Merge remote-tracking branches 'asoc/topic/txx9', 'asoc/topic/wm8750', 'asoc/topic...
[cascardo/linux.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "callchain.h"
19 #include "cgroup.h"
20 #include "evsel.h"
21 #include "evlist.h"
22 #include "util.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25 #include "target.h"
26 #include "perf_regs.h"
27 #include "debug.h"
28 #include "trace-event.h"
29
30 static struct {
31         bool sample_id_all;
32         bool exclude_guest;
33         bool mmap2;
34         bool cloexec;
35 } perf_missing_features;
36
37 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
38 {
39         return 0;
40 }
41
42 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
43 {
44 }
45
46 static struct {
47         size_t  size;
48         int     (*init)(struct perf_evsel *evsel);
49         void    (*fini)(struct perf_evsel *evsel);
50 } perf_evsel__object = {
51         .size = sizeof(struct perf_evsel),
52         .init = perf_evsel__no_extra_init,
53         .fini = perf_evsel__no_extra_fini,
54 };
55
56 int perf_evsel__object_config(size_t object_size,
57                               int (*init)(struct perf_evsel *evsel),
58                               void (*fini)(struct perf_evsel *evsel))
59 {
60
61         if (object_size == 0)
62                 goto set_methods;
63
64         if (perf_evsel__object.size > object_size)
65                 return -EINVAL;
66
67         perf_evsel__object.size = object_size;
68
69 set_methods:
70         if (init != NULL)
71                 perf_evsel__object.init = init;
72
73         if (fini != NULL)
74                 perf_evsel__object.fini = fini;
75
76         return 0;
77 }
78
79 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
80
81 int __perf_evsel__sample_size(u64 sample_type)
82 {
83         u64 mask = sample_type & PERF_SAMPLE_MASK;
84         int size = 0;
85         int i;
86
87         for (i = 0; i < 64; i++) {
88                 if (mask & (1ULL << i))
89                         size++;
90         }
91
92         size *= sizeof(u64);
93
94         return size;
95 }
96
97 /**
98  * __perf_evsel__calc_id_pos - calculate id_pos.
99  * @sample_type: sample type
100  *
101  * This function returns the position of the event id (PERF_SAMPLE_ID or
102  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
103  * sample_event.
104  */
105 static int __perf_evsel__calc_id_pos(u64 sample_type)
106 {
107         int idx = 0;
108
109         if (sample_type & PERF_SAMPLE_IDENTIFIER)
110                 return 0;
111
112         if (!(sample_type & PERF_SAMPLE_ID))
113                 return -1;
114
115         if (sample_type & PERF_SAMPLE_IP)
116                 idx += 1;
117
118         if (sample_type & PERF_SAMPLE_TID)
119                 idx += 1;
120
121         if (sample_type & PERF_SAMPLE_TIME)
122                 idx += 1;
123
124         if (sample_type & PERF_SAMPLE_ADDR)
125                 idx += 1;
126
127         return idx;
128 }
129
130 /**
131  * __perf_evsel__calc_is_pos - calculate is_pos.
132  * @sample_type: sample type
133  *
134  * This function returns the position (counting backwards) of the event id
135  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
136  * sample_id_all is used there is an id sample appended to non-sample events.
137  */
138 static int __perf_evsel__calc_is_pos(u64 sample_type)
139 {
140         int idx = 1;
141
142         if (sample_type & PERF_SAMPLE_IDENTIFIER)
143                 return 1;
144
145         if (!(sample_type & PERF_SAMPLE_ID))
146                 return -1;
147
148         if (sample_type & PERF_SAMPLE_CPU)
149                 idx += 1;
150
151         if (sample_type & PERF_SAMPLE_STREAM_ID)
152                 idx += 1;
153
154         return idx;
155 }
156
157 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
158 {
159         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
160         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
161 }
162
163 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
164                                   enum perf_event_sample_format bit)
165 {
166         if (!(evsel->attr.sample_type & bit)) {
167                 evsel->attr.sample_type |= bit;
168                 evsel->sample_size += sizeof(u64);
169                 perf_evsel__calc_id_pos(evsel);
170         }
171 }
172
173 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
174                                     enum perf_event_sample_format bit)
175 {
176         if (evsel->attr.sample_type & bit) {
177                 evsel->attr.sample_type &= ~bit;
178                 evsel->sample_size -= sizeof(u64);
179                 perf_evsel__calc_id_pos(evsel);
180         }
181 }
182
183 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
184                                bool can_sample_identifier)
185 {
186         if (can_sample_identifier) {
187                 perf_evsel__reset_sample_bit(evsel, ID);
188                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
189         } else {
190                 perf_evsel__set_sample_bit(evsel, ID);
191         }
192         evsel->attr.read_format |= PERF_FORMAT_ID;
193 }
194
195 void perf_evsel__init(struct perf_evsel *evsel,
196                       struct perf_event_attr *attr, int idx)
197 {
198         evsel->idx         = idx;
199         evsel->tracking    = !idx;
200         evsel->attr        = *attr;
201         evsel->leader      = evsel;
202         evsel->unit        = "";
203         evsel->scale       = 1.0;
204         INIT_LIST_HEAD(&evsel->node);
205         perf_evsel__object.init(evsel);
206         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
207         perf_evsel__calc_id_pos(evsel);
208 }
209
210 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
211 {
212         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
213
214         if (evsel != NULL)
215                 perf_evsel__init(evsel, attr, idx);
216
217         return evsel;
218 }
219
220 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
221 {
222         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
223
224         if (evsel != NULL) {
225                 struct perf_event_attr attr = {
226                         .type          = PERF_TYPE_TRACEPOINT,
227                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
228                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
229                 };
230
231                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
232                         goto out_free;
233
234                 evsel->tp_format = trace_event__tp_format(sys, name);
235                 if (evsel->tp_format == NULL)
236                         goto out_free;
237
238                 event_attr_init(&attr);
239                 attr.config = evsel->tp_format->id;
240                 attr.sample_period = 1;
241                 perf_evsel__init(evsel, &attr, idx);
242         }
243
244         return evsel;
245
246 out_free:
247         zfree(&evsel->name);
248         free(evsel);
249         return NULL;
250 }
251
252 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
253         "cycles",
254         "instructions",
255         "cache-references",
256         "cache-misses",
257         "branches",
258         "branch-misses",
259         "bus-cycles",
260         "stalled-cycles-frontend",
261         "stalled-cycles-backend",
262         "ref-cycles",
263 };
264
265 static const char *__perf_evsel__hw_name(u64 config)
266 {
267         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
268                 return perf_evsel__hw_names[config];
269
270         return "unknown-hardware";
271 }
272
273 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
274 {
275         int colon = 0, r = 0;
276         struct perf_event_attr *attr = &evsel->attr;
277         bool exclude_guest_default = false;
278
279 #define MOD_PRINT(context, mod) do {                                    \
280                 if (!attr->exclude_##context) {                         \
281                         if (!colon) colon = ++r;                        \
282                         r += scnprintf(bf + r, size - r, "%c", mod);    \
283                 } } while(0)
284
285         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
286                 MOD_PRINT(kernel, 'k');
287                 MOD_PRINT(user, 'u');
288                 MOD_PRINT(hv, 'h');
289                 exclude_guest_default = true;
290         }
291
292         if (attr->precise_ip) {
293                 if (!colon)
294                         colon = ++r;
295                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
296                 exclude_guest_default = true;
297         }
298
299         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
300                 MOD_PRINT(host, 'H');
301                 MOD_PRINT(guest, 'G');
302         }
303 #undef MOD_PRINT
304         if (colon)
305                 bf[colon - 1] = ':';
306         return r;
307 }
308
309 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
310 {
311         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
312         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
313 }
314
315 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
316         "cpu-clock",
317         "task-clock",
318         "page-faults",
319         "context-switches",
320         "cpu-migrations",
321         "minor-faults",
322         "major-faults",
323         "alignment-faults",
324         "emulation-faults",
325         "dummy",
326 };
327
328 static const char *__perf_evsel__sw_name(u64 config)
329 {
330         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
331                 return perf_evsel__sw_names[config];
332         return "unknown-software";
333 }
334
335 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
336 {
337         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
338         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
339 }
340
341 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
342 {
343         int r;
344
345         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
346
347         if (type & HW_BREAKPOINT_R)
348                 r += scnprintf(bf + r, size - r, "r");
349
350         if (type & HW_BREAKPOINT_W)
351                 r += scnprintf(bf + r, size - r, "w");
352
353         if (type & HW_BREAKPOINT_X)
354                 r += scnprintf(bf + r, size - r, "x");
355
356         return r;
357 }
358
359 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
360 {
361         struct perf_event_attr *attr = &evsel->attr;
362         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
363         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
364 }
365
366 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
367                                 [PERF_EVSEL__MAX_ALIASES] = {
368  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
369  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
370  { "LLC",       "L2",                                                   },
371  { "dTLB",      "d-tlb",        "Data-TLB",                             },
372  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
373  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
374  { "node",                                                              },
375 };
376
377 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
378                                    [PERF_EVSEL__MAX_ALIASES] = {
379  { "load",      "loads",        "read",                                 },
380  { "store",     "stores",       "write",                                },
381  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
382 };
383
384 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
385                                        [PERF_EVSEL__MAX_ALIASES] = {
386  { "refs",      "Reference",    "ops",          "access",               },
387  { "misses",    "miss",                                                 },
388 };
389
390 #define C(x)            PERF_COUNT_HW_CACHE_##x
391 #define CACHE_READ      (1 << C(OP_READ))
392 #define CACHE_WRITE     (1 << C(OP_WRITE))
393 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
394 #define COP(x)          (1 << x)
395
396 /*
397  * cache operartion stat
398  * L1I : Read and prefetch only
399  * ITLB and BPU : Read-only
400  */
401 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
402  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
403  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
404  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
405  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
406  [C(ITLB)]      = (CACHE_READ),
407  [C(BPU)]       = (CACHE_READ),
408  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
409 };
410
411 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
412 {
413         if (perf_evsel__hw_cache_stat[type] & COP(op))
414                 return true;    /* valid */
415         else
416                 return false;   /* invalid */
417 }
418
419 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
420                                             char *bf, size_t size)
421 {
422         if (result) {
423                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
424                                  perf_evsel__hw_cache_op[op][0],
425                                  perf_evsel__hw_cache_result[result][0]);
426         }
427
428         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
429                          perf_evsel__hw_cache_op[op][1]);
430 }
431
432 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
433 {
434         u8 op, result, type = (config >>  0) & 0xff;
435         const char *err = "unknown-ext-hardware-cache-type";
436
437         if (type > PERF_COUNT_HW_CACHE_MAX)
438                 goto out_err;
439
440         op = (config >>  8) & 0xff;
441         err = "unknown-ext-hardware-cache-op";
442         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
443                 goto out_err;
444
445         result = (config >> 16) & 0xff;
446         err = "unknown-ext-hardware-cache-result";
447         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
448                 goto out_err;
449
450         err = "invalid-cache";
451         if (!perf_evsel__is_cache_op_valid(type, op))
452                 goto out_err;
453
454         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
455 out_err:
456         return scnprintf(bf, size, "%s", err);
457 }
458
459 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
460 {
461         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
462         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
463 }
464
465 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
466 {
467         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
468         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
469 }
470
471 const char *perf_evsel__name(struct perf_evsel *evsel)
472 {
473         char bf[128];
474
475         if (evsel->name)
476                 return evsel->name;
477
478         switch (evsel->attr.type) {
479         case PERF_TYPE_RAW:
480                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
481                 break;
482
483         case PERF_TYPE_HARDWARE:
484                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
485                 break;
486
487         case PERF_TYPE_HW_CACHE:
488                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
489                 break;
490
491         case PERF_TYPE_SOFTWARE:
492                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
493                 break;
494
495         case PERF_TYPE_TRACEPOINT:
496                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
497                 break;
498
499         case PERF_TYPE_BREAKPOINT:
500                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
501                 break;
502
503         default:
504                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
505                           evsel->attr.type);
506                 break;
507         }
508
509         evsel->name = strdup(bf);
510
511         return evsel->name ?: "unknown";
512 }
513
514 const char *perf_evsel__group_name(struct perf_evsel *evsel)
515 {
516         return evsel->group_name ?: "anon group";
517 }
518
519 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
520 {
521         int ret;
522         struct perf_evsel *pos;
523         const char *group_name = perf_evsel__group_name(evsel);
524
525         ret = scnprintf(buf, size, "%s", group_name);
526
527         ret += scnprintf(buf + ret, size - ret, " { %s",
528                          perf_evsel__name(evsel));
529
530         for_each_group_member(pos, evsel)
531                 ret += scnprintf(buf + ret, size - ret, ", %s",
532                                  perf_evsel__name(pos));
533
534         ret += scnprintf(buf + ret, size - ret, " }");
535
536         return ret;
537 }
538
539 static void
540 perf_evsel__config_callgraph(struct perf_evsel *evsel)
541 {
542         bool function = perf_evsel__is_function_event(evsel);
543         struct perf_event_attr *attr = &evsel->attr;
544
545         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
546
547         if (callchain_param.record_mode == CALLCHAIN_DWARF) {
548                 if (!function) {
549                         perf_evsel__set_sample_bit(evsel, REGS_USER);
550                         perf_evsel__set_sample_bit(evsel, STACK_USER);
551                         attr->sample_regs_user = PERF_REGS_MASK;
552                         attr->sample_stack_user = callchain_param.dump_size;
553                         attr->exclude_callchain_user = 1;
554                 } else {
555                         pr_info("Cannot use DWARF unwind for function trace event,"
556                                 " falling back to framepointers.\n");
557                 }
558         }
559
560         if (function) {
561                 pr_info("Disabling user space callchains for function trace event.\n");
562                 attr->exclude_callchain_user = 1;
563         }
564 }
565
566 /*
567  * The enable_on_exec/disabled value strategy:
568  *
569  *  1) For any type of traced program:
570  *    - all independent events and group leaders are disabled
571  *    - all group members are enabled
572  *
573  *     Group members are ruled by group leaders. They need to
574  *     be enabled, because the group scheduling relies on that.
575  *
576  *  2) For traced programs executed by perf:
577  *     - all independent events and group leaders have
578  *       enable_on_exec set
579  *     - we don't specifically enable or disable any event during
580  *       the record command
581  *
582  *     Independent events and group leaders are initially disabled
583  *     and get enabled by exec. Group members are ruled by group
584  *     leaders as stated in 1).
585  *
586  *  3) For traced programs attached by perf (pid/tid):
587  *     - we specifically enable or disable all events during
588  *       the record command
589  *
590  *     When attaching events to already running traced we
591  *     enable/disable events specifically, as there's no
592  *     initial traced exec call.
593  */
594 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
595 {
596         struct perf_evsel *leader = evsel->leader;
597         struct perf_event_attr *attr = &evsel->attr;
598         int track = evsel->tracking;
599         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
600
601         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
602         attr->inherit       = !opts->no_inherit;
603
604         perf_evsel__set_sample_bit(evsel, IP);
605         perf_evsel__set_sample_bit(evsel, TID);
606
607         if (evsel->sample_read) {
608                 perf_evsel__set_sample_bit(evsel, READ);
609
610                 /*
611                  * We need ID even in case of single event, because
612                  * PERF_SAMPLE_READ process ID specific data.
613                  */
614                 perf_evsel__set_sample_id(evsel, false);
615
616                 /*
617                  * Apply group format only if we belong to group
618                  * with more than one members.
619                  */
620                 if (leader->nr_members > 1) {
621                         attr->read_format |= PERF_FORMAT_GROUP;
622                         attr->inherit = 0;
623                 }
624         }
625
626         /*
627          * We default some events to have a default interval. But keep
628          * it a weak assumption overridable by the user.
629          */
630         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
631                                      opts->user_interval != ULLONG_MAX)) {
632                 if (opts->freq) {
633                         perf_evsel__set_sample_bit(evsel, PERIOD);
634                         attr->freq              = 1;
635                         attr->sample_freq       = opts->freq;
636                 } else {
637                         attr->sample_period = opts->default_interval;
638                 }
639         }
640
641         /*
642          * Disable sampling for all group members other
643          * than leader in case leader 'leads' the sampling.
644          */
645         if ((leader != evsel) && leader->sample_read) {
646                 attr->sample_freq   = 0;
647                 attr->sample_period = 0;
648         }
649
650         if (opts->no_samples)
651                 attr->sample_freq = 0;
652
653         if (opts->inherit_stat)
654                 attr->inherit_stat = 1;
655
656         if (opts->sample_address) {
657                 perf_evsel__set_sample_bit(evsel, ADDR);
658                 attr->mmap_data = track;
659         }
660
661         /*
662          * We don't allow user space callchains for  function trace
663          * event, due to issues with page faults while tracing page
664          * fault handler and its overall trickiness nature.
665          */
666         if (perf_evsel__is_function_event(evsel))
667                 evsel->attr.exclude_callchain_user = 1;
668
669         if (callchain_param.enabled && !evsel->no_aux_samples)
670                 perf_evsel__config_callgraph(evsel);
671
672         if (opts->sample_intr_regs) {
673                 attr->sample_regs_intr = PERF_REGS_MASK;
674                 perf_evsel__set_sample_bit(evsel, REGS_INTR);
675         }
676
677         if (target__has_cpu(&opts->target))
678                 perf_evsel__set_sample_bit(evsel, CPU);
679
680         if (opts->period)
681                 perf_evsel__set_sample_bit(evsel, PERIOD);
682
683         /*
684          * When the user explicitely disabled time don't force it here.
685          */
686         if (opts->sample_time &&
687             (!perf_missing_features.sample_id_all &&
688             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu)))
689                 perf_evsel__set_sample_bit(evsel, TIME);
690
691         if (opts->raw_samples && !evsel->no_aux_samples) {
692                 perf_evsel__set_sample_bit(evsel, TIME);
693                 perf_evsel__set_sample_bit(evsel, RAW);
694                 perf_evsel__set_sample_bit(evsel, CPU);
695         }
696
697         if (opts->sample_address)
698                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
699
700         if (opts->no_buffering) {
701                 attr->watermark = 0;
702                 attr->wakeup_events = 1;
703         }
704         if (opts->branch_stack && !evsel->no_aux_samples) {
705                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
706                 attr->branch_sample_type = opts->branch_stack;
707         }
708
709         if (opts->sample_weight)
710                 perf_evsel__set_sample_bit(evsel, WEIGHT);
711
712         attr->mmap  = track;
713         attr->mmap2 = track && !perf_missing_features.mmap2;
714         attr->comm  = track;
715
716         if (opts->sample_transaction)
717                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
718
719         /*
720          * XXX see the function comment above
721          *
722          * Disabling only independent events or group leaders,
723          * keeping group members enabled.
724          */
725         if (perf_evsel__is_group_leader(evsel))
726                 attr->disabled = 1;
727
728         /*
729          * Setting enable_on_exec for independent events and
730          * group leaders for traced executed by perf.
731          */
732         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
733                 !opts->initial_delay)
734                 attr->enable_on_exec = 1;
735
736         if (evsel->immediate) {
737                 attr->disabled = 0;
738                 attr->enable_on_exec = 0;
739         }
740 }
741
742 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
743 {
744         int cpu, thread;
745
746         if (evsel->system_wide)
747                 nthreads = 1;
748
749         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
750
751         if (evsel->fd) {
752                 for (cpu = 0; cpu < ncpus; cpu++) {
753                         for (thread = 0; thread < nthreads; thread++) {
754                                 FD(evsel, cpu, thread) = -1;
755                         }
756                 }
757         }
758
759         return evsel->fd != NULL ? 0 : -ENOMEM;
760 }
761
762 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
763                           int ioc,  void *arg)
764 {
765         int cpu, thread;
766
767         if (evsel->system_wide)
768                 nthreads = 1;
769
770         for (cpu = 0; cpu < ncpus; cpu++) {
771                 for (thread = 0; thread < nthreads; thread++) {
772                         int fd = FD(evsel, cpu, thread),
773                             err = ioctl(fd, ioc, arg);
774
775                         if (err)
776                                 return err;
777                 }
778         }
779
780         return 0;
781 }
782
783 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
784                            const char *filter)
785 {
786         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
787                                      PERF_EVENT_IOC_SET_FILTER,
788                                      (void *)filter);
789 }
790
791 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
792 {
793         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
794                                      PERF_EVENT_IOC_ENABLE,
795                                      0);
796 }
797
798 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
799 {
800         if (evsel->system_wide)
801                 nthreads = 1;
802
803         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
804         if (evsel->sample_id == NULL)
805                 return -ENOMEM;
806
807         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
808         if (evsel->id == NULL) {
809                 xyarray__delete(evsel->sample_id);
810                 evsel->sample_id = NULL;
811                 return -ENOMEM;
812         }
813
814         return 0;
815 }
816
817 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
818 {
819         memset(evsel->counts, 0, (sizeof(*evsel->counts) +
820                                  (ncpus * sizeof(struct perf_counts_values))));
821 }
822
823 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
824 {
825         evsel->counts = zalloc((sizeof(*evsel->counts) +
826                                 (ncpus * sizeof(struct perf_counts_values))));
827         return evsel->counts != NULL ? 0 : -ENOMEM;
828 }
829
830 static void perf_evsel__free_fd(struct perf_evsel *evsel)
831 {
832         xyarray__delete(evsel->fd);
833         evsel->fd = NULL;
834 }
835
836 static void perf_evsel__free_id(struct perf_evsel *evsel)
837 {
838         xyarray__delete(evsel->sample_id);
839         evsel->sample_id = NULL;
840         zfree(&evsel->id);
841 }
842
843 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
844 {
845         int cpu, thread;
846
847         if (evsel->system_wide)
848                 nthreads = 1;
849
850         for (cpu = 0; cpu < ncpus; cpu++)
851                 for (thread = 0; thread < nthreads; ++thread) {
852                         close(FD(evsel, cpu, thread));
853                         FD(evsel, cpu, thread) = -1;
854                 }
855 }
856
857 void perf_evsel__free_counts(struct perf_evsel *evsel)
858 {
859         zfree(&evsel->counts);
860 }
861
862 void perf_evsel__exit(struct perf_evsel *evsel)
863 {
864         assert(list_empty(&evsel->node));
865         perf_evsel__free_fd(evsel);
866         perf_evsel__free_id(evsel);
867         close_cgroup(evsel->cgrp);
868         zfree(&evsel->group_name);
869         zfree(&evsel->name);
870         perf_evsel__object.fini(evsel);
871 }
872
873 void perf_evsel__delete(struct perf_evsel *evsel)
874 {
875         perf_evsel__exit(evsel);
876         free(evsel);
877 }
878
879 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu,
880                                 struct perf_counts_values *count)
881 {
882         struct perf_counts_values tmp;
883
884         if (!evsel->prev_raw_counts)
885                 return;
886
887         if (cpu == -1) {
888                 tmp = evsel->prev_raw_counts->aggr;
889                 evsel->prev_raw_counts->aggr = *count;
890         } else {
891                 tmp = evsel->prev_raw_counts->cpu[cpu];
892                 evsel->prev_raw_counts->cpu[cpu] = *count;
893         }
894
895         count->val = count->val - tmp.val;
896         count->ena = count->ena - tmp.ena;
897         count->run = count->run - tmp.run;
898 }
899
900 void perf_counts_values__scale(struct perf_counts_values *count,
901                                bool scale, s8 *pscaled)
902 {
903         s8 scaled = 0;
904
905         if (scale) {
906                 if (count->run == 0) {
907                         scaled = -1;
908                         count->val = 0;
909                 } else if (count->run < count->ena) {
910                         scaled = 1;
911                         count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
912                 }
913         } else
914                 count->ena = count->run = 0;
915
916         if (pscaled)
917                 *pscaled = scaled;
918 }
919
920 int perf_evsel__read_cb(struct perf_evsel *evsel, int cpu, int thread,
921                         perf_evsel__read_cb_t cb)
922 {
923         struct perf_counts_values count;
924
925         memset(&count, 0, sizeof(count));
926
927         if (FD(evsel, cpu, thread) < 0)
928                 return -EINVAL;
929
930         if (readn(FD(evsel, cpu, thread), &count, sizeof(count)) < 0)
931                 return -errno;
932
933         return cb(evsel, cpu, thread, &count);
934 }
935
936 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
937                               int cpu, int thread, bool scale)
938 {
939         struct perf_counts_values count;
940         size_t nv = scale ? 3 : 1;
941
942         if (FD(evsel, cpu, thread) < 0)
943                 return -EINVAL;
944
945         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
946                 return -ENOMEM;
947
948         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
949                 return -errno;
950
951         perf_evsel__compute_deltas(evsel, cpu, &count);
952         perf_counts_values__scale(&count, scale, NULL);
953         evsel->counts->cpu[cpu] = count;
954         return 0;
955 }
956
957 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
958 {
959         struct perf_evsel *leader = evsel->leader;
960         int fd;
961
962         if (perf_evsel__is_group_leader(evsel))
963                 return -1;
964
965         /*
966          * Leader must be already processed/open,
967          * if not it's a bug.
968          */
969         BUG_ON(!leader->fd);
970
971         fd = FD(leader, cpu, thread);
972         BUG_ON(fd == -1);
973
974         return fd;
975 }
976
977 #define __PRINT_ATTR(fmt, cast, field)  \
978         fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
979
980 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
981 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
982 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
983 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
984
985 #define PRINT_ATTR2N(name1, field1, name2, field2)      \
986         fprintf(fp, "  %-19s %u    %-19s %u\n",         \
987         name1, attr->field1, name2, attr->field2)
988
989 #define PRINT_ATTR2(field1, field2) \
990         PRINT_ATTR2N(#field1, field1, #field2, field2)
991
992 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
993 {
994         size_t ret = 0;
995
996         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
997         ret += fprintf(fp, "perf_event_attr:\n");
998
999         ret += PRINT_ATTR_U32(type);
1000         ret += PRINT_ATTR_U32(size);
1001         ret += PRINT_ATTR_X64(config);
1002         ret += PRINT_ATTR_U64(sample_period);
1003         ret += PRINT_ATTR_U64(sample_freq);
1004         ret += PRINT_ATTR_X64(sample_type);
1005         ret += PRINT_ATTR_X64(read_format);
1006
1007         ret += PRINT_ATTR2(disabled, inherit);
1008         ret += PRINT_ATTR2(pinned, exclusive);
1009         ret += PRINT_ATTR2(exclude_user, exclude_kernel);
1010         ret += PRINT_ATTR2(exclude_hv, exclude_idle);
1011         ret += PRINT_ATTR2(mmap, comm);
1012         ret += PRINT_ATTR2(mmap2, comm_exec);
1013         ret += PRINT_ATTR2(freq, inherit_stat);
1014         ret += PRINT_ATTR2(enable_on_exec, task);
1015         ret += PRINT_ATTR2(watermark, precise_ip);
1016         ret += PRINT_ATTR2(mmap_data, sample_id_all);
1017         ret += PRINT_ATTR2(exclude_host, exclude_guest);
1018         ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
1019                             "excl.callchain_user", exclude_callchain_user);
1020
1021         ret += PRINT_ATTR_U32(wakeup_events);
1022         ret += PRINT_ATTR_U32(wakeup_watermark);
1023         ret += PRINT_ATTR_X32(bp_type);
1024         ret += PRINT_ATTR_X64(bp_addr);
1025         ret += PRINT_ATTR_X64(config1);
1026         ret += PRINT_ATTR_U64(bp_len);
1027         ret += PRINT_ATTR_X64(config2);
1028         ret += PRINT_ATTR_X64(branch_sample_type);
1029         ret += PRINT_ATTR_X64(sample_regs_user);
1030         ret += PRINT_ATTR_U32(sample_stack_user);
1031         ret += PRINT_ATTR_X64(sample_regs_intr);
1032
1033         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
1034
1035         return ret;
1036 }
1037
1038 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1039                               struct thread_map *threads)
1040 {
1041         int cpu, thread, nthreads;
1042         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1043         int pid = -1, err;
1044         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1045
1046         if (evsel->system_wide)
1047                 nthreads = 1;
1048         else
1049                 nthreads = threads->nr;
1050
1051         if (evsel->fd == NULL &&
1052             perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1053                 return -ENOMEM;
1054
1055         if (evsel->cgrp) {
1056                 flags |= PERF_FLAG_PID_CGROUP;
1057                 pid = evsel->cgrp->fd;
1058         }
1059
1060 fallback_missing_features:
1061         if (perf_missing_features.cloexec)
1062                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1063         if (perf_missing_features.mmap2)
1064                 evsel->attr.mmap2 = 0;
1065         if (perf_missing_features.exclude_guest)
1066                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1067 retry_sample_id:
1068         if (perf_missing_features.sample_id_all)
1069                 evsel->attr.sample_id_all = 0;
1070
1071         if (verbose >= 2)
1072                 perf_event_attr__fprintf(&evsel->attr, stderr);
1073
1074         for (cpu = 0; cpu < cpus->nr; cpu++) {
1075
1076                 for (thread = 0; thread < nthreads; thread++) {
1077                         int group_fd;
1078
1079                         if (!evsel->cgrp && !evsel->system_wide)
1080                                 pid = threads->map[thread];
1081
1082                         group_fd = get_group_fd(evsel, cpu, thread);
1083 retry_open:
1084                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1085                                   pid, cpus->map[cpu], group_fd, flags);
1086
1087                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1088                                                                      pid,
1089                                                                      cpus->map[cpu],
1090                                                                      group_fd, flags);
1091                         if (FD(evsel, cpu, thread) < 0) {
1092                                 err = -errno;
1093                                 pr_debug2("sys_perf_event_open failed, error %d\n",
1094                                           err);
1095                                 goto try_fallback;
1096                         }
1097                         set_rlimit = NO_CHANGE;
1098                 }
1099         }
1100
1101         return 0;
1102
1103 try_fallback:
1104         /*
1105          * perf stat needs between 5 and 22 fds per CPU. When we run out
1106          * of them try to increase the limits.
1107          */
1108         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1109                 struct rlimit l;
1110                 int old_errno = errno;
1111
1112                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1113                         if (set_rlimit == NO_CHANGE)
1114                                 l.rlim_cur = l.rlim_max;
1115                         else {
1116                                 l.rlim_cur = l.rlim_max + 1000;
1117                                 l.rlim_max = l.rlim_cur;
1118                         }
1119                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1120                                 set_rlimit++;
1121                                 errno = old_errno;
1122                                 goto retry_open;
1123                         }
1124                 }
1125                 errno = old_errno;
1126         }
1127
1128         if (err != -EINVAL || cpu > 0 || thread > 0)
1129                 goto out_close;
1130
1131         if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1132                 perf_missing_features.cloexec = true;
1133                 goto fallback_missing_features;
1134         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1135                 perf_missing_features.mmap2 = true;
1136                 goto fallback_missing_features;
1137         } else if (!perf_missing_features.exclude_guest &&
1138                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1139                 perf_missing_features.exclude_guest = true;
1140                 goto fallback_missing_features;
1141         } else if (!perf_missing_features.sample_id_all) {
1142                 perf_missing_features.sample_id_all = true;
1143                 goto retry_sample_id;
1144         }
1145
1146 out_close:
1147         do {
1148                 while (--thread >= 0) {
1149                         close(FD(evsel, cpu, thread));
1150                         FD(evsel, cpu, thread) = -1;
1151                 }
1152                 thread = nthreads;
1153         } while (--cpu >= 0);
1154         return err;
1155 }
1156
1157 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1158 {
1159         if (evsel->fd == NULL)
1160                 return;
1161
1162         perf_evsel__close_fd(evsel, ncpus, nthreads);
1163         perf_evsel__free_fd(evsel);
1164 }
1165
1166 static struct {
1167         struct cpu_map map;
1168         int cpus[1];
1169 } empty_cpu_map = {
1170         .map.nr = 1,
1171         .cpus   = { -1, },
1172 };
1173
1174 static struct {
1175         struct thread_map map;
1176         int threads[1];
1177 } empty_thread_map = {
1178         .map.nr  = 1,
1179         .threads = { -1, },
1180 };
1181
1182 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1183                      struct thread_map *threads)
1184 {
1185         if (cpus == NULL) {
1186                 /* Work around old compiler warnings about strict aliasing */
1187                 cpus = &empty_cpu_map.map;
1188         }
1189
1190         if (threads == NULL)
1191                 threads = &empty_thread_map.map;
1192
1193         return __perf_evsel__open(evsel, cpus, threads);
1194 }
1195
1196 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1197                              struct cpu_map *cpus)
1198 {
1199         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1200 }
1201
1202 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1203                                 struct thread_map *threads)
1204 {
1205         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1206 }
1207
1208 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1209                                        const union perf_event *event,
1210                                        struct perf_sample *sample)
1211 {
1212         u64 type = evsel->attr.sample_type;
1213         const u64 *array = event->sample.array;
1214         bool swapped = evsel->needs_swap;
1215         union u64_swap u;
1216
1217         array += ((event->header.size -
1218                    sizeof(event->header)) / sizeof(u64)) - 1;
1219
1220         if (type & PERF_SAMPLE_IDENTIFIER) {
1221                 sample->id = *array;
1222                 array--;
1223         }
1224
1225         if (type & PERF_SAMPLE_CPU) {
1226                 u.val64 = *array;
1227                 if (swapped) {
1228                         /* undo swap of u64, then swap on individual u32s */
1229                         u.val64 = bswap_64(u.val64);
1230                         u.val32[0] = bswap_32(u.val32[0]);
1231                 }
1232
1233                 sample->cpu = u.val32[0];
1234                 array--;
1235         }
1236
1237         if (type & PERF_SAMPLE_STREAM_ID) {
1238                 sample->stream_id = *array;
1239                 array--;
1240         }
1241
1242         if (type & PERF_SAMPLE_ID) {
1243                 sample->id = *array;
1244                 array--;
1245         }
1246
1247         if (type & PERF_SAMPLE_TIME) {
1248                 sample->time = *array;
1249                 array--;
1250         }
1251
1252         if (type & PERF_SAMPLE_TID) {
1253                 u.val64 = *array;
1254                 if (swapped) {
1255                         /* undo swap of u64, then swap on individual u32s */
1256                         u.val64 = bswap_64(u.val64);
1257                         u.val32[0] = bswap_32(u.val32[0]);
1258                         u.val32[1] = bswap_32(u.val32[1]);
1259                 }
1260
1261                 sample->pid = u.val32[0];
1262                 sample->tid = u.val32[1];
1263                 array--;
1264         }
1265
1266         return 0;
1267 }
1268
1269 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1270                             u64 size)
1271 {
1272         return size > max_size || offset + size > endp;
1273 }
1274
1275 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1276         do {                                                            \
1277                 if (overflow(endp, (max_size), (offset), (size)))       \
1278                         return -EFAULT;                                 \
1279         } while (0)
1280
1281 #define OVERFLOW_CHECK_u64(offset) \
1282         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1283
1284 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1285                              struct perf_sample *data)
1286 {
1287         u64 type = evsel->attr.sample_type;
1288         bool swapped = evsel->needs_swap;
1289         const u64 *array;
1290         u16 max_size = event->header.size;
1291         const void *endp = (void *)event + max_size;
1292         u64 sz;
1293
1294         /*
1295          * used for cross-endian analysis. See git commit 65014ab3
1296          * for why this goofiness is needed.
1297          */
1298         union u64_swap u;
1299
1300         memset(data, 0, sizeof(*data));
1301         data->cpu = data->pid = data->tid = -1;
1302         data->stream_id = data->id = data->time = -1ULL;
1303         data->period = evsel->attr.sample_period;
1304         data->weight = 0;
1305
1306         if (event->header.type != PERF_RECORD_SAMPLE) {
1307                 if (!evsel->attr.sample_id_all)
1308                         return 0;
1309                 return perf_evsel__parse_id_sample(evsel, event, data);
1310         }
1311
1312         array = event->sample.array;
1313
1314         /*
1315          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1316          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1317          * check the format does not go past the end of the event.
1318          */
1319         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1320                 return -EFAULT;
1321
1322         data->id = -1ULL;
1323         if (type & PERF_SAMPLE_IDENTIFIER) {
1324                 data->id = *array;
1325                 array++;
1326         }
1327
1328         if (type & PERF_SAMPLE_IP) {
1329                 data->ip = *array;
1330                 array++;
1331         }
1332
1333         if (type & PERF_SAMPLE_TID) {
1334                 u.val64 = *array;
1335                 if (swapped) {
1336                         /* undo swap of u64, then swap on individual u32s */
1337                         u.val64 = bswap_64(u.val64);
1338                         u.val32[0] = bswap_32(u.val32[0]);
1339                         u.val32[1] = bswap_32(u.val32[1]);
1340                 }
1341
1342                 data->pid = u.val32[0];
1343                 data->tid = u.val32[1];
1344                 array++;
1345         }
1346
1347         if (type & PERF_SAMPLE_TIME) {
1348                 data->time = *array;
1349                 array++;
1350         }
1351
1352         data->addr = 0;
1353         if (type & PERF_SAMPLE_ADDR) {
1354                 data->addr = *array;
1355                 array++;
1356         }
1357
1358         if (type & PERF_SAMPLE_ID) {
1359                 data->id = *array;
1360                 array++;
1361         }
1362
1363         if (type & PERF_SAMPLE_STREAM_ID) {
1364                 data->stream_id = *array;
1365                 array++;
1366         }
1367
1368         if (type & PERF_SAMPLE_CPU) {
1369
1370                 u.val64 = *array;
1371                 if (swapped) {
1372                         /* undo swap of u64, then swap on individual u32s */
1373                         u.val64 = bswap_64(u.val64);
1374                         u.val32[0] = bswap_32(u.val32[0]);
1375                 }
1376
1377                 data->cpu = u.val32[0];
1378                 array++;
1379         }
1380
1381         if (type & PERF_SAMPLE_PERIOD) {
1382                 data->period = *array;
1383                 array++;
1384         }
1385
1386         if (type & PERF_SAMPLE_READ) {
1387                 u64 read_format = evsel->attr.read_format;
1388
1389                 OVERFLOW_CHECK_u64(array);
1390                 if (read_format & PERF_FORMAT_GROUP)
1391                         data->read.group.nr = *array;
1392                 else
1393                         data->read.one.value = *array;
1394
1395                 array++;
1396
1397                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1398                         OVERFLOW_CHECK_u64(array);
1399                         data->read.time_enabled = *array;
1400                         array++;
1401                 }
1402
1403                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1404                         OVERFLOW_CHECK_u64(array);
1405                         data->read.time_running = *array;
1406                         array++;
1407                 }
1408
1409                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1410                 if (read_format & PERF_FORMAT_GROUP) {
1411                         const u64 max_group_nr = UINT64_MAX /
1412                                         sizeof(struct sample_read_value);
1413
1414                         if (data->read.group.nr > max_group_nr)
1415                                 return -EFAULT;
1416                         sz = data->read.group.nr *
1417                              sizeof(struct sample_read_value);
1418                         OVERFLOW_CHECK(array, sz, max_size);
1419                         data->read.group.values =
1420                                         (struct sample_read_value *)array;
1421                         array = (void *)array + sz;
1422                 } else {
1423                         OVERFLOW_CHECK_u64(array);
1424                         data->read.one.id = *array;
1425                         array++;
1426                 }
1427         }
1428
1429         if (type & PERF_SAMPLE_CALLCHAIN) {
1430                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1431
1432                 OVERFLOW_CHECK_u64(array);
1433                 data->callchain = (struct ip_callchain *)array++;
1434                 if (data->callchain->nr > max_callchain_nr)
1435                         return -EFAULT;
1436                 sz = data->callchain->nr * sizeof(u64);
1437                 OVERFLOW_CHECK(array, sz, max_size);
1438                 array = (void *)array + sz;
1439         }
1440
1441         if (type & PERF_SAMPLE_RAW) {
1442                 OVERFLOW_CHECK_u64(array);
1443                 u.val64 = *array;
1444                 if (WARN_ONCE(swapped,
1445                               "Endianness of raw data not corrected!\n")) {
1446                         /* undo swap of u64, then swap on individual u32s */
1447                         u.val64 = bswap_64(u.val64);
1448                         u.val32[0] = bswap_32(u.val32[0]);
1449                         u.val32[1] = bswap_32(u.val32[1]);
1450                 }
1451                 data->raw_size = u.val32[0];
1452                 array = (void *)array + sizeof(u32);
1453
1454                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1455                 data->raw_data = (void *)array;
1456                 array = (void *)array + data->raw_size;
1457         }
1458
1459         if (type & PERF_SAMPLE_BRANCH_STACK) {
1460                 const u64 max_branch_nr = UINT64_MAX /
1461                                           sizeof(struct branch_entry);
1462
1463                 OVERFLOW_CHECK_u64(array);
1464                 data->branch_stack = (struct branch_stack *)array++;
1465
1466                 if (data->branch_stack->nr > max_branch_nr)
1467                         return -EFAULT;
1468                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1469                 OVERFLOW_CHECK(array, sz, max_size);
1470                 array = (void *)array + sz;
1471         }
1472
1473         if (type & PERF_SAMPLE_REGS_USER) {
1474                 OVERFLOW_CHECK_u64(array);
1475                 data->user_regs.abi = *array;
1476                 array++;
1477
1478                 if (data->user_regs.abi) {
1479                         u64 mask = evsel->attr.sample_regs_user;
1480
1481                         sz = hweight_long(mask) * sizeof(u64);
1482                         OVERFLOW_CHECK(array, sz, max_size);
1483                         data->user_regs.mask = mask;
1484                         data->user_regs.regs = (u64 *)array;
1485                         array = (void *)array + sz;
1486                 }
1487         }
1488
1489         if (type & PERF_SAMPLE_STACK_USER) {
1490                 OVERFLOW_CHECK_u64(array);
1491                 sz = *array++;
1492
1493                 data->user_stack.offset = ((char *)(array - 1)
1494                                           - (char *) event);
1495
1496                 if (!sz) {
1497                         data->user_stack.size = 0;
1498                 } else {
1499                         OVERFLOW_CHECK(array, sz, max_size);
1500                         data->user_stack.data = (char *)array;
1501                         array = (void *)array + sz;
1502                         OVERFLOW_CHECK_u64(array);
1503                         data->user_stack.size = *array++;
1504                         if (WARN_ONCE(data->user_stack.size > sz,
1505                                       "user stack dump failure\n"))
1506                                 return -EFAULT;
1507                 }
1508         }
1509
1510         data->weight = 0;
1511         if (type & PERF_SAMPLE_WEIGHT) {
1512                 OVERFLOW_CHECK_u64(array);
1513                 data->weight = *array;
1514                 array++;
1515         }
1516
1517         data->data_src = PERF_MEM_DATA_SRC_NONE;
1518         if (type & PERF_SAMPLE_DATA_SRC) {
1519                 OVERFLOW_CHECK_u64(array);
1520                 data->data_src = *array;
1521                 array++;
1522         }
1523
1524         data->transaction = 0;
1525         if (type & PERF_SAMPLE_TRANSACTION) {
1526                 OVERFLOW_CHECK_u64(array);
1527                 data->transaction = *array;
1528                 array++;
1529         }
1530
1531         data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1532         if (type & PERF_SAMPLE_REGS_INTR) {
1533                 OVERFLOW_CHECK_u64(array);
1534                 data->intr_regs.abi = *array;
1535                 array++;
1536
1537                 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1538                         u64 mask = evsel->attr.sample_regs_intr;
1539
1540                         sz = hweight_long(mask) * sizeof(u64);
1541                         OVERFLOW_CHECK(array, sz, max_size);
1542                         data->intr_regs.mask = mask;
1543                         data->intr_regs.regs = (u64 *)array;
1544                         array = (void *)array + sz;
1545                 }
1546         }
1547
1548         return 0;
1549 }
1550
1551 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1552                                      u64 read_format)
1553 {
1554         size_t sz, result = sizeof(struct sample_event);
1555
1556         if (type & PERF_SAMPLE_IDENTIFIER)
1557                 result += sizeof(u64);
1558
1559         if (type & PERF_SAMPLE_IP)
1560                 result += sizeof(u64);
1561
1562         if (type & PERF_SAMPLE_TID)
1563                 result += sizeof(u64);
1564
1565         if (type & PERF_SAMPLE_TIME)
1566                 result += sizeof(u64);
1567
1568         if (type & PERF_SAMPLE_ADDR)
1569                 result += sizeof(u64);
1570
1571         if (type & PERF_SAMPLE_ID)
1572                 result += sizeof(u64);
1573
1574         if (type & PERF_SAMPLE_STREAM_ID)
1575                 result += sizeof(u64);
1576
1577         if (type & PERF_SAMPLE_CPU)
1578                 result += sizeof(u64);
1579
1580         if (type & PERF_SAMPLE_PERIOD)
1581                 result += sizeof(u64);
1582
1583         if (type & PERF_SAMPLE_READ) {
1584                 result += sizeof(u64);
1585                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1586                         result += sizeof(u64);
1587                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1588                         result += sizeof(u64);
1589                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1590                 if (read_format & PERF_FORMAT_GROUP) {
1591                         sz = sample->read.group.nr *
1592                              sizeof(struct sample_read_value);
1593                         result += sz;
1594                 } else {
1595                         result += sizeof(u64);
1596                 }
1597         }
1598
1599         if (type & PERF_SAMPLE_CALLCHAIN) {
1600                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1601                 result += sz;
1602         }
1603
1604         if (type & PERF_SAMPLE_RAW) {
1605                 result += sizeof(u32);
1606                 result += sample->raw_size;
1607         }
1608
1609         if (type & PERF_SAMPLE_BRANCH_STACK) {
1610                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1611                 sz += sizeof(u64);
1612                 result += sz;
1613         }
1614
1615         if (type & PERF_SAMPLE_REGS_USER) {
1616                 if (sample->user_regs.abi) {
1617                         result += sizeof(u64);
1618                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1619                         result += sz;
1620                 } else {
1621                         result += sizeof(u64);
1622                 }
1623         }
1624
1625         if (type & PERF_SAMPLE_STACK_USER) {
1626                 sz = sample->user_stack.size;
1627                 result += sizeof(u64);
1628                 if (sz) {
1629                         result += sz;
1630                         result += sizeof(u64);
1631                 }
1632         }
1633
1634         if (type & PERF_SAMPLE_WEIGHT)
1635                 result += sizeof(u64);
1636
1637         if (type & PERF_SAMPLE_DATA_SRC)
1638                 result += sizeof(u64);
1639
1640         if (type & PERF_SAMPLE_TRANSACTION)
1641                 result += sizeof(u64);
1642
1643         if (type & PERF_SAMPLE_REGS_INTR) {
1644                 if (sample->intr_regs.abi) {
1645                         result += sizeof(u64);
1646                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1647                         result += sz;
1648                 } else {
1649                         result += sizeof(u64);
1650                 }
1651         }
1652
1653         return result;
1654 }
1655
1656 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1657                                   u64 read_format,
1658                                   const struct perf_sample *sample,
1659                                   bool swapped)
1660 {
1661         u64 *array;
1662         size_t sz;
1663         /*
1664          * used for cross-endian analysis. See git commit 65014ab3
1665          * for why this goofiness is needed.
1666          */
1667         union u64_swap u;
1668
1669         array = event->sample.array;
1670
1671         if (type & PERF_SAMPLE_IDENTIFIER) {
1672                 *array = sample->id;
1673                 array++;
1674         }
1675
1676         if (type & PERF_SAMPLE_IP) {
1677                 *array = sample->ip;
1678                 array++;
1679         }
1680
1681         if (type & PERF_SAMPLE_TID) {
1682                 u.val32[0] = sample->pid;
1683                 u.val32[1] = sample->tid;
1684                 if (swapped) {
1685                         /*
1686                          * Inverse of what is done in perf_evsel__parse_sample
1687                          */
1688                         u.val32[0] = bswap_32(u.val32[0]);
1689                         u.val32[1] = bswap_32(u.val32[1]);
1690                         u.val64 = bswap_64(u.val64);
1691                 }
1692
1693                 *array = u.val64;
1694                 array++;
1695         }
1696
1697         if (type & PERF_SAMPLE_TIME) {
1698                 *array = sample->time;
1699                 array++;
1700         }
1701
1702         if (type & PERF_SAMPLE_ADDR) {
1703                 *array = sample->addr;
1704                 array++;
1705         }
1706
1707         if (type & PERF_SAMPLE_ID) {
1708                 *array = sample->id;
1709                 array++;
1710         }
1711
1712         if (type & PERF_SAMPLE_STREAM_ID) {
1713                 *array = sample->stream_id;
1714                 array++;
1715         }
1716
1717         if (type & PERF_SAMPLE_CPU) {
1718                 u.val32[0] = sample->cpu;
1719                 if (swapped) {
1720                         /*
1721                          * Inverse of what is done in perf_evsel__parse_sample
1722                          */
1723                         u.val32[0] = bswap_32(u.val32[0]);
1724                         u.val64 = bswap_64(u.val64);
1725                 }
1726                 *array = u.val64;
1727                 array++;
1728         }
1729
1730         if (type & PERF_SAMPLE_PERIOD) {
1731                 *array = sample->period;
1732                 array++;
1733         }
1734
1735         if (type & PERF_SAMPLE_READ) {
1736                 if (read_format & PERF_FORMAT_GROUP)
1737                         *array = sample->read.group.nr;
1738                 else
1739                         *array = sample->read.one.value;
1740                 array++;
1741
1742                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1743                         *array = sample->read.time_enabled;
1744                         array++;
1745                 }
1746
1747                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1748                         *array = sample->read.time_running;
1749                         array++;
1750                 }
1751
1752                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1753                 if (read_format & PERF_FORMAT_GROUP) {
1754                         sz = sample->read.group.nr *
1755                              sizeof(struct sample_read_value);
1756                         memcpy(array, sample->read.group.values, sz);
1757                         array = (void *)array + sz;
1758                 } else {
1759                         *array = sample->read.one.id;
1760                         array++;
1761                 }
1762         }
1763
1764         if (type & PERF_SAMPLE_CALLCHAIN) {
1765                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1766                 memcpy(array, sample->callchain, sz);
1767                 array = (void *)array + sz;
1768         }
1769
1770         if (type & PERF_SAMPLE_RAW) {
1771                 u.val32[0] = sample->raw_size;
1772                 if (WARN_ONCE(swapped,
1773                               "Endianness of raw data not corrected!\n")) {
1774                         /*
1775                          * Inverse of what is done in perf_evsel__parse_sample
1776                          */
1777                         u.val32[0] = bswap_32(u.val32[0]);
1778                         u.val32[1] = bswap_32(u.val32[1]);
1779                         u.val64 = bswap_64(u.val64);
1780                 }
1781                 *array = u.val64;
1782                 array = (void *)array + sizeof(u32);
1783
1784                 memcpy(array, sample->raw_data, sample->raw_size);
1785                 array = (void *)array + sample->raw_size;
1786         }
1787
1788         if (type & PERF_SAMPLE_BRANCH_STACK) {
1789                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1790                 sz += sizeof(u64);
1791                 memcpy(array, sample->branch_stack, sz);
1792                 array = (void *)array + sz;
1793         }
1794
1795         if (type & PERF_SAMPLE_REGS_USER) {
1796                 if (sample->user_regs.abi) {
1797                         *array++ = sample->user_regs.abi;
1798                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1799                         memcpy(array, sample->user_regs.regs, sz);
1800                         array = (void *)array + sz;
1801                 } else {
1802                         *array++ = 0;
1803                 }
1804         }
1805
1806         if (type & PERF_SAMPLE_STACK_USER) {
1807                 sz = sample->user_stack.size;
1808                 *array++ = sz;
1809                 if (sz) {
1810                         memcpy(array, sample->user_stack.data, sz);
1811                         array = (void *)array + sz;
1812                         *array++ = sz;
1813                 }
1814         }
1815
1816         if (type & PERF_SAMPLE_WEIGHT) {
1817                 *array = sample->weight;
1818                 array++;
1819         }
1820
1821         if (type & PERF_SAMPLE_DATA_SRC) {
1822                 *array = sample->data_src;
1823                 array++;
1824         }
1825
1826         if (type & PERF_SAMPLE_TRANSACTION) {
1827                 *array = sample->transaction;
1828                 array++;
1829         }
1830
1831         if (type & PERF_SAMPLE_REGS_INTR) {
1832                 if (sample->intr_regs.abi) {
1833                         *array++ = sample->intr_regs.abi;
1834                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1835                         memcpy(array, sample->intr_regs.regs, sz);
1836                         array = (void *)array + sz;
1837                 } else {
1838                         *array++ = 0;
1839                 }
1840         }
1841
1842         return 0;
1843 }
1844
1845 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1846 {
1847         return pevent_find_field(evsel->tp_format, name);
1848 }
1849
1850 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1851                          const char *name)
1852 {
1853         struct format_field *field = perf_evsel__field(evsel, name);
1854         int offset;
1855
1856         if (!field)
1857                 return NULL;
1858
1859         offset = field->offset;
1860
1861         if (field->flags & FIELD_IS_DYNAMIC) {
1862                 offset = *(int *)(sample->raw_data + field->offset);
1863                 offset &= 0xffff;
1864         }
1865
1866         return sample->raw_data + offset;
1867 }
1868
1869 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1870                        const char *name)
1871 {
1872         struct format_field *field = perf_evsel__field(evsel, name);
1873         void *ptr;
1874         u64 value;
1875
1876         if (!field)
1877                 return 0;
1878
1879         ptr = sample->raw_data + field->offset;
1880
1881         switch (field->size) {
1882         case 1:
1883                 return *(u8 *)ptr;
1884         case 2:
1885                 value = *(u16 *)ptr;
1886                 break;
1887         case 4:
1888                 value = *(u32 *)ptr;
1889                 break;
1890         case 8:
1891                 value = *(u64 *)ptr;
1892                 break;
1893         default:
1894                 return 0;
1895         }
1896
1897         if (!evsel->needs_swap)
1898                 return value;
1899
1900         switch (field->size) {
1901         case 2:
1902                 return bswap_16(value);
1903         case 4:
1904                 return bswap_32(value);
1905         case 8:
1906                 return bswap_64(value);
1907         default:
1908                 return 0;
1909         }
1910
1911         return 0;
1912 }
1913
1914 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1915 {
1916         va_list args;
1917         int ret = 0;
1918
1919         if (!*first) {
1920                 ret += fprintf(fp, ",");
1921         } else {
1922                 ret += fprintf(fp, ":");
1923                 *first = false;
1924         }
1925
1926         va_start(args, fmt);
1927         ret += vfprintf(fp, fmt, args);
1928         va_end(args);
1929         return ret;
1930 }
1931
1932 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1933 {
1934         if (value == 0)
1935                 return 0;
1936
1937         return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1938 }
1939
1940 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1941
1942 struct bit_names {
1943         int bit;
1944         const char *name;
1945 };
1946
1947 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1948                          struct bit_names *bits, bool *first)
1949 {
1950         int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1951         bool first_bit = true;
1952
1953         do {
1954                 if (value & bits[i].bit) {
1955                         printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1956                         first_bit = false;
1957                 }
1958         } while (bits[++i].name != NULL);
1959
1960         return printed;
1961 }
1962
1963 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1964 {
1965 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1966         struct bit_names bits[] = {
1967                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1968                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1969                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1970                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1971                 bit_name(IDENTIFIER), bit_name(REGS_INTR),
1972                 { .name = NULL, }
1973         };
1974 #undef bit_name
1975         return bits__fprintf(fp, "sample_type", value, bits, first);
1976 }
1977
1978 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1979 {
1980 #define bit_name(n) { PERF_FORMAT_##n, #n }
1981         struct bit_names bits[] = {
1982                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1983                 bit_name(ID), bit_name(GROUP),
1984                 { .name = NULL, }
1985         };
1986 #undef bit_name
1987         return bits__fprintf(fp, "read_format", value, bits, first);
1988 }
1989
1990 int perf_evsel__fprintf(struct perf_evsel *evsel,
1991                         struct perf_attr_details *details, FILE *fp)
1992 {
1993         bool first = true;
1994         int printed = 0;
1995
1996         if (details->event_group) {
1997                 struct perf_evsel *pos;
1998
1999                 if (!perf_evsel__is_group_leader(evsel))
2000                         return 0;
2001
2002                 if (evsel->nr_members > 1)
2003                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2004
2005                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2006                 for_each_group_member(pos, evsel)
2007                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2008
2009                 if (evsel->nr_members > 1)
2010                         printed += fprintf(fp, "}");
2011                 goto out;
2012         }
2013
2014         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2015
2016         if (details->verbose || details->freq) {
2017                 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
2018                                          (u64)evsel->attr.sample_freq);
2019         }
2020
2021         if (details->verbose) {
2022                 if_print(type);
2023                 if_print(config);
2024                 if_print(config1);
2025                 if_print(config2);
2026                 if_print(size);
2027                 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
2028                 if (evsel->attr.read_format)
2029                         printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
2030                 if_print(disabled);
2031                 if_print(inherit);
2032                 if_print(pinned);
2033                 if_print(exclusive);
2034                 if_print(exclude_user);
2035                 if_print(exclude_kernel);
2036                 if_print(exclude_hv);
2037                 if_print(exclude_idle);
2038                 if_print(mmap);
2039                 if_print(mmap2);
2040                 if_print(comm);
2041                 if_print(comm_exec);
2042                 if_print(freq);
2043                 if_print(inherit_stat);
2044                 if_print(enable_on_exec);
2045                 if_print(task);
2046                 if_print(watermark);
2047                 if_print(precise_ip);
2048                 if_print(mmap_data);
2049                 if_print(sample_id_all);
2050                 if_print(exclude_host);
2051                 if_print(exclude_guest);
2052                 if_print(__reserved_1);
2053                 if_print(wakeup_events);
2054                 if_print(bp_type);
2055                 if_print(branch_sample_type);
2056         }
2057 out:
2058         fputc('\n', fp);
2059         return ++printed;
2060 }
2061
2062 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2063                           char *msg, size_t msgsize)
2064 {
2065         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2066             evsel->attr.type   == PERF_TYPE_HARDWARE &&
2067             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2068                 /*
2069                  * If it's cycles then fall back to hrtimer based
2070                  * cpu-clock-tick sw counter, which is always available even if
2071                  * no PMU support.
2072                  *
2073                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2074                  * b0a873e).
2075                  */
2076                 scnprintf(msg, msgsize, "%s",
2077 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2078
2079                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2080                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2081
2082                 zfree(&evsel->name);
2083                 return true;
2084         }
2085
2086         return false;
2087 }
2088
2089 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2090                               int err, char *msg, size_t size)
2091 {
2092         char sbuf[STRERR_BUFSIZE];
2093
2094         switch (err) {
2095         case EPERM:
2096         case EACCES:
2097                 return scnprintf(msg, size,
2098                  "You may not have permission to collect %sstats.\n"
2099                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2100                  " -1 - Not paranoid at all\n"
2101                  "  0 - Disallow raw tracepoint access for unpriv\n"
2102                  "  1 - Disallow cpu events for unpriv\n"
2103                  "  2 - Disallow kernel profiling for unpriv",
2104                                  target->system_wide ? "system-wide " : "");
2105         case ENOENT:
2106                 return scnprintf(msg, size, "The %s event is not supported.",
2107                                  perf_evsel__name(evsel));
2108         case EMFILE:
2109                 return scnprintf(msg, size, "%s",
2110                          "Too many events are opened.\n"
2111                          "Try again after reducing the number of events.");
2112         case ENODEV:
2113                 if (target->cpu_list)
2114                         return scnprintf(msg, size, "%s",
2115          "No such device - did you specify an out-of-range profile CPU?\n");
2116                 break;
2117         case EOPNOTSUPP:
2118                 if (evsel->attr.precise_ip)
2119                         return scnprintf(msg, size, "%s",
2120         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2121 #if defined(__i386__) || defined(__x86_64__)
2122                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2123                         return scnprintf(msg, size, "%s",
2124         "No hardware sampling interrupt available.\n"
2125         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2126 #endif
2127                 break;
2128         case EBUSY:
2129                 if (find_process("oprofiled"))
2130                         return scnprintf(msg, size,
2131         "The PMU counters are busy/taken by another profiler.\n"
2132         "We found oprofile daemon running, please stop it and try again.");
2133                 break;
2134         default:
2135                 break;
2136         }
2137
2138         return scnprintf(msg, size,
2139         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2140         "/bin/dmesg may provide additional information.\n"
2141         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2142                          err, strerror_r(err, sbuf, sizeof(sbuf)),
2143                          perf_evsel__name(evsel));
2144 }