pinctrl: at91: enhance (debugfs) at91_gpio_dbg_show
[cascardo/linux.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "callchain.h"
19 #include "cgroup.h"
20 #include "evsel.h"
21 #include "evlist.h"
22 #include "util.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25 #include "target.h"
26 #include "perf_regs.h"
27 #include "debug.h"
28 #include "trace-event.h"
29
30 static struct {
31         bool sample_id_all;
32         bool exclude_guest;
33         bool mmap2;
34         bool cloexec;
35 } perf_missing_features;
36
37 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
38 {
39         return 0;
40 }
41
42 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
43 {
44 }
45
46 static struct {
47         size_t  size;
48         int     (*init)(struct perf_evsel *evsel);
49         void    (*fini)(struct perf_evsel *evsel);
50 } perf_evsel__object = {
51         .size = sizeof(struct perf_evsel),
52         .init = perf_evsel__no_extra_init,
53         .fini = perf_evsel__no_extra_fini,
54 };
55
56 int perf_evsel__object_config(size_t object_size,
57                               int (*init)(struct perf_evsel *evsel),
58                               void (*fini)(struct perf_evsel *evsel))
59 {
60
61         if (object_size == 0)
62                 goto set_methods;
63
64         if (perf_evsel__object.size > object_size)
65                 return -EINVAL;
66
67         perf_evsel__object.size = object_size;
68
69 set_methods:
70         if (init != NULL)
71                 perf_evsel__object.init = init;
72
73         if (fini != NULL)
74                 perf_evsel__object.fini = fini;
75
76         return 0;
77 }
78
79 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
80
81 int __perf_evsel__sample_size(u64 sample_type)
82 {
83         u64 mask = sample_type & PERF_SAMPLE_MASK;
84         int size = 0;
85         int i;
86
87         for (i = 0; i < 64; i++) {
88                 if (mask & (1ULL << i))
89                         size++;
90         }
91
92         size *= sizeof(u64);
93
94         return size;
95 }
96
97 /**
98  * __perf_evsel__calc_id_pos - calculate id_pos.
99  * @sample_type: sample type
100  *
101  * This function returns the position of the event id (PERF_SAMPLE_ID or
102  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
103  * sample_event.
104  */
105 static int __perf_evsel__calc_id_pos(u64 sample_type)
106 {
107         int idx = 0;
108
109         if (sample_type & PERF_SAMPLE_IDENTIFIER)
110                 return 0;
111
112         if (!(sample_type & PERF_SAMPLE_ID))
113                 return -1;
114
115         if (sample_type & PERF_SAMPLE_IP)
116                 idx += 1;
117
118         if (sample_type & PERF_SAMPLE_TID)
119                 idx += 1;
120
121         if (sample_type & PERF_SAMPLE_TIME)
122                 idx += 1;
123
124         if (sample_type & PERF_SAMPLE_ADDR)
125                 idx += 1;
126
127         return idx;
128 }
129
130 /**
131  * __perf_evsel__calc_is_pos - calculate is_pos.
132  * @sample_type: sample type
133  *
134  * This function returns the position (counting backwards) of the event id
135  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
136  * sample_id_all is used there is an id sample appended to non-sample events.
137  */
138 static int __perf_evsel__calc_is_pos(u64 sample_type)
139 {
140         int idx = 1;
141
142         if (sample_type & PERF_SAMPLE_IDENTIFIER)
143                 return 1;
144
145         if (!(sample_type & PERF_SAMPLE_ID))
146                 return -1;
147
148         if (sample_type & PERF_SAMPLE_CPU)
149                 idx += 1;
150
151         if (sample_type & PERF_SAMPLE_STREAM_ID)
152                 idx += 1;
153
154         return idx;
155 }
156
157 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
158 {
159         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
160         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
161 }
162
163 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
164                                   enum perf_event_sample_format bit)
165 {
166         if (!(evsel->attr.sample_type & bit)) {
167                 evsel->attr.sample_type |= bit;
168                 evsel->sample_size += sizeof(u64);
169                 perf_evsel__calc_id_pos(evsel);
170         }
171 }
172
173 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
174                                     enum perf_event_sample_format bit)
175 {
176         if (evsel->attr.sample_type & bit) {
177                 evsel->attr.sample_type &= ~bit;
178                 evsel->sample_size -= sizeof(u64);
179                 perf_evsel__calc_id_pos(evsel);
180         }
181 }
182
183 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
184                                bool can_sample_identifier)
185 {
186         if (can_sample_identifier) {
187                 perf_evsel__reset_sample_bit(evsel, ID);
188                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
189         } else {
190                 perf_evsel__set_sample_bit(evsel, ID);
191         }
192         evsel->attr.read_format |= PERF_FORMAT_ID;
193 }
194
195 void perf_evsel__init(struct perf_evsel *evsel,
196                       struct perf_event_attr *attr, int idx)
197 {
198         evsel->idx         = idx;
199         evsel->tracking    = !idx;
200         evsel->attr        = *attr;
201         evsel->leader      = evsel;
202         evsel->unit        = "";
203         evsel->scale       = 1.0;
204         INIT_LIST_HEAD(&evsel->node);
205         perf_evsel__object.init(evsel);
206         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
207         perf_evsel__calc_id_pos(evsel);
208 }
209
210 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
211 {
212         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
213
214         if (evsel != NULL)
215                 perf_evsel__init(evsel, attr, idx);
216
217         return evsel;
218 }
219
220 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
221 {
222         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
223
224         if (evsel != NULL) {
225                 struct perf_event_attr attr = {
226                         .type          = PERF_TYPE_TRACEPOINT,
227                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
228                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
229                 };
230
231                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
232                         goto out_free;
233
234                 evsel->tp_format = trace_event__tp_format(sys, name);
235                 if (evsel->tp_format == NULL)
236                         goto out_free;
237
238                 event_attr_init(&attr);
239                 attr.config = evsel->tp_format->id;
240                 attr.sample_period = 1;
241                 perf_evsel__init(evsel, &attr, idx);
242         }
243
244         return evsel;
245
246 out_free:
247         zfree(&evsel->name);
248         free(evsel);
249         return NULL;
250 }
251
252 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
253         "cycles",
254         "instructions",
255         "cache-references",
256         "cache-misses",
257         "branches",
258         "branch-misses",
259         "bus-cycles",
260         "stalled-cycles-frontend",
261         "stalled-cycles-backend",
262         "ref-cycles",
263 };
264
265 static const char *__perf_evsel__hw_name(u64 config)
266 {
267         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
268                 return perf_evsel__hw_names[config];
269
270         return "unknown-hardware";
271 }
272
273 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
274 {
275         int colon = 0, r = 0;
276         struct perf_event_attr *attr = &evsel->attr;
277         bool exclude_guest_default = false;
278
279 #define MOD_PRINT(context, mod) do {                                    \
280                 if (!attr->exclude_##context) {                         \
281                         if (!colon) colon = ++r;                        \
282                         r += scnprintf(bf + r, size - r, "%c", mod);    \
283                 } } while(0)
284
285         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
286                 MOD_PRINT(kernel, 'k');
287                 MOD_PRINT(user, 'u');
288                 MOD_PRINT(hv, 'h');
289                 exclude_guest_default = true;
290         }
291
292         if (attr->precise_ip) {
293                 if (!colon)
294                         colon = ++r;
295                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
296                 exclude_guest_default = true;
297         }
298
299         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
300                 MOD_PRINT(host, 'H');
301                 MOD_PRINT(guest, 'G');
302         }
303 #undef MOD_PRINT
304         if (colon)
305                 bf[colon - 1] = ':';
306         return r;
307 }
308
309 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
310 {
311         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
312         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
313 }
314
315 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
316         "cpu-clock",
317         "task-clock",
318         "page-faults",
319         "context-switches",
320         "cpu-migrations",
321         "minor-faults",
322         "major-faults",
323         "alignment-faults",
324         "emulation-faults",
325         "dummy",
326 };
327
328 static const char *__perf_evsel__sw_name(u64 config)
329 {
330         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
331                 return perf_evsel__sw_names[config];
332         return "unknown-software";
333 }
334
335 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
336 {
337         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
338         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
339 }
340
341 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
342 {
343         int r;
344
345         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
346
347         if (type & HW_BREAKPOINT_R)
348                 r += scnprintf(bf + r, size - r, "r");
349
350         if (type & HW_BREAKPOINT_W)
351                 r += scnprintf(bf + r, size - r, "w");
352
353         if (type & HW_BREAKPOINT_X)
354                 r += scnprintf(bf + r, size - r, "x");
355
356         return r;
357 }
358
359 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
360 {
361         struct perf_event_attr *attr = &evsel->attr;
362         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
363         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
364 }
365
366 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
367                                 [PERF_EVSEL__MAX_ALIASES] = {
368  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
369  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
370  { "LLC",       "L2",                                                   },
371  { "dTLB",      "d-tlb",        "Data-TLB",                             },
372  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
373  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
374  { "node",                                                              },
375 };
376
377 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
378                                    [PERF_EVSEL__MAX_ALIASES] = {
379  { "load",      "loads",        "read",                                 },
380  { "store",     "stores",       "write",                                },
381  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
382 };
383
384 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
385                                        [PERF_EVSEL__MAX_ALIASES] = {
386  { "refs",      "Reference",    "ops",          "access",               },
387  { "misses",    "miss",                                                 },
388 };
389
390 #define C(x)            PERF_COUNT_HW_CACHE_##x
391 #define CACHE_READ      (1 << C(OP_READ))
392 #define CACHE_WRITE     (1 << C(OP_WRITE))
393 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
394 #define COP(x)          (1 << x)
395
396 /*
397  * cache operartion stat
398  * L1I : Read and prefetch only
399  * ITLB and BPU : Read-only
400  */
401 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
402  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
403  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
404  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
405  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
406  [C(ITLB)]      = (CACHE_READ),
407  [C(BPU)]       = (CACHE_READ),
408  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
409 };
410
411 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
412 {
413         if (perf_evsel__hw_cache_stat[type] & COP(op))
414                 return true;    /* valid */
415         else
416                 return false;   /* invalid */
417 }
418
419 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
420                                             char *bf, size_t size)
421 {
422         if (result) {
423                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
424                                  perf_evsel__hw_cache_op[op][0],
425                                  perf_evsel__hw_cache_result[result][0]);
426         }
427
428         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
429                          perf_evsel__hw_cache_op[op][1]);
430 }
431
432 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
433 {
434         u8 op, result, type = (config >>  0) & 0xff;
435         const char *err = "unknown-ext-hardware-cache-type";
436
437         if (type > PERF_COUNT_HW_CACHE_MAX)
438                 goto out_err;
439
440         op = (config >>  8) & 0xff;
441         err = "unknown-ext-hardware-cache-op";
442         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
443                 goto out_err;
444
445         result = (config >> 16) & 0xff;
446         err = "unknown-ext-hardware-cache-result";
447         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
448                 goto out_err;
449
450         err = "invalid-cache";
451         if (!perf_evsel__is_cache_op_valid(type, op))
452                 goto out_err;
453
454         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
455 out_err:
456         return scnprintf(bf, size, "%s", err);
457 }
458
459 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
460 {
461         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
462         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
463 }
464
465 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
466 {
467         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
468         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
469 }
470
471 const char *perf_evsel__name(struct perf_evsel *evsel)
472 {
473         char bf[128];
474
475         if (evsel->name)
476                 return evsel->name;
477
478         switch (evsel->attr.type) {
479         case PERF_TYPE_RAW:
480                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
481                 break;
482
483         case PERF_TYPE_HARDWARE:
484                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
485                 break;
486
487         case PERF_TYPE_HW_CACHE:
488                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
489                 break;
490
491         case PERF_TYPE_SOFTWARE:
492                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
493                 break;
494
495         case PERF_TYPE_TRACEPOINT:
496                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
497                 break;
498
499         case PERF_TYPE_BREAKPOINT:
500                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
501                 break;
502
503         default:
504                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
505                           evsel->attr.type);
506                 break;
507         }
508
509         evsel->name = strdup(bf);
510
511         return evsel->name ?: "unknown";
512 }
513
514 const char *perf_evsel__group_name(struct perf_evsel *evsel)
515 {
516         return evsel->group_name ?: "anon group";
517 }
518
519 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
520 {
521         int ret;
522         struct perf_evsel *pos;
523         const char *group_name = perf_evsel__group_name(evsel);
524
525         ret = scnprintf(buf, size, "%s", group_name);
526
527         ret += scnprintf(buf + ret, size - ret, " { %s",
528                          perf_evsel__name(evsel));
529
530         for_each_group_member(pos, evsel)
531                 ret += scnprintf(buf + ret, size - ret, ", %s",
532                                  perf_evsel__name(pos));
533
534         ret += scnprintf(buf + ret, size - ret, " }");
535
536         return ret;
537 }
538
539 static void
540 perf_evsel__config_callgraph(struct perf_evsel *evsel)
541 {
542         bool function = perf_evsel__is_function_event(evsel);
543         struct perf_event_attr *attr = &evsel->attr;
544
545         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
546
547         if (callchain_param.record_mode == CALLCHAIN_DWARF) {
548                 if (!function) {
549                         perf_evsel__set_sample_bit(evsel, REGS_USER);
550                         perf_evsel__set_sample_bit(evsel, STACK_USER);
551                         attr->sample_regs_user = PERF_REGS_MASK;
552                         attr->sample_stack_user = callchain_param.dump_size;
553                         attr->exclude_callchain_user = 1;
554                 } else {
555                         pr_info("Cannot use DWARF unwind for function trace event,"
556                                 " falling back to framepointers.\n");
557                 }
558         }
559
560         if (function) {
561                 pr_info("Disabling user space callchains for function trace event.\n");
562                 attr->exclude_callchain_user = 1;
563         }
564 }
565
566 /*
567  * The enable_on_exec/disabled value strategy:
568  *
569  *  1) For any type of traced program:
570  *    - all independent events and group leaders are disabled
571  *    - all group members are enabled
572  *
573  *     Group members are ruled by group leaders. They need to
574  *     be enabled, because the group scheduling relies on that.
575  *
576  *  2) For traced programs executed by perf:
577  *     - all independent events and group leaders have
578  *       enable_on_exec set
579  *     - we don't specifically enable or disable any event during
580  *       the record command
581  *
582  *     Independent events and group leaders are initially disabled
583  *     and get enabled by exec. Group members are ruled by group
584  *     leaders as stated in 1).
585  *
586  *  3) For traced programs attached by perf (pid/tid):
587  *     - we specifically enable or disable all events during
588  *       the record command
589  *
590  *     When attaching events to already running traced we
591  *     enable/disable events specifically, as there's no
592  *     initial traced exec call.
593  */
594 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
595 {
596         struct perf_evsel *leader = evsel->leader;
597         struct perf_event_attr *attr = &evsel->attr;
598         int track = evsel->tracking;
599         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
600
601         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
602         attr->inherit       = !opts->no_inherit;
603
604         perf_evsel__set_sample_bit(evsel, IP);
605         perf_evsel__set_sample_bit(evsel, TID);
606
607         if (evsel->sample_read) {
608                 perf_evsel__set_sample_bit(evsel, READ);
609
610                 /*
611                  * We need ID even in case of single event, because
612                  * PERF_SAMPLE_READ process ID specific data.
613                  */
614                 perf_evsel__set_sample_id(evsel, false);
615
616                 /*
617                  * Apply group format only if we belong to group
618                  * with more than one members.
619                  */
620                 if (leader->nr_members > 1) {
621                         attr->read_format |= PERF_FORMAT_GROUP;
622                         attr->inherit = 0;
623                 }
624         }
625
626         /*
627          * We default some events to have a default interval. But keep
628          * it a weak assumption overridable by the user.
629          */
630         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
631                                      opts->user_interval != ULLONG_MAX)) {
632                 if (opts->freq) {
633                         perf_evsel__set_sample_bit(evsel, PERIOD);
634                         attr->freq              = 1;
635                         attr->sample_freq       = opts->freq;
636                 } else {
637                         attr->sample_period = opts->default_interval;
638                 }
639         }
640
641         /*
642          * Disable sampling for all group members other
643          * than leader in case leader 'leads' the sampling.
644          */
645         if ((leader != evsel) && leader->sample_read) {
646                 attr->sample_freq   = 0;
647                 attr->sample_period = 0;
648         }
649
650         if (opts->no_samples)
651                 attr->sample_freq = 0;
652
653         if (opts->inherit_stat)
654                 attr->inherit_stat = 1;
655
656         if (opts->sample_address) {
657                 perf_evsel__set_sample_bit(evsel, ADDR);
658                 attr->mmap_data = track;
659         }
660
661         if (callchain_param.enabled && !evsel->no_aux_samples)
662                 perf_evsel__config_callgraph(evsel);
663
664         if (target__has_cpu(&opts->target))
665                 perf_evsel__set_sample_bit(evsel, CPU);
666
667         if (opts->period)
668                 perf_evsel__set_sample_bit(evsel, PERIOD);
669
670         /*
671          * When the user explicitely disabled time don't force it here.
672          */
673         if (opts->sample_time &&
674             (!perf_missing_features.sample_id_all &&
675             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu)))
676                 perf_evsel__set_sample_bit(evsel, TIME);
677
678         if (opts->raw_samples && !evsel->no_aux_samples) {
679                 perf_evsel__set_sample_bit(evsel, TIME);
680                 perf_evsel__set_sample_bit(evsel, RAW);
681                 perf_evsel__set_sample_bit(evsel, CPU);
682         }
683
684         if (opts->sample_address)
685                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
686
687         if (opts->no_buffering) {
688                 attr->watermark = 0;
689                 attr->wakeup_events = 1;
690         }
691         if (opts->branch_stack && !evsel->no_aux_samples) {
692                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
693                 attr->branch_sample_type = opts->branch_stack;
694         }
695
696         if (opts->sample_weight)
697                 perf_evsel__set_sample_bit(evsel, WEIGHT);
698
699         attr->mmap  = track;
700         attr->mmap2 = track && !perf_missing_features.mmap2;
701         attr->comm  = track;
702
703         if (opts->sample_transaction)
704                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
705
706         /*
707          * XXX see the function comment above
708          *
709          * Disabling only independent events or group leaders,
710          * keeping group members enabled.
711          */
712         if (perf_evsel__is_group_leader(evsel))
713                 attr->disabled = 1;
714
715         /*
716          * Setting enable_on_exec for independent events and
717          * group leaders for traced executed by perf.
718          */
719         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
720                 !opts->initial_delay)
721                 attr->enable_on_exec = 1;
722
723         if (evsel->immediate) {
724                 attr->disabled = 0;
725                 attr->enable_on_exec = 0;
726         }
727 }
728
729 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
730 {
731         int cpu, thread;
732
733         if (evsel->system_wide)
734                 nthreads = 1;
735
736         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
737
738         if (evsel->fd) {
739                 for (cpu = 0; cpu < ncpus; cpu++) {
740                         for (thread = 0; thread < nthreads; thread++) {
741                                 FD(evsel, cpu, thread) = -1;
742                         }
743                 }
744         }
745
746         return evsel->fd != NULL ? 0 : -ENOMEM;
747 }
748
749 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
750                           int ioc,  void *arg)
751 {
752         int cpu, thread;
753
754         if (evsel->system_wide)
755                 nthreads = 1;
756
757         for (cpu = 0; cpu < ncpus; cpu++) {
758                 for (thread = 0; thread < nthreads; thread++) {
759                         int fd = FD(evsel, cpu, thread),
760                             err = ioctl(fd, ioc, arg);
761
762                         if (err)
763                                 return err;
764                 }
765         }
766
767         return 0;
768 }
769
770 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
771                            const char *filter)
772 {
773         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
774                                      PERF_EVENT_IOC_SET_FILTER,
775                                      (void *)filter);
776 }
777
778 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
779 {
780         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
781                                      PERF_EVENT_IOC_ENABLE,
782                                      0);
783 }
784
785 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
786 {
787         if (evsel->system_wide)
788                 nthreads = 1;
789
790         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
791         if (evsel->sample_id == NULL)
792                 return -ENOMEM;
793
794         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
795         if (evsel->id == NULL) {
796                 xyarray__delete(evsel->sample_id);
797                 evsel->sample_id = NULL;
798                 return -ENOMEM;
799         }
800
801         return 0;
802 }
803
804 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
805 {
806         memset(evsel->counts, 0, (sizeof(*evsel->counts) +
807                                  (ncpus * sizeof(struct perf_counts_values))));
808 }
809
810 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
811 {
812         evsel->counts = zalloc((sizeof(*evsel->counts) +
813                                 (ncpus * sizeof(struct perf_counts_values))));
814         return evsel->counts != NULL ? 0 : -ENOMEM;
815 }
816
817 static void perf_evsel__free_fd(struct perf_evsel *evsel)
818 {
819         xyarray__delete(evsel->fd);
820         evsel->fd = NULL;
821 }
822
823 static void perf_evsel__free_id(struct perf_evsel *evsel)
824 {
825         xyarray__delete(evsel->sample_id);
826         evsel->sample_id = NULL;
827         zfree(&evsel->id);
828 }
829
830 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
831 {
832         int cpu, thread;
833
834         if (evsel->system_wide)
835                 nthreads = 1;
836
837         for (cpu = 0; cpu < ncpus; cpu++)
838                 for (thread = 0; thread < nthreads; ++thread) {
839                         close(FD(evsel, cpu, thread));
840                         FD(evsel, cpu, thread) = -1;
841                 }
842 }
843
844 void perf_evsel__free_counts(struct perf_evsel *evsel)
845 {
846         zfree(&evsel->counts);
847 }
848
849 void perf_evsel__exit(struct perf_evsel *evsel)
850 {
851         assert(list_empty(&evsel->node));
852         perf_evsel__free_fd(evsel);
853         perf_evsel__free_id(evsel);
854         close_cgroup(evsel->cgrp);
855         zfree(&evsel->group_name);
856         if (evsel->tp_format)
857                 pevent_free_format(evsel->tp_format);
858         zfree(&evsel->name);
859         perf_evsel__object.fini(evsel);
860 }
861
862 void perf_evsel__delete(struct perf_evsel *evsel)
863 {
864         perf_evsel__exit(evsel);
865         free(evsel);
866 }
867
868 static inline void compute_deltas(struct perf_evsel *evsel,
869                                   int cpu,
870                                   struct perf_counts_values *count)
871 {
872         struct perf_counts_values tmp;
873
874         if (!evsel->prev_raw_counts)
875                 return;
876
877         if (cpu == -1) {
878                 tmp = evsel->prev_raw_counts->aggr;
879                 evsel->prev_raw_counts->aggr = *count;
880         } else {
881                 tmp = evsel->prev_raw_counts->cpu[cpu];
882                 evsel->prev_raw_counts->cpu[cpu] = *count;
883         }
884
885         count->val = count->val - tmp.val;
886         count->ena = count->ena - tmp.ena;
887         count->run = count->run - tmp.run;
888 }
889
890 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
891                               int cpu, int thread, bool scale)
892 {
893         struct perf_counts_values count;
894         size_t nv = scale ? 3 : 1;
895
896         if (FD(evsel, cpu, thread) < 0)
897                 return -EINVAL;
898
899         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
900                 return -ENOMEM;
901
902         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
903                 return -errno;
904
905         compute_deltas(evsel, cpu, &count);
906
907         if (scale) {
908                 if (count.run == 0)
909                         count.val = 0;
910                 else if (count.run < count.ena)
911                         count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
912         } else
913                 count.ena = count.run = 0;
914
915         evsel->counts->cpu[cpu] = count;
916         return 0;
917 }
918
919 int __perf_evsel__read(struct perf_evsel *evsel,
920                        int ncpus, int nthreads, bool scale)
921 {
922         size_t nv = scale ? 3 : 1;
923         int cpu, thread;
924         struct perf_counts_values *aggr = &evsel->counts->aggr, count;
925
926         if (evsel->system_wide)
927                 nthreads = 1;
928
929         aggr->val = aggr->ena = aggr->run = 0;
930
931         for (cpu = 0; cpu < ncpus; cpu++) {
932                 for (thread = 0; thread < nthreads; thread++) {
933                         if (FD(evsel, cpu, thread) < 0)
934                                 continue;
935
936                         if (readn(FD(evsel, cpu, thread),
937                                   &count, nv * sizeof(u64)) < 0)
938                                 return -errno;
939
940                         aggr->val += count.val;
941                         if (scale) {
942                                 aggr->ena += count.ena;
943                                 aggr->run += count.run;
944                         }
945                 }
946         }
947
948         compute_deltas(evsel, -1, aggr);
949
950         evsel->counts->scaled = 0;
951         if (scale) {
952                 if (aggr->run == 0) {
953                         evsel->counts->scaled = -1;
954                         aggr->val = 0;
955                         return 0;
956                 }
957
958                 if (aggr->run < aggr->ena) {
959                         evsel->counts->scaled = 1;
960                         aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
961                 }
962         } else
963                 aggr->ena = aggr->run = 0;
964
965         return 0;
966 }
967
968 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
969 {
970         struct perf_evsel *leader = evsel->leader;
971         int fd;
972
973         if (perf_evsel__is_group_leader(evsel))
974                 return -1;
975
976         /*
977          * Leader must be already processed/open,
978          * if not it's a bug.
979          */
980         BUG_ON(!leader->fd);
981
982         fd = FD(leader, cpu, thread);
983         BUG_ON(fd == -1);
984
985         return fd;
986 }
987
988 #define __PRINT_ATTR(fmt, cast, field)  \
989         fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
990
991 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
992 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
993 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
994 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
995
996 #define PRINT_ATTR2N(name1, field1, name2, field2)      \
997         fprintf(fp, "  %-19s %u    %-19s %u\n",         \
998         name1, attr->field1, name2, attr->field2)
999
1000 #define PRINT_ATTR2(field1, field2) \
1001         PRINT_ATTR2N(#field1, field1, #field2, field2)
1002
1003 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
1004 {
1005         size_t ret = 0;
1006
1007         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
1008         ret += fprintf(fp, "perf_event_attr:\n");
1009
1010         ret += PRINT_ATTR_U32(type);
1011         ret += PRINT_ATTR_U32(size);
1012         ret += PRINT_ATTR_X64(config);
1013         ret += PRINT_ATTR_U64(sample_period);
1014         ret += PRINT_ATTR_U64(sample_freq);
1015         ret += PRINT_ATTR_X64(sample_type);
1016         ret += PRINT_ATTR_X64(read_format);
1017
1018         ret += PRINT_ATTR2(disabled, inherit);
1019         ret += PRINT_ATTR2(pinned, exclusive);
1020         ret += PRINT_ATTR2(exclude_user, exclude_kernel);
1021         ret += PRINT_ATTR2(exclude_hv, exclude_idle);
1022         ret += PRINT_ATTR2(mmap, comm);
1023         ret += PRINT_ATTR2(mmap2, comm_exec);
1024         ret += PRINT_ATTR2(freq, inherit_stat);
1025         ret += PRINT_ATTR2(enable_on_exec, task);
1026         ret += PRINT_ATTR2(watermark, precise_ip);
1027         ret += PRINT_ATTR2(mmap_data, sample_id_all);
1028         ret += PRINT_ATTR2(exclude_host, exclude_guest);
1029         ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
1030                             "excl.callchain_user", exclude_callchain_user);
1031
1032         ret += PRINT_ATTR_U32(wakeup_events);
1033         ret += PRINT_ATTR_U32(wakeup_watermark);
1034         ret += PRINT_ATTR_X32(bp_type);
1035         ret += PRINT_ATTR_X64(bp_addr);
1036         ret += PRINT_ATTR_X64(config1);
1037         ret += PRINT_ATTR_U64(bp_len);
1038         ret += PRINT_ATTR_X64(config2);
1039         ret += PRINT_ATTR_X64(branch_sample_type);
1040         ret += PRINT_ATTR_X64(sample_regs_user);
1041         ret += PRINT_ATTR_U32(sample_stack_user);
1042
1043         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
1044
1045         return ret;
1046 }
1047
1048 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1049                               struct thread_map *threads)
1050 {
1051         int cpu, thread, nthreads;
1052         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1053         int pid = -1, err;
1054         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1055
1056         if (evsel->system_wide)
1057                 nthreads = 1;
1058         else
1059                 nthreads = threads->nr;
1060
1061         if (evsel->fd == NULL &&
1062             perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1063                 return -ENOMEM;
1064
1065         if (evsel->cgrp) {
1066                 flags |= PERF_FLAG_PID_CGROUP;
1067                 pid = evsel->cgrp->fd;
1068         }
1069
1070 fallback_missing_features:
1071         if (perf_missing_features.cloexec)
1072                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1073         if (perf_missing_features.mmap2)
1074                 evsel->attr.mmap2 = 0;
1075         if (perf_missing_features.exclude_guest)
1076                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1077 retry_sample_id:
1078         if (perf_missing_features.sample_id_all)
1079                 evsel->attr.sample_id_all = 0;
1080
1081         if (verbose >= 2)
1082                 perf_event_attr__fprintf(&evsel->attr, stderr);
1083
1084         for (cpu = 0; cpu < cpus->nr; cpu++) {
1085
1086                 for (thread = 0; thread < nthreads; thread++) {
1087                         int group_fd;
1088
1089                         if (!evsel->cgrp && !evsel->system_wide)
1090                                 pid = threads->map[thread];
1091
1092                         group_fd = get_group_fd(evsel, cpu, thread);
1093 retry_open:
1094                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1095                                   pid, cpus->map[cpu], group_fd, flags);
1096
1097                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1098                                                                      pid,
1099                                                                      cpus->map[cpu],
1100                                                                      group_fd, flags);
1101                         if (FD(evsel, cpu, thread) < 0) {
1102                                 err = -errno;
1103                                 pr_debug2("sys_perf_event_open failed, error %d\n",
1104                                           err);
1105                                 goto try_fallback;
1106                         }
1107                         set_rlimit = NO_CHANGE;
1108                 }
1109         }
1110
1111         return 0;
1112
1113 try_fallback:
1114         /*
1115          * perf stat needs between 5 and 22 fds per CPU. When we run out
1116          * of them try to increase the limits.
1117          */
1118         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1119                 struct rlimit l;
1120                 int old_errno = errno;
1121
1122                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1123                         if (set_rlimit == NO_CHANGE)
1124                                 l.rlim_cur = l.rlim_max;
1125                         else {
1126                                 l.rlim_cur = l.rlim_max + 1000;
1127                                 l.rlim_max = l.rlim_cur;
1128                         }
1129                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1130                                 set_rlimit++;
1131                                 errno = old_errno;
1132                                 goto retry_open;
1133                         }
1134                 }
1135                 errno = old_errno;
1136         }
1137
1138         if (err != -EINVAL || cpu > 0 || thread > 0)
1139                 goto out_close;
1140
1141         if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1142                 perf_missing_features.cloexec = true;
1143                 goto fallback_missing_features;
1144         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1145                 perf_missing_features.mmap2 = true;
1146                 goto fallback_missing_features;
1147         } else if (!perf_missing_features.exclude_guest &&
1148                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1149                 perf_missing_features.exclude_guest = true;
1150                 goto fallback_missing_features;
1151         } else if (!perf_missing_features.sample_id_all) {
1152                 perf_missing_features.sample_id_all = true;
1153                 goto retry_sample_id;
1154         }
1155
1156 out_close:
1157         do {
1158                 while (--thread >= 0) {
1159                         close(FD(evsel, cpu, thread));
1160                         FD(evsel, cpu, thread) = -1;
1161                 }
1162                 thread = nthreads;
1163         } while (--cpu >= 0);
1164         return err;
1165 }
1166
1167 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1168 {
1169         if (evsel->fd == NULL)
1170                 return;
1171
1172         perf_evsel__close_fd(evsel, ncpus, nthreads);
1173         perf_evsel__free_fd(evsel);
1174 }
1175
1176 static struct {
1177         struct cpu_map map;
1178         int cpus[1];
1179 } empty_cpu_map = {
1180         .map.nr = 1,
1181         .cpus   = { -1, },
1182 };
1183
1184 static struct {
1185         struct thread_map map;
1186         int threads[1];
1187 } empty_thread_map = {
1188         .map.nr  = 1,
1189         .threads = { -1, },
1190 };
1191
1192 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1193                      struct thread_map *threads)
1194 {
1195         if (cpus == NULL) {
1196                 /* Work around old compiler warnings about strict aliasing */
1197                 cpus = &empty_cpu_map.map;
1198         }
1199
1200         if (threads == NULL)
1201                 threads = &empty_thread_map.map;
1202
1203         return __perf_evsel__open(evsel, cpus, threads);
1204 }
1205
1206 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1207                              struct cpu_map *cpus)
1208 {
1209         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1210 }
1211
1212 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1213                                 struct thread_map *threads)
1214 {
1215         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1216 }
1217
1218 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1219                                        const union perf_event *event,
1220                                        struct perf_sample *sample)
1221 {
1222         u64 type = evsel->attr.sample_type;
1223         const u64 *array = event->sample.array;
1224         bool swapped = evsel->needs_swap;
1225         union u64_swap u;
1226
1227         array += ((event->header.size -
1228                    sizeof(event->header)) / sizeof(u64)) - 1;
1229
1230         if (type & PERF_SAMPLE_IDENTIFIER) {
1231                 sample->id = *array;
1232                 array--;
1233         }
1234
1235         if (type & PERF_SAMPLE_CPU) {
1236                 u.val64 = *array;
1237                 if (swapped) {
1238                         /* undo swap of u64, then swap on individual u32s */
1239                         u.val64 = bswap_64(u.val64);
1240                         u.val32[0] = bswap_32(u.val32[0]);
1241                 }
1242
1243                 sample->cpu = u.val32[0];
1244                 array--;
1245         }
1246
1247         if (type & PERF_SAMPLE_STREAM_ID) {
1248                 sample->stream_id = *array;
1249                 array--;
1250         }
1251
1252         if (type & PERF_SAMPLE_ID) {
1253                 sample->id = *array;
1254                 array--;
1255         }
1256
1257         if (type & PERF_SAMPLE_TIME) {
1258                 sample->time = *array;
1259                 array--;
1260         }
1261
1262         if (type & PERF_SAMPLE_TID) {
1263                 u.val64 = *array;
1264                 if (swapped) {
1265                         /* undo swap of u64, then swap on individual u32s */
1266                         u.val64 = bswap_64(u.val64);
1267                         u.val32[0] = bswap_32(u.val32[0]);
1268                         u.val32[1] = bswap_32(u.val32[1]);
1269                 }
1270
1271                 sample->pid = u.val32[0];
1272                 sample->tid = u.val32[1];
1273                 array--;
1274         }
1275
1276         return 0;
1277 }
1278
1279 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1280                             u64 size)
1281 {
1282         return size > max_size || offset + size > endp;
1283 }
1284
1285 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1286         do {                                                            \
1287                 if (overflow(endp, (max_size), (offset), (size)))       \
1288                         return -EFAULT;                                 \
1289         } while (0)
1290
1291 #define OVERFLOW_CHECK_u64(offset) \
1292         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1293
1294 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1295                              struct perf_sample *data)
1296 {
1297         u64 type = evsel->attr.sample_type;
1298         bool swapped = evsel->needs_swap;
1299         const u64 *array;
1300         u16 max_size = event->header.size;
1301         const void *endp = (void *)event + max_size;
1302         u64 sz;
1303
1304         /*
1305          * used for cross-endian analysis. See git commit 65014ab3
1306          * for why this goofiness is needed.
1307          */
1308         union u64_swap u;
1309
1310         memset(data, 0, sizeof(*data));
1311         data->cpu = data->pid = data->tid = -1;
1312         data->stream_id = data->id = data->time = -1ULL;
1313         data->period = evsel->attr.sample_period;
1314         data->weight = 0;
1315
1316         if (event->header.type != PERF_RECORD_SAMPLE) {
1317                 if (!evsel->attr.sample_id_all)
1318                         return 0;
1319                 return perf_evsel__parse_id_sample(evsel, event, data);
1320         }
1321
1322         array = event->sample.array;
1323
1324         /*
1325          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1326          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1327          * check the format does not go past the end of the event.
1328          */
1329         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1330                 return -EFAULT;
1331
1332         data->id = -1ULL;
1333         if (type & PERF_SAMPLE_IDENTIFIER) {
1334                 data->id = *array;
1335                 array++;
1336         }
1337
1338         if (type & PERF_SAMPLE_IP) {
1339                 data->ip = *array;
1340                 array++;
1341         }
1342
1343         if (type & PERF_SAMPLE_TID) {
1344                 u.val64 = *array;
1345                 if (swapped) {
1346                         /* undo swap of u64, then swap on individual u32s */
1347                         u.val64 = bswap_64(u.val64);
1348                         u.val32[0] = bswap_32(u.val32[0]);
1349                         u.val32[1] = bswap_32(u.val32[1]);
1350                 }
1351
1352                 data->pid = u.val32[0];
1353                 data->tid = u.val32[1];
1354                 array++;
1355         }
1356
1357         if (type & PERF_SAMPLE_TIME) {
1358                 data->time = *array;
1359                 array++;
1360         }
1361
1362         data->addr = 0;
1363         if (type & PERF_SAMPLE_ADDR) {
1364                 data->addr = *array;
1365                 array++;
1366         }
1367
1368         if (type & PERF_SAMPLE_ID) {
1369                 data->id = *array;
1370                 array++;
1371         }
1372
1373         if (type & PERF_SAMPLE_STREAM_ID) {
1374                 data->stream_id = *array;
1375                 array++;
1376         }
1377
1378         if (type & PERF_SAMPLE_CPU) {
1379
1380                 u.val64 = *array;
1381                 if (swapped) {
1382                         /* undo swap of u64, then swap on individual u32s */
1383                         u.val64 = bswap_64(u.val64);
1384                         u.val32[0] = bswap_32(u.val32[0]);
1385                 }
1386
1387                 data->cpu = u.val32[0];
1388                 array++;
1389         }
1390
1391         if (type & PERF_SAMPLE_PERIOD) {
1392                 data->period = *array;
1393                 array++;
1394         }
1395
1396         if (type & PERF_SAMPLE_READ) {
1397                 u64 read_format = evsel->attr.read_format;
1398
1399                 OVERFLOW_CHECK_u64(array);
1400                 if (read_format & PERF_FORMAT_GROUP)
1401                         data->read.group.nr = *array;
1402                 else
1403                         data->read.one.value = *array;
1404
1405                 array++;
1406
1407                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1408                         OVERFLOW_CHECK_u64(array);
1409                         data->read.time_enabled = *array;
1410                         array++;
1411                 }
1412
1413                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1414                         OVERFLOW_CHECK_u64(array);
1415                         data->read.time_running = *array;
1416                         array++;
1417                 }
1418
1419                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1420                 if (read_format & PERF_FORMAT_GROUP) {
1421                         const u64 max_group_nr = UINT64_MAX /
1422                                         sizeof(struct sample_read_value);
1423
1424                         if (data->read.group.nr > max_group_nr)
1425                                 return -EFAULT;
1426                         sz = data->read.group.nr *
1427                              sizeof(struct sample_read_value);
1428                         OVERFLOW_CHECK(array, sz, max_size);
1429                         data->read.group.values =
1430                                         (struct sample_read_value *)array;
1431                         array = (void *)array + sz;
1432                 } else {
1433                         OVERFLOW_CHECK_u64(array);
1434                         data->read.one.id = *array;
1435                         array++;
1436                 }
1437         }
1438
1439         if (type & PERF_SAMPLE_CALLCHAIN) {
1440                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1441
1442                 OVERFLOW_CHECK_u64(array);
1443                 data->callchain = (struct ip_callchain *)array++;
1444                 if (data->callchain->nr > max_callchain_nr)
1445                         return -EFAULT;
1446                 sz = data->callchain->nr * sizeof(u64);
1447                 OVERFLOW_CHECK(array, sz, max_size);
1448                 array = (void *)array + sz;
1449         }
1450
1451         if (type & PERF_SAMPLE_RAW) {
1452                 OVERFLOW_CHECK_u64(array);
1453                 u.val64 = *array;
1454                 if (WARN_ONCE(swapped,
1455                               "Endianness of raw data not corrected!\n")) {
1456                         /* undo swap of u64, then swap on individual u32s */
1457                         u.val64 = bswap_64(u.val64);
1458                         u.val32[0] = bswap_32(u.val32[0]);
1459                         u.val32[1] = bswap_32(u.val32[1]);
1460                 }
1461                 data->raw_size = u.val32[0];
1462                 array = (void *)array + sizeof(u32);
1463
1464                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1465                 data->raw_data = (void *)array;
1466                 array = (void *)array + data->raw_size;
1467         }
1468
1469         if (type & PERF_SAMPLE_BRANCH_STACK) {
1470                 const u64 max_branch_nr = UINT64_MAX /
1471                                           sizeof(struct branch_entry);
1472
1473                 OVERFLOW_CHECK_u64(array);
1474                 data->branch_stack = (struct branch_stack *)array++;
1475
1476                 if (data->branch_stack->nr > max_branch_nr)
1477                         return -EFAULT;
1478                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1479                 OVERFLOW_CHECK(array, sz, max_size);
1480                 array = (void *)array + sz;
1481         }
1482
1483         if (type & PERF_SAMPLE_REGS_USER) {
1484                 OVERFLOW_CHECK_u64(array);
1485                 data->user_regs.abi = *array;
1486                 array++;
1487
1488                 if (data->user_regs.abi) {
1489                         u64 mask = evsel->attr.sample_regs_user;
1490
1491                         sz = hweight_long(mask) * sizeof(u64);
1492                         OVERFLOW_CHECK(array, sz, max_size);
1493                         data->user_regs.mask = mask;
1494                         data->user_regs.regs = (u64 *)array;
1495                         array = (void *)array + sz;
1496                 }
1497         }
1498
1499         if (type & PERF_SAMPLE_STACK_USER) {
1500                 OVERFLOW_CHECK_u64(array);
1501                 sz = *array++;
1502
1503                 data->user_stack.offset = ((char *)(array - 1)
1504                                           - (char *) event);
1505
1506                 if (!sz) {
1507                         data->user_stack.size = 0;
1508                 } else {
1509                         OVERFLOW_CHECK(array, sz, max_size);
1510                         data->user_stack.data = (char *)array;
1511                         array = (void *)array + sz;
1512                         OVERFLOW_CHECK_u64(array);
1513                         data->user_stack.size = *array++;
1514                         if (WARN_ONCE(data->user_stack.size > sz,
1515                                       "user stack dump failure\n"))
1516                                 return -EFAULT;
1517                 }
1518         }
1519
1520         data->weight = 0;
1521         if (type & PERF_SAMPLE_WEIGHT) {
1522                 OVERFLOW_CHECK_u64(array);
1523                 data->weight = *array;
1524                 array++;
1525         }
1526
1527         data->data_src = PERF_MEM_DATA_SRC_NONE;
1528         if (type & PERF_SAMPLE_DATA_SRC) {
1529                 OVERFLOW_CHECK_u64(array);
1530                 data->data_src = *array;
1531                 array++;
1532         }
1533
1534         data->transaction = 0;
1535         if (type & PERF_SAMPLE_TRANSACTION) {
1536                 OVERFLOW_CHECK_u64(array);
1537                 data->transaction = *array;
1538                 array++;
1539         }
1540
1541         return 0;
1542 }
1543
1544 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1545                                      u64 read_format)
1546 {
1547         size_t sz, result = sizeof(struct sample_event);
1548
1549         if (type & PERF_SAMPLE_IDENTIFIER)
1550                 result += sizeof(u64);
1551
1552         if (type & PERF_SAMPLE_IP)
1553                 result += sizeof(u64);
1554
1555         if (type & PERF_SAMPLE_TID)
1556                 result += sizeof(u64);
1557
1558         if (type & PERF_SAMPLE_TIME)
1559                 result += sizeof(u64);
1560
1561         if (type & PERF_SAMPLE_ADDR)
1562                 result += sizeof(u64);
1563
1564         if (type & PERF_SAMPLE_ID)
1565                 result += sizeof(u64);
1566
1567         if (type & PERF_SAMPLE_STREAM_ID)
1568                 result += sizeof(u64);
1569
1570         if (type & PERF_SAMPLE_CPU)
1571                 result += sizeof(u64);
1572
1573         if (type & PERF_SAMPLE_PERIOD)
1574                 result += sizeof(u64);
1575
1576         if (type & PERF_SAMPLE_READ) {
1577                 result += sizeof(u64);
1578                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1579                         result += sizeof(u64);
1580                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1581                         result += sizeof(u64);
1582                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1583                 if (read_format & PERF_FORMAT_GROUP) {
1584                         sz = sample->read.group.nr *
1585                              sizeof(struct sample_read_value);
1586                         result += sz;
1587                 } else {
1588                         result += sizeof(u64);
1589                 }
1590         }
1591
1592         if (type & PERF_SAMPLE_CALLCHAIN) {
1593                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1594                 result += sz;
1595         }
1596
1597         if (type & PERF_SAMPLE_RAW) {
1598                 result += sizeof(u32);
1599                 result += sample->raw_size;
1600         }
1601
1602         if (type & PERF_SAMPLE_BRANCH_STACK) {
1603                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1604                 sz += sizeof(u64);
1605                 result += sz;
1606         }
1607
1608         if (type & PERF_SAMPLE_REGS_USER) {
1609                 if (sample->user_regs.abi) {
1610                         result += sizeof(u64);
1611                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1612                         result += sz;
1613                 } else {
1614                         result += sizeof(u64);
1615                 }
1616         }
1617
1618         if (type & PERF_SAMPLE_STACK_USER) {
1619                 sz = sample->user_stack.size;
1620                 result += sizeof(u64);
1621                 if (sz) {
1622                         result += sz;
1623                         result += sizeof(u64);
1624                 }
1625         }
1626
1627         if (type & PERF_SAMPLE_WEIGHT)
1628                 result += sizeof(u64);
1629
1630         if (type & PERF_SAMPLE_DATA_SRC)
1631                 result += sizeof(u64);
1632
1633         if (type & PERF_SAMPLE_TRANSACTION)
1634                 result += sizeof(u64);
1635
1636         return result;
1637 }
1638
1639 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1640                                   u64 read_format,
1641                                   const struct perf_sample *sample,
1642                                   bool swapped)
1643 {
1644         u64 *array;
1645         size_t sz;
1646         /*
1647          * used for cross-endian analysis. See git commit 65014ab3
1648          * for why this goofiness is needed.
1649          */
1650         union u64_swap u;
1651
1652         array = event->sample.array;
1653
1654         if (type & PERF_SAMPLE_IDENTIFIER) {
1655                 *array = sample->id;
1656                 array++;
1657         }
1658
1659         if (type & PERF_SAMPLE_IP) {
1660                 *array = sample->ip;
1661                 array++;
1662         }
1663
1664         if (type & PERF_SAMPLE_TID) {
1665                 u.val32[0] = sample->pid;
1666                 u.val32[1] = sample->tid;
1667                 if (swapped) {
1668                         /*
1669                          * Inverse of what is done in perf_evsel__parse_sample
1670                          */
1671                         u.val32[0] = bswap_32(u.val32[0]);
1672                         u.val32[1] = bswap_32(u.val32[1]);
1673                         u.val64 = bswap_64(u.val64);
1674                 }
1675
1676                 *array = u.val64;
1677                 array++;
1678         }
1679
1680         if (type & PERF_SAMPLE_TIME) {
1681                 *array = sample->time;
1682                 array++;
1683         }
1684
1685         if (type & PERF_SAMPLE_ADDR) {
1686                 *array = sample->addr;
1687                 array++;
1688         }
1689
1690         if (type & PERF_SAMPLE_ID) {
1691                 *array = sample->id;
1692                 array++;
1693         }
1694
1695         if (type & PERF_SAMPLE_STREAM_ID) {
1696                 *array = sample->stream_id;
1697                 array++;
1698         }
1699
1700         if (type & PERF_SAMPLE_CPU) {
1701                 u.val32[0] = sample->cpu;
1702                 if (swapped) {
1703                         /*
1704                          * Inverse of what is done in perf_evsel__parse_sample
1705                          */
1706                         u.val32[0] = bswap_32(u.val32[0]);
1707                         u.val64 = bswap_64(u.val64);
1708                 }
1709                 *array = u.val64;
1710                 array++;
1711         }
1712
1713         if (type & PERF_SAMPLE_PERIOD) {
1714                 *array = sample->period;
1715                 array++;
1716         }
1717
1718         if (type & PERF_SAMPLE_READ) {
1719                 if (read_format & PERF_FORMAT_GROUP)
1720                         *array = sample->read.group.nr;
1721                 else
1722                         *array = sample->read.one.value;
1723                 array++;
1724
1725                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1726                         *array = sample->read.time_enabled;
1727                         array++;
1728                 }
1729
1730                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1731                         *array = sample->read.time_running;
1732                         array++;
1733                 }
1734
1735                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1736                 if (read_format & PERF_FORMAT_GROUP) {
1737                         sz = sample->read.group.nr *
1738                              sizeof(struct sample_read_value);
1739                         memcpy(array, sample->read.group.values, sz);
1740                         array = (void *)array + sz;
1741                 } else {
1742                         *array = sample->read.one.id;
1743                         array++;
1744                 }
1745         }
1746
1747         if (type & PERF_SAMPLE_CALLCHAIN) {
1748                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1749                 memcpy(array, sample->callchain, sz);
1750                 array = (void *)array + sz;
1751         }
1752
1753         if (type & PERF_SAMPLE_RAW) {
1754                 u.val32[0] = sample->raw_size;
1755                 if (WARN_ONCE(swapped,
1756                               "Endianness of raw data not corrected!\n")) {
1757                         /*
1758                          * Inverse of what is done in perf_evsel__parse_sample
1759                          */
1760                         u.val32[0] = bswap_32(u.val32[0]);
1761                         u.val32[1] = bswap_32(u.val32[1]);
1762                         u.val64 = bswap_64(u.val64);
1763                 }
1764                 *array = u.val64;
1765                 array = (void *)array + sizeof(u32);
1766
1767                 memcpy(array, sample->raw_data, sample->raw_size);
1768                 array = (void *)array + sample->raw_size;
1769         }
1770
1771         if (type & PERF_SAMPLE_BRANCH_STACK) {
1772                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1773                 sz += sizeof(u64);
1774                 memcpy(array, sample->branch_stack, sz);
1775                 array = (void *)array + sz;
1776         }
1777
1778         if (type & PERF_SAMPLE_REGS_USER) {
1779                 if (sample->user_regs.abi) {
1780                         *array++ = sample->user_regs.abi;
1781                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1782                         memcpy(array, sample->user_regs.regs, sz);
1783                         array = (void *)array + sz;
1784                 } else {
1785                         *array++ = 0;
1786                 }
1787         }
1788
1789         if (type & PERF_SAMPLE_STACK_USER) {
1790                 sz = sample->user_stack.size;
1791                 *array++ = sz;
1792                 if (sz) {
1793                         memcpy(array, sample->user_stack.data, sz);
1794                         array = (void *)array + sz;
1795                         *array++ = sz;
1796                 }
1797         }
1798
1799         if (type & PERF_SAMPLE_WEIGHT) {
1800                 *array = sample->weight;
1801                 array++;
1802         }
1803
1804         if (type & PERF_SAMPLE_DATA_SRC) {
1805                 *array = sample->data_src;
1806                 array++;
1807         }
1808
1809         if (type & PERF_SAMPLE_TRANSACTION) {
1810                 *array = sample->transaction;
1811                 array++;
1812         }
1813
1814         return 0;
1815 }
1816
1817 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1818 {
1819         return pevent_find_field(evsel->tp_format, name);
1820 }
1821
1822 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1823                          const char *name)
1824 {
1825         struct format_field *field = perf_evsel__field(evsel, name);
1826         int offset;
1827
1828         if (!field)
1829                 return NULL;
1830
1831         offset = field->offset;
1832
1833         if (field->flags & FIELD_IS_DYNAMIC) {
1834                 offset = *(int *)(sample->raw_data + field->offset);
1835                 offset &= 0xffff;
1836         }
1837
1838         return sample->raw_data + offset;
1839 }
1840
1841 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1842                        const char *name)
1843 {
1844         struct format_field *field = perf_evsel__field(evsel, name);
1845         void *ptr;
1846         u64 value;
1847
1848         if (!field)
1849                 return 0;
1850
1851         ptr = sample->raw_data + field->offset;
1852
1853         switch (field->size) {
1854         case 1:
1855                 return *(u8 *)ptr;
1856         case 2:
1857                 value = *(u16 *)ptr;
1858                 break;
1859         case 4:
1860                 value = *(u32 *)ptr;
1861                 break;
1862         case 8:
1863                 value = *(u64 *)ptr;
1864                 break;
1865         default:
1866                 return 0;
1867         }
1868
1869         if (!evsel->needs_swap)
1870                 return value;
1871
1872         switch (field->size) {
1873         case 2:
1874                 return bswap_16(value);
1875         case 4:
1876                 return bswap_32(value);
1877         case 8:
1878                 return bswap_64(value);
1879         default:
1880                 return 0;
1881         }
1882
1883         return 0;
1884 }
1885
1886 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1887 {
1888         va_list args;
1889         int ret = 0;
1890
1891         if (!*first) {
1892                 ret += fprintf(fp, ",");
1893         } else {
1894                 ret += fprintf(fp, ":");
1895                 *first = false;
1896         }
1897
1898         va_start(args, fmt);
1899         ret += vfprintf(fp, fmt, args);
1900         va_end(args);
1901         return ret;
1902 }
1903
1904 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1905 {
1906         if (value == 0)
1907                 return 0;
1908
1909         return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1910 }
1911
1912 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1913
1914 struct bit_names {
1915         int bit;
1916         const char *name;
1917 };
1918
1919 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1920                          struct bit_names *bits, bool *first)
1921 {
1922         int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1923         bool first_bit = true;
1924
1925         do {
1926                 if (value & bits[i].bit) {
1927                         printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1928                         first_bit = false;
1929                 }
1930         } while (bits[++i].name != NULL);
1931
1932         return printed;
1933 }
1934
1935 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1936 {
1937 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1938         struct bit_names bits[] = {
1939                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1940                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1941                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1942                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1943                 bit_name(IDENTIFIER),
1944                 { .name = NULL, }
1945         };
1946 #undef bit_name
1947         return bits__fprintf(fp, "sample_type", value, bits, first);
1948 }
1949
1950 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1951 {
1952 #define bit_name(n) { PERF_FORMAT_##n, #n }
1953         struct bit_names bits[] = {
1954                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1955                 bit_name(ID), bit_name(GROUP),
1956                 { .name = NULL, }
1957         };
1958 #undef bit_name
1959         return bits__fprintf(fp, "read_format", value, bits, first);
1960 }
1961
1962 int perf_evsel__fprintf(struct perf_evsel *evsel,
1963                         struct perf_attr_details *details, FILE *fp)
1964 {
1965         bool first = true;
1966         int printed = 0;
1967
1968         if (details->event_group) {
1969                 struct perf_evsel *pos;
1970
1971                 if (!perf_evsel__is_group_leader(evsel))
1972                         return 0;
1973
1974                 if (evsel->nr_members > 1)
1975                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1976
1977                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1978                 for_each_group_member(pos, evsel)
1979                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1980
1981                 if (evsel->nr_members > 1)
1982                         printed += fprintf(fp, "}");
1983                 goto out;
1984         }
1985
1986         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1987
1988         if (details->verbose || details->freq) {
1989                 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1990                                          (u64)evsel->attr.sample_freq);
1991         }
1992
1993         if (details->verbose) {
1994                 if_print(type);
1995                 if_print(config);
1996                 if_print(config1);
1997                 if_print(config2);
1998                 if_print(size);
1999                 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
2000                 if (evsel->attr.read_format)
2001                         printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
2002                 if_print(disabled);
2003                 if_print(inherit);
2004                 if_print(pinned);
2005                 if_print(exclusive);
2006                 if_print(exclude_user);
2007                 if_print(exclude_kernel);
2008                 if_print(exclude_hv);
2009                 if_print(exclude_idle);
2010                 if_print(mmap);
2011                 if_print(mmap2);
2012                 if_print(comm);
2013                 if_print(comm_exec);
2014                 if_print(freq);
2015                 if_print(inherit_stat);
2016                 if_print(enable_on_exec);
2017                 if_print(task);
2018                 if_print(watermark);
2019                 if_print(precise_ip);
2020                 if_print(mmap_data);
2021                 if_print(sample_id_all);
2022                 if_print(exclude_host);
2023                 if_print(exclude_guest);
2024                 if_print(__reserved_1);
2025                 if_print(wakeup_events);
2026                 if_print(bp_type);
2027                 if_print(branch_sample_type);
2028         }
2029 out:
2030         fputc('\n', fp);
2031         return ++printed;
2032 }
2033
2034 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2035                           char *msg, size_t msgsize)
2036 {
2037         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2038             evsel->attr.type   == PERF_TYPE_HARDWARE &&
2039             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2040                 /*
2041                  * If it's cycles then fall back to hrtimer based
2042                  * cpu-clock-tick sw counter, which is always available even if
2043                  * no PMU support.
2044                  *
2045                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2046                  * b0a873e).
2047                  */
2048                 scnprintf(msg, msgsize, "%s",
2049 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2050
2051                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2052                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2053
2054                 zfree(&evsel->name);
2055                 return true;
2056         }
2057
2058         return false;
2059 }
2060
2061 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2062                               int err, char *msg, size_t size)
2063 {
2064         char sbuf[STRERR_BUFSIZE];
2065
2066         switch (err) {
2067         case EPERM:
2068         case EACCES:
2069                 return scnprintf(msg, size,
2070                  "You may not have permission to collect %sstats.\n"
2071                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2072                  " -1 - Not paranoid at all\n"
2073                  "  0 - Disallow raw tracepoint access for unpriv\n"
2074                  "  1 - Disallow cpu events for unpriv\n"
2075                  "  2 - Disallow kernel profiling for unpriv",
2076                                  target->system_wide ? "system-wide " : "");
2077         case ENOENT:
2078                 return scnprintf(msg, size, "The %s event is not supported.",
2079                                  perf_evsel__name(evsel));
2080         case EMFILE:
2081                 return scnprintf(msg, size, "%s",
2082                          "Too many events are opened.\n"
2083                          "Try again after reducing the number of events.");
2084         case ENODEV:
2085                 if (target->cpu_list)
2086                         return scnprintf(msg, size, "%s",
2087          "No such device - did you specify an out-of-range profile CPU?\n");
2088                 break;
2089         case EOPNOTSUPP:
2090                 if (evsel->attr.precise_ip)
2091                         return scnprintf(msg, size, "%s",
2092         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2093 #if defined(__i386__) || defined(__x86_64__)
2094                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2095                         return scnprintf(msg, size, "%s",
2096         "No hardware sampling interrupt available.\n"
2097         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2098 #endif
2099                 break;
2100         case EBUSY:
2101                 if (find_process("oprofiled"))
2102                         return scnprintf(msg, size,
2103         "The PMU counters are busy/taken by another profiler.\n"
2104         "We found oprofile daemon running, please stop it and try again.");
2105                 break;
2106         default:
2107                 break;
2108         }
2109
2110         return scnprintf(msg, size,
2111         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2112         "/bin/dmesg may provide additional information.\n"
2113         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2114                          err, strerror_r(err, sbuf, sizeof(sbuf)),
2115                          perf_evsel__name(evsel));
2116 }