, var);
1214         *maskp->bits &= mask;
1215         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1216         if (*maskp->bits == 0)
1217                 return -EINVAL;
1218         return 0;
1219 }
1220
1221 /**
1222  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1223  * @runtime: PCM runtime instance
1224  * @var: hw_params variable to apply the mask
1225  * @mask: the 64bit bitmap mask
1226  *
1227  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1228  *
1229  * Return: Zero if successful, or a negative error code on failure.
1230  */
1231 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1232                                  u_int64_t mask)
1233 {
1234         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1235         struct snd_mask *maskp = constrs_mask(constrs, var);
1236         maskp->bits[0] &= (u_int32_t)mask;
1237         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1238         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1239         if (! maskp->bits[0] && ! maskp->bits[1])
1240                 return -EINVAL;
1241         return 0;
1242 }
1243 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1244
1245 /**
1246  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1247  * @runtime: PCM runtime instance
1248  * @var: hw_params variable to apply the integer constraint
1249  *
1250  * Apply the constraint of integer to an interval parameter.
1251  *
1252  * Return: Positive if the value is changed, zero if it's not changed, or a
1253  * negative error code.
1254  */
1255 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1256 {
1257         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1258         return snd_interval_setinteger(constrs_interval(constrs, var));
1259 }
1260
1261 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1262
1263 /**
1264  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1265  * @runtime: PCM runtime instance
1266  * @var: hw_params variable to apply the range
1267  * @min: the minimal value
1268  * @max: the maximal value
1269  * 
1270  * Apply the min/max range constraint to an interval parameter.
1271  *
1272  * Return: Positive if the value is changed, zero if it's not changed, or a
1273  * negative error code.
1274  */
1275 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1276                                  unsigned int min, unsigned int max)
1277 {
1278         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1279         struct snd_interval t;
1280         t.min = min;
1281         t.max = max;
1282         t.openmin = t.openmax = 0;
1283         t.integer = 0;
1284         return snd_interval_refine(constrs_interval(constrs, var), &t);
1285 }
1286
1287 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1288
1289 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1290                                 struct snd_pcm_hw_rule *rule)
1291 {
1292         struct snd_pcm_hw_constraint_list *list = rule->private;
1293         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1294 }               
1295
1296
1297 /**
1298  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1299  * @runtime: PCM runtime instance
1300  * @cond: condition bits
1301  * @var: hw_params variable to apply the list constraint
1302  * @l: list
1303  * 
1304  * Apply the list of constraints to an interval parameter.
1305  *
1306  * Return: Zero if successful, or a negative error code on failure.
1307  */
1308 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1309                                unsigned int cond,
1310                                snd_pcm_hw_param_t var,
1311                                const struct snd_pcm_hw_constraint_list *l)
1312 {
1313         return snd_pcm_hw_rule_add(runtime, cond, var,
1314                                    snd_pcm_hw_rule_list, (void *)l,
1315                                    var, -1);
1316 }
1317
1318 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1319
1320 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1321                                    struct snd_pcm_hw_rule *rule)
1322 {
1323         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1324         unsigned int num = 0, den = 0;
1325         int err;
1326         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1327                                   r->nrats, r->rats, &num, &den);
1328         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1329                 params->rate_num = num;
1330                 params->rate_den = den;
1331         }
1332         return err;
1333 }
1334
1335 /**
1336  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1337  * @runtime: PCM runtime instance
1338  * @cond: condition bits
1339  * @var: hw_params variable to apply the ratnums constraint
1340  * @r: struct snd_ratnums constriants
1341  *
1342  * Return: Zero if successful, or a negative error code on failure.
1343  */
1344 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1345                                   unsigned int cond,
1346                                   snd_pcm_hw_param_t var,
1347                                   struct snd_pcm_hw_constraint_ratnums *r)
1348 {
1349         return snd_pcm_hw_rule_add(runtime, cond, var,
1350                                    snd_pcm_hw_rule_ratnums, r,
1351                                    var, -1);
1352 }
1353
1354 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1355
1356 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1357                                    struct snd_pcm_hw_rule *rule)
1358 {
1359         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1360         unsigned int num = 0, den = 0;
1361         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1362                                   r->nrats, r->rats, &num, &den);
1363         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1364                 params->rate_num = num;
1365                 params->rate_den = den;
1366         }
1367         return err;
1368 }
1369
1370 /**
1371  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1372  * @runtime: PCM runtime instance
1373  * @cond: condition bits
1374  * @var: hw_params variable to apply the ratdens constraint
1375  * @r: struct snd_ratdens constriants
1376  *
1377  * Return: Zero if successful, or a negative error code on failure.
1378  */
1379 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1380                                   unsigned int cond,
1381                                   snd_pcm_hw_param_t var,
1382                                   struct snd_pcm_hw_constraint_ratdens *r)
1383 {
1384         return snd_pcm_hw_rule_add(runtime, cond, var,
1385                                    snd_pcm_hw_rule_ratdens, r,
1386                                    var, -1);
1387 }
1388
1389 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1390
1391 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1392                                   struct snd_pcm_hw_rule *rule)
1393 {
1394         unsigned int l = (unsigned long) rule->private;
1395         int width = l & 0xffff;
1396         unsigned int msbits = l >> 16;
1397         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1398         if (snd_interval_single(i) && snd_interval_value(i) == width)
1399                 params->msbits = msbits;
1400         return 0;
1401 }
1402
1403 /**
1404  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1405  * @runtime: PCM runtime instance
1406  * @cond: condition bits
1407  * @width: sample bits width
1408  * @msbits: msbits width
1409  *
1410  * Return: Zero if successful, or a negative error code on failure.
1411  */
1412 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1413                                  unsigned int cond,
1414                                  unsigned int width,
1415                                  unsigned int msbits)
1416 {
1417         unsigned long l = (msbits << 16) | width;
1418         return snd_pcm_hw_rule_add(runtime, cond, -1,
1419                                     snd_pcm_hw_rule_msbits,
1420                                     (void*) l,
1421                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1422 }
1423
1424 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1425
1426 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1427                                 struct snd_pcm_hw_rule *rule)
1428 {
1429         unsigned long step = (unsigned long) rule->private;
1430         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1431 }
1432
1433 /**
1434  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1435  * @runtime: PCM runtime instance
1436  * @cond: condition bits
1437  * @var: hw_params variable to apply the step constraint
1438  * @step: step size
1439  *
1440  * Return: Zero if successful, or a negative error code on failure.
1441  */
1442 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1443                                unsigned int cond,
1444                                snd_pcm_hw_param_t var,
1445                                unsigned long step)
1446 {
1447         return snd_pcm_hw_rule_add(runtime, cond, var, 
1448                                    snd_pcm_hw_rule_step, (void *) step,
1449                                    var, -1);
1450 }
1451
1452 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1453
1454 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1455 {
1456         static unsigned int pow2_sizes[] = {
1457                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1461         };
1462         return snd_interval_list(hw_param_interval(params, rule->var),
1463                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1464 }               
1465
1466 /**
1467  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468  * @runtime: PCM runtime instance
1469  * @cond: condition bits
1470  * @var: hw_params variable to apply the power-of-2 constraint
1471  *
1472  * Return: Zero if successful, or a negative error code on failure.
1473  */
1474 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1475                                unsigned int cond,
1476                                snd_pcm_hw_param_t var)
1477 {
1478         return snd_pcm_hw_rule_add(runtime, cond, var, 
1479                                    snd_pcm_hw_rule_pow2, NULL,
1480                                    var, -1);
1481 }
1482
1483 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484
1485 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486                                            struct snd_pcm_hw_rule *rule)
1487 {
1488         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489         struct snd_interval *rate;
1490
1491         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492         return snd_interval_list(rate, 1, &base_rate, 0);
1493 }
1494
1495 /**
1496  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497  * @runtime: PCM runtime instance
1498  * @base_rate: the rate at which the hardware does not resample
1499  *
1500  * Return: Zero if successful, or a negative error code on failure.
1501  */
1502 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503                                unsigned int base_rate)
1504 {
1505         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506                                    SNDRV_PCM_HW_PARAM_RATE,
1507                                    snd_pcm_hw_rule_noresample_func,
1508                                    (void *)(uintptr_t)base_rate,
1509                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1510 }
1511 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512
1513 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514                                   snd_pcm_hw_param_t var)
1515 {
1516         if (hw_is_mask(var)) {
1517                 snd_mask_any(hw_param_mask(params, var));
1518                 params->cmask |= 1 << var;
1519                 params->rmask |= 1 << var;
1520                 return;
1521         }
1522         if (hw_is_interval(var)) {
1523                 snd_interval_any(hw_param_interval(params, var));
1524                 params->cmask |= 1 << var;
1525                 params->rmask |= 1 << var;
1526                 return;
1527         }
1528         snd_BUG();
1529 }
1530
1531 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532 {
1533         unsigned int k;
1534         memset(params, 0, sizeof(*params));
1535         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536                 _snd_pcm_hw_param_any(params, k);
1537         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538                 _snd_pcm_hw_param_any(params, k);
1539         params->info = ~0U;
1540 }
1541
1542 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1543
1544 /**
1545  * snd_pcm_hw_param_value - return @params field @var value
1546  * @params: the hw_params instance
1547  * @var: parameter to retrieve
1548  * @dir: pointer to the direction (-1,0,1) or %NULL
1549  *
1550  * Return: The value for field @var if it's fixed in configuration space
1551  * defined by @params. -%EINVAL otherwise.
1552  */
1553 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1554                            snd_pcm_hw_param_t var, int *dir)
1555 {
1556         if (hw_is_mask(var)) {
1557                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1558                 if (!snd_mask_single(mask))
1559                         return -EINVAL;
1560                 if (dir)
1561                         *dir = 0;
1562                 return snd_mask_value(mask);
1563         }
1564         if (hw_is_interval(var)) {
1565                 const struct snd_interval *i = hw_param_interval_c(params, var);
1566                 if (!snd_interval_single(i))
1567                         return -EINVAL;
1568                 if (dir)
1569                         *dir = i->openmin;
1570                 return snd_interval_value(i);
1571         }
1572         return -EINVAL;
1573 }
1574
1575 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1576
1577 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1578                                 snd_pcm_hw_param_t var)
1579 {
1580         if (hw_is_mask(var)) {
1581                 snd_mask_none(hw_param_mask(params, var));
1582                 params->cmask |= 1 << var;
1583                 params->rmask |= 1 << var;
1584         } else if (hw_is_interval(var)) {
1585                 snd_interval_none(hw_param_interval(params, var));
1586                 params->cmask |= 1 << var;
1587                 params->rmask |= 1 << var;
1588         } else {
1589                 snd_BUG();
1590         }
1591 }
1592
1593 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1594
1595 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1596                                    snd_pcm_hw_param_t var)
1597 {
1598         int changed;
1599         if (hw_is_mask(var))
1600                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1601         else if (hw_is_interval(var))
1602                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1603         else
1604                 return -EINVAL;
1605         if (changed) {
1606                 params->cmask |= 1 << var;
1607                 params->rmask |= 1 << var;
1608         }
1609         return changed;
1610 }
1611
1612
1613 /**
1614  * snd_pcm_hw_param_first - refine config space and return minimum value
1615  * @pcm: PCM instance
1616  * @params: the hw_params instance
1617  * @var: parameter to retrieve
1618  * @dir: pointer to the direction (-1,0,1) or %NULL
1619  *
1620  * Inside configuration space defined by @params remove from @var all
1621  * values > minimum. Reduce configuration space accordingly.
1622  *
1623  * Return: The minimum, or a negative error code on failure.
1624  */
1625 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1626                            struct snd_pcm_hw_params *params, 
1627                            snd_pcm_hw_param_t var, int *dir)
1628 {
1629         int changed = _snd_pcm_hw_param_first(params, var);
1630         if (changed < 0)
1631                 return changed;
1632         if (params->rmask) {
1633                 int err = snd_pcm_hw_refine(pcm, params);
1634                 if (snd_BUG_ON(err < 0))
1635                         return err;
1636         }
1637         return snd_pcm_hw_param_value(params, var, dir);
1638 }
1639
1640 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641
1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643                                   snd_pcm_hw_param_t var)
1644 {
1645         int changed;
1646         if (hw_is_mask(var))
1647                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1648         else if (hw_is_interval(var))
1649                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1650         else
1651                 return -EINVAL;
1652         if (changed) {
1653                 params->cmask |= 1 << var;
1654                 params->rmask |= 1 << var;
1655         }
1656         return changed;
1657 }
1658
1659
1660 /**
1661  * snd_pcm_hw_param_last - refine config space and return maximum value
1662  * @pcm: PCM instance
1663  * @params: the hw_params instance
1664  * @var: parameter to retrieve
1665  * @dir: pointer to the direction (-1,0,1) or %NULL
1666  *
1667  * Inside configuration space defined by @params remove from @var all
1668  * values < maximum. Reduce configuration space accordingly.
1669  *
1670  * Return: The maximum, or a negative error code on failure.
1671  */
1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1673                           struct snd_pcm_hw_params *params,
1674                           snd_pcm_hw_param_t var, int *dir)
1675 {
1676         int changed = _snd_pcm_hw_param_last(params, var);
1677         if (changed < 0)
1678                 return changed;
1679         if (params->rmask) {
1680                 int err = snd_pcm_hw_refine(pcm, params);
1681                 if (snd_BUG_ON(err < 0))
1682                         return err;
1683         }
1684         return snd_pcm_hw_param_value(params, var, dir);
1685 }
1686
1687 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1688
1689 /**
1690  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1691  * @pcm: PCM instance
1692  * @params: the hw_params instance
1693  *
1694  * Choose one configuration from configuration space defined by @params.
1695  * The configuration chosen is that obtained fixing in this order:
1696  * first access, first format, first subformat, min channels,
1697  * min rate, min period time, max buffer size, min tick time
1698  *
1699  * Return: Zero if successful, or a negative error code on failure.
1700  */
1701 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1702                              struct snd_pcm_hw_params *params)
1703 {
1704         static int vars[] = {
1705                 SNDRV_PCM_HW_PARAM_ACCESS,
1706                 SNDRV_PCM_HW_PARAM_FORMAT,
1707                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1708                 SNDRV_PCM_HW_PARAM_CHANNELS,
1709                 SNDRV_PCM_HW_PARAM_RATE,
1710                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1711                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1712                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1713                 -1
1714         };
1715         int err, *v;
1716
1717         for (v = vars; *v != -1; v++) {
1718                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1719                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1720                 else
1721                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1722                 if (snd_BUG_ON(err < 0))
1723                         return err;
1724         }
1725         return 0;
1726 }
1727
1728 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1729                                    void *arg)
1730 {
1731         struct snd_pcm_runtime *runtime = substream->runtime;
1732         unsigned long flags;
1733         snd_pcm_stream_lock_irqsave(substream, flags);
1734         if (snd_pcm_running(substream) &&
1735             snd_pcm_update_hw_ptr(substream) >= 0)
1736                 runtime->status->hw_ptr %= runtime->buffer_size;
1737         else {
1738                 runtime->status->hw_ptr = 0;
1739                 runtime->hw_ptr_wrap = 0;
1740         }
1741         snd_pcm_stream_unlock_irqrestore(substream, flags);
1742         return 0;
1743 }
1744
1745 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1746                                           void *arg)
1747 {
1748         struct snd_pcm_channel_info *info = arg;
1749         struct snd_pcm_runtime *runtime = substream->runtime;
1750         int width;
1751         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1752                 info->offset = -1;
1753                 return 0;
1754         }
1755         width = snd_pcm_format_physical_width(runtime->format);
1756         if (width < 0)
1757                 return width;
1758         info->offset = 0;
1759         switch (runtime->access) {
1760         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1761         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1762                 info->first = info->channel * width;
1763                 info->step = runtime->channels * width;
1764                 break;
1765         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1766         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1767         {
1768                 size_t size = runtime->dma_bytes / runtime->channels;
1769                 info->first = info->channel * size * 8;
1770                 info->step = width;
1771                 break;
1772         }
1773         default:
1774                 snd_BUG();
1775                 break;
1776         }
1777         return 0;
1778 }
1779
1780 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1781                                        void *arg)
1782 {
1783         struct snd_pcm_hw_params *params = arg;
1784         snd_pcm_format_t format;
1785         int channels;
1786         ssize_t frame_size;
1787
1788         params->fifo_size = substream->runtime->hw.fifo_size;
1789         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1790                 format = params_format(params);
1791                 channels = params_channels(params);
1792                 frame_size = snd_pcm_format_size(format, channels);
1793                 if (frame_size > 0)
1794                         params->fifo_size /= (unsigned)frame_size;
1795         }
1796         return 0;
1797 }
1798
1799 /**
1800  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1801  * @substream: the pcm substream instance
1802  * @cmd: ioctl command
1803  * @arg: ioctl argument
1804  *
1805  * Processes the generic ioctl commands for PCM.
1806  * Can be passed as the ioctl callback for PCM ops.
1807  *
1808  * Return: Zero if successful, or a negative error code on failure.
1809  */
1810 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1811                       unsigned int cmd, void *arg)
1812 {
1813         switch (cmd) {
1814         case SNDRV_PCM_IOCTL1_INFO:
1815                 return 0;
1816         case SNDRV_PCM_IOCTL1_RESET:
1817                 return snd_pcm_lib_ioctl_reset(substream, arg);
1818         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1819                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1820         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1821                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1822         }
1823         return -ENXIO;
1824 }
1825
1826 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1827
1828 /**
1829  * snd_pcm_period_elapsed - update the pcm status for the next period
1830  * @substream: the pcm substream instance
1831  *
1832  * This function is called from the interrupt handler when the
1833  * PCM has processed the period size.  It will update the current
1834  * pointer, wake up sleepers, etc.
1835  *
1836  * Even if more than one periods have elapsed since the last call, you
1837  * have to call this only once.
1838  */
1839 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1840 {
1841         struct snd_pcm_runtime *runtime;
1842         unsigned long flags;
1843
1844         if (PCM_RUNTIME_CHECK(substream))
1845                 return;
1846         runtime = substream->runtime;
1847
1848         if (runtime->transfer_ack_begin)
1849                 runtime->transfer_ack_begin(substream);
1850
1851         snd_pcm_stream_lock_irqsave(substream, flags);
1852         if (!snd_pcm_running(substream) ||
1853             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1854                 goto _end;
1855
1856         if (substream->timer_running)
1857                 snd_timer_interrupt(substream->timer, 1);
1858  _end:
1859         snd_pcm_stream_unlock_irqrestore(substream, flags);
1860         if (runtime->transfer_ack_end)
1861                 runtime->transfer_ack_end(substream);
1862         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1863 }
1864
1865 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1866
1867 /*
1868  * Wait until avail_min data becomes available
1869  * Returns a negative error code if any error occurs during operation.
1870  * The available space is stored on availp.  When err = 0 and avail = 0
1871  * on the capture stream, it indicates the stream is in DRAINING state.
1872  */
1873 static int wait_for_avail(struct snd_pcm_substream *substream,
1874                               snd_pcm_uframes_t *availp)
1875 {
1876         struct snd_pcm_runtime *runtime = substream->runtime;
1877         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1878         wait_queue_t wait;
1879         int err = 0;
1880         snd_pcm_uframes_t avail = 0;
1881         long wait_time, tout;
1882
1883         init_waitqueue_entry(&wait, current);
1884         set_current_state(TASK_INTERRUPTIBLE);
1885         add_wait_queue(&runtime->tsleep, &wait);
1886
1887         if (runtime->no_period_wakeup)
1888                 wait_time = MAX_SCHEDULE_TIMEOUT;
1889         else {
1890                 wait_time = 10;
1891                 if (runtime->rate) {
1892                         long t = runtime->period_size * 2 / runtime->rate;
1893                         wait_time = max(t, wait_time);
1894                 }
1895                 wait_time = msecs_to_jiffies(wait_time * 1000);
1896         }
1897
1898         for (;;) {
1899                 if (signal_pending(current)) {
1900                         err = -ERESTARTSYS;
1901                         break;
1902                 }
1903
1904                 /*
1905                  * We need to check if space became available already
1906                  * (and thus the wakeup happened already) first to close
1907                  * the race of space already having become available.
1908                  * This check must happen after been added to the waitqueue
1909                  * and having current state be INTERRUPTIBLE.
1910                  */
1911                 if (is_playback)
1912                         avail = snd_pcm_playback_avail(runtime);
1913                 else
1914                         avail = snd_pcm_capture_avail(runtime);
1915                 if (avail >= runtime->twake)
1916                         break;
1917                 snd_pcm_stream_unlock_irq(substream);
1918
1919                 tout = schedule_timeout(wait_time);
1920
1921                 snd_pcm_stream_lock_irq(substream);
1922                 set_current_state(TASK_INTERRUPTIBLE);
1923                 switch (runtime->status->state) {
1924                 case SNDRV_PCM_STATE_SUSPENDED:
1925                         err = -ESTRPIPE;
1926                         goto _endloop;
1927                 case SNDRV_PCM_STATE_XRUN:
1928                         err = -EPIPE;
1929                         goto _endloop;
1930                 case SNDRV_PCM_STATE_DRAINING:
1931                         if (is_playback)
1932                                 err = -EPIPE;
1933                         else 
1934                                 avail = 0; /* indicate draining */
1935                         goto _endloop;
1936                 case SNDRV_PCM_STATE_OPEN:
1937                 case SNDRV_PCM_STATE_SETUP:
1938                 case SNDRV_PCM_STATE_DISCONNECTED:
1939                         err = -EBADFD;
1940                         goto _endloop;
1941                 case SNDRV_PCM_STATE_PAUSED:
1942                         continue;
1943                 }
1944                 if (!tout) {
1945                         pcm_dbg(substream->pcm,
1946                                 "%s write error (DMA or IRQ trouble?)\n",
1947                                 is_playback ? "playback" : "capture");
1948                         err = -EIO;
1949                         break;
1950                 }
1951         }
1952  _endloop:
1953         set_current_state(TASK_RUNNING);
1954         remove_wait_queue(&runtime->tsleep, &wait);
1955         *availp = avail;
1956         return err;
1957 }
1958         
1959 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1960                                       unsigned int hwoff,
1961                                       unsigned long data, unsigned int off,
1962                                       snd_pcm_uframes_t frames)
1963 {
1964         struct snd_pcm_runtime *runtime = substream->runtime;
1965         int err;
1966         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1967         if (substream->ops->copy) {
1968                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1969                         return err;
1970         } else {
1971                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1972                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1973                         return -EFAULT;
1974         }
1975         return 0;
1976 }
1977  
1978 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1979                           unsigned long data, unsigned int off,
1980                           snd_pcm_uframes_t size);
1981
1982 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1983                                             unsigned long data,
1984                                             snd_pcm_uframes_t size,
1985                                             int nonblock,
1986                                             transfer_f transfer)
1987 {
1988         struct snd_pcm_runtime *runtime = substream->runtime;
1989         snd_pcm_uframes_t xfer = 0;
1990         snd_pcm_uframes_t offset = 0;
1991         snd_pcm_uframes_t avail;
1992         int err = 0;
1993
1994         if (size == 0)
1995                 return 0;
1996
1997         snd_pcm_stream_lock_irq(substream);
1998         switch (runtime->status->state) {
1999         case SNDRV_PCM_STATE_PREPARED:
2000         case SNDRV_PCM_STATE_RUNNING:
2001         case SNDRV_PCM_STATE_PAUSED:
2002                 break;
2003         case SNDRV_PCM_STATE_XRUN:
2004                 err = -EPIPE;
2005                 goto _end_unlock;
2006         case SNDRV_PCM_STATE_SUSPENDED:
2007                 err = -ESTRPIPE;
2008                 goto _end_unlock;
2009         default:
2010                 err = -EBADFD;
2011                 goto _end_unlock;
2012         }
2013
2014         runtime->twake = runtime->control->avail_min ? : 1;
2015         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2016                 snd_pcm_update_hw_ptr(substream);
2017         avail = snd_pcm_playback_avail(runtime);
2018         while (size > 0) {
2019                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2020                 snd_pcm_uframes_t cont;
2021                 if (!avail) {
2022                         if (nonblock) {
2023                                 err = -EAGAIN;
2024                                 goto _end_unlock;
2025                         }
2026                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2027                                         runtime->control->avail_min ? : 1);
2028                         err = wait_for_avail(substream, &avail);
2029                         if (err < 0)
2030                                 goto _end_unlock;
2031                 }
2032                 frames = size > avail ? avail : size;
2033                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2034                 if (frames > cont)
2035                         frames = cont;
2036                 if (snd_BUG_ON(!frames)) {
2037                         runtime->twake = 0;
2038                         snd_pcm_stream_unlock_irq(substream);
2039                         return -EINVAL;
2040                 }
2041                 appl_ptr = runtime->control->appl_ptr;
2042                 appl_ofs = appl_ptr % runtime->buffer_size;
2043                 snd_pcm_stream_unlock_irq(substream);
2044                 err = transfer(substream, appl_ofs, data, offset, frames);
2045                 snd_pcm_stream_lock_irq(substream);
2046                 if (err < 0)
2047                         goto _end_unlock;
2048                 switch (runtime->status->state) {
2049                 case SNDRV_PCM_STATE_XRUN:
2050                         err = -EPIPE;
2051                         goto _end_unlock;
2052                 case SNDRV_PCM_STATE_SUSPENDED:
2053                         err = -ESTRPIPE;
2054                         goto _end_unlock;
2055                 default:
2056                         break;
2057                 }
2058                 appl_ptr += frames;
2059                 if (appl_ptr >= runtime->boundary)
2060                         appl_ptr -= runtime->boundary;
2061                 runtime->control->appl_ptr = appl_ptr;
2062                 if (substream->ops->ack)
2063                         substream->ops->ack(substream);
2064
2065                 offset += frames;
2066                 size -= frames;
2067                 xfer += frames;
2068                 avail -= frames;
2069                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2070                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2071                         err = snd_pcm_start(substream);
2072                         if (err < 0)
2073                                 goto _end_unlock;
2074                 }
2075         }
2076  _end_unlock:
2077         runtime->twake = 0;
2078         if (xfer > 0 && err >= 0)
2079                 snd_pcm_update_state(substream, runtime);
2080         snd_pcm_stream_unlock_irq(substream);
2081         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2082 }
2083
2084 /* sanity-check for read/write methods */
2085 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2086 {
2087         struct snd_pcm_runtime *runtime;
2088         if (PCM_RUNTIME_CHECK(substream))
2089                 return -ENXIO;
2090         runtime = substream->runtime;
2091         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2092                 return -EINVAL;
2093         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2094                 return -EBADFD;
2095         return 0;
2096 }
2097
2098 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2099 {
2100         struct snd_pcm_runtime *runtime;
2101         int nonblock;
2102         int err;
2103
2104         err = pcm_sanity_check(substream);
2105         if (err < 0)
2106                 return err;
2107         runtime = substream->runtime;
2108         nonblock = !!(substream->f_flags & O_NONBLOCK);
2109
2110         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2111             runtime->channels > 1)
2112                 return -EINVAL;
2113         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2114                                   snd_pcm_lib_write_transfer);
2115 }
2116
2117 EXPORT_SYMBOL(snd_pcm_lib_write);
2118
2119 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2120                                        unsigned int hwoff,
2121                                        unsigned long data, unsigned int off,
2122                                        snd_pcm_uframes_t frames)
2123 {
2124         struct snd_pcm_runtime *runtime = substream->runtime;
2125         int err;
2126         void __user **bufs = (void __user **)data;
2127         int channels = runtime->channels;
2128         int c;
2129         if (substream->ops->copy) {
2130                 if (snd_BUG_ON(!substream->ops->silence))
2131                         return -EINVAL;
2132                 for (c = 0; c < channels; ++c, ++bufs) {
2133                         if (*bufs == NULL) {
2134                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2135                                         return err;
2136                         } else {
2137                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2138                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2139                                         return err;
2140                         }
2141                 }
2142         } else {
2143                 /* default transfer behaviour */
2144                 size_t dma_csize = runtime->dma_bytes / channels;
2145                 for (c = 0; c < channels; ++c, ++bufs) {
2146                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2147                         if (*bufs == NULL) {
2148                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2149                         } else {
2150                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2151                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2152                                         return -EFAULT;
2153                         }
2154                 }
2155         }
2156         return 0;
2157 }
2158  
2159 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2160                                      void __user **bufs,
2161                                      snd_pcm_uframes_t frames)
2162 {
2163         struct snd_pcm_runtime *runtime;
2164         int nonblock;
2165         int err;
2166
2167         err = pcm_sanity_check(substream);
2168         if (err < 0)
2169                 return err;
2170         runtime = substream->runtime;
2171         nonblock = !!(substream->f_flags & O_NONBLOCK);
2172
2173         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2174                 return -EINVAL;
2175         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2176                                   nonblock, snd_pcm_lib_writev_transfer);
2177 }
2178
2179 EXPORT_SYMBOL(snd_pcm_lib_writev);
2180
2181 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2182                                      unsigned int hwoff,
2183                                      unsigned long data, unsigned int off,
2184                                      snd_pcm_uframes_t frames)
2185 {
2186         struct snd_pcm_runtime *runtime = substream->runtime;
2187         int err;
2188         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2189         if (substream->ops->copy) {
2190                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2191                         return err;
2192         } else {
2193                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2194                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2195                         return -EFAULT;
2196         }
2197         return 0;
2198 }
2199
2200 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2201                                            unsigned long data,
2202                                            snd_pcm_uframes_t size,
2203                                            int nonblock,
2204                                            transfer_f transfer)
2205 {
2206         struct snd_pcm_runtime *runtime = substream->runtime;
2207         snd_pcm_uframes_t xfer = 0;
2208         snd_pcm_uframes_t offset = 0;
2209         snd_pcm_uframes_t avail;
2210         int err = 0;
2211
2212         if (size == 0)
2213                 return 0;
2214
2215         snd_pcm_stream_lock_irq(substream);
2216         switch (runtime->status->state) {
2217         case SNDRV_PCM_STATE_PREPARED:
2218                 if (size >= runtime->start_threshold) {
2219                         err = snd_pcm_start(substream);
2220                         if (err < 0)
2221                                 goto _end_unlock;
2222                 }
2223                 break;
2224         case SNDRV_PCM_STATE_DRAINING:
2225         case SNDRV_PCM_STATE_RUNNING:
2226         case SNDRV_PCM_STATE_PAUSED:
2227                 break;
2228         case SNDRV_PCM_STATE_XRUN:
2229                 err = -EPIPE;
2230                 goto _end_unlock;
2231         case SNDRV_PCM_STATE_SUSPENDED:
2232                 err = -ESTRPIPE;
2233                 goto _end_unlock;
2234         default:
2235                 err = -EBADFD;
2236                 goto _end_unlock;
2237         }
2238
2239         runtime->twake = runtime->control->avail_min ? : 1;
2240         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2241                 snd_pcm_update_hw_ptr(substream);
2242         avail = snd_pcm_capture_avail(runtime);
2243         while (size > 0) {
2244                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2245                 snd_pcm_uframes_t cont;
2246                 if (!avail) {
2247                         if (runtime->status->state ==
2248                             SNDRV_PCM_STATE_DRAINING) {
2249                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2250                                 goto _end_unlock;
2251                         }
2252                         if (nonblock) {
2253                                 err = -EAGAIN;
2254                                 goto _end_unlock;
2255                         }
2256                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2257                                         runtime->control->avail_min ? : 1);
2258                         err = wait_for_avail(substream, &avail);
2259                         if (err < 0)
2260                                 goto _end_unlock;
2261                         if (!avail)
2262                                 continue; /* draining */
2263                 }
2264                 frames = size > avail ? avail : size;
2265                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2266                 if (frames > cont)
2267                         frames = cont;
2268                 if (snd_BUG_ON(!frames)) {
2269                         runtime->twake = 0;
2270                         snd_pcm_stream_unlock_irq(substream);
2271                         return -EINVAL;
2272                 }
2273                 appl_ptr = runtime->control->appl_ptr;
2274                 appl_ofs = appl_ptr % runtime->buffer_size;
2275                 snd_pcm_stream_unlock_irq(substream);
2276                 err = transfer(substream, appl_ofs, data, offset, frames);
2277                 snd_pcm_stream_lock_irq(substream);
2278                 if (err < 0)
2279                         goto _end_unlock;
2280                 switch (runtime->status->state) {
2281                 case SNDRV_PCM_STATE_XRUN:
2282                         err = -EPIPE;
2283                         goto _end_unlock;
2284                 case SNDRV_PCM_STATE_SUSPENDED:
2285                         err = -ESTRPIPE;
2286                         goto _end_unlock;
2287                 default:
2288                         break;
2289                 }
2290                 appl_ptr += frames;
2291                 if (appl_ptr >= runtime->boundary)
2292                         appl_ptr -= runtime->boundary;
2293                 runtime->control->appl_ptr = appl_ptr;
2294                 if (substream->ops->ack)
2295                         substream->ops->ack(substream);
2296
2297                 offset += frames;
2298                 size -= frames;
2299                 xfer += frames;
2300                 avail -= frames;
2301         }
2302  _end_unlock:
2303         runtime->twake = 0;
2304         if (xfer > 0 && err >= 0)
2305                 snd_pcm_update_state(substream, runtime);
2306         snd_pcm_stream_unlock_irq(substream);
2307         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2308 }
2309
2310 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2311 {
2312         struct snd_pcm_runtime *runtime;
2313         int nonblock;
2314         int err;
2315         
2316         err = pcm_sanity_check(substream);
2317         if (err < 0)
2318                 return err;
2319         runtime = substream->runtime;
2320         nonblock = !!(substream->f_flags & O_NONBLOCK);
2321         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2322                 return -EINVAL;
2323         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2324 }
2325
2326 EXPORT_SYMBOL(snd_pcm_lib_read);
2327
2328 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2329                                       unsigned int hwoff,
2330                                       unsigned long data, unsigned int off,
2331                                       snd_pcm_uframes_t frames)
2332 {
2333         struct snd_pcm_runtime *runtime = substream->runtime;
2334         int err;
2335         void __user **bufs = (void __user **)data;
2336         int channels = runtime->channels;
2337         int c;
2338         if (substream->ops->copy) {
2339                 for (c = 0; c < channels; ++c, ++bufs) {
2340                         char __user *buf;
2341                         if (*bufs == NULL)
2342                                 continue;
2343                         buf = *bufs + samples_to_bytes(runtime, off);
2344                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2345                                 return err;
2346                 }
2347         } else {
2348                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2349                 for (c = 0; c < channels; ++c, ++bufs) {
2350                         char *hwbuf;
2351                         char __user *buf;
2352                         if (*bufs == NULL)
2353                                 continue;
2354
2355                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2356                         buf = *bufs + samples_to_bytes(runtime, off);
2357                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2358                                 return -EFAULT;
2359                 }
2360         }
2361         return 0;
2362 }
2363  
2364 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2365                                     void __user **bufs,
2366                                     snd_pcm_uframes_t frames)
2367 {
2368         struct snd_pcm_runtime *runtime;
2369         int nonblock;
2370         int err;
2371
2372         err = pcm_sanity_check(substream);
2373         if (err < 0)
2374                 return err;
2375         runtime = substream->runtime;
2376         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2377                 return -EBADFD;
2378
2379         nonblock = !!(substream->f_flags & O_NONBLOCK);
2380         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2381                 return -EINVAL;
2382         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2383 }
2384
2385 EXPORT_SYMBOL(snd_pcm_lib_readv);
2386
2387 /*
2388  * standard channel mapping helpers
2389  */
2390
2391 /* default channel maps for multi-channel playbacks, up to 8 channels */
2392 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2393         { .channels = 1,
2394           .map = { SNDRV_CHMAP_MONO } },
2395         { .channels = 2,
2396           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2397         { .channels = 4,
2398           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2399                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2400         { .channels = 6,
2401           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2402                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2403                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2404         { .channels = 8,
2405           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2406                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2407                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2408                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2409         { }
2410 };
2411 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2412
2413 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2414 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2415         { .channels = 1,
2416           .map = { SNDRV_CHMAP_MONO } },
2417         { .channels = 2,
2418           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2419         { .channels = 4,
2420           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2421                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2422         { .channels = 6,
2423           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2424                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2425                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2426         { .channels = 8,
2427           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2428                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2429                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2430                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2431         { }
2432 };
2433 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2434
2435 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2436 {
2437         if (ch > info->max_channels)
2438                 return false;
2439         return !info->channel_mask || (info->channel_mask & (1U << ch));
2440 }
2441
2442 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2443                               struct snd_ctl_elem_info *uinfo)
2444 {
2445         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2446
2447         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2448         uinfo->count = 0;
2449         uinfo->count = info->max_channels;
2450         uinfo->value.integer.min = 0;
2451         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2452         return 0;
2453 }
2454
2455 /* get callback for channel map ctl element
2456  * stores the channel position firstly matching with the current channels
2457  */
2458 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2459                              struct snd_ctl_elem_value *ucontrol)
2460 {
2461         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2462         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2463         struct snd_pcm_substream *substream;
2464         const struct snd_pcm_chmap_elem *map;
2465
2466         if (snd_BUG_ON(!info->chmap))
2467                 return -EINVAL;
2468         substream = snd_pcm_chmap_substream(info, idx);
2469         if (!substream)
2470                 return -ENODEV;
2471         memset(ucontrol->value.integer.value, 0,
2472                sizeof(ucontrol->value.integer.value));
2473         if (!substream->runtime)
2474                 return 0; /* no channels set */
2475         for (map = info->chmap; map->channels; map++) {
2476                 int i;
2477                 if (map->channels == substream->runtime->channels &&
2478                     valid_chmap_channels(info, map->channels)) {
2479                         for (i = 0; i < map->channels; i++)
2480                                 ucontrol->value.integer.value[i] = map->map[i];
2481                         return 0;
2482                 }
2483         }
2484         return -EINVAL;
2485 }
2486
2487 /* tlv callback for channel map ctl element
2488  * expands the pre-defined channel maps in a form of TLV
2489  */
2490 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2491                              unsigned int size, unsigned int __user *tlv)
2492 {
2493         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2494         const struct snd_pcm_chmap_elem *map;
2495         unsigned int __user *dst;
2496         int c, count = 0;
2497
2498         if (snd_BUG_ON(!info->chmap))
2499                 return -EINVAL;
2500         if (size < 8)
2501                 return -ENOMEM;
2502         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2503                 return -EFAULT;
2504         size -= 8;
2505         dst = tlv + 2;
2506         for (map = info->chmap; map->channels; map++) {
2507                 int chs_bytes = map->channels * 4;
2508                 if (!valid_chmap_channels(info, map->channels))
2509                         continue;
2510                 if (size < 8)
2511                         return -ENOMEM;
2512                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2513                     put_user(chs_bytes, dst + 1))
2514                         return -EFAULT;
2515                 dst += 2;
2516                 size -= 8;
2517                 count += 8;
2518                 if (size < chs_bytes)
2519                         return -ENOMEM;
2520                 size -= chs_bytes;
2521                 count += chs_bytes;
2522                 for (c = 0; c < map->channels; c++) {
2523                         if (put_user(map->map[c], dst))
2524                                 return -EFAULT;
2525                         dst++;
2526                 }
2527         }
2528         if (put_user(count, tlv + 1))
2529                 return -EFAULT;
2530         return 0;
2531 }
2532
2533 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2534 {
2535         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2536         info->pcm->streams[info->stream].chmap_kctl = NULL;
2537         kfree(info);
2538 }
2539
2540 /**
2541  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2542  * @pcm: the assigned PCM instance
2543  * @stream: stream direction
2544  * @chmap: channel map elements (for query)
2545  * @max_channels: the max number of channels for the stream
2546  * @private_value: the value passed to each kcontrol's private_value field
2547  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2548  *
2549  * Create channel-mapping control elements assigned to the given PCM stream(s).
2550  * Return: Zero if successful, or a negative error value.
2551  */
2552 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2553                            const struct snd_pcm_chmap_elem *chmap,
2554                            int max_channels,
2555                            unsigned long private_value,
2556                            struct snd_pcm_chmap **info_ret)
2557 {
2558         struct snd_pcm_chmap *info;
2559         struct snd_kcontrol_new knew = {
2560                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2561                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2562                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2563                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2564                 .info = pcm_chmap_ctl_info,
2565                 .get = pcm_chmap_ctl_get,
2566                 .tlv.c = pcm_chmap_ctl_tlv,
2567         };
2568         int err;
2569
2570         info = kzalloc(sizeof(*info), GFP_KERNEL);
2571         if (!info)
2572                 return -ENOMEM;
2573         info->pcm = pcm;
2574         info->stream = stream;
2575         info->chmap = chmap;
2576         info->max_channels = max_channels;
2577         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2578                 knew.name = "Playback Channel Map";
2579         else
2580                 knew.name = "Capture Channel Map";
2581         knew.device = pcm->device;
2582         knew.count = pcm->streams[stream].substream_count;
2583         knew.private_value = private_value;
2584         info->kctl = snd_ctl_new1(&knew, info);
2585         if (!info->kctl) {
2586                 kfree(info);
2587                 return -ENOMEM;
2588         }
2589         info->kctl->private_free = pcm_chmap_ctl_private_free;
2590         err = snd_ctl_add(pcm->card, info->kctl);
2591         if (err < 0)
2592                 return err;
2593         pcm->streams[stream].chmap_kctl = info->kctl;
2594         if (info_ret)
2595                 *info_ret = info;
2596         return 0;
2597 }
2598 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);