Merge tag 'upstream-4.9-rc1' of git://git.infradead.org/linux-ubifs
[cascardo/linux.git] / sound / pci / hda / hda_controller.c
1 /*
2  *
3  *  Implementation of primary alsa driver code base for Intel HD Audio.
4  *
5  *  Copyright(c) 2004 Intel Corporation. All rights reserved.
6  *
7  *  Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
8  *                     PeiSen Hou <pshou@realtek.com.tw>
9  *
10  *  This program is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the Free
12  *  Software Foundation; either version 2 of the License, or (at your option)
13  *  any later version.
14  *
15  *  This program is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  *  more details.
19  *
20  *
21  */
22
23 #include <linux/clocksource.h>
24 #include <linux/delay.h>
25 #include <linux/interrupt.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30
31 #ifdef CONFIG_X86
32 /* for art-tsc conversion */
33 #include <asm/tsc.h>
34 #endif
35
36 #include <sound/core.h>
37 #include <sound/initval.h>
38 #include "hda_controller.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "hda_controller_trace.h"
42
43 /* DSP lock helpers */
44 #define dsp_lock(dev)           snd_hdac_dsp_lock(azx_stream(dev))
45 #define dsp_unlock(dev)         snd_hdac_dsp_unlock(azx_stream(dev))
46 #define dsp_is_locked(dev)      snd_hdac_stream_is_locked(azx_stream(dev))
47
48 /* assign a stream for the PCM */
49 static inline struct azx_dev *
50 azx_assign_device(struct azx *chip, struct snd_pcm_substream *substream)
51 {
52         struct hdac_stream *s;
53
54         s = snd_hdac_stream_assign(azx_bus(chip), substream);
55         if (!s)
56                 return NULL;
57         return stream_to_azx_dev(s);
58 }
59
60 /* release the assigned stream */
61 static inline void azx_release_device(struct azx_dev *azx_dev)
62 {
63         snd_hdac_stream_release(azx_stream(azx_dev));
64 }
65
66 static inline struct hda_pcm_stream *
67 to_hda_pcm_stream(struct snd_pcm_substream *substream)
68 {
69         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
70         return &apcm->info->stream[substream->stream];
71 }
72
73 static u64 azx_adjust_codec_delay(struct snd_pcm_substream *substream,
74                                 u64 nsec)
75 {
76         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
77         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
78         u64 codec_frames, codec_nsecs;
79
80         if (!hinfo->ops.get_delay)
81                 return nsec;
82
83         codec_frames = hinfo->ops.get_delay(hinfo, apcm->codec, substream);
84         codec_nsecs = div_u64(codec_frames * 1000000000LL,
85                               substream->runtime->rate);
86
87         if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
88                 return nsec + codec_nsecs;
89
90         return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0;
91 }
92
93 /*
94  * PCM ops
95  */
96
97 static int azx_pcm_close(struct snd_pcm_substream *substream)
98 {
99         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
100         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
101         struct azx *chip = apcm->chip;
102         struct azx_dev *azx_dev = get_azx_dev(substream);
103
104         trace_azx_pcm_close(chip, azx_dev);
105         mutex_lock(&chip->open_mutex);
106         azx_release_device(azx_dev);
107         if (hinfo->ops.close)
108                 hinfo->ops.close(hinfo, apcm->codec, substream);
109         snd_hda_power_down(apcm->codec);
110         mutex_unlock(&chip->open_mutex);
111         snd_hda_codec_pcm_put(apcm->info);
112         return 0;
113 }
114
115 static int azx_pcm_hw_params(struct snd_pcm_substream *substream,
116                              struct snd_pcm_hw_params *hw_params)
117 {
118         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
119         struct azx *chip = apcm->chip;
120         struct azx_dev *azx_dev = get_azx_dev(substream);
121         int ret;
122
123         trace_azx_pcm_hw_params(chip, azx_dev);
124         dsp_lock(azx_dev);
125         if (dsp_is_locked(azx_dev)) {
126                 ret = -EBUSY;
127                 goto unlock;
128         }
129
130         azx_dev->core.bufsize = 0;
131         azx_dev->core.period_bytes = 0;
132         azx_dev->core.format_val = 0;
133         ret = chip->ops->substream_alloc_pages(chip, substream,
134                                           params_buffer_bytes(hw_params));
135 unlock:
136         dsp_unlock(azx_dev);
137         return ret;
138 }
139
140 static int azx_pcm_hw_free(struct snd_pcm_substream *substream)
141 {
142         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
143         struct azx_dev *azx_dev = get_azx_dev(substream);
144         struct azx *chip = apcm->chip;
145         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
146         int err;
147
148         /* reset BDL address */
149         dsp_lock(azx_dev);
150         if (!dsp_is_locked(azx_dev))
151                 snd_hdac_stream_cleanup(azx_stream(azx_dev));
152
153         snd_hda_codec_cleanup(apcm->codec, hinfo, substream);
154
155         err = chip->ops->substream_free_pages(chip, substream);
156         azx_stream(azx_dev)->prepared = 0;
157         dsp_unlock(azx_dev);
158         return err;
159 }
160
161 static int azx_pcm_prepare(struct snd_pcm_substream *substream)
162 {
163         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
164         struct azx *chip = apcm->chip;
165         struct azx_dev *azx_dev = get_azx_dev(substream);
166         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
167         struct snd_pcm_runtime *runtime = substream->runtime;
168         unsigned int format_val, stream_tag;
169         int err;
170         struct hda_spdif_out *spdif =
171                 snd_hda_spdif_out_of_nid(apcm->codec, hinfo->nid);
172         unsigned short ctls = spdif ? spdif->ctls : 0;
173
174         trace_azx_pcm_prepare(chip, azx_dev);
175         dsp_lock(azx_dev);
176         if (dsp_is_locked(azx_dev)) {
177                 err = -EBUSY;
178                 goto unlock;
179         }
180
181         snd_hdac_stream_reset(azx_stream(azx_dev));
182         format_val = snd_hdac_calc_stream_format(runtime->rate,
183                                                 runtime->channels,
184                                                 runtime->format,
185                                                 hinfo->maxbps,
186                                                 ctls);
187         if (!format_val) {
188                 dev_err(chip->card->dev,
189                         "invalid format_val, rate=%d, ch=%d, format=%d\n",
190                         runtime->rate, runtime->channels, runtime->format);
191                 err = -EINVAL;
192                 goto unlock;
193         }
194
195         err = snd_hdac_stream_set_params(azx_stream(azx_dev), format_val);
196         if (err < 0)
197                 goto unlock;
198
199         snd_hdac_stream_setup(azx_stream(azx_dev));
200
201         stream_tag = azx_dev->core.stream_tag;
202         /* CA-IBG chips need the playback stream starting from 1 */
203         if ((chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) &&
204             stream_tag > chip->capture_streams)
205                 stream_tag -= chip->capture_streams;
206         err = snd_hda_codec_prepare(apcm->codec, hinfo, stream_tag,
207                                      azx_dev->core.format_val, substream);
208
209  unlock:
210         if (!err)
211                 azx_stream(azx_dev)->prepared = 1;
212         dsp_unlock(azx_dev);
213         return err;
214 }
215
216 static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
217 {
218         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
219         struct azx *chip = apcm->chip;
220         struct hdac_bus *bus = azx_bus(chip);
221         struct azx_dev *azx_dev;
222         struct snd_pcm_substream *s;
223         struct hdac_stream *hstr;
224         bool start;
225         int sbits = 0;
226         int sync_reg;
227
228         azx_dev = get_azx_dev(substream);
229         trace_azx_pcm_trigger(chip, azx_dev, cmd);
230
231         hstr = azx_stream(azx_dev);
232         if (chip->driver_caps & AZX_DCAPS_OLD_SSYNC)
233                 sync_reg = AZX_REG_OLD_SSYNC;
234         else
235                 sync_reg = AZX_REG_SSYNC;
236
237         if (dsp_is_locked(azx_dev) || !hstr->prepared)
238                 return -EPIPE;
239
240         switch (cmd) {
241         case SNDRV_PCM_TRIGGER_START:
242         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
243         case SNDRV_PCM_TRIGGER_RESUME:
244                 start = true;
245                 break;
246         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
247         case SNDRV_PCM_TRIGGER_SUSPEND:
248         case SNDRV_PCM_TRIGGER_STOP:
249                 start = false;
250                 break;
251         default:
252                 return -EINVAL;
253         }
254
255         snd_pcm_group_for_each_entry(s, substream) {
256                 if (s->pcm->card != substream->pcm->card)
257                         continue;
258                 azx_dev = get_azx_dev(s);
259                 sbits |= 1 << azx_dev->core.index;
260                 snd_pcm_trigger_done(s, substream);
261         }
262
263         spin_lock(&bus->reg_lock);
264
265         /* first, set SYNC bits of corresponding streams */
266         snd_hdac_stream_sync_trigger(hstr, true, sbits, sync_reg);
267
268         snd_pcm_group_for_each_entry(s, substream) {
269                 if (s->pcm->card != substream->pcm->card)
270                         continue;
271                 azx_dev = get_azx_dev(s);
272                 if (start) {
273                         azx_dev->insufficient = 1;
274                         snd_hdac_stream_start(azx_stream(azx_dev), true);
275                 } else {
276                         snd_hdac_stream_stop(azx_stream(azx_dev));
277                 }
278         }
279         spin_unlock(&bus->reg_lock);
280
281         snd_hdac_stream_sync(hstr, start, sbits);
282
283         spin_lock(&bus->reg_lock);
284         /* reset SYNC bits */
285         snd_hdac_stream_sync_trigger(hstr, false, sbits, sync_reg);
286         if (start)
287                 snd_hdac_stream_timecounter_init(hstr, sbits);
288         spin_unlock(&bus->reg_lock);
289         return 0;
290 }
291
292 unsigned int azx_get_pos_lpib(struct azx *chip, struct azx_dev *azx_dev)
293 {
294         return snd_hdac_stream_get_pos_lpib(azx_stream(azx_dev));
295 }
296 EXPORT_SYMBOL_GPL(azx_get_pos_lpib);
297
298 unsigned int azx_get_pos_posbuf(struct azx *chip, struct azx_dev *azx_dev)
299 {
300         return snd_hdac_stream_get_pos_posbuf(azx_stream(azx_dev));
301 }
302 EXPORT_SYMBOL_GPL(azx_get_pos_posbuf);
303
304 unsigned int azx_get_position(struct azx *chip,
305                               struct azx_dev *azx_dev)
306 {
307         struct snd_pcm_substream *substream = azx_dev->core.substream;
308         unsigned int pos;
309         int stream = substream->stream;
310         int delay = 0;
311
312         if (chip->get_position[stream])
313                 pos = chip->get_position[stream](chip, azx_dev);
314         else /* use the position buffer as default */
315                 pos = azx_get_pos_posbuf(chip, azx_dev);
316
317         if (pos >= azx_dev->core.bufsize)
318                 pos = 0;
319
320         if (substream->runtime) {
321                 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
322                 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
323
324                 if (chip->get_delay[stream])
325                         delay += chip->get_delay[stream](chip, azx_dev, pos);
326                 if (hinfo->ops.get_delay)
327                         delay += hinfo->ops.get_delay(hinfo, apcm->codec,
328                                                       substream);
329                 substream->runtime->delay = delay;
330         }
331
332         trace_azx_get_position(chip, azx_dev, pos, delay);
333         return pos;
334 }
335 EXPORT_SYMBOL_GPL(azx_get_position);
336
337 static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream)
338 {
339         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
340         struct azx *chip = apcm->chip;
341         struct azx_dev *azx_dev = get_azx_dev(substream);
342         return bytes_to_frames(substream->runtime,
343                                azx_get_position(chip, azx_dev));
344 }
345
346 /*
347  * azx_scale64: Scale base by mult/div while not overflowing sanely
348  *
349  * Derived from scale64_check_overflow in kernel/time/timekeeping.c
350  *
351  * The tmestamps for a 48Khz stream can overflow after (2^64/10^9)/48K which
352  * is about 384307 ie ~4.5 days.
353  *
354  * This scales the calculation so that overflow will happen but after 2^64 /
355  * 48000 secs, which is pretty large!
356  *
357  * In caln below:
358  *      base may overflow, but since there isn’t any additional division
359  *      performed on base it’s OK
360  *      rem can’t overflow because both are 32-bit values
361  */
362
363 #ifdef CONFIG_X86
364 static u64 azx_scale64(u64 base, u32 num, u32 den)
365 {
366         u64 rem;
367
368         rem = do_div(base, den);
369
370         base *= num;
371         rem *= num;
372
373         do_div(rem, den);
374
375         return base + rem;
376 }
377
378 static int azx_get_sync_time(ktime_t *device,
379                 struct system_counterval_t *system, void *ctx)
380 {
381         struct snd_pcm_substream *substream = ctx;
382         struct azx_dev *azx_dev = get_azx_dev(substream);
383         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
384         struct azx *chip = apcm->chip;
385         struct snd_pcm_runtime *runtime;
386         u64 ll_counter, ll_counter_l, ll_counter_h;
387         u64 tsc_counter, tsc_counter_l, tsc_counter_h;
388         u32 wallclk_ctr, wallclk_cycles;
389         bool direction;
390         u32 dma_select;
391         u32 timeout = 200;
392         u32 retry_count = 0;
393
394         runtime = substream->runtime;
395
396         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
397                 direction = 1;
398         else
399                 direction = 0;
400
401         /* 0th stream tag is not used, so DMA ch 0 is for 1st stream tag */
402         do {
403                 timeout = 100;
404                 dma_select = (direction << GTSCC_CDMAS_DMA_DIR_SHIFT) |
405                                         (azx_dev->core.stream_tag - 1);
406                 snd_hdac_chip_writel(azx_bus(chip), GTSCC, dma_select);
407
408                 /* Enable the capture */
409                 snd_hdac_chip_updatel(azx_bus(chip), GTSCC, 0, GTSCC_TSCCI_MASK);
410
411                 while (timeout) {
412                         if (snd_hdac_chip_readl(azx_bus(chip), GTSCC) &
413                                                 GTSCC_TSCCD_MASK)
414                                 break;
415
416                         timeout--;
417                 }
418
419                 if (!timeout) {
420                         dev_err(chip->card->dev, "GTSCC capture Timedout!\n");
421                         return -EIO;
422                 }
423
424                 /* Read wall clock counter */
425                 wallclk_ctr = snd_hdac_chip_readl(azx_bus(chip), WALFCC);
426
427                 /* Read TSC counter */
428                 tsc_counter_l = snd_hdac_chip_readl(azx_bus(chip), TSCCL);
429                 tsc_counter_h = snd_hdac_chip_readl(azx_bus(chip), TSCCU);
430
431                 /* Read Link counter */
432                 ll_counter_l = snd_hdac_chip_readl(azx_bus(chip), LLPCL);
433                 ll_counter_h = snd_hdac_chip_readl(azx_bus(chip), LLPCU);
434
435                 /* Ack: registers read done */
436                 snd_hdac_chip_writel(azx_bus(chip), GTSCC, GTSCC_TSCCD_SHIFT);
437
438                 tsc_counter = (tsc_counter_h << TSCCU_CCU_SHIFT) |
439                                                 tsc_counter_l;
440
441                 ll_counter = (ll_counter_h << LLPC_CCU_SHIFT) | ll_counter_l;
442                 wallclk_cycles = wallclk_ctr & WALFCC_CIF_MASK;
443
444                 /*
445                  * An error occurs near frame "rollover". The clocks in
446                  * frame value indicates whether this error may have
447                  * occurred. Here we use the value of 10 i.e.,
448                  * HDA_MAX_CYCLE_OFFSET
449                  */
450                 if (wallclk_cycles < HDA_MAX_CYCLE_VALUE - HDA_MAX_CYCLE_OFFSET
451                                         && wallclk_cycles > HDA_MAX_CYCLE_OFFSET)
452                         break;
453
454                 /*
455                  * Sleep before we read again, else we may again get
456                  * value near to MAX_CYCLE. Try to sleep for different
457                  * amount of time so we dont hit the same number again
458                  */
459                 udelay(retry_count++);
460
461         } while (retry_count != HDA_MAX_CYCLE_READ_RETRY);
462
463         if (retry_count == HDA_MAX_CYCLE_READ_RETRY) {
464                 dev_err_ratelimited(chip->card->dev,
465                         "Error in WALFCC cycle count\n");
466                 return -EIO;
467         }
468
469         *device = ns_to_ktime(azx_scale64(ll_counter,
470                                 NSEC_PER_SEC, runtime->rate));
471         *device = ktime_add_ns(*device, (wallclk_cycles * NSEC_PER_SEC) /
472                                ((HDA_MAX_CYCLE_VALUE + 1) * runtime->rate));
473
474         *system = convert_art_to_tsc(tsc_counter);
475
476         return 0;
477 }
478
479 #else
480 static int azx_get_sync_time(ktime_t *device,
481                 struct system_counterval_t *system, void *ctx)
482 {
483         return -ENXIO;
484 }
485 #endif
486
487 static int azx_get_crosststamp(struct snd_pcm_substream *substream,
488                               struct system_device_crosststamp *xtstamp)
489 {
490         return get_device_system_crosststamp(azx_get_sync_time,
491                                         substream, NULL, xtstamp);
492 }
493
494 static inline bool is_link_time_supported(struct snd_pcm_runtime *runtime,
495                                 struct snd_pcm_audio_tstamp_config *ts)
496 {
497         if (runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME)
498                 if (ts->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED)
499                         return true;
500
501         return false;
502 }
503
504 static int azx_get_time_info(struct snd_pcm_substream *substream,
505                         struct timespec *system_ts, struct timespec *audio_ts,
506                         struct snd_pcm_audio_tstamp_config *audio_tstamp_config,
507                         struct snd_pcm_audio_tstamp_report *audio_tstamp_report)
508 {
509         struct azx_dev *azx_dev = get_azx_dev(substream);
510         struct snd_pcm_runtime *runtime = substream->runtime;
511         struct system_device_crosststamp xtstamp;
512         int ret;
513         u64 nsec;
514
515         if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) &&
516                 (audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) {
517
518                 snd_pcm_gettime(substream->runtime, system_ts);
519
520                 nsec = timecounter_read(&azx_dev->core.tc);
521                 nsec = div_u64(nsec, 3); /* can be optimized */
522                 if (audio_tstamp_config->report_delay)
523                         nsec = azx_adjust_codec_delay(substream, nsec);
524
525                 *audio_ts = ns_to_timespec(nsec);
526
527                 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK;
528                 audio_tstamp_report->accuracy_report = 1; /* rest of structure is valid */
529                 audio_tstamp_report->accuracy = 42; /* 24 MHz WallClock == 42ns resolution */
530
531         } else if (is_link_time_supported(runtime, audio_tstamp_config)) {
532
533                 ret = azx_get_crosststamp(substream, &xtstamp);
534                 if (ret)
535                         return ret;
536
537                 switch (runtime->tstamp_type) {
538                 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC:
539                         return -EINVAL;
540
541                 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW:
542                         *system_ts = ktime_to_timespec(xtstamp.sys_monoraw);
543                         break;
544
545                 default:
546                         *system_ts = ktime_to_timespec(xtstamp.sys_realtime);
547                         break;
548
549                 }
550
551                 *audio_ts = ktime_to_timespec(xtstamp.device);
552
553                 audio_tstamp_report->actual_type =
554                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED;
555                 audio_tstamp_report->accuracy_report = 1;
556                 /* 24 MHz WallClock == 42ns resolution */
557                 audio_tstamp_report->accuracy = 42;
558
559         } else {
560                 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT;
561         }
562
563         return 0;
564 }
565
566 static struct snd_pcm_hardware azx_pcm_hw = {
567         .info =                 (SNDRV_PCM_INFO_MMAP |
568                                  SNDRV_PCM_INFO_INTERLEAVED |
569                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
570                                  SNDRV_PCM_INFO_MMAP_VALID |
571                                  /* No full-resume yet implemented */
572                                  /* SNDRV_PCM_INFO_RESUME |*/
573                                  SNDRV_PCM_INFO_PAUSE |
574                                  SNDRV_PCM_INFO_SYNC_START |
575                                  SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */
576                                  SNDRV_PCM_INFO_HAS_LINK_ATIME |
577                                  SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
578         .formats =              SNDRV_PCM_FMTBIT_S16_LE,
579         .rates =                SNDRV_PCM_RATE_48000,
580         .rate_min =             48000,
581         .rate_max =             48000,
582         .channels_min =         2,
583         .channels_max =         2,
584         .buffer_bytes_max =     AZX_MAX_BUF_SIZE,
585         .period_bytes_min =     128,
586         .period_bytes_max =     AZX_MAX_BUF_SIZE / 2,
587         .periods_min =          2,
588         .periods_max =          AZX_MAX_FRAG,
589         .fifo_size =            0,
590 };
591
592 static int azx_pcm_open(struct snd_pcm_substream *substream)
593 {
594         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
595         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
596         struct azx *chip = apcm->chip;
597         struct azx_dev *azx_dev;
598         struct snd_pcm_runtime *runtime = substream->runtime;
599         int err;
600         int buff_step;
601
602         snd_hda_codec_pcm_get(apcm->info);
603         mutex_lock(&chip->open_mutex);
604         azx_dev = azx_assign_device(chip, substream);
605         trace_azx_pcm_open(chip, azx_dev);
606         if (azx_dev == NULL) {
607                 err = -EBUSY;
608                 goto unlock;
609         }
610         runtime->private_data = azx_dev;
611
612         if (chip->gts_present)
613                 azx_pcm_hw.info = azx_pcm_hw.info |
614                         SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME;
615
616         runtime->hw = azx_pcm_hw;
617         runtime->hw.channels_min = hinfo->channels_min;
618         runtime->hw.channels_max = hinfo->channels_max;
619         runtime->hw.formats = hinfo->formats;
620         runtime->hw.rates = hinfo->rates;
621         snd_pcm_limit_hw_rates(runtime);
622         snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
623
624         /* avoid wrap-around with wall-clock */
625         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME,
626                                      20,
627                                      178000000);
628
629         if (chip->align_buffer_size)
630                 /* constrain buffer sizes to be multiple of 128
631                    bytes. This is more efficient in terms of memory
632                    access but isn't required by the HDA spec and
633                    prevents users from specifying exact period/buffer
634                    sizes. For example for 44.1kHz, a period size set
635                    to 20ms will be rounded to 19.59ms. */
636                 buff_step = 128;
637         else
638                 /* Don't enforce steps on buffer sizes, still need to
639                    be multiple of 4 bytes (HDA spec). Tested on Intel
640                    HDA controllers, may not work on all devices where
641                    option needs to be disabled */
642                 buff_step = 4;
643
644         snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
645                                    buff_step);
646         snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
647                                    buff_step);
648         snd_hda_power_up(apcm->codec);
649         if (hinfo->ops.open)
650                 err = hinfo->ops.open(hinfo, apcm->codec, substream);
651         else
652                 err = -ENODEV;
653         if (err < 0) {
654                 azx_release_device(azx_dev);
655                 goto powerdown;
656         }
657         snd_pcm_limit_hw_rates(runtime);
658         /* sanity check */
659         if (snd_BUG_ON(!runtime->hw.channels_min) ||
660             snd_BUG_ON(!runtime->hw.channels_max) ||
661             snd_BUG_ON(!runtime->hw.formats) ||
662             snd_BUG_ON(!runtime->hw.rates)) {
663                 azx_release_device(azx_dev);
664                 if (hinfo->ops.close)
665                         hinfo->ops.close(hinfo, apcm->codec, substream);
666                 err = -EINVAL;
667                 goto powerdown;
668         }
669
670         /* disable LINK_ATIME timestamps for capture streams
671            until we figure out how to handle digital inputs */
672         if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
673                 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */
674                 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME;
675         }
676
677         snd_pcm_set_sync(substream);
678         mutex_unlock(&chip->open_mutex);
679         return 0;
680
681  powerdown:
682         snd_hda_power_down(apcm->codec);
683  unlock:
684         mutex_unlock(&chip->open_mutex);
685         snd_hda_codec_pcm_put(apcm->info);
686         return err;
687 }
688
689 static int azx_pcm_mmap(struct snd_pcm_substream *substream,
690                         struct vm_area_struct *area)
691 {
692         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
693         struct azx *chip = apcm->chip;
694         if (chip->ops->pcm_mmap_prepare)
695                 chip->ops->pcm_mmap_prepare(substream, area);
696         return snd_pcm_lib_default_mmap(substream, area);
697 }
698
699 static const struct snd_pcm_ops azx_pcm_ops = {
700         .open = azx_pcm_open,
701         .close = azx_pcm_close,
702         .ioctl = snd_pcm_lib_ioctl,
703         .hw_params = azx_pcm_hw_params,
704         .hw_free = azx_pcm_hw_free,
705         .prepare = azx_pcm_prepare,
706         .trigger = azx_pcm_trigger,
707         .pointer = azx_pcm_pointer,
708         .get_time_info =  azx_get_time_info,
709         .mmap = azx_pcm_mmap,
710         .page = snd_pcm_sgbuf_ops_page,
711 };
712
713 static void azx_pcm_free(struct snd_pcm *pcm)
714 {
715         struct azx_pcm *apcm = pcm->private_data;
716         if (apcm) {
717                 list_del(&apcm->list);
718                 apcm->info->pcm = NULL;
719                 kfree(apcm);
720         }
721 }
722
723 #define MAX_PREALLOC_SIZE       (32 * 1024 * 1024)
724
725 int snd_hda_attach_pcm_stream(struct hda_bus *_bus, struct hda_codec *codec,
726                               struct hda_pcm *cpcm)
727 {
728         struct hdac_bus *bus = &_bus->core;
729         struct azx *chip = bus_to_azx(bus);
730         struct snd_pcm *pcm;
731         struct azx_pcm *apcm;
732         int pcm_dev = cpcm->device;
733         unsigned int size;
734         int s, err;
735
736         list_for_each_entry(apcm, &chip->pcm_list, list) {
737                 if (apcm->pcm->device == pcm_dev) {
738                         dev_err(chip->card->dev, "PCM %d already exists\n",
739                                 pcm_dev);
740                         return -EBUSY;
741                 }
742         }
743         err = snd_pcm_new(chip->card, cpcm->name, pcm_dev,
744                           cpcm->stream[SNDRV_PCM_STREAM_PLAYBACK].substreams,
745                           cpcm->stream[SNDRV_PCM_STREAM_CAPTURE].substreams,
746                           &pcm);
747         if (err < 0)
748                 return err;
749         strlcpy(pcm->name, cpcm->name, sizeof(pcm->name));
750         apcm = kzalloc(sizeof(*apcm), GFP_KERNEL);
751         if (apcm == NULL)
752                 return -ENOMEM;
753         apcm->chip = chip;
754         apcm->pcm = pcm;
755         apcm->codec = codec;
756         apcm->info = cpcm;
757         pcm->private_data = apcm;
758         pcm->private_free = azx_pcm_free;
759         if (cpcm->pcm_type == HDA_PCM_TYPE_MODEM)
760                 pcm->dev_class = SNDRV_PCM_CLASS_MODEM;
761         list_add_tail(&apcm->list, &chip->pcm_list);
762         cpcm->pcm = pcm;
763         for (s = 0; s < 2; s++) {
764                 if (cpcm->stream[s].substreams)
765                         snd_pcm_set_ops(pcm, s, &azx_pcm_ops);
766         }
767         /* buffer pre-allocation */
768         size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024;
769         if (size > MAX_PREALLOC_SIZE)
770                 size = MAX_PREALLOC_SIZE;
771         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
772                                               chip->card->dev,
773                                               size, MAX_PREALLOC_SIZE);
774         return 0;
775 }
776
777 static unsigned int azx_command_addr(u32 cmd)
778 {
779         unsigned int addr = cmd >> 28;
780
781         if (addr >= AZX_MAX_CODECS) {
782                 snd_BUG();
783                 addr = 0;
784         }
785
786         return addr;
787 }
788
789 /* receive a response */
790 static int azx_rirb_get_response(struct hdac_bus *bus, unsigned int addr,
791                                  unsigned int *res)
792 {
793         struct azx *chip = bus_to_azx(bus);
794         struct hda_bus *hbus = &chip->bus;
795         unsigned long timeout;
796         unsigned long loopcounter;
797         int do_poll = 0;
798
799  again:
800         timeout = jiffies + msecs_to_jiffies(1000);
801
802         for (loopcounter = 0;; loopcounter++) {
803                 spin_lock_irq(&bus->reg_lock);
804                 if (chip->polling_mode || do_poll)
805                         snd_hdac_bus_update_rirb(bus);
806                 if (!bus->rirb.cmds[addr]) {
807                         if (!do_poll)
808                                 chip->poll_count = 0;
809                         if (res)
810                                 *res = bus->rirb.res[addr]; /* the last value */
811                         spin_unlock_irq(&bus->reg_lock);
812                         return 0;
813                 }
814                 spin_unlock_irq(&bus->reg_lock);
815                 if (time_after(jiffies, timeout))
816                         break;
817                 if (hbus->needs_damn_long_delay || loopcounter > 3000)
818                         msleep(2); /* temporary workaround */
819                 else {
820                         udelay(10);
821                         cond_resched();
822                 }
823         }
824
825         if (hbus->no_response_fallback)
826                 return -EIO;
827
828         if (!chip->polling_mode && chip->poll_count < 2) {
829                 dev_dbg(chip->card->dev,
830                         "azx_get_response timeout, polling the codec once: last cmd=0x%08x\n",
831                         bus->last_cmd[addr]);
832                 do_poll = 1;
833                 chip->poll_count++;
834                 goto again;
835         }
836
837
838         if (!chip->polling_mode) {
839                 dev_warn(chip->card->dev,
840                          "azx_get_response timeout, switching to polling mode: last cmd=0x%08x\n",
841                          bus->last_cmd[addr]);
842                 chip->polling_mode = 1;
843                 goto again;
844         }
845
846         if (chip->msi) {
847                 dev_warn(chip->card->dev,
848                          "No response from codec, disabling MSI: last cmd=0x%08x\n",
849                          bus->last_cmd[addr]);
850                 if (chip->ops->disable_msi_reset_irq &&
851                     chip->ops->disable_msi_reset_irq(chip) < 0)
852                         return -EIO;
853                 goto again;
854         }
855
856         if (chip->probing) {
857                 /* If this critical timeout happens during the codec probing
858                  * phase, this is likely an access to a non-existing codec
859                  * slot.  Better to return an error and reset the system.
860                  */
861                 return -EIO;
862         }
863
864         /* a fatal communication error; need either to reset or to fallback
865          * to the single_cmd mode
866          */
867         if (hbus->allow_bus_reset && !hbus->response_reset && !hbus->in_reset) {
868                 hbus->response_reset = 1;
869                 return -EAGAIN; /* give a chance to retry */
870         }
871
872         dev_err(chip->card->dev,
873                 "azx_get_response timeout, switching to single_cmd mode: last cmd=0x%08x\n",
874                 bus->last_cmd[addr]);
875         chip->single_cmd = 1;
876         hbus->response_reset = 0;
877         snd_hdac_bus_stop_cmd_io(bus);
878         return -EIO;
879 }
880
881 /*
882  * Use the single immediate command instead of CORB/RIRB for simplicity
883  *
884  * Note: according to Intel, this is not preferred use.  The command was
885  *       intended for the BIOS only, and may get confused with unsolicited
886  *       responses.  So, we shouldn't use it for normal operation from the
887  *       driver.
888  *       I left the codes, however, for debugging/testing purposes.
889  */
890
891 /* receive a response */
892 static int azx_single_wait_for_response(struct azx *chip, unsigned int addr)
893 {
894         int timeout = 50;
895
896         while (timeout--) {
897                 /* check IRV busy bit */
898                 if (azx_readw(chip, IRS) & AZX_IRS_VALID) {
899                         /* reuse rirb.res as the response return value */
900                         azx_bus(chip)->rirb.res[addr] = azx_readl(chip, IR);
901                         return 0;
902                 }
903                 udelay(1);
904         }
905         if (printk_ratelimit())
906                 dev_dbg(chip->card->dev, "get_response timeout: IRS=0x%x\n",
907                         azx_readw(chip, IRS));
908         azx_bus(chip)->rirb.res[addr] = -1;
909         return -EIO;
910 }
911
912 /* send a command */
913 static int azx_single_send_cmd(struct hdac_bus *bus, u32 val)
914 {
915         struct azx *chip = bus_to_azx(bus);
916         unsigned int addr = azx_command_addr(val);
917         int timeout = 50;
918
919         bus->last_cmd[azx_command_addr(val)] = val;
920         while (timeout--) {
921                 /* check ICB busy bit */
922                 if (!((azx_readw(chip, IRS) & AZX_IRS_BUSY))) {
923                         /* Clear IRV valid bit */
924                         azx_writew(chip, IRS, azx_readw(chip, IRS) |
925                                    AZX_IRS_VALID);
926                         azx_writel(chip, IC, val);
927                         azx_writew(chip, IRS, azx_readw(chip, IRS) |
928                                    AZX_IRS_BUSY);
929                         return azx_single_wait_for_response(chip, addr);
930                 }
931                 udelay(1);
932         }
933         if (printk_ratelimit())
934                 dev_dbg(chip->card->dev,
935                         "send_cmd timeout: IRS=0x%x, val=0x%x\n",
936                         azx_readw(chip, IRS), val);
937         return -EIO;
938 }
939
940 /* receive a response */
941 static int azx_single_get_response(struct hdac_bus *bus, unsigned int addr,
942                                    unsigned int *res)
943 {
944         if (res)
945                 *res = bus->rirb.res[addr];
946         return 0;
947 }
948
949 /*
950  * The below are the main callbacks from hda_codec.
951  *
952  * They are just the skeleton to call sub-callbacks according to the
953  * current setting of chip->single_cmd.
954  */
955
956 /* send a command */
957 static int azx_send_cmd(struct hdac_bus *bus, unsigned int val)
958 {
959         struct azx *chip = bus_to_azx(bus);
960
961         if (chip->disabled)
962                 return 0;
963         if (chip->single_cmd)
964                 return azx_single_send_cmd(bus, val);
965         else
966                 return snd_hdac_bus_send_cmd(bus, val);
967 }
968
969 /* get a response */
970 static int azx_get_response(struct hdac_bus *bus, unsigned int addr,
971                             unsigned int *res)
972 {
973         struct azx *chip = bus_to_azx(bus);
974
975         if (chip->disabled)
976                 return 0;
977         if (chip->single_cmd)
978                 return azx_single_get_response(bus, addr, res);
979         else
980                 return azx_rirb_get_response(bus, addr, res);
981 }
982
983 static int azx_link_power(struct hdac_bus *bus, bool enable)
984 {
985         struct azx *chip = bus_to_azx(bus);
986
987         if (chip->ops->link_power)
988                 return chip->ops->link_power(chip, enable);
989         else
990                 return -EINVAL;
991 }
992
993 static const struct hdac_bus_ops bus_core_ops = {
994         .command = azx_send_cmd,
995         .get_response = azx_get_response,
996         .link_power = azx_link_power,
997 };
998
999 #ifdef CONFIG_SND_HDA_DSP_LOADER
1000 /*
1001  * DSP loading code (e.g. for CA0132)
1002  */
1003
1004 /* use the first stream for loading DSP */
1005 static struct azx_dev *
1006 azx_get_dsp_loader_dev(struct azx *chip)
1007 {
1008         struct hdac_bus *bus = azx_bus(chip);
1009         struct hdac_stream *s;
1010
1011         list_for_each_entry(s, &bus->stream_list, list)
1012                 if (s->index == chip->playback_index_offset)
1013                         return stream_to_azx_dev(s);
1014
1015         return NULL;
1016 }
1017
1018 int snd_hda_codec_load_dsp_prepare(struct hda_codec *codec, unsigned int format,
1019                                    unsigned int byte_size,
1020                                    struct snd_dma_buffer *bufp)
1021 {
1022         struct hdac_bus *bus = &codec->bus->core;
1023         struct azx *chip = bus_to_azx(bus);
1024         struct azx_dev *azx_dev;
1025         struct hdac_stream *hstr;
1026         bool saved = false;
1027         int err;
1028
1029         azx_dev = azx_get_dsp_loader_dev(chip);
1030         hstr = azx_stream(azx_dev);
1031         spin_lock_irq(&bus->reg_lock);
1032         if (hstr->opened) {
1033                 chip->saved_azx_dev = *azx_dev;
1034                 saved = true;
1035         }
1036         spin_unlock_irq(&bus->reg_lock);
1037
1038         err = snd_hdac_dsp_prepare(hstr, format, byte_size, bufp);
1039         if (err < 0) {
1040                 spin_lock_irq(&bus->reg_lock);
1041                 if (saved)
1042                         *azx_dev = chip->saved_azx_dev;
1043                 spin_unlock_irq(&bus->reg_lock);
1044                 return err;
1045         }
1046
1047         hstr->prepared = 0;
1048         return err;
1049 }
1050 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_prepare);
1051
1052 void snd_hda_codec_load_dsp_trigger(struct hda_codec *codec, bool start)
1053 {
1054         struct hdac_bus *bus = &codec->bus->core;
1055         struct azx *chip = bus_to_azx(bus);
1056         struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1057
1058         snd_hdac_dsp_trigger(azx_stream(azx_dev), start);
1059 }
1060 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_trigger);
1061
1062 void snd_hda_codec_load_dsp_cleanup(struct hda_codec *codec,
1063                                     struct snd_dma_buffer *dmab)
1064 {
1065         struct hdac_bus *bus = &codec->bus->core;
1066         struct azx *chip = bus_to_azx(bus);
1067         struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1068         struct hdac_stream *hstr = azx_stream(azx_dev);
1069
1070         if (!dmab->area || !hstr->locked)
1071                 return;
1072
1073         snd_hdac_dsp_cleanup(hstr, dmab);
1074         spin_lock_irq(&bus->reg_lock);
1075         if (hstr->opened)
1076                 *azx_dev = chip->saved_azx_dev;
1077         hstr->locked = false;
1078         spin_unlock_irq(&bus->reg_lock);
1079 }
1080 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_cleanup);
1081 #endif /* CONFIG_SND_HDA_DSP_LOADER */
1082
1083 /*
1084  * reset and start the controller registers
1085  */
1086 void azx_init_chip(struct azx *chip, bool full_reset)
1087 {
1088         if (snd_hdac_bus_init_chip(azx_bus(chip), full_reset)) {
1089                 /* correct RINTCNT for CXT */
1090                 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1091                         azx_writew(chip, RINTCNT, 0xc0);
1092         }
1093 }
1094 EXPORT_SYMBOL_GPL(azx_init_chip);
1095
1096 void azx_stop_all_streams(struct azx *chip)
1097 {
1098         struct hdac_bus *bus = azx_bus(chip);
1099         struct hdac_stream *s;
1100
1101         list_for_each_entry(s, &bus->stream_list, list)
1102                 snd_hdac_stream_stop(s);
1103 }
1104 EXPORT_SYMBOL_GPL(azx_stop_all_streams);
1105
1106 void azx_stop_chip(struct azx *chip)
1107 {
1108         snd_hdac_bus_stop_chip(azx_bus(chip));
1109 }
1110 EXPORT_SYMBOL_GPL(azx_stop_chip);
1111
1112 /*
1113  * interrupt handler
1114  */
1115 static void stream_update(struct hdac_bus *bus, struct hdac_stream *s)
1116 {
1117         struct azx *chip = bus_to_azx(bus);
1118         struct azx_dev *azx_dev = stream_to_azx_dev(s);
1119
1120         /* check whether this IRQ is really acceptable */
1121         if (!chip->ops->position_check ||
1122             chip->ops->position_check(chip, azx_dev)) {
1123                 spin_unlock(&bus->reg_lock);
1124                 snd_pcm_period_elapsed(azx_stream(azx_dev)->substream);
1125                 spin_lock(&bus->reg_lock);
1126         }
1127 }
1128
1129 irqreturn_t azx_interrupt(int irq, void *dev_id)
1130 {
1131         struct azx *chip = dev_id;
1132         struct hdac_bus *bus = azx_bus(chip);
1133         u32 status;
1134         bool active, handled = false;
1135         int repeat = 0; /* count for avoiding endless loop */
1136
1137 #ifdef CONFIG_PM
1138         if (azx_has_pm_runtime(chip))
1139                 if (!pm_runtime_active(chip->card->dev))
1140                         return IRQ_NONE;
1141 #endif
1142
1143         spin_lock(&bus->reg_lock);
1144
1145         if (chip->disabled)
1146                 goto unlock;
1147
1148         do {
1149                 status = azx_readl(chip, INTSTS);
1150                 if (status == 0 || status == 0xffffffff)
1151                         break;
1152
1153                 handled = true;
1154                 active = false;
1155                 if (snd_hdac_bus_handle_stream_irq(bus, status, stream_update))
1156                         active = true;
1157
1158                 /* clear rirb int */
1159                 status = azx_readb(chip, RIRBSTS);
1160                 if (status & RIRB_INT_MASK) {
1161                         active = true;
1162                         if (status & RIRB_INT_RESPONSE) {
1163                                 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1164                                         udelay(80);
1165                                 snd_hdac_bus_update_rirb(bus);
1166                         }
1167                         azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);
1168                 }
1169         } while (active && ++repeat < 10);
1170
1171  unlock:
1172         spin_unlock(&bus->reg_lock);
1173
1174         return IRQ_RETVAL(handled);
1175 }
1176 EXPORT_SYMBOL_GPL(azx_interrupt);
1177
1178 /*
1179  * Codec initerface
1180  */
1181
1182 /*
1183  * Probe the given codec address
1184  */
1185 static int probe_codec(struct azx *chip, int addr)
1186 {
1187         unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) |
1188                 (AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID;
1189         struct hdac_bus *bus = azx_bus(chip);
1190         int err;
1191         unsigned int res = -1;
1192
1193         mutex_lock(&bus->cmd_mutex);
1194         chip->probing = 1;
1195         azx_send_cmd(bus, cmd);
1196         err = azx_get_response(bus, addr, &res);
1197         chip->probing = 0;
1198         mutex_unlock(&bus->cmd_mutex);
1199         if (err < 0 || res == -1)
1200                 return -EIO;
1201         dev_dbg(chip->card->dev, "codec #%d probed OK\n", addr);
1202         return 0;
1203 }
1204
1205 void snd_hda_bus_reset(struct hda_bus *bus)
1206 {
1207         struct azx *chip = bus_to_azx(&bus->core);
1208
1209         bus->in_reset = 1;
1210         azx_stop_chip(chip);
1211         azx_init_chip(chip, true);
1212         if (bus->core.chip_init)
1213                 snd_hda_bus_reset_codecs(bus);
1214         bus->in_reset = 0;
1215 }
1216
1217 static int get_jackpoll_interval(struct azx *chip)
1218 {
1219         int i;
1220         unsigned int j;
1221
1222         if (!chip->jackpoll_ms)
1223                 return 0;
1224
1225         i = chip->jackpoll_ms[chip->dev_index];
1226         if (i == 0)
1227                 return 0;
1228         if (i < 50 || i > 60000)
1229                 j = 0;
1230         else
1231                 j = msecs_to_jiffies(i);
1232         if (j == 0)
1233                 dev_warn(chip->card->dev,
1234                          "jackpoll_ms value out of range: %d\n", i);
1235         return j;
1236 }
1237
1238 /* HD-audio bus initialization */
1239 int azx_bus_init(struct azx *chip, const char *model,
1240                  const struct hdac_io_ops *io_ops)
1241 {
1242         struct hda_bus *bus = &chip->bus;
1243         int err;
1244
1245         err = snd_hdac_bus_init(&bus->core, chip->card->dev, &bus_core_ops,
1246                                 io_ops);
1247         if (err < 0)
1248                 return err;
1249
1250         bus->card = chip->card;
1251         mutex_init(&bus->prepare_mutex);
1252         bus->pci = chip->pci;
1253         bus->modelname = model;
1254         bus->mixer_assigned = -1;
1255         bus->core.snoop = azx_snoop(chip);
1256         if (chip->get_position[0] != azx_get_pos_lpib ||
1257             chip->get_position[1] != azx_get_pos_lpib)
1258                 bus->core.use_posbuf = true;
1259         bus->core.bdl_pos_adj = chip->bdl_pos_adj;
1260         if (chip->driver_caps & AZX_DCAPS_CORBRP_SELF_CLEAR)
1261                 bus->core.corbrp_self_clear = true;
1262
1263         if (chip->driver_caps & AZX_DCAPS_4K_BDLE_BOUNDARY)
1264                 bus->core.align_bdle_4k = true;
1265
1266         /* AMD chipsets often cause the communication stalls upon certain
1267          * sequence like the pin-detection.  It seems that forcing the synced
1268          * access works around the stall.  Grrr...
1269          */
1270         if (chip->driver_caps & AZX_DCAPS_SYNC_WRITE) {
1271                 dev_dbg(chip->card->dev, "Enable sync_write for stable communication\n");
1272                 bus->core.sync_write = 1;
1273                 bus->allow_bus_reset = 1;
1274         }
1275
1276         return 0;
1277 }
1278 EXPORT_SYMBOL_GPL(azx_bus_init);
1279
1280 /* Probe codecs */
1281 int azx_probe_codecs(struct azx *chip, unsigned int max_slots)
1282 {
1283         struct hdac_bus *bus = azx_bus(chip);
1284         int c, codecs, err;
1285
1286         codecs = 0;
1287         if (!max_slots)
1288                 max_slots = AZX_DEFAULT_CODECS;
1289
1290         /* First try to probe all given codec slots */
1291         for (c = 0; c < max_slots; c++) {
1292                 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1293                         if (probe_codec(chip, c) < 0) {
1294                                 /* Some BIOSen give you wrong codec addresses
1295                                  * that don't exist
1296                                  */
1297                                 dev_warn(chip->card->dev,
1298                                          "Codec #%d probe error; disabling it...\n", c);
1299                                 bus->codec_mask &= ~(1 << c);
1300                                 /* More badly, accessing to a non-existing
1301                                  * codec often screws up the controller chip,
1302                                  * and disturbs the further communications.
1303                                  * Thus if an error occurs during probing,
1304                                  * better to reset the controller chip to
1305                                  * get back to the sanity state.
1306                                  */
1307                                 azx_stop_chip(chip);
1308                                 azx_init_chip(chip, true);
1309                         }
1310                 }
1311         }
1312
1313         /* Then create codec instances */
1314         for (c = 0; c < max_slots; c++) {
1315                 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1316                         struct hda_codec *codec;
1317                         err = snd_hda_codec_new(&chip->bus, chip->card, c, &codec);
1318                         if (err < 0)
1319                                 continue;
1320                         codec->jackpoll_interval = get_jackpoll_interval(chip);
1321                         codec->beep_mode = chip->beep_mode;
1322                         codecs++;
1323                 }
1324         }
1325         if (!codecs) {
1326                 dev_err(chip->card->dev, "no codecs initialized\n");
1327                 return -ENXIO;
1328         }
1329         return 0;
1330 }
1331 EXPORT_SYMBOL_GPL(azx_probe_codecs);
1332
1333 /* configure each codec instance */
1334 int azx_codec_configure(struct azx *chip)
1335 {
1336         struct hda_codec *codec;
1337         list_for_each_codec(codec, &chip->bus) {
1338                 snd_hda_codec_configure(codec);
1339         }
1340         return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(azx_codec_configure);
1343
1344 static int stream_direction(struct azx *chip, unsigned char index)
1345 {
1346         if (index >= chip->capture_index_offset &&
1347             index < chip->capture_index_offset + chip->capture_streams)
1348                 return SNDRV_PCM_STREAM_CAPTURE;
1349         return SNDRV_PCM_STREAM_PLAYBACK;
1350 }
1351
1352 /* initialize SD streams */
1353 int azx_init_streams(struct azx *chip)
1354 {
1355         int i;
1356         int stream_tags[2] = { 0, 0 };
1357
1358         /* initialize each stream (aka device)
1359          * assign the starting bdl address to each stream (device)
1360          * and initialize
1361          */
1362         for (i = 0; i < chip->num_streams; i++) {
1363                 struct azx_dev *azx_dev = kzalloc(sizeof(*azx_dev), GFP_KERNEL);
1364                 int dir, tag;
1365
1366                 if (!azx_dev)
1367                         return -ENOMEM;
1368
1369                 dir = stream_direction(chip, i);
1370                 /* stream tag must be unique throughout
1371                  * the stream direction group,
1372                  * valid values 1...15
1373                  * use separate stream tag if the flag
1374                  * AZX_DCAPS_SEPARATE_STREAM_TAG is used
1375                  */
1376                 if (chip->driver_caps & AZX_DCAPS_SEPARATE_STREAM_TAG)
1377                         tag = ++stream_tags[dir];
1378                 else
1379                         tag = i + 1;
1380                 snd_hdac_stream_init(azx_bus(chip), azx_stream(azx_dev),
1381                                      i, dir, tag);
1382         }
1383
1384         return 0;
1385 }
1386 EXPORT_SYMBOL_GPL(azx_init_streams);
1387
1388 void azx_free_streams(struct azx *chip)
1389 {
1390         struct hdac_bus *bus = azx_bus(chip);
1391         struct hdac_stream *s;
1392
1393         while (!list_empty(&bus->stream_list)) {
1394                 s = list_first_entry(&bus->stream_list, struct hdac_stream, list);
1395                 list_del(&s->list);
1396                 kfree(stream_to_azx_dev(s));
1397         }
1398 }
1399 EXPORT_SYMBOL_GPL(azx_free_streams);