i2c: opal: make use of the new infrastructure for quirks
[cascardo/linux.git] / tools / perf / builtin-timechart.c
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include <traceevent/event-parse.h>
16
17 #include "builtin.h"
18
19 #include "util/util.h"
20
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
30
31 #include "perf.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40 #include "util/debug.h"
41
42 #define SUPPORT_OLD_POWER_EVENTS 1
43 #define PWR_EVENT_EXIT -1
44
45 struct per_pid;
46 struct power_event;
47 struct wake_event;
48
49 struct timechart {
50         struct perf_tool        tool;
51         struct per_pid          *all_data;
52         struct power_event      *power_events;
53         struct wake_event       *wake_events;
54         int                     proc_num;
55         unsigned int            numcpus;
56         u64                     min_freq,       /* Lowest CPU frequency seen */
57                                 max_freq,       /* Highest CPU frequency seen */
58                                 turbo_frequency,
59                                 first_time, last_time;
60         bool                    power_only,
61                                 tasks_only,
62                                 with_backtrace,
63                                 topology;
64         /* IO related settings */
65         u64                     io_events;
66         bool                    io_only,
67                                 skip_eagain;
68         u64                     min_time,
69                                 merge_dist;
70 };
71
72 struct per_pidcomm;
73 struct cpu_sample;
74 struct io_sample;
75
76 /*
77  * Datastructure layout:
78  * We keep an list of "pid"s, matching the kernels notion of a task struct.
79  * Each "pid" entry, has a list of "comm"s.
80  *      this is because we want to track different programs different, while
81  *      exec will reuse the original pid (by design).
82  * Each comm has a list of samples that will be used to draw
83  * final graph.
84  */
85
86 struct per_pid {
87         struct per_pid *next;
88
89         int             pid;
90         int             ppid;
91
92         u64             start_time;
93         u64             end_time;
94         u64             total_time;
95         u64             total_bytes;
96         int             display;
97
98         struct per_pidcomm *all;
99         struct per_pidcomm *current;
100 };
101
102
103 struct per_pidcomm {
104         struct per_pidcomm *next;
105
106         u64             start_time;
107         u64             end_time;
108         u64             total_time;
109         u64             max_bytes;
110         u64             total_bytes;
111
112         int             Y;
113         int             display;
114
115         long            state;
116         u64             state_since;
117
118         char            *comm;
119
120         struct cpu_sample *samples;
121         struct io_sample  *io_samples;
122 };
123
124 struct sample_wrapper {
125         struct sample_wrapper *next;
126
127         u64             timestamp;
128         unsigned char   data[0];
129 };
130
131 #define TYPE_NONE       0
132 #define TYPE_RUNNING    1
133 #define TYPE_WAITING    2
134 #define TYPE_BLOCKED    3
135
136 struct cpu_sample {
137         struct cpu_sample *next;
138
139         u64 start_time;
140         u64 end_time;
141         int type;
142         int cpu;
143         const char *backtrace;
144 };
145
146 enum {
147         IOTYPE_READ,
148         IOTYPE_WRITE,
149         IOTYPE_SYNC,
150         IOTYPE_TX,
151         IOTYPE_RX,
152         IOTYPE_POLL,
153 };
154
155 struct io_sample {
156         struct io_sample *next;
157
158         u64 start_time;
159         u64 end_time;
160         u64 bytes;
161         int type;
162         int fd;
163         int err;
164         int merges;
165 };
166
167 #define CSTATE 1
168 #define PSTATE 2
169
170 struct power_event {
171         struct power_event *next;
172         int type;
173         int state;
174         u64 start_time;
175         u64 end_time;
176         int cpu;
177 };
178
179 struct wake_event {
180         struct wake_event *next;
181         int waker;
182         int wakee;
183         u64 time;
184         const char *backtrace;
185 };
186
187 struct process_filter {
188         char                    *name;
189         int                     pid;
190         struct process_filter   *next;
191 };
192
193 static struct process_filter *process_filter;
194
195
196 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
197 {
198         struct per_pid *cursor = tchart->all_data;
199
200         while (cursor) {
201                 if (cursor->pid == pid)
202                         return cursor;
203                 cursor = cursor->next;
204         }
205         cursor = zalloc(sizeof(*cursor));
206         assert(cursor != NULL);
207         cursor->pid = pid;
208         cursor->next = tchart->all_data;
209         tchart->all_data = cursor;
210         return cursor;
211 }
212
213 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
214 {
215         struct per_pid *p;
216         struct per_pidcomm *c;
217         p = find_create_pid(tchart, pid);
218         c = p->all;
219         while (c) {
220                 if (c->comm && strcmp(c->comm, comm) == 0) {
221                         p->current = c;
222                         return;
223                 }
224                 if (!c->comm) {
225                         c->comm = strdup(comm);
226                         p->current = c;
227                         return;
228                 }
229                 c = c->next;
230         }
231         c = zalloc(sizeof(*c));
232         assert(c != NULL);
233         c->comm = strdup(comm);
234         p->current = c;
235         c->next = p->all;
236         p->all = c;
237 }
238
239 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
240 {
241         struct per_pid *p, *pp;
242         p = find_create_pid(tchart, pid);
243         pp = find_create_pid(tchart, ppid);
244         p->ppid = ppid;
245         if (pp->current && pp->current->comm && !p->current)
246                 pid_set_comm(tchart, pid, pp->current->comm);
247
248         p->start_time = timestamp;
249         if (p->current && !p->current->start_time) {
250                 p->current->start_time = timestamp;
251                 p->current->state_since = timestamp;
252         }
253 }
254
255 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
256 {
257         struct per_pid *p;
258         p = find_create_pid(tchart, pid);
259         p->end_time = timestamp;
260         if (p->current)
261                 p->current->end_time = timestamp;
262 }
263
264 static void pid_put_sample(struct timechart *tchart, int pid, int type,
265                            unsigned int cpu, u64 start, u64 end,
266                            const char *backtrace)
267 {
268         struct per_pid *p;
269         struct per_pidcomm *c;
270         struct cpu_sample *sample;
271
272         p = find_create_pid(tchart, pid);
273         c = p->current;
274         if (!c) {
275                 c = zalloc(sizeof(*c));
276                 assert(c != NULL);
277                 p->current = c;
278                 c->next = p->all;
279                 p->all = c;
280         }
281
282         sample = zalloc(sizeof(*sample));
283         assert(sample != NULL);
284         sample->start_time = start;
285         sample->end_time = end;
286         sample->type = type;
287         sample->next = c->samples;
288         sample->cpu = cpu;
289         sample->backtrace = backtrace;
290         c->samples = sample;
291
292         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
293                 c->total_time += (end-start);
294                 p->total_time += (end-start);
295         }
296
297         if (c->start_time == 0 || c->start_time > start)
298                 c->start_time = start;
299         if (p->start_time == 0 || p->start_time > start)
300                 p->start_time = start;
301 }
302
303 #define MAX_CPUS 4096
304
305 static u64 cpus_cstate_start_times[MAX_CPUS];
306 static int cpus_cstate_state[MAX_CPUS];
307 static u64 cpus_pstate_start_times[MAX_CPUS];
308 static u64 cpus_pstate_state[MAX_CPUS];
309
310 static int process_comm_event(struct perf_tool *tool,
311                               union perf_event *event,
312                               struct perf_sample *sample __maybe_unused,
313                               struct machine *machine __maybe_unused)
314 {
315         struct timechart *tchart = container_of(tool, struct timechart, tool);
316         pid_set_comm(tchart, event->comm.tid, event->comm.comm);
317         return 0;
318 }
319
320 static int process_fork_event(struct perf_tool *tool,
321                               union perf_event *event,
322                               struct perf_sample *sample __maybe_unused,
323                               struct machine *machine __maybe_unused)
324 {
325         struct timechart *tchart = container_of(tool, struct timechart, tool);
326         pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
327         return 0;
328 }
329
330 static int process_exit_event(struct perf_tool *tool,
331                               union perf_event *event,
332                               struct perf_sample *sample __maybe_unused,
333                               struct machine *machine __maybe_unused)
334 {
335         struct timechart *tchart = container_of(tool, struct timechart, tool);
336         pid_exit(tchart, event->fork.pid, event->fork.time);
337         return 0;
338 }
339
340 #ifdef SUPPORT_OLD_POWER_EVENTS
341 static int use_old_power_events;
342 #endif
343
344 static void c_state_start(int cpu, u64 timestamp, int state)
345 {
346         cpus_cstate_start_times[cpu] = timestamp;
347         cpus_cstate_state[cpu] = state;
348 }
349
350 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
351 {
352         struct power_event *pwr = zalloc(sizeof(*pwr));
353
354         if (!pwr)
355                 return;
356
357         pwr->state = cpus_cstate_state[cpu];
358         pwr->start_time = cpus_cstate_start_times[cpu];
359         pwr->end_time = timestamp;
360         pwr->cpu = cpu;
361         pwr->type = CSTATE;
362         pwr->next = tchart->power_events;
363
364         tchart->power_events = pwr;
365 }
366
367 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
368 {
369         struct power_event *pwr;
370
371         if (new_freq > 8000000) /* detect invalid data */
372                 return;
373
374         pwr = zalloc(sizeof(*pwr));
375         if (!pwr)
376                 return;
377
378         pwr->state = cpus_pstate_state[cpu];
379         pwr->start_time = cpus_pstate_start_times[cpu];
380         pwr->end_time = timestamp;
381         pwr->cpu = cpu;
382         pwr->type = PSTATE;
383         pwr->next = tchart->power_events;
384
385         if (!pwr->start_time)
386                 pwr->start_time = tchart->first_time;
387
388         tchart->power_events = pwr;
389
390         cpus_pstate_state[cpu] = new_freq;
391         cpus_pstate_start_times[cpu] = timestamp;
392
393         if ((u64)new_freq > tchart->max_freq)
394                 tchart->max_freq = new_freq;
395
396         if (new_freq < tchart->min_freq || tchart->min_freq == 0)
397                 tchart->min_freq = new_freq;
398
399         if (new_freq == tchart->max_freq - 1000)
400                 tchart->turbo_frequency = tchart->max_freq;
401 }
402
403 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
404                          int waker, int wakee, u8 flags, const char *backtrace)
405 {
406         struct per_pid *p;
407         struct wake_event *we = zalloc(sizeof(*we));
408
409         if (!we)
410                 return;
411
412         we->time = timestamp;
413         we->waker = waker;
414         we->backtrace = backtrace;
415
416         if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
417                 we->waker = -1;
418
419         we->wakee = wakee;
420         we->next = tchart->wake_events;
421         tchart->wake_events = we;
422         p = find_create_pid(tchart, we->wakee);
423
424         if (p && p->current && p->current->state == TYPE_NONE) {
425                 p->current->state_since = timestamp;
426                 p->current->state = TYPE_WAITING;
427         }
428         if (p && p->current && p->current->state == TYPE_BLOCKED) {
429                 pid_put_sample(tchart, p->pid, p->current->state, cpu,
430                                p->current->state_since, timestamp, NULL);
431                 p->current->state_since = timestamp;
432                 p->current->state = TYPE_WAITING;
433         }
434 }
435
436 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
437                          int prev_pid, int next_pid, u64 prev_state,
438                          const char *backtrace)
439 {
440         struct per_pid *p = NULL, *prev_p;
441
442         prev_p = find_create_pid(tchart, prev_pid);
443
444         p = find_create_pid(tchart, next_pid);
445
446         if (prev_p->current && prev_p->current->state != TYPE_NONE)
447                 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
448                                prev_p->current->state_since, timestamp,
449                                backtrace);
450         if (p && p->current) {
451                 if (p->current->state != TYPE_NONE)
452                         pid_put_sample(tchart, next_pid, p->current->state, cpu,
453                                        p->current->state_since, timestamp,
454                                        backtrace);
455
456                 p->current->state_since = timestamp;
457                 p->current->state = TYPE_RUNNING;
458         }
459
460         if (prev_p->current) {
461                 prev_p->current->state = TYPE_NONE;
462                 prev_p->current->state_since = timestamp;
463                 if (prev_state & 2)
464                         prev_p->current->state = TYPE_BLOCKED;
465                 if (prev_state == 0)
466                         prev_p->current->state = TYPE_WAITING;
467         }
468 }
469
470 static const char *cat_backtrace(union perf_event *event,
471                                  struct perf_sample *sample,
472                                  struct machine *machine)
473 {
474         struct addr_location al;
475         unsigned int i;
476         char *p = NULL;
477         size_t p_len;
478         u8 cpumode = PERF_RECORD_MISC_USER;
479         struct addr_location tal;
480         struct ip_callchain *chain = sample->callchain;
481         FILE *f = open_memstream(&p, &p_len);
482
483         if (!f) {
484                 perror("open_memstream error");
485                 return NULL;
486         }
487
488         if (!chain)
489                 goto exit;
490
491         if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
492                 fprintf(stderr, "problem processing %d event, skipping it.\n",
493                         event->header.type);
494                 goto exit;
495         }
496
497         for (i = 0; i < chain->nr; i++) {
498                 u64 ip;
499
500                 if (callchain_param.order == ORDER_CALLEE)
501                         ip = chain->ips[i];
502                 else
503                         ip = chain->ips[chain->nr - i - 1];
504
505                 if (ip >= PERF_CONTEXT_MAX) {
506                         switch (ip) {
507                         case PERF_CONTEXT_HV:
508                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
509                                 break;
510                         case PERF_CONTEXT_KERNEL:
511                                 cpumode = PERF_RECORD_MISC_KERNEL;
512                                 break;
513                         case PERF_CONTEXT_USER:
514                                 cpumode = PERF_RECORD_MISC_USER;
515                                 break;
516                         default:
517                                 pr_debug("invalid callchain context: "
518                                          "%"PRId64"\n", (s64) ip);
519
520                                 /*
521                                  * It seems the callchain is corrupted.
522                                  * Discard all.
523                                  */
524                                 zfree(&p);
525                                 goto exit;
526                         }
527                         continue;
528                 }
529
530                 tal.filtered = 0;
531                 thread__find_addr_location(al.thread, cpumode,
532                                            MAP__FUNCTION, ip, &tal);
533
534                 if (tal.sym)
535                         fprintf(f, "..... %016" PRIx64 " %s\n", ip,
536                                 tal.sym->name);
537                 else
538                         fprintf(f, "..... %016" PRIx64 "\n", ip);
539         }
540
541 exit:
542         fclose(f);
543
544         return p;
545 }
546
547 typedef int (*tracepoint_handler)(struct timechart *tchart,
548                                   struct perf_evsel *evsel,
549                                   struct perf_sample *sample,
550                                   const char *backtrace);
551
552 static int process_sample_event(struct perf_tool *tool,
553                                 union perf_event *event,
554                                 struct perf_sample *sample,
555                                 struct perf_evsel *evsel,
556                                 struct machine *machine)
557 {
558         struct timechart *tchart = container_of(tool, struct timechart, tool);
559
560         if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
561                 if (!tchart->first_time || tchart->first_time > sample->time)
562                         tchart->first_time = sample->time;
563                 if (tchart->last_time < sample->time)
564                         tchart->last_time = sample->time;
565         }
566
567         if (evsel->handler != NULL) {
568                 tracepoint_handler f = evsel->handler;
569                 return f(tchart, evsel, sample,
570                          cat_backtrace(event, sample, machine));
571         }
572
573         return 0;
574 }
575
576 static int
577 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
578                         struct perf_evsel *evsel,
579                         struct perf_sample *sample,
580                         const char *backtrace __maybe_unused)
581 {
582         u32 state = perf_evsel__intval(evsel, sample, "state");
583         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
584
585         if (state == (u32)PWR_EVENT_EXIT)
586                 c_state_end(tchart, cpu_id, sample->time);
587         else
588                 c_state_start(cpu_id, sample->time, state);
589         return 0;
590 }
591
592 static int
593 process_sample_cpu_frequency(struct timechart *tchart,
594                              struct perf_evsel *evsel,
595                              struct perf_sample *sample,
596                              const char *backtrace __maybe_unused)
597 {
598         u32 state = perf_evsel__intval(evsel, sample, "state");
599         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
600
601         p_state_change(tchart, cpu_id, sample->time, state);
602         return 0;
603 }
604
605 static int
606 process_sample_sched_wakeup(struct timechart *tchart,
607                             struct perf_evsel *evsel,
608                             struct perf_sample *sample,
609                             const char *backtrace)
610 {
611         u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
612         int waker = perf_evsel__intval(evsel, sample, "common_pid");
613         int wakee = perf_evsel__intval(evsel, sample, "pid");
614
615         sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
616         return 0;
617 }
618
619 static int
620 process_sample_sched_switch(struct timechart *tchart,
621                             struct perf_evsel *evsel,
622                             struct perf_sample *sample,
623                             const char *backtrace)
624 {
625         int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
626         int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
627         u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
628
629         sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
630                      prev_state, backtrace);
631         return 0;
632 }
633
634 #ifdef SUPPORT_OLD_POWER_EVENTS
635 static int
636 process_sample_power_start(struct timechart *tchart __maybe_unused,
637                            struct perf_evsel *evsel,
638                            struct perf_sample *sample,
639                            const char *backtrace __maybe_unused)
640 {
641         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
642         u64 value = perf_evsel__intval(evsel, sample, "value");
643
644         c_state_start(cpu_id, sample->time, value);
645         return 0;
646 }
647
648 static int
649 process_sample_power_end(struct timechart *tchart,
650                          struct perf_evsel *evsel __maybe_unused,
651                          struct perf_sample *sample,
652                          const char *backtrace __maybe_unused)
653 {
654         c_state_end(tchart, sample->cpu, sample->time);
655         return 0;
656 }
657
658 static int
659 process_sample_power_frequency(struct timechart *tchart,
660                                struct perf_evsel *evsel,
661                                struct perf_sample *sample,
662                                const char *backtrace __maybe_unused)
663 {
664         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
665         u64 value = perf_evsel__intval(evsel, sample, "value");
666
667         p_state_change(tchart, cpu_id, sample->time, value);
668         return 0;
669 }
670 #endif /* SUPPORT_OLD_POWER_EVENTS */
671
672 /*
673  * After the last sample we need to wrap up the current C/P state
674  * and close out each CPU for these.
675  */
676 static void end_sample_processing(struct timechart *tchart)
677 {
678         u64 cpu;
679         struct power_event *pwr;
680
681         for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
682                 /* C state */
683 #if 0
684                 pwr = zalloc(sizeof(*pwr));
685                 if (!pwr)
686                         return;
687
688                 pwr->state = cpus_cstate_state[cpu];
689                 pwr->start_time = cpus_cstate_start_times[cpu];
690                 pwr->end_time = tchart->last_time;
691                 pwr->cpu = cpu;
692                 pwr->type = CSTATE;
693                 pwr->next = tchart->power_events;
694
695                 tchart->power_events = pwr;
696 #endif
697                 /* P state */
698
699                 pwr = zalloc(sizeof(*pwr));
700                 if (!pwr)
701                         return;
702
703                 pwr->state = cpus_pstate_state[cpu];
704                 pwr->start_time = cpus_pstate_start_times[cpu];
705                 pwr->end_time = tchart->last_time;
706                 pwr->cpu = cpu;
707                 pwr->type = PSTATE;
708                 pwr->next = tchart->power_events;
709
710                 if (!pwr->start_time)
711                         pwr->start_time = tchart->first_time;
712                 if (!pwr->state)
713                         pwr->state = tchart->min_freq;
714                 tchart->power_events = pwr;
715         }
716 }
717
718 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
719                                u64 start, int fd)
720 {
721         struct per_pid *p = find_create_pid(tchart, pid);
722         struct per_pidcomm *c = p->current;
723         struct io_sample *sample;
724         struct io_sample *prev;
725
726         if (!c) {
727                 c = zalloc(sizeof(*c));
728                 if (!c)
729                         return -ENOMEM;
730                 p->current = c;
731                 c->next = p->all;
732                 p->all = c;
733         }
734
735         prev = c->io_samples;
736
737         if (prev && prev->start_time && !prev->end_time) {
738                 pr_warning("Skip invalid start event: "
739                            "previous event already started!\n");
740
741                 /* remove previous event that has been started,
742                  * we are not sure we will ever get an end for it */
743                 c->io_samples = prev->next;
744                 free(prev);
745                 return 0;
746         }
747
748         sample = zalloc(sizeof(*sample));
749         if (!sample)
750                 return -ENOMEM;
751         sample->start_time = start;
752         sample->type = type;
753         sample->fd = fd;
754         sample->next = c->io_samples;
755         c->io_samples = sample;
756
757         if (c->start_time == 0 || c->start_time > start)
758                 c->start_time = start;
759
760         return 0;
761 }
762
763 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
764                              u64 end, long ret)
765 {
766         struct per_pid *p = find_create_pid(tchart, pid);
767         struct per_pidcomm *c = p->current;
768         struct io_sample *sample, *prev;
769
770         if (!c) {
771                 pr_warning("Invalid pidcomm!\n");
772                 return -1;
773         }
774
775         sample = c->io_samples;
776
777         if (!sample) /* skip partially captured events */
778                 return 0;
779
780         if (sample->end_time) {
781                 pr_warning("Skip invalid end event: "
782                            "previous event already ended!\n");
783                 return 0;
784         }
785
786         if (sample->type != type) {
787                 pr_warning("Skip invalid end event: invalid event type!\n");
788                 return 0;
789         }
790
791         sample->end_time = end;
792         prev = sample->next;
793
794         /* we want to be able to see small and fast transfers, so make them
795          * at least min_time long, but don't overlap them */
796         if (sample->end_time - sample->start_time < tchart->min_time)
797                 sample->end_time = sample->start_time + tchart->min_time;
798         if (prev && sample->start_time < prev->end_time) {
799                 if (prev->err) /* try to make errors more visible */
800                         sample->start_time = prev->end_time;
801                 else
802                         prev->end_time = sample->start_time;
803         }
804
805         if (ret < 0) {
806                 sample->err = ret;
807         } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
808                    type == IOTYPE_TX || type == IOTYPE_RX) {
809
810                 if ((u64)ret > c->max_bytes)
811                         c->max_bytes = ret;
812
813                 c->total_bytes += ret;
814                 p->total_bytes += ret;
815                 sample->bytes = ret;
816         }
817
818         /* merge two requests to make svg smaller and render-friendly */
819         if (prev &&
820             prev->type == sample->type &&
821             prev->err == sample->err &&
822             prev->fd == sample->fd &&
823             prev->end_time + tchart->merge_dist >= sample->start_time) {
824
825                 sample->bytes += prev->bytes;
826                 sample->merges += prev->merges + 1;
827
828                 sample->start_time = prev->start_time;
829                 sample->next = prev->next;
830                 free(prev);
831
832                 if (!sample->err && sample->bytes > c->max_bytes)
833                         c->max_bytes = sample->bytes;
834         }
835
836         tchart->io_events++;
837
838         return 0;
839 }
840
841 static int
842 process_enter_read(struct timechart *tchart,
843                    struct perf_evsel *evsel,
844                    struct perf_sample *sample)
845 {
846         long fd = perf_evsel__intval(evsel, sample, "fd");
847         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
848                                    sample->time, fd);
849 }
850
851 static int
852 process_exit_read(struct timechart *tchart,
853                   struct perf_evsel *evsel,
854                   struct perf_sample *sample)
855 {
856         long ret = perf_evsel__intval(evsel, sample, "ret");
857         return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
858                                  sample->time, ret);
859 }
860
861 static int
862 process_enter_write(struct timechart *tchart,
863                     struct perf_evsel *evsel,
864                     struct perf_sample *sample)
865 {
866         long fd = perf_evsel__intval(evsel, sample, "fd");
867         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
868                                    sample->time, fd);
869 }
870
871 static int
872 process_exit_write(struct timechart *tchart,
873                    struct perf_evsel *evsel,
874                    struct perf_sample *sample)
875 {
876         long ret = perf_evsel__intval(evsel, sample, "ret");
877         return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
878                                  sample->time, ret);
879 }
880
881 static int
882 process_enter_sync(struct timechart *tchart,
883                    struct perf_evsel *evsel,
884                    struct perf_sample *sample)
885 {
886         long fd = perf_evsel__intval(evsel, sample, "fd");
887         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
888                                    sample->time, fd);
889 }
890
891 static int
892 process_exit_sync(struct timechart *tchart,
893                   struct perf_evsel *evsel,
894                   struct perf_sample *sample)
895 {
896         long ret = perf_evsel__intval(evsel, sample, "ret");
897         return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
898                                  sample->time, ret);
899 }
900
901 static int
902 process_enter_tx(struct timechart *tchart,
903                  struct perf_evsel *evsel,
904                  struct perf_sample *sample)
905 {
906         long fd = perf_evsel__intval(evsel, sample, "fd");
907         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
908                                    sample->time, fd);
909 }
910
911 static int
912 process_exit_tx(struct timechart *tchart,
913                 struct perf_evsel *evsel,
914                 struct perf_sample *sample)
915 {
916         long ret = perf_evsel__intval(evsel, sample, "ret");
917         return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
918                                  sample->time, ret);
919 }
920
921 static int
922 process_enter_rx(struct timechart *tchart,
923                  struct perf_evsel *evsel,
924                  struct perf_sample *sample)
925 {
926         long fd = perf_evsel__intval(evsel, sample, "fd");
927         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
928                                    sample->time, fd);
929 }
930
931 static int
932 process_exit_rx(struct timechart *tchart,
933                 struct perf_evsel *evsel,
934                 struct perf_sample *sample)
935 {
936         long ret = perf_evsel__intval(evsel, sample, "ret");
937         return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
938                                  sample->time, ret);
939 }
940
941 static int
942 process_enter_poll(struct timechart *tchart,
943                    struct perf_evsel *evsel,
944                    struct perf_sample *sample)
945 {
946         long fd = perf_evsel__intval(evsel, sample, "fd");
947         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
948                                    sample->time, fd);
949 }
950
951 static int
952 process_exit_poll(struct timechart *tchart,
953                   struct perf_evsel *evsel,
954                   struct perf_sample *sample)
955 {
956         long ret = perf_evsel__intval(evsel, sample, "ret");
957         return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
958                                  sample->time, ret);
959 }
960
961 /*
962  * Sort the pid datastructure
963  */
964 static void sort_pids(struct timechart *tchart)
965 {
966         struct per_pid *new_list, *p, *cursor, *prev;
967         /* sort by ppid first, then by pid, lowest to highest */
968
969         new_list = NULL;
970
971         while (tchart->all_data) {
972                 p = tchart->all_data;
973                 tchart->all_data = p->next;
974                 p->next = NULL;
975
976                 if (new_list == NULL) {
977                         new_list = p;
978                         p->next = NULL;
979                         continue;
980                 }
981                 prev = NULL;
982                 cursor = new_list;
983                 while (cursor) {
984                         if (cursor->ppid > p->ppid ||
985                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
986                                 /* must insert before */
987                                 if (prev) {
988                                         p->next = prev->next;
989                                         prev->next = p;
990                                         cursor = NULL;
991                                         continue;
992                                 } else {
993                                         p->next = new_list;
994                                         new_list = p;
995                                         cursor = NULL;
996                                         continue;
997                                 }
998                         }
999
1000                         prev = cursor;
1001                         cursor = cursor->next;
1002                         if (!cursor)
1003                                 prev->next = p;
1004                 }
1005         }
1006         tchart->all_data = new_list;
1007 }
1008
1009
1010 static void draw_c_p_states(struct timechart *tchart)
1011 {
1012         struct power_event *pwr;
1013         pwr = tchart->power_events;
1014
1015         /*
1016          * two pass drawing so that the P state bars are on top of the C state blocks
1017          */
1018         while (pwr) {
1019                 if (pwr->type == CSTATE)
1020                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1021                 pwr = pwr->next;
1022         }
1023
1024         pwr = tchart->power_events;
1025         while (pwr) {
1026                 if (pwr->type == PSTATE) {
1027                         if (!pwr->state)
1028                                 pwr->state = tchart->min_freq;
1029                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030                 }
1031                 pwr = pwr->next;
1032         }
1033 }
1034
1035 static void draw_wakeups(struct timechart *tchart)
1036 {
1037         struct wake_event *we;
1038         struct per_pid *p;
1039         struct per_pidcomm *c;
1040
1041         we = tchart->wake_events;
1042         while (we) {
1043                 int from = 0, to = 0;
1044                 char *task_from = NULL, *task_to = NULL;
1045
1046                 /* locate the column of the waker and wakee */
1047                 p = tchart->all_data;
1048                 while (p) {
1049                         if (p->pid == we->waker || p->pid == we->wakee) {
1050                                 c = p->all;
1051                                 while (c) {
1052                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1053                                                 if (p->pid == we->waker && !from) {
1054                                                         from = c->Y;
1055                                                         task_from = strdup(c->comm);
1056                                                 }
1057                                                 if (p->pid == we->wakee && !to) {
1058                                                         to = c->Y;
1059                                                         task_to = strdup(c->comm);
1060                                                 }
1061                                         }
1062                                         c = c->next;
1063                                 }
1064                                 c = p->all;
1065                                 while (c) {
1066                                         if (p->pid == we->waker && !from) {
1067                                                 from = c->Y;
1068                                                 task_from = strdup(c->comm);
1069                                         }
1070                                         if (p->pid == we->wakee && !to) {
1071                                                 to = c->Y;
1072                                                 task_to = strdup(c->comm);
1073                                         }
1074                                         c = c->next;
1075                                 }
1076                         }
1077                         p = p->next;
1078                 }
1079
1080                 if (!task_from) {
1081                         task_from = malloc(40);
1082                         sprintf(task_from, "[%i]", we->waker);
1083                 }
1084                 if (!task_to) {
1085                         task_to = malloc(40);
1086                         sprintf(task_to, "[%i]", we->wakee);
1087                 }
1088
1089                 if (we->waker == -1)
1090                         svg_interrupt(we->time, to, we->backtrace);
1091                 else if (from && to && abs(from - to) == 1)
1092                         svg_wakeline(we->time, from, to, we->backtrace);
1093                 else
1094                         svg_partial_wakeline(we->time, from, task_from, to,
1095                                              task_to, we->backtrace);
1096                 we = we->next;
1097
1098                 free(task_from);
1099                 free(task_to);
1100         }
1101 }
1102
1103 static void draw_cpu_usage(struct timechart *tchart)
1104 {
1105         struct per_pid *p;
1106         struct per_pidcomm *c;
1107         struct cpu_sample *sample;
1108         p = tchart->all_data;
1109         while (p) {
1110                 c = p->all;
1111                 while (c) {
1112                         sample = c->samples;
1113                         while (sample) {
1114                                 if (sample->type == TYPE_RUNNING) {
1115                                         svg_process(sample->cpu,
1116                                                     sample->start_time,
1117                                                     sample->end_time,
1118                                                     p->pid,
1119                                                     c->comm,
1120                                                     sample->backtrace);
1121                                 }
1122
1123                                 sample = sample->next;
1124                         }
1125                         c = c->next;
1126                 }
1127                 p = p->next;
1128         }
1129 }
1130
1131 static void draw_io_bars(struct timechart *tchart)
1132 {
1133         const char *suf;
1134         double bytes;
1135         char comm[256];
1136         struct per_pid *p;
1137         struct per_pidcomm *c;
1138         struct io_sample *sample;
1139         int Y = 1;
1140
1141         p = tchart->all_data;
1142         while (p) {
1143                 c = p->all;
1144                 while (c) {
1145                         if (!c->display) {
1146                                 c->Y = 0;
1147                                 c = c->next;
1148                                 continue;
1149                         }
1150
1151                         svg_box(Y, c->start_time, c->end_time, "process3");
1152                         sample = c->io_samples;
1153                         for (sample = c->io_samples; sample; sample = sample->next) {
1154                                 double h = (double)sample->bytes / c->max_bytes;
1155
1156                                 if (tchart->skip_eagain &&
1157                                     sample->err == -EAGAIN)
1158                                         continue;
1159
1160                                 if (sample->err)
1161                                         h = 1;
1162
1163                                 if (sample->type == IOTYPE_SYNC)
1164                                         svg_fbox(Y,
1165                                                 sample->start_time,
1166                                                 sample->end_time,
1167                                                 1,
1168                                                 sample->err ? "error" : "sync",
1169                                                 sample->fd,
1170                                                 sample->err,
1171                                                 sample->merges);
1172                                 else if (sample->type == IOTYPE_POLL)
1173                                         svg_fbox(Y,
1174                                                 sample->start_time,
1175                                                 sample->end_time,
1176                                                 1,
1177                                                 sample->err ? "error" : "poll",
1178                                                 sample->fd,
1179                                                 sample->err,
1180                                                 sample->merges);
1181                                 else if (sample->type == IOTYPE_READ)
1182                                         svg_ubox(Y,
1183                                                 sample->start_time,
1184                                                 sample->end_time,
1185                                                 h,
1186                                                 sample->err ? "error" : "disk",
1187                                                 sample->fd,
1188                                                 sample->err,
1189                                                 sample->merges);
1190                                 else if (sample->type == IOTYPE_WRITE)
1191                                         svg_lbox(Y,
1192                                                 sample->start_time,
1193                                                 sample->end_time,
1194                                                 h,
1195                                                 sample->err ? "error" : "disk",
1196                                                 sample->fd,
1197                                                 sample->err,
1198                                                 sample->merges);
1199                                 else if (sample->type == IOTYPE_RX)
1200                                         svg_ubox(Y,
1201                                                 sample->start_time,
1202                                                 sample->end_time,
1203                                                 h,
1204                                                 sample->err ? "error" : "net",
1205                                                 sample->fd,
1206                                                 sample->err,
1207                                                 sample->merges);
1208                                 else if (sample->type == IOTYPE_TX)
1209                                         svg_lbox(Y,
1210                                                 sample->start_time,
1211                                                 sample->end_time,
1212                                                 h,
1213                                                 sample->err ? "error" : "net",
1214                                                 sample->fd,
1215                                                 sample->err,
1216                                                 sample->merges);
1217                         }
1218
1219                         suf = "";
1220                         bytes = c->total_bytes;
1221                         if (bytes > 1024) {
1222                                 bytes = bytes / 1024;
1223                                 suf = "K";
1224                         }
1225                         if (bytes > 1024) {
1226                                 bytes = bytes / 1024;
1227                                 suf = "M";
1228                         }
1229                         if (bytes > 1024) {
1230                                 bytes = bytes / 1024;
1231                                 suf = "G";
1232                         }
1233
1234
1235                         sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1236                         svg_text(Y, c->start_time, comm);
1237
1238                         c->Y = Y;
1239                         Y++;
1240                         c = c->next;
1241                 }
1242                 p = p->next;
1243         }
1244 }
1245
1246 static void draw_process_bars(struct timechart *tchart)
1247 {
1248         struct per_pid *p;
1249         struct per_pidcomm *c;
1250         struct cpu_sample *sample;
1251         int Y = 0;
1252
1253         Y = 2 * tchart->numcpus + 2;
1254
1255         p = tchart->all_data;
1256         while (p) {
1257                 c = p->all;
1258                 while (c) {
1259                         if (!c->display) {
1260                                 c->Y = 0;
1261                                 c = c->next;
1262                                 continue;
1263                         }
1264
1265                         svg_box(Y, c->start_time, c->end_time, "process");
1266                         sample = c->samples;
1267                         while (sample) {
1268                                 if (sample->type == TYPE_RUNNING)
1269                                         svg_running(Y, sample->cpu,
1270                                                     sample->start_time,
1271                                                     sample->end_time,
1272                                                     sample->backtrace);
1273                                 if (sample->type == TYPE_BLOCKED)
1274                                         svg_blocked(Y, sample->cpu,
1275                                                     sample->start_time,
1276                                                     sample->end_time,
1277                                                     sample->backtrace);
1278                                 if (sample->type == TYPE_WAITING)
1279                                         svg_waiting(Y, sample->cpu,
1280                                                     sample->start_time,
1281                                                     sample->end_time,
1282                                                     sample->backtrace);
1283                                 sample = sample->next;
1284                         }
1285
1286                         if (c->comm) {
1287                                 char comm[256];
1288                                 if (c->total_time > 5000000000) /* 5 seconds */
1289                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
1290                                 else
1291                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
1292
1293                                 svg_text(Y, c->start_time, comm);
1294                         }
1295                         c->Y = Y;
1296                         Y++;
1297                         c = c->next;
1298                 }
1299                 p = p->next;
1300         }
1301 }
1302
1303 static void add_process_filter(const char *string)
1304 {
1305         int pid = strtoull(string, NULL, 10);
1306         struct process_filter *filt = malloc(sizeof(*filt));
1307
1308         if (!filt)
1309                 return;
1310
1311         filt->name = strdup(string);
1312         filt->pid  = pid;
1313         filt->next = process_filter;
1314
1315         process_filter = filt;
1316 }
1317
1318 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1319 {
1320         struct process_filter *filt;
1321         if (!process_filter)
1322                 return 1;
1323
1324         filt = process_filter;
1325         while (filt) {
1326                 if (filt->pid && p->pid == filt->pid)
1327                         return 1;
1328                 if (strcmp(filt->name, c->comm) == 0)
1329                         return 1;
1330                 filt = filt->next;
1331         }
1332         return 0;
1333 }
1334
1335 static int determine_display_tasks_filtered(struct timechart *tchart)
1336 {
1337         struct per_pid *p;
1338         struct per_pidcomm *c;
1339         int count = 0;
1340
1341         p = tchart->all_data;
1342         while (p) {
1343                 p->display = 0;
1344                 if (p->start_time == 1)
1345                         p->start_time = tchart->first_time;
1346
1347                 /* no exit marker, task kept running to the end */
1348                 if (p->end_time == 0)
1349                         p->end_time = tchart->last_time;
1350
1351                 c = p->all;
1352
1353                 while (c) {
1354                         c->display = 0;
1355
1356                         if (c->start_time == 1)
1357                                 c->start_time = tchart->first_time;
1358
1359                         if (passes_filter(p, c)) {
1360                                 c->display = 1;
1361                                 p->display = 1;
1362                                 count++;
1363                         }
1364
1365                         if (c->end_time == 0)
1366                                 c->end_time = tchart->last_time;
1367
1368                         c = c->next;
1369                 }
1370                 p = p->next;
1371         }
1372         return count;
1373 }
1374
1375 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1376 {
1377         struct per_pid *p;
1378         struct per_pidcomm *c;
1379         int count = 0;
1380
1381         p = tchart->all_data;
1382         while (p) {
1383                 p->display = 0;
1384                 if (p->start_time == 1)
1385                         p->start_time = tchart->first_time;
1386
1387                 /* no exit marker, task kept running to the end */
1388                 if (p->end_time == 0)
1389                         p->end_time = tchart->last_time;
1390                 if (p->total_time >= threshold)
1391                         p->display = 1;
1392
1393                 c = p->all;
1394
1395                 while (c) {
1396                         c->display = 0;
1397
1398                         if (c->start_time == 1)
1399                                 c->start_time = tchart->first_time;
1400
1401                         if (c->total_time >= threshold) {
1402                                 c->display = 1;
1403                                 count++;
1404                         }
1405
1406                         if (c->end_time == 0)
1407                                 c->end_time = tchart->last_time;
1408
1409                         c = c->next;
1410                 }
1411                 p = p->next;
1412         }
1413         return count;
1414 }
1415
1416 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1417 {
1418         struct per_pid *p;
1419         struct per_pidcomm *c;
1420         int count = 0;
1421
1422         p = timechart->all_data;
1423         while (p) {
1424                 /* no exit marker, task kept running to the end */
1425                 if (p->end_time == 0)
1426                         p->end_time = timechart->last_time;
1427
1428                 c = p->all;
1429
1430                 while (c) {
1431                         c->display = 0;
1432
1433                         if (c->total_bytes >= threshold) {
1434                                 c->display = 1;
1435                                 count++;
1436                         }
1437
1438                         if (c->end_time == 0)
1439                                 c->end_time = timechart->last_time;
1440
1441                         c = c->next;
1442                 }
1443                 p = p->next;
1444         }
1445         return count;
1446 }
1447
1448 #define BYTES_THRESH (1 * 1024 * 1024)
1449 #define TIME_THRESH 10000000
1450
1451 static void write_svg_file(struct timechart *tchart, const char *filename)
1452 {
1453         u64 i;
1454         int count;
1455         int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1456
1457         if (tchart->power_only)
1458                 tchart->proc_num = 0;
1459
1460         /* We'd like to show at least proc_num tasks;
1461          * be less picky if we have fewer */
1462         do {
1463                 if (process_filter)
1464                         count = determine_display_tasks_filtered(tchart);
1465                 else if (tchart->io_events)
1466                         count = determine_display_io_tasks(tchart, thresh);
1467                 else
1468                         count = determine_display_tasks(tchart, thresh);
1469                 thresh /= 10;
1470         } while (!process_filter && thresh && count < tchart->proc_num);
1471
1472         if (!tchart->proc_num)
1473                 count = 0;
1474
1475         if (tchart->io_events) {
1476                 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1477
1478                 svg_time_grid(0.5);
1479                 svg_io_legenda();
1480
1481                 draw_io_bars(tchart);
1482         } else {
1483                 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1484
1485                 svg_time_grid(0);
1486
1487                 svg_legenda();
1488
1489                 for (i = 0; i < tchart->numcpus; i++)
1490                         svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1491
1492                 draw_cpu_usage(tchart);
1493                 if (tchart->proc_num)
1494                         draw_process_bars(tchart);
1495                 if (!tchart->tasks_only)
1496                         draw_c_p_states(tchart);
1497                 if (tchart->proc_num)
1498                         draw_wakeups(tchart);
1499         }
1500
1501         svg_close();
1502 }
1503
1504 static int process_header(struct perf_file_section *section __maybe_unused,
1505                           struct perf_header *ph,
1506                           int feat,
1507                           int fd __maybe_unused,
1508                           void *data)
1509 {
1510         struct timechart *tchart = data;
1511
1512         switch (feat) {
1513         case HEADER_NRCPUS:
1514                 tchart->numcpus = ph->env.nr_cpus_avail;
1515                 break;
1516
1517         case HEADER_CPU_TOPOLOGY:
1518                 if (!tchart->topology)
1519                         break;
1520
1521                 if (svg_build_topology_map(ph->env.sibling_cores,
1522                                            ph->env.nr_sibling_cores,
1523                                            ph->env.sibling_threads,
1524                                            ph->env.nr_sibling_threads))
1525                         fprintf(stderr, "problem building topology\n");
1526                 break;
1527
1528         default:
1529                 break;
1530         }
1531
1532         return 0;
1533 }
1534
1535 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1536 {
1537         const struct perf_evsel_str_handler power_tracepoints[] = {
1538                 { "power:cpu_idle",             process_sample_cpu_idle },
1539                 { "power:cpu_frequency",        process_sample_cpu_frequency },
1540                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
1541                 { "sched:sched_switch",         process_sample_sched_switch },
1542 #ifdef SUPPORT_OLD_POWER_EVENTS
1543                 { "power:power_start",          process_sample_power_start },
1544                 { "power:power_end",            process_sample_power_end },
1545                 { "power:power_frequency",      process_sample_power_frequency },
1546 #endif
1547
1548                 { "syscalls:sys_enter_read",            process_enter_read },
1549                 { "syscalls:sys_enter_pread64",         process_enter_read },
1550                 { "syscalls:sys_enter_readv",           process_enter_read },
1551                 { "syscalls:sys_enter_preadv",          process_enter_read },
1552                 { "syscalls:sys_enter_write",           process_enter_write },
1553                 { "syscalls:sys_enter_pwrite64",        process_enter_write },
1554                 { "syscalls:sys_enter_writev",          process_enter_write },
1555                 { "syscalls:sys_enter_pwritev",         process_enter_write },
1556                 { "syscalls:sys_enter_sync",            process_enter_sync },
1557                 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1558                 { "syscalls:sys_enter_fsync",           process_enter_sync },
1559                 { "syscalls:sys_enter_msync",           process_enter_sync },
1560                 { "syscalls:sys_enter_recvfrom",        process_enter_rx },
1561                 { "syscalls:sys_enter_recvmmsg",        process_enter_rx },
1562                 { "syscalls:sys_enter_recvmsg",         process_enter_rx },
1563                 { "syscalls:sys_enter_sendto",          process_enter_tx },
1564                 { "syscalls:sys_enter_sendmsg",         process_enter_tx },
1565                 { "syscalls:sys_enter_sendmmsg",        process_enter_tx },
1566                 { "syscalls:sys_enter_epoll_pwait",     process_enter_poll },
1567                 { "syscalls:sys_enter_epoll_wait",      process_enter_poll },
1568                 { "syscalls:sys_enter_poll",            process_enter_poll },
1569                 { "syscalls:sys_enter_ppoll",           process_enter_poll },
1570                 { "syscalls:sys_enter_pselect6",        process_enter_poll },
1571                 { "syscalls:sys_enter_select",          process_enter_poll },
1572
1573                 { "syscalls:sys_exit_read",             process_exit_read },
1574                 { "syscalls:sys_exit_pread64",          process_exit_read },
1575                 { "syscalls:sys_exit_readv",            process_exit_read },
1576                 { "syscalls:sys_exit_preadv",           process_exit_read },
1577                 { "syscalls:sys_exit_write",            process_exit_write },
1578                 { "syscalls:sys_exit_pwrite64",         process_exit_write },
1579                 { "syscalls:sys_exit_writev",           process_exit_write },
1580                 { "syscalls:sys_exit_pwritev",          process_exit_write },
1581                 { "syscalls:sys_exit_sync",             process_exit_sync },
1582                 { "syscalls:sys_exit_sync_file_range",  process_exit_sync },
1583                 { "syscalls:sys_exit_fsync",            process_exit_sync },
1584                 { "syscalls:sys_exit_msync",            process_exit_sync },
1585                 { "syscalls:sys_exit_recvfrom",         process_exit_rx },
1586                 { "syscalls:sys_exit_recvmmsg",         process_exit_rx },
1587                 { "syscalls:sys_exit_recvmsg",          process_exit_rx },
1588                 { "syscalls:sys_exit_sendto",           process_exit_tx },
1589                 { "syscalls:sys_exit_sendmsg",          process_exit_tx },
1590                 { "syscalls:sys_exit_sendmmsg",         process_exit_tx },
1591                 { "syscalls:sys_exit_epoll_pwait",      process_exit_poll },
1592                 { "syscalls:sys_exit_epoll_wait",       process_exit_poll },
1593                 { "syscalls:sys_exit_poll",             process_exit_poll },
1594                 { "syscalls:sys_exit_ppoll",            process_exit_poll },
1595                 { "syscalls:sys_exit_pselect6",         process_exit_poll },
1596                 { "syscalls:sys_exit_select",           process_exit_poll },
1597         };
1598         struct perf_data_file file = {
1599                 .path = input_name,
1600                 .mode = PERF_DATA_MODE_READ,
1601         };
1602
1603         struct perf_session *session = perf_session__new(&file, false,
1604                                                          &tchart->tool);
1605         int ret = -EINVAL;
1606
1607         if (session == NULL)
1608                 return -1;
1609
1610         symbol__init(&session->header.env);
1611
1612         (void)perf_header__process_sections(&session->header,
1613                                             perf_data_file__fd(session->file),
1614                                             tchart,
1615                                             process_header);
1616
1617         if (!perf_session__has_traces(session, "timechart record"))
1618                 goto out_delete;
1619
1620         if (perf_session__set_tracepoints_handlers(session,
1621                                                    power_tracepoints)) {
1622                 pr_err("Initializing session tracepoint handlers failed\n");
1623                 goto out_delete;
1624         }
1625
1626         ret = perf_session__process_events(session, &tchart->tool);
1627         if (ret)
1628                 goto out_delete;
1629
1630         end_sample_processing(tchart);
1631
1632         sort_pids(tchart);
1633
1634         write_svg_file(tchart, output_name);
1635
1636         pr_info("Written %2.1f seconds of trace to %s.\n",
1637                 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1638 out_delete:
1639         perf_session__delete(session);
1640         return ret;
1641 }
1642
1643 static int timechart__io_record(int argc, const char **argv)
1644 {
1645         unsigned int rec_argc, i;
1646         const char **rec_argv;
1647         const char **p;
1648         char *filter = NULL;
1649
1650         const char * const common_args[] = {
1651                 "record", "-a", "-R", "-c", "1",
1652         };
1653         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1654
1655         const char * const disk_events[] = {
1656                 "syscalls:sys_enter_read",
1657                 "syscalls:sys_enter_pread64",
1658                 "syscalls:sys_enter_readv",
1659                 "syscalls:sys_enter_preadv",
1660                 "syscalls:sys_enter_write",
1661                 "syscalls:sys_enter_pwrite64",
1662                 "syscalls:sys_enter_writev",
1663                 "syscalls:sys_enter_pwritev",
1664                 "syscalls:sys_enter_sync",
1665                 "syscalls:sys_enter_sync_file_range",
1666                 "syscalls:sys_enter_fsync",
1667                 "syscalls:sys_enter_msync",
1668
1669                 "syscalls:sys_exit_read",
1670                 "syscalls:sys_exit_pread64",
1671                 "syscalls:sys_exit_readv",
1672                 "syscalls:sys_exit_preadv",
1673                 "syscalls:sys_exit_write",
1674                 "syscalls:sys_exit_pwrite64",
1675                 "syscalls:sys_exit_writev",
1676                 "syscalls:sys_exit_pwritev",
1677                 "syscalls:sys_exit_sync",
1678                 "syscalls:sys_exit_sync_file_range",
1679                 "syscalls:sys_exit_fsync",
1680                 "syscalls:sys_exit_msync",
1681         };
1682         unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1683
1684         const char * const net_events[] = {
1685                 "syscalls:sys_enter_recvfrom",
1686                 "syscalls:sys_enter_recvmmsg",
1687                 "syscalls:sys_enter_recvmsg",
1688                 "syscalls:sys_enter_sendto",
1689                 "syscalls:sys_enter_sendmsg",
1690                 "syscalls:sys_enter_sendmmsg",
1691
1692                 "syscalls:sys_exit_recvfrom",
1693                 "syscalls:sys_exit_recvmmsg",
1694                 "syscalls:sys_exit_recvmsg",
1695                 "syscalls:sys_exit_sendto",
1696                 "syscalls:sys_exit_sendmsg",
1697                 "syscalls:sys_exit_sendmmsg",
1698         };
1699         unsigned int net_events_nr = ARRAY_SIZE(net_events);
1700
1701         const char * const poll_events[] = {
1702                 "syscalls:sys_enter_epoll_pwait",
1703                 "syscalls:sys_enter_epoll_wait",
1704                 "syscalls:sys_enter_poll",
1705                 "syscalls:sys_enter_ppoll",
1706                 "syscalls:sys_enter_pselect6",
1707                 "syscalls:sys_enter_select",
1708
1709                 "syscalls:sys_exit_epoll_pwait",
1710                 "syscalls:sys_exit_epoll_wait",
1711                 "syscalls:sys_exit_poll",
1712                 "syscalls:sys_exit_ppoll",
1713                 "syscalls:sys_exit_pselect6",
1714                 "syscalls:sys_exit_select",
1715         };
1716         unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1717
1718         rec_argc = common_args_nr +
1719                 disk_events_nr * 4 +
1720                 net_events_nr * 4 +
1721                 poll_events_nr * 4 +
1722                 argc;
1723         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1724
1725         if (rec_argv == NULL)
1726                 return -ENOMEM;
1727
1728         if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1729                 return -ENOMEM;
1730
1731         p = rec_argv;
1732         for (i = 0; i < common_args_nr; i++)
1733                 *p++ = strdup(common_args[i]);
1734
1735         for (i = 0; i < disk_events_nr; i++) {
1736                 if (!is_valid_tracepoint(disk_events[i])) {
1737                         rec_argc -= 4;
1738                         continue;
1739                 }
1740
1741                 *p++ = "-e";
1742                 *p++ = strdup(disk_events[i]);
1743                 *p++ = "--filter";
1744                 *p++ = filter;
1745         }
1746         for (i = 0; i < net_events_nr; i++) {
1747                 if (!is_valid_tracepoint(net_events[i])) {
1748                         rec_argc -= 4;
1749                         continue;
1750                 }
1751
1752                 *p++ = "-e";
1753                 *p++ = strdup(net_events[i]);
1754                 *p++ = "--filter";
1755                 *p++ = filter;
1756         }
1757         for (i = 0; i < poll_events_nr; i++) {
1758                 if (!is_valid_tracepoint(poll_events[i])) {
1759                         rec_argc -= 4;
1760                         continue;
1761                 }
1762
1763                 *p++ = "-e";
1764                 *p++ = strdup(poll_events[i]);
1765                 *p++ = "--filter";
1766                 *p++ = filter;
1767         }
1768
1769         for (i = 0; i < (unsigned int)argc; i++)
1770                 *p++ = argv[i];
1771
1772         return cmd_record(rec_argc, rec_argv, NULL);
1773 }
1774
1775
1776 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1777 {
1778         unsigned int rec_argc, i, j;
1779         const char **rec_argv;
1780         const char **p;
1781         unsigned int record_elems;
1782
1783         const char * const common_args[] = {
1784                 "record", "-a", "-R", "-c", "1",
1785         };
1786         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1787
1788         const char * const backtrace_args[] = {
1789                 "-g",
1790         };
1791         unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1792
1793         const char * const power_args[] = {
1794                 "-e", "power:cpu_frequency",
1795                 "-e", "power:cpu_idle",
1796         };
1797         unsigned int power_args_nr = ARRAY_SIZE(power_args);
1798
1799         const char * const old_power_args[] = {
1800 #ifdef SUPPORT_OLD_POWER_EVENTS
1801                 "-e", "power:power_start",
1802                 "-e", "power:power_end",
1803                 "-e", "power:power_frequency",
1804 #endif
1805         };
1806         unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1807
1808         const char * const tasks_args[] = {
1809                 "-e", "sched:sched_wakeup",
1810                 "-e", "sched:sched_switch",
1811         };
1812         unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1813
1814 #ifdef SUPPORT_OLD_POWER_EVENTS
1815         if (!is_valid_tracepoint("power:cpu_idle") &&
1816             is_valid_tracepoint("power:power_start")) {
1817                 use_old_power_events = 1;
1818                 power_args_nr = 0;
1819         } else {
1820                 old_power_args_nr = 0;
1821         }
1822 #endif
1823
1824         if (tchart->power_only)
1825                 tasks_args_nr = 0;
1826
1827         if (tchart->tasks_only) {
1828                 power_args_nr = 0;
1829                 old_power_args_nr = 0;
1830         }
1831
1832         if (!tchart->with_backtrace)
1833                 backtrace_args_no = 0;
1834
1835         record_elems = common_args_nr + tasks_args_nr +
1836                 power_args_nr + old_power_args_nr + backtrace_args_no;
1837
1838         rec_argc = record_elems + argc;
1839         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1840
1841         if (rec_argv == NULL)
1842                 return -ENOMEM;
1843
1844         p = rec_argv;
1845         for (i = 0; i < common_args_nr; i++)
1846                 *p++ = strdup(common_args[i]);
1847
1848         for (i = 0; i < backtrace_args_no; i++)
1849                 *p++ = strdup(backtrace_args[i]);
1850
1851         for (i = 0; i < tasks_args_nr; i++)
1852                 *p++ = strdup(tasks_args[i]);
1853
1854         for (i = 0; i < power_args_nr; i++)
1855                 *p++ = strdup(power_args[i]);
1856
1857         for (i = 0; i < old_power_args_nr; i++)
1858                 *p++ = strdup(old_power_args[i]);
1859
1860         for (j = 0; j < (unsigned int)argc; j++)
1861                 *p++ = argv[j];
1862
1863         return cmd_record(rec_argc, rec_argv, NULL);
1864 }
1865
1866 static int
1867 parse_process(const struct option *opt __maybe_unused, const char *arg,
1868               int __maybe_unused unset)
1869 {
1870         if (arg)
1871                 add_process_filter(arg);
1872         return 0;
1873 }
1874
1875 static int
1876 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1877                 int __maybe_unused unset)
1878 {
1879         unsigned long duration = strtoul(arg, NULL, 0);
1880
1881         if (svg_highlight || svg_highlight_name)
1882                 return -1;
1883
1884         if (duration)
1885                 svg_highlight = duration;
1886         else
1887                 svg_highlight_name = strdup(arg);
1888
1889         return 0;
1890 }
1891
1892 static int
1893 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1894 {
1895         char unit = 'n';
1896         u64 *value = opt->value;
1897
1898         if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1899                 switch (unit) {
1900                 case 'm':
1901                         *value *= 1000000;
1902                         break;
1903                 case 'u':
1904                         *value *= 1000;
1905                         break;
1906                 case 'n':
1907                         break;
1908                 default:
1909                         return -1;
1910                 }
1911         }
1912
1913         return 0;
1914 }
1915
1916 int cmd_timechart(int argc, const char **argv,
1917                   const char *prefix __maybe_unused)
1918 {
1919         struct timechart tchart = {
1920                 .tool = {
1921                         .comm            = process_comm_event,
1922                         .fork            = process_fork_event,
1923                         .exit            = process_exit_event,
1924                         .sample          = process_sample_event,
1925                         .ordered_events  = true,
1926                 },
1927                 .proc_num = 15,
1928                 .min_time = 1000000,
1929                 .merge_dist = 1000,
1930         };
1931         const char *output_name = "output.svg";
1932         const struct option timechart_options[] = {
1933         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1934         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1935         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1936         OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1937                       "highlight tasks. Pass duration in ns or process name.",
1938                        parse_highlight),
1939         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1940         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1941                     "output processes data only"),
1942         OPT_CALLBACK('p', "process", NULL, "process",
1943                       "process selector. Pass a pid or process name.",
1944                        parse_process),
1945         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1946                     "Look for files with symbols relative to this directory"),
1947         OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1948                     "min. number of tasks to print"),
1949         OPT_BOOLEAN('t', "topology", &tchart.topology,
1950                     "sort CPUs according to topology"),
1951         OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1952                     "skip EAGAIN errors"),
1953         OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1954                      "all IO faster than min-time will visually appear longer",
1955                      parse_time),
1956         OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1957                      "merge events that are merge-dist us apart",
1958                      parse_time),
1959         OPT_END()
1960         };
1961         const char * const timechart_usage[] = {
1962                 "perf timechart [<options>] {record}",
1963                 NULL
1964         };
1965
1966         const struct option timechart_record_options[] = {
1967         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1968         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1969                     "output processes data only"),
1970         OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1971                     "record only IO data"),
1972         OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1973         OPT_END()
1974         };
1975         const char * const timechart_record_usage[] = {
1976                 "perf timechart record [<options>]",
1977                 NULL
1978         };
1979         argc = parse_options(argc, argv, timechart_options, timechart_usage,
1980                         PARSE_OPT_STOP_AT_NON_OPTION);
1981
1982         if (tchart.power_only && tchart.tasks_only) {
1983                 pr_err("-P and -T options cannot be used at the same time.\n");
1984                 return -1;
1985         }
1986
1987         if (argc && !strncmp(argv[0], "rec", 3)) {
1988                 argc = parse_options(argc, argv, timechart_record_options,
1989                                      timechart_record_usage,
1990                                      PARSE_OPT_STOP_AT_NON_OPTION);
1991
1992                 if (tchart.power_only && tchart.tasks_only) {
1993                         pr_err("-P and -T options cannot be used at the same time.\n");
1994                         return -1;
1995                 }
1996
1997                 if (tchart.io_only)
1998                         return timechart__io_record(argc, argv);
1999                 else
2000                         return timechart__record(&tchart, argc, argv);
2001         } else if (argc)
2002                 usage_with_options(timechart_usage, timechart_options);
2003
2004         setup_pager();
2005
2006         return __cmd_timechart(&tchart, output_name);
2007 }