perf callchain: Per-event type selection support
[cascardo/linux.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "callchain.h"
19 #include "cgroup.h"
20 #include "evsel.h"
21 #include "evlist.h"
22 #include "util.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25 #include "target.h"
26 #include "perf_regs.h"
27 #include "debug.h"
28 #include "trace-event.h"
29 #include "stat.h"
30
31 static struct {
32         bool sample_id_all;
33         bool exclude_guest;
34         bool mmap2;
35         bool cloexec;
36         bool clockid;
37         bool clockid_wrong;
38 } perf_missing_features;
39
40 static clockid_t clockid;
41
42 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
43 {
44         return 0;
45 }
46
47 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
48 {
49 }
50
51 static struct {
52         size_t  size;
53         int     (*init)(struct perf_evsel *evsel);
54         void    (*fini)(struct perf_evsel *evsel);
55 } perf_evsel__object = {
56         .size = sizeof(struct perf_evsel),
57         .init = perf_evsel__no_extra_init,
58         .fini = perf_evsel__no_extra_fini,
59 };
60
61 int perf_evsel__object_config(size_t object_size,
62                               int (*init)(struct perf_evsel *evsel),
63                               void (*fini)(struct perf_evsel *evsel))
64 {
65
66         if (object_size == 0)
67                 goto set_methods;
68
69         if (perf_evsel__object.size > object_size)
70                 return -EINVAL;
71
72         perf_evsel__object.size = object_size;
73
74 set_methods:
75         if (init != NULL)
76                 perf_evsel__object.init = init;
77
78         if (fini != NULL)
79                 perf_evsel__object.fini = fini;
80
81         return 0;
82 }
83
84 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
85
86 int __perf_evsel__sample_size(u64 sample_type)
87 {
88         u64 mask = sample_type & PERF_SAMPLE_MASK;
89         int size = 0;
90         int i;
91
92         for (i = 0; i < 64; i++) {
93                 if (mask & (1ULL << i))
94                         size++;
95         }
96
97         size *= sizeof(u64);
98
99         return size;
100 }
101
102 /**
103  * __perf_evsel__calc_id_pos - calculate id_pos.
104  * @sample_type: sample type
105  *
106  * This function returns the position of the event id (PERF_SAMPLE_ID or
107  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
108  * sample_event.
109  */
110 static int __perf_evsel__calc_id_pos(u64 sample_type)
111 {
112         int idx = 0;
113
114         if (sample_type & PERF_SAMPLE_IDENTIFIER)
115                 return 0;
116
117         if (!(sample_type & PERF_SAMPLE_ID))
118                 return -1;
119
120         if (sample_type & PERF_SAMPLE_IP)
121                 idx += 1;
122
123         if (sample_type & PERF_SAMPLE_TID)
124                 idx += 1;
125
126         if (sample_type & PERF_SAMPLE_TIME)
127                 idx += 1;
128
129         if (sample_type & PERF_SAMPLE_ADDR)
130                 idx += 1;
131
132         return idx;
133 }
134
135 /**
136  * __perf_evsel__calc_is_pos - calculate is_pos.
137  * @sample_type: sample type
138  *
139  * This function returns the position (counting backwards) of the event id
140  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
141  * sample_id_all is used there is an id sample appended to non-sample events.
142  */
143 static int __perf_evsel__calc_is_pos(u64 sample_type)
144 {
145         int idx = 1;
146
147         if (sample_type & PERF_SAMPLE_IDENTIFIER)
148                 return 1;
149
150         if (!(sample_type & PERF_SAMPLE_ID))
151                 return -1;
152
153         if (sample_type & PERF_SAMPLE_CPU)
154                 idx += 1;
155
156         if (sample_type & PERF_SAMPLE_STREAM_ID)
157                 idx += 1;
158
159         return idx;
160 }
161
162 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
163 {
164         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
165         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
166 }
167
168 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
169                                   enum perf_event_sample_format bit)
170 {
171         if (!(evsel->attr.sample_type & bit)) {
172                 evsel->attr.sample_type |= bit;
173                 evsel->sample_size += sizeof(u64);
174                 perf_evsel__calc_id_pos(evsel);
175         }
176 }
177
178 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
179                                     enum perf_event_sample_format bit)
180 {
181         if (evsel->attr.sample_type & bit) {
182                 evsel->attr.sample_type &= ~bit;
183                 evsel->sample_size -= sizeof(u64);
184                 perf_evsel__calc_id_pos(evsel);
185         }
186 }
187
188 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
189                                bool can_sample_identifier)
190 {
191         if (can_sample_identifier) {
192                 perf_evsel__reset_sample_bit(evsel, ID);
193                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
194         } else {
195                 perf_evsel__set_sample_bit(evsel, ID);
196         }
197         evsel->attr.read_format |= PERF_FORMAT_ID;
198 }
199
200 void perf_evsel__init(struct perf_evsel *evsel,
201                       struct perf_event_attr *attr, int idx)
202 {
203         evsel->idx         = idx;
204         evsel->tracking    = !idx;
205         evsel->attr        = *attr;
206         evsel->leader      = evsel;
207         evsel->unit        = "";
208         evsel->scale       = 1.0;
209         INIT_LIST_HEAD(&evsel->node);
210         INIT_LIST_HEAD(&evsel->config_terms);
211         perf_evsel__object.init(evsel);
212         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
213         perf_evsel__calc_id_pos(evsel);
214         evsel->cmdline_group_boundary = false;
215 }
216
217 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
218 {
219         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
220
221         if (evsel != NULL)
222                 perf_evsel__init(evsel, attr, idx);
223
224         return evsel;
225 }
226
227 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
228 {
229         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
230
231         if (evsel != NULL) {
232                 struct perf_event_attr attr = {
233                         .type          = PERF_TYPE_TRACEPOINT,
234                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
235                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
236                 };
237
238                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
239                         goto out_free;
240
241                 evsel->tp_format = trace_event__tp_format(sys, name);
242                 if (evsel->tp_format == NULL)
243                         goto out_free;
244
245                 event_attr_init(&attr);
246                 attr.config = evsel->tp_format->id;
247                 attr.sample_period = 1;
248                 perf_evsel__init(evsel, &attr, idx);
249         }
250
251         return evsel;
252
253 out_free:
254         zfree(&evsel->name);
255         free(evsel);
256         return NULL;
257 }
258
259 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
260         "cycles",
261         "instructions",
262         "cache-references",
263         "cache-misses",
264         "branches",
265         "branch-misses",
266         "bus-cycles",
267         "stalled-cycles-frontend",
268         "stalled-cycles-backend",
269         "ref-cycles",
270 };
271
272 static const char *__perf_evsel__hw_name(u64 config)
273 {
274         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
275                 return perf_evsel__hw_names[config];
276
277         return "unknown-hardware";
278 }
279
280 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
281 {
282         int colon = 0, r = 0;
283         struct perf_event_attr *attr = &evsel->attr;
284         bool exclude_guest_default = false;
285
286 #define MOD_PRINT(context, mod) do {                                    \
287                 if (!attr->exclude_##context) {                         \
288                         if (!colon) colon = ++r;                        \
289                         r += scnprintf(bf + r, size - r, "%c", mod);    \
290                 } } while(0)
291
292         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
293                 MOD_PRINT(kernel, 'k');
294                 MOD_PRINT(user, 'u');
295                 MOD_PRINT(hv, 'h');
296                 exclude_guest_default = true;
297         }
298
299         if (attr->precise_ip) {
300                 if (!colon)
301                         colon = ++r;
302                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
303                 exclude_guest_default = true;
304         }
305
306         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
307                 MOD_PRINT(host, 'H');
308                 MOD_PRINT(guest, 'G');
309         }
310 #undef MOD_PRINT
311         if (colon)
312                 bf[colon - 1] = ':';
313         return r;
314 }
315
316 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
317 {
318         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
319         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
320 }
321
322 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
323         "cpu-clock",
324         "task-clock",
325         "page-faults",
326         "context-switches",
327         "cpu-migrations",
328         "minor-faults",
329         "major-faults",
330         "alignment-faults",
331         "emulation-faults",
332         "dummy",
333 };
334
335 static const char *__perf_evsel__sw_name(u64 config)
336 {
337         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
338                 return perf_evsel__sw_names[config];
339         return "unknown-software";
340 }
341
342 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
343 {
344         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
345         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
346 }
347
348 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
349 {
350         int r;
351
352         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
353
354         if (type & HW_BREAKPOINT_R)
355                 r += scnprintf(bf + r, size - r, "r");
356
357         if (type & HW_BREAKPOINT_W)
358                 r += scnprintf(bf + r, size - r, "w");
359
360         if (type & HW_BREAKPOINT_X)
361                 r += scnprintf(bf + r, size - r, "x");
362
363         return r;
364 }
365
366 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
367 {
368         struct perf_event_attr *attr = &evsel->attr;
369         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
370         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
371 }
372
373 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
374                                 [PERF_EVSEL__MAX_ALIASES] = {
375  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
376  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
377  { "LLC",       "L2",                                                   },
378  { "dTLB",      "d-tlb",        "Data-TLB",                             },
379  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
380  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
381  { "node",                                                              },
382 };
383
384 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
385                                    [PERF_EVSEL__MAX_ALIASES] = {
386  { "load",      "loads",        "read",                                 },
387  { "store",     "stores",       "write",                                },
388  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
389 };
390
391 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
392                                        [PERF_EVSEL__MAX_ALIASES] = {
393  { "refs",      "Reference",    "ops",          "access",               },
394  { "misses",    "miss",                                                 },
395 };
396
397 #define C(x)            PERF_COUNT_HW_CACHE_##x
398 #define CACHE_READ      (1 << C(OP_READ))
399 #define CACHE_WRITE     (1 << C(OP_WRITE))
400 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
401 #define COP(x)          (1 << x)
402
403 /*
404  * cache operartion stat
405  * L1I : Read and prefetch only
406  * ITLB and BPU : Read-only
407  */
408 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
409  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
410  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
411  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
412  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
413  [C(ITLB)]      = (CACHE_READ),
414  [C(BPU)]       = (CACHE_READ),
415  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
416 };
417
418 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
419 {
420         if (perf_evsel__hw_cache_stat[type] & COP(op))
421                 return true;    /* valid */
422         else
423                 return false;   /* invalid */
424 }
425
426 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
427                                             char *bf, size_t size)
428 {
429         if (result) {
430                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
431                                  perf_evsel__hw_cache_op[op][0],
432                                  perf_evsel__hw_cache_result[result][0]);
433         }
434
435         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
436                          perf_evsel__hw_cache_op[op][1]);
437 }
438
439 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
440 {
441         u8 op, result, type = (config >>  0) & 0xff;
442         const char *err = "unknown-ext-hardware-cache-type";
443
444         if (type > PERF_COUNT_HW_CACHE_MAX)
445                 goto out_err;
446
447         op = (config >>  8) & 0xff;
448         err = "unknown-ext-hardware-cache-op";
449         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
450                 goto out_err;
451
452         result = (config >> 16) & 0xff;
453         err = "unknown-ext-hardware-cache-result";
454         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
455                 goto out_err;
456
457         err = "invalid-cache";
458         if (!perf_evsel__is_cache_op_valid(type, op))
459                 goto out_err;
460
461         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
462 out_err:
463         return scnprintf(bf, size, "%s", err);
464 }
465
466 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
467 {
468         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
469         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
470 }
471
472 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
473 {
474         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
475         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
476 }
477
478 const char *perf_evsel__name(struct perf_evsel *evsel)
479 {
480         char bf[128];
481
482         if (evsel->name)
483                 return evsel->name;
484
485         switch (evsel->attr.type) {
486         case PERF_TYPE_RAW:
487                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
488                 break;
489
490         case PERF_TYPE_HARDWARE:
491                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
492                 break;
493
494         case PERF_TYPE_HW_CACHE:
495                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
496                 break;
497
498         case PERF_TYPE_SOFTWARE:
499                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
500                 break;
501
502         case PERF_TYPE_TRACEPOINT:
503                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
504                 break;
505
506         case PERF_TYPE_BREAKPOINT:
507                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
508                 break;
509
510         default:
511                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
512                           evsel->attr.type);
513                 break;
514         }
515
516         evsel->name = strdup(bf);
517
518         return evsel->name ?: "unknown";
519 }
520
521 const char *perf_evsel__group_name(struct perf_evsel *evsel)
522 {
523         return evsel->group_name ?: "anon group";
524 }
525
526 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
527 {
528         int ret;
529         struct perf_evsel *pos;
530         const char *group_name = perf_evsel__group_name(evsel);
531
532         ret = scnprintf(buf, size, "%s", group_name);
533
534         ret += scnprintf(buf + ret, size - ret, " { %s",
535                          perf_evsel__name(evsel));
536
537         for_each_group_member(pos, evsel)
538                 ret += scnprintf(buf + ret, size - ret, ", %s",
539                                  perf_evsel__name(pos));
540
541         ret += scnprintf(buf + ret, size - ret, " }");
542
543         return ret;
544 }
545
546 static void
547 perf_evsel__config_callgraph(struct perf_evsel *evsel,
548                              struct record_opts *opts,
549                              struct callchain_param *param)
550 {
551         bool function = perf_evsel__is_function_event(evsel);
552         struct perf_event_attr *attr = &evsel->attr;
553
554         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
555
556         if (param->record_mode == CALLCHAIN_LBR) {
557                 if (!opts->branch_stack) {
558                         if (attr->exclude_user) {
559                                 pr_warning("LBR callstack option is only available "
560                                            "to get user callchain information. "
561                                            "Falling back to framepointers.\n");
562                         } else {
563                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
564                                 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
565                                                         PERF_SAMPLE_BRANCH_CALL_STACK;
566                         }
567                 } else
568                          pr_warning("Cannot use LBR callstack with branch stack. "
569                                     "Falling back to framepointers.\n");
570         }
571
572         if (param->record_mode == CALLCHAIN_DWARF) {
573                 if (!function) {
574                         perf_evsel__set_sample_bit(evsel, REGS_USER);
575                         perf_evsel__set_sample_bit(evsel, STACK_USER);
576                         attr->sample_regs_user = PERF_REGS_MASK;
577                         attr->sample_stack_user = param->dump_size;
578                         attr->exclude_callchain_user = 1;
579                 } else {
580                         pr_info("Cannot use DWARF unwind for function trace event,"
581                                 " falling back to framepointers.\n");
582                 }
583         }
584
585         if (function) {
586                 pr_info("Disabling user space callchains for function trace event.\n");
587                 attr->exclude_callchain_user = 1;
588         }
589 }
590
591 static void
592 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
593                             struct callchain_param *param)
594 {
595         struct perf_event_attr *attr = &evsel->attr;
596
597         perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
598         if (param->record_mode == CALLCHAIN_LBR) {
599                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
600                 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
601                                               PERF_SAMPLE_BRANCH_CALL_STACK);
602         }
603         if (param->record_mode == CALLCHAIN_DWARF) {
604                 perf_evsel__reset_sample_bit(evsel, REGS_USER);
605                 perf_evsel__reset_sample_bit(evsel, STACK_USER);
606         }
607 }
608
609 static void apply_config_terms(struct perf_evsel *evsel,
610                                struct record_opts *opts)
611 {
612         struct perf_evsel_config_term *term;
613         struct list_head *config_terms = &evsel->config_terms;
614         struct perf_event_attr *attr = &evsel->attr;
615         struct callchain_param param;
616         u32 dump_size = 0;
617         char *callgraph_buf = NULL;
618
619         /* callgraph default */
620         param.record_mode = callchain_param.record_mode;
621
622         list_for_each_entry(term, config_terms, list) {
623                 switch (term->type) {
624                 case PERF_EVSEL__CONFIG_TERM_PERIOD:
625                         attr->sample_period = term->val.period;
626                         attr->freq = 0;
627                         break;
628                 case PERF_EVSEL__CONFIG_TERM_FREQ:
629                         attr->sample_freq = term->val.freq;
630                         attr->freq = 1;
631                         break;
632                 case PERF_EVSEL__CONFIG_TERM_TIME:
633                         if (term->val.time)
634                                 perf_evsel__set_sample_bit(evsel, TIME);
635                         else
636                                 perf_evsel__reset_sample_bit(evsel, TIME);
637                         break;
638                 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
639                         callgraph_buf = term->val.callgraph;
640                         break;
641                 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
642                         dump_size = term->val.stack_user;
643                         break;
644                 default:
645                         break;
646                 }
647         }
648
649         /* User explicitly set per-event callgraph, clear the old setting and reset. */
650         if ((callgraph_buf != NULL) || (dump_size > 0)) {
651
652                 /* parse callgraph parameters */
653                 if (callgraph_buf != NULL) {
654                         param.enabled = true;
655                         if (parse_callchain_record(callgraph_buf, &param)) {
656                                 pr_err("per-event callgraph setting for %s failed. "
657                                        "Apply callgraph global setting for it\n",
658                                        evsel->name);
659                                 return;
660                         }
661                 }
662                 if (dump_size > 0) {
663                         dump_size = round_up(dump_size, sizeof(u64));
664                         param.dump_size = dump_size;
665                 }
666
667                 /* If global callgraph set, clear it */
668                 if (callchain_param.enabled)
669                         perf_evsel__reset_callgraph(evsel, &callchain_param);
670
671                 /* set perf-event callgraph */
672                 if (param.enabled)
673                         perf_evsel__config_callgraph(evsel, opts, &param);
674         }
675 }
676
677 /*
678  * The enable_on_exec/disabled value strategy:
679  *
680  *  1) For any type of traced program:
681  *    - all independent events and group leaders are disabled
682  *    - all group members are enabled
683  *
684  *     Group members are ruled by group leaders. They need to
685  *     be enabled, because the group scheduling relies on that.
686  *
687  *  2) For traced programs executed by perf:
688  *     - all independent events and group leaders have
689  *       enable_on_exec set
690  *     - we don't specifically enable or disable any event during
691  *       the record command
692  *
693  *     Independent events and group leaders are initially disabled
694  *     and get enabled by exec. Group members are ruled by group
695  *     leaders as stated in 1).
696  *
697  *  3) For traced programs attached by perf (pid/tid):
698  *     - we specifically enable or disable all events during
699  *       the record command
700  *
701  *     When attaching events to already running traced we
702  *     enable/disable events specifically, as there's no
703  *     initial traced exec call.
704  */
705 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
706 {
707         struct perf_evsel *leader = evsel->leader;
708         struct perf_event_attr *attr = &evsel->attr;
709         int track = evsel->tracking;
710         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
711
712         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
713         attr->inherit       = !opts->no_inherit;
714
715         perf_evsel__set_sample_bit(evsel, IP);
716         perf_evsel__set_sample_bit(evsel, TID);
717
718         if (evsel->sample_read) {
719                 perf_evsel__set_sample_bit(evsel, READ);
720
721                 /*
722                  * We need ID even in case of single event, because
723                  * PERF_SAMPLE_READ process ID specific data.
724                  */
725                 perf_evsel__set_sample_id(evsel, false);
726
727                 /*
728                  * Apply group format only if we belong to group
729                  * with more than one members.
730                  */
731                 if (leader->nr_members > 1) {
732                         attr->read_format |= PERF_FORMAT_GROUP;
733                         attr->inherit = 0;
734                 }
735         }
736
737         /*
738          * We default some events to have a default interval. But keep
739          * it a weak assumption overridable by the user.
740          */
741         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
742                                      opts->user_interval != ULLONG_MAX)) {
743                 if (opts->freq) {
744                         perf_evsel__set_sample_bit(evsel, PERIOD);
745                         attr->freq              = 1;
746                         attr->sample_freq       = opts->freq;
747                 } else {
748                         attr->sample_period = opts->default_interval;
749                 }
750         }
751
752         /*
753          * Disable sampling for all group members other
754          * than leader in case leader 'leads' the sampling.
755          */
756         if ((leader != evsel) && leader->sample_read) {
757                 attr->sample_freq   = 0;
758                 attr->sample_period = 0;
759         }
760
761         if (opts->no_samples)
762                 attr->sample_freq = 0;
763
764         if (opts->inherit_stat)
765                 attr->inherit_stat = 1;
766
767         if (opts->sample_address) {
768                 perf_evsel__set_sample_bit(evsel, ADDR);
769                 attr->mmap_data = track;
770         }
771
772         /*
773          * We don't allow user space callchains for  function trace
774          * event, due to issues with page faults while tracing page
775          * fault handler and its overall trickiness nature.
776          */
777         if (perf_evsel__is_function_event(evsel))
778                 evsel->attr.exclude_callchain_user = 1;
779
780         if (callchain_param.enabled && !evsel->no_aux_samples)
781                 perf_evsel__config_callgraph(evsel, opts, &callchain_param);
782
783         if (opts->sample_intr_regs) {
784                 attr->sample_regs_intr = PERF_REGS_MASK;
785                 perf_evsel__set_sample_bit(evsel, REGS_INTR);
786         }
787
788         if (target__has_cpu(&opts->target))
789                 perf_evsel__set_sample_bit(evsel, CPU);
790
791         if (opts->period)
792                 perf_evsel__set_sample_bit(evsel, PERIOD);
793
794         /*
795          * When the user explicitely disabled time don't force it here.
796          */
797         if (opts->sample_time &&
798             (!perf_missing_features.sample_id_all &&
799             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
800              opts->sample_time_set)))
801                 perf_evsel__set_sample_bit(evsel, TIME);
802
803         if (opts->raw_samples && !evsel->no_aux_samples) {
804                 perf_evsel__set_sample_bit(evsel, TIME);
805                 perf_evsel__set_sample_bit(evsel, RAW);
806                 perf_evsel__set_sample_bit(evsel, CPU);
807         }
808
809         if (opts->sample_address)
810                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
811
812         if (opts->no_buffering) {
813                 attr->watermark = 0;
814                 attr->wakeup_events = 1;
815         }
816         if (opts->branch_stack && !evsel->no_aux_samples) {
817                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
818                 attr->branch_sample_type = opts->branch_stack;
819         }
820
821         if (opts->sample_weight)
822                 perf_evsel__set_sample_bit(evsel, WEIGHT);
823
824         attr->task  = track;
825         attr->mmap  = track;
826         attr->mmap2 = track && !perf_missing_features.mmap2;
827         attr->comm  = track;
828
829         if (opts->record_switch_events)
830                 attr->context_switch = track;
831
832         if (opts->sample_transaction)
833                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
834
835         if (opts->running_time) {
836                 evsel->attr.read_format |=
837                         PERF_FORMAT_TOTAL_TIME_ENABLED |
838                         PERF_FORMAT_TOTAL_TIME_RUNNING;
839         }
840
841         /*
842          * XXX see the function comment above
843          *
844          * Disabling only independent events or group leaders,
845          * keeping group members enabled.
846          */
847         if (perf_evsel__is_group_leader(evsel))
848                 attr->disabled = 1;
849
850         /*
851          * Setting enable_on_exec for independent events and
852          * group leaders for traced executed by perf.
853          */
854         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
855                 !opts->initial_delay)
856                 attr->enable_on_exec = 1;
857
858         if (evsel->immediate) {
859                 attr->disabled = 0;
860                 attr->enable_on_exec = 0;
861         }
862
863         clockid = opts->clockid;
864         if (opts->use_clockid) {
865                 attr->use_clockid = 1;
866                 attr->clockid = opts->clockid;
867         }
868
869         /*
870          * Apply event specific term settings,
871          * it overloads any global configuration.
872          */
873         apply_config_terms(evsel, opts);
874 }
875
876 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
877 {
878         int cpu, thread;
879
880         if (evsel->system_wide)
881                 nthreads = 1;
882
883         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
884
885         if (evsel->fd) {
886                 for (cpu = 0; cpu < ncpus; cpu++) {
887                         for (thread = 0; thread < nthreads; thread++) {
888                                 FD(evsel, cpu, thread) = -1;
889                         }
890                 }
891         }
892
893         return evsel->fd != NULL ? 0 : -ENOMEM;
894 }
895
896 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
897                           int ioc,  void *arg)
898 {
899         int cpu, thread;
900
901         if (evsel->system_wide)
902                 nthreads = 1;
903
904         for (cpu = 0; cpu < ncpus; cpu++) {
905                 for (thread = 0; thread < nthreads; thread++) {
906                         int fd = FD(evsel, cpu, thread),
907                             err = ioctl(fd, ioc, arg);
908
909                         if (err)
910                                 return err;
911                 }
912         }
913
914         return 0;
915 }
916
917 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
918                              const char *filter)
919 {
920         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
921                                      PERF_EVENT_IOC_SET_FILTER,
922                                      (void *)filter);
923 }
924
925 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
926 {
927         char *new_filter = strdup(filter);
928
929         if (new_filter != NULL) {
930                 free(evsel->filter);
931                 evsel->filter = new_filter;
932                 return 0;
933         }
934
935         return -1;
936 }
937
938 int perf_evsel__append_filter(struct perf_evsel *evsel,
939                               const char *op, const char *filter)
940 {
941         char *new_filter;
942
943         if (evsel->filter == NULL)
944                 return perf_evsel__set_filter(evsel, filter);
945
946         if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
947                 free(evsel->filter);
948                 evsel->filter = new_filter;
949                 return 0;
950         }
951
952         return -1;
953 }
954
955 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
956 {
957         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
958                                      PERF_EVENT_IOC_ENABLE,
959                                      0);
960 }
961
962 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
963 {
964         if (ncpus == 0 || nthreads == 0)
965                 return 0;
966
967         if (evsel->system_wide)
968                 nthreads = 1;
969
970         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
971         if (evsel->sample_id == NULL)
972                 return -ENOMEM;
973
974         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
975         if (evsel->id == NULL) {
976                 xyarray__delete(evsel->sample_id);
977                 evsel->sample_id = NULL;
978                 return -ENOMEM;
979         }
980
981         return 0;
982 }
983
984 static void perf_evsel__free_fd(struct perf_evsel *evsel)
985 {
986         xyarray__delete(evsel->fd);
987         evsel->fd = NULL;
988 }
989
990 static void perf_evsel__free_id(struct perf_evsel *evsel)
991 {
992         xyarray__delete(evsel->sample_id);
993         evsel->sample_id = NULL;
994         zfree(&evsel->id);
995 }
996
997 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
998 {
999         struct perf_evsel_config_term *term, *h;
1000
1001         list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1002                 list_del(&term->list);
1003                 free(term);
1004         }
1005 }
1006
1007 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1008 {
1009         int cpu, thread;
1010
1011         if (evsel->system_wide)
1012                 nthreads = 1;
1013
1014         for (cpu = 0; cpu < ncpus; cpu++)
1015                 for (thread = 0; thread < nthreads; ++thread) {
1016                         close(FD(evsel, cpu, thread));
1017                         FD(evsel, cpu, thread) = -1;
1018                 }
1019 }
1020
1021 void perf_evsel__exit(struct perf_evsel *evsel)
1022 {
1023         assert(list_empty(&evsel->node));
1024         perf_evsel__free_fd(evsel);
1025         perf_evsel__free_id(evsel);
1026         perf_evsel__free_config_terms(evsel);
1027         close_cgroup(evsel->cgrp);
1028         cpu_map__put(evsel->cpus);
1029         thread_map__put(evsel->threads);
1030         zfree(&evsel->group_name);
1031         zfree(&evsel->name);
1032         perf_evsel__object.fini(evsel);
1033 }
1034
1035 void perf_evsel__delete(struct perf_evsel *evsel)
1036 {
1037         perf_evsel__exit(evsel);
1038         free(evsel);
1039 }
1040
1041 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1042                                 struct perf_counts_values *count)
1043 {
1044         struct perf_counts_values tmp;
1045
1046         if (!evsel->prev_raw_counts)
1047                 return;
1048
1049         if (cpu == -1) {
1050                 tmp = evsel->prev_raw_counts->aggr;
1051                 evsel->prev_raw_counts->aggr = *count;
1052         } else {
1053                 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1054                 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1055         }
1056
1057         count->val = count->val - tmp.val;
1058         count->ena = count->ena - tmp.ena;
1059         count->run = count->run - tmp.run;
1060 }
1061
1062 void perf_counts_values__scale(struct perf_counts_values *count,
1063                                bool scale, s8 *pscaled)
1064 {
1065         s8 scaled = 0;
1066
1067         if (scale) {
1068                 if (count->run == 0) {
1069                         scaled = -1;
1070                         count->val = 0;
1071                 } else if (count->run < count->ena) {
1072                         scaled = 1;
1073                         count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1074                 }
1075         } else
1076                 count->ena = count->run = 0;
1077
1078         if (pscaled)
1079                 *pscaled = scaled;
1080 }
1081
1082 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1083                      struct perf_counts_values *count)
1084 {
1085         memset(count, 0, sizeof(*count));
1086
1087         if (FD(evsel, cpu, thread) < 0)
1088                 return -EINVAL;
1089
1090         if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1091                 return -errno;
1092
1093         return 0;
1094 }
1095
1096 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1097                               int cpu, int thread, bool scale)
1098 {
1099         struct perf_counts_values count;
1100         size_t nv = scale ? 3 : 1;
1101
1102         if (FD(evsel, cpu, thread) < 0)
1103                 return -EINVAL;
1104
1105         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1106                 return -ENOMEM;
1107
1108         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1109                 return -errno;
1110
1111         perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1112         perf_counts_values__scale(&count, scale, NULL);
1113         *perf_counts(evsel->counts, cpu, thread) = count;
1114         return 0;
1115 }
1116
1117 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1118 {
1119         struct perf_evsel *leader = evsel->leader;
1120         int fd;
1121
1122         if (perf_evsel__is_group_leader(evsel))
1123                 return -1;
1124
1125         /*
1126          * Leader must be already processed/open,
1127          * if not it's a bug.
1128          */
1129         BUG_ON(!leader->fd);
1130
1131         fd = FD(leader, cpu, thread);
1132         BUG_ON(fd == -1);
1133
1134         return fd;
1135 }
1136
1137 struct bit_names {
1138         int bit;
1139         const char *name;
1140 };
1141
1142 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1143 {
1144         bool first_bit = true;
1145         int i = 0;
1146
1147         do {
1148                 if (value & bits[i].bit) {
1149                         buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1150                         first_bit = false;
1151                 }
1152         } while (bits[++i].name != NULL);
1153 }
1154
1155 static void __p_sample_type(char *buf, size_t size, u64 value)
1156 {
1157 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1158         struct bit_names bits[] = {
1159                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1160                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1161                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1162                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1163                 bit_name(IDENTIFIER), bit_name(REGS_INTR),
1164                 { .name = NULL, }
1165         };
1166 #undef bit_name
1167         __p_bits(buf, size, value, bits);
1168 }
1169
1170 static void __p_read_format(char *buf, size_t size, u64 value)
1171 {
1172 #define bit_name(n) { PERF_FORMAT_##n, #n }
1173         struct bit_names bits[] = {
1174                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1175                 bit_name(ID), bit_name(GROUP),
1176                 { .name = NULL, }
1177         };
1178 #undef bit_name
1179         __p_bits(buf, size, value, bits);
1180 }
1181
1182 #define BUF_SIZE                1024
1183
1184 #define p_hex(val)              snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1185 #define p_unsigned(val)         snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1186 #define p_signed(val)           snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1187 #define p_sample_type(val)      __p_sample_type(buf, BUF_SIZE, val)
1188 #define p_read_format(val)      __p_read_format(buf, BUF_SIZE, val)
1189
1190 #define PRINT_ATTRn(_n, _f, _p)                         \
1191 do {                                                    \
1192         if (attr->_f) {                                 \
1193                 _p(attr->_f);                           \
1194                 ret += attr__fprintf(fp, _n, buf, priv);\
1195         }                                               \
1196 } while (0)
1197
1198 #define PRINT_ATTRf(_f, _p)     PRINT_ATTRn(#_f, _f, _p)
1199
1200 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1201                              attr__fprintf_f attr__fprintf, void *priv)
1202 {
1203         char buf[BUF_SIZE];
1204         int ret = 0;
1205
1206         PRINT_ATTRf(type, p_unsigned);
1207         PRINT_ATTRf(size, p_unsigned);
1208         PRINT_ATTRf(config, p_hex);
1209         PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1210         PRINT_ATTRf(sample_type, p_sample_type);
1211         PRINT_ATTRf(read_format, p_read_format);
1212
1213         PRINT_ATTRf(disabled, p_unsigned);
1214         PRINT_ATTRf(inherit, p_unsigned);
1215         PRINT_ATTRf(pinned, p_unsigned);
1216         PRINT_ATTRf(exclusive, p_unsigned);
1217         PRINT_ATTRf(exclude_user, p_unsigned);
1218         PRINT_ATTRf(exclude_kernel, p_unsigned);
1219         PRINT_ATTRf(exclude_hv, p_unsigned);
1220         PRINT_ATTRf(exclude_idle, p_unsigned);
1221         PRINT_ATTRf(mmap, p_unsigned);
1222         PRINT_ATTRf(comm, p_unsigned);
1223         PRINT_ATTRf(freq, p_unsigned);
1224         PRINT_ATTRf(inherit_stat, p_unsigned);
1225         PRINT_ATTRf(enable_on_exec, p_unsigned);
1226         PRINT_ATTRf(task, p_unsigned);
1227         PRINT_ATTRf(watermark, p_unsigned);
1228         PRINT_ATTRf(precise_ip, p_unsigned);
1229         PRINT_ATTRf(mmap_data, p_unsigned);
1230         PRINT_ATTRf(sample_id_all, p_unsigned);
1231         PRINT_ATTRf(exclude_host, p_unsigned);
1232         PRINT_ATTRf(exclude_guest, p_unsigned);
1233         PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1234         PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1235         PRINT_ATTRf(mmap2, p_unsigned);
1236         PRINT_ATTRf(comm_exec, p_unsigned);
1237         PRINT_ATTRf(use_clockid, p_unsigned);
1238         PRINT_ATTRf(context_switch, p_unsigned);
1239
1240         PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1241         PRINT_ATTRf(bp_type, p_unsigned);
1242         PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1243         PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1244         PRINT_ATTRf(sample_regs_user, p_hex);
1245         PRINT_ATTRf(sample_stack_user, p_unsigned);
1246         PRINT_ATTRf(clockid, p_signed);
1247         PRINT_ATTRf(sample_regs_intr, p_hex);
1248         PRINT_ATTRf(aux_watermark, p_unsigned);
1249
1250         return ret;
1251 }
1252
1253 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1254                                 void *priv __attribute__((unused)))
1255 {
1256         return fprintf(fp, "  %-32s %s\n", name, val);
1257 }
1258
1259 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1260                               struct thread_map *threads)
1261 {
1262         int cpu, thread, nthreads;
1263         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1264         int pid = -1, err;
1265         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1266
1267         if (evsel->system_wide)
1268                 nthreads = 1;
1269         else
1270                 nthreads = threads->nr;
1271
1272         if (evsel->fd == NULL &&
1273             perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1274                 return -ENOMEM;
1275
1276         if (evsel->cgrp) {
1277                 flags |= PERF_FLAG_PID_CGROUP;
1278                 pid = evsel->cgrp->fd;
1279         }
1280
1281 fallback_missing_features:
1282         if (perf_missing_features.clockid_wrong)
1283                 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1284         if (perf_missing_features.clockid) {
1285                 evsel->attr.use_clockid = 0;
1286                 evsel->attr.clockid = 0;
1287         }
1288         if (perf_missing_features.cloexec)
1289                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1290         if (perf_missing_features.mmap2)
1291                 evsel->attr.mmap2 = 0;
1292         if (perf_missing_features.exclude_guest)
1293                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1294 retry_sample_id:
1295         if (perf_missing_features.sample_id_all)
1296                 evsel->attr.sample_id_all = 0;
1297
1298         if (verbose >= 2) {
1299                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1300                 fprintf(stderr, "perf_event_attr:\n");
1301                 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1302                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1303         }
1304
1305         for (cpu = 0; cpu < cpus->nr; cpu++) {
1306
1307                 for (thread = 0; thread < nthreads; thread++) {
1308                         int group_fd;
1309
1310                         if (!evsel->cgrp && !evsel->system_wide)
1311                                 pid = thread_map__pid(threads, thread);
1312
1313                         group_fd = get_group_fd(evsel, cpu, thread);
1314 retry_open:
1315                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1316                                   pid, cpus->map[cpu], group_fd, flags);
1317
1318                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1319                                                                      pid,
1320                                                                      cpus->map[cpu],
1321                                                                      group_fd, flags);
1322                         if (FD(evsel, cpu, thread) < 0) {
1323                                 err = -errno;
1324                                 pr_debug2("sys_perf_event_open failed, error %d\n",
1325                                           err);
1326                                 goto try_fallback;
1327                         }
1328                         set_rlimit = NO_CHANGE;
1329
1330                         /*
1331                          * If we succeeded but had to kill clockid, fail and
1332                          * have perf_evsel__open_strerror() print us a nice
1333                          * error.
1334                          */
1335                         if (perf_missing_features.clockid ||
1336                             perf_missing_features.clockid_wrong) {
1337                                 err = -EINVAL;
1338                                 goto out_close;
1339                         }
1340                 }
1341         }
1342
1343         return 0;
1344
1345 try_fallback:
1346         /*
1347          * perf stat needs between 5 and 22 fds per CPU. When we run out
1348          * of them try to increase the limits.
1349          */
1350         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1351                 struct rlimit l;
1352                 int old_errno = errno;
1353
1354                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1355                         if (set_rlimit == NO_CHANGE)
1356                                 l.rlim_cur = l.rlim_max;
1357                         else {
1358                                 l.rlim_cur = l.rlim_max + 1000;
1359                                 l.rlim_max = l.rlim_cur;
1360                         }
1361                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1362                                 set_rlimit++;
1363                                 errno = old_errno;
1364                                 goto retry_open;
1365                         }
1366                 }
1367                 errno = old_errno;
1368         }
1369
1370         if (err != -EINVAL || cpu > 0 || thread > 0)
1371                 goto out_close;
1372
1373         /*
1374          * Must probe features in the order they were added to the
1375          * perf_event_attr interface.
1376          */
1377         if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1378                 perf_missing_features.clockid_wrong = true;
1379                 goto fallback_missing_features;
1380         } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1381                 perf_missing_features.clockid = true;
1382                 goto fallback_missing_features;
1383         } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1384                 perf_missing_features.cloexec = true;
1385                 goto fallback_missing_features;
1386         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1387                 perf_missing_features.mmap2 = true;
1388                 goto fallback_missing_features;
1389         } else if (!perf_missing_features.exclude_guest &&
1390                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1391                 perf_missing_features.exclude_guest = true;
1392                 goto fallback_missing_features;
1393         } else if (!perf_missing_features.sample_id_all) {
1394                 perf_missing_features.sample_id_all = true;
1395                 goto retry_sample_id;
1396         }
1397
1398 out_close:
1399         do {
1400                 while (--thread >= 0) {
1401                         close(FD(evsel, cpu, thread));
1402                         FD(evsel, cpu, thread) = -1;
1403                 }
1404                 thread = nthreads;
1405         } while (--cpu >= 0);
1406         return err;
1407 }
1408
1409 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1410 {
1411         if (evsel->fd == NULL)
1412                 return;
1413
1414         perf_evsel__close_fd(evsel, ncpus, nthreads);
1415         perf_evsel__free_fd(evsel);
1416 }
1417
1418 static struct {
1419         struct cpu_map map;
1420         int cpus[1];
1421 } empty_cpu_map = {
1422         .map.nr = 1,
1423         .cpus   = { -1, },
1424 };
1425
1426 static struct {
1427         struct thread_map map;
1428         int threads[1];
1429 } empty_thread_map = {
1430         .map.nr  = 1,
1431         .threads = { -1, },
1432 };
1433
1434 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1435                      struct thread_map *threads)
1436 {
1437         if (cpus == NULL) {
1438                 /* Work around old compiler warnings about strict aliasing */
1439                 cpus = &empty_cpu_map.map;
1440         }
1441
1442         if (threads == NULL)
1443                 threads = &empty_thread_map.map;
1444
1445         return __perf_evsel__open(evsel, cpus, threads);
1446 }
1447
1448 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1449                              struct cpu_map *cpus)
1450 {
1451         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1452 }
1453
1454 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1455                                 struct thread_map *threads)
1456 {
1457         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1458 }
1459
1460 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1461                                        const union perf_event *event,
1462                                        struct perf_sample *sample)
1463 {
1464         u64 type = evsel->attr.sample_type;
1465         const u64 *array = event->sample.array;
1466         bool swapped = evsel->needs_swap;
1467         union u64_swap u;
1468
1469         array += ((event->header.size -
1470                    sizeof(event->header)) / sizeof(u64)) - 1;
1471
1472         if (type & PERF_SAMPLE_IDENTIFIER) {
1473                 sample->id = *array;
1474                 array--;
1475         }
1476
1477         if (type & PERF_SAMPLE_CPU) {
1478                 u.val64 = *array;
1479                 if (swapped) {
1480                         /* undo swap of u64, then swap on individual u32s */
1481                         u.val64 = bswap_64(u.val64);
1482                         u.val32[0] = bswap_32(u.val32[0]);
1483                 }
1484
1485                 sample->cpu = u.val32[0];
1486                 array--;
1487         }
1488
1489         if (type & PERF_SAMPLE_STREAM_ID) {
1490                 sample->stream_id = *array;
1491                 array--;
1492         }
1493
1494         if (type & PERF_SAMPLE_ID) {
1495                 sample->id = *array;
1496                 array--;
1497         }
1498
1499         if (type & PERF_SAMPLE_TIME) {
1500                 sample->time = *array;
1501                 array--;
1502         }
1503
1504         if (type & PERF_SAMPLE_TID) {
1505                 u.val64 = *array;
1506                 if (swapped) {
1507                         /* undo swap of u64, then swap on individual u32s */
1508                         u.val64 = bswap_64(u.val64);
1509                         u.val32[0] = bswap_32(u.val32[0]);
1510                         u.val32[1] = bswap_32(u.val32[1]);
1511                 }
1512
1513                 sample->pid = u.val32[0];
1514                 sample->tid = u.val32[1];
1515                 array--;
1516         }
1517
1518         return 0;
1519 }
1520
1521 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1522                             u64 size)
1523 {
1524         return size > max_size || offset + size > endp;
1525 }
1526
1527 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1528         do {                                                            \
1529                 if (overflow(endp, (max_size), (offset), (size)))       \
1530                         return -EFAULT;                                 \
1531         } while (0)
1532
1533 #define OVERFLOW_CHECK_u64(offset) \
1534         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1535
1536 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1537                              struct perf_sample *data)
1538 {
1539         u64 type = evsel->attr.sample_type;
1540         bool swapped = evsel->needs_swap;
1541         const u64 *array;
1542         u16 max_size = event->header.size;
1543         const void *endp = (void *)event + max_size;
1544         u64 sz;
1545
1546         /*
1547          * used for cross-endian analysis. See git commit 65014ab3
1548          * for why this goofiness is needed.
1549          */
1550         union u64_swap u;
1551
1552         memset(data, 0, sizeof(*data));
1553         data->cpu = data->pid = data->tid = -1;
1554         data->stream_id = data->id = data->time = -1ULL;
1555         data->period = evsel->attr.sample_period;
1556         data->weight = 0;
1557
1558         if (event->header.type != PERF_RECORD_SAMPLE) {
1559                 if (!evsel->attr.sample_id_all)
1560                         return 0;
1561                 return perf_evsel__parse_id_sample(evsel, event, data);
1562         }
1563
1564         array = event->sample.array;
1565
1566         /*
1567          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1568          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1569          * check the format does not go past the end of the event.
1570          */
1571         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1572                 return -EFAULT;
1573
1574         data->id = -1ULL;
1575         if (type & PERF_SAMPLE_IDENTIFIER) {
1576                 data->id = *array;
1577                 array++;
1578         }
1579
1580         if (type & PERF_SAMPLE_IP) {
1581                 data->ip = *array;
1582                 array++;
1583         }
1584
1585         if (type & PERF_SAMPLE_TID) {
1586                 u.val64 = *array;
1587                 if (swapped) {
1588                         /* undo swap of u64, then swap on individual u32s */
1589                         u.val64 = bswap_64(u.val64);
1590                         u.val32[0] = bswap_32(u.val32[0]);
1591                         u.val32[1] = bswap_32(u.val32[1]);
1592                 }
1593
1594                 data->pid = u.val32[0];
1595                 data->tid = u.val32[1];
1596                 array++;
1597         }
1598
1599         if (type & PERF_SAMPLE_TIME) {
1600                 data->time = *array;
1601                 array++;
1602         }
1603
1604         data->addr = 0;
1605         if (type & PERF_SAMPLE_ADDR) {
1606                 data->addr = *array;
1607                 array++;
1608         }
1609
1610         if (type & PERF_SAMPLE_ID) {
1611                 data->id = *array;
1612                 array++;
1613         }
1614
1615         if (type & PERF_SAMPLE_STREAM_ID) {
1616                 data->stream_id = *array;
1617                 array++;
1618         }
1619
1620         if (type & PERF_SAMPLE_CPU) {
1621
1622                 u.val64 = *array;
1623                 if (swapped) {
1624                         /* undo swap of u64, then swap on individual u32s */
1625                         u.val64 = bswap_64(u.val64);
1626                         u.val32[0] = bswap_32(u.val32[0]);
1627                 }
1628
1629                 data->cpu = u.val32[0];
1630                 array++;
1631         }
1632
1633         if (type & PERF_SAMPLE_PERIOD) {
1634                 data->period = *array;
1635                 array++;
1636         }
1637
1638         if (type & PERF_SAMPLE_READ) {
1639                 u64 read_format = evsel->attr.read_format;
1640
1641                 OVERFLOW_CHECK_u64(array);
1642                 if (read_format & PERF_FORMAT_GROUP)
1643                         data->read.group.nr = *array;
1644                 else
1645                         data->read.one.value = *array;
1646
1647                 array++;
1648
1649                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1650                         OVERFLOW_CHECK_u64(array);
1651                         data->read.time_enabled = *array;
1652                         array++;
1653                 }
1654
1655                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1656                         OVERFLOW_CHECK_u64(array);
1657                         data->read.time_running = *array;
1658                         array++;
1659                 }
1660
1661                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1662                 if (read_format & PERF_FORMAT_GROUP) {
1663                         const u64 max_group_nr = UINT64_MAX /
1664                                         sizeof(struct sample_read_value);
1665
1666                         if (data->read.group.nr > max_group_nr)
1667                                 return -EFAULT;
1668                         sz = data->read.group.nr *
1669                              sizeof(struct sample_read_value);
1670                         OVERFLOW_CHECK(array, sz, max_size);
1671                         data->read.group.values =
1672                                         (struct sample_read_value *)array;
1673                         array = (void *)array + sz;
1674                 } else {
1675                         OVERFLOW_CHECK_u64(array);
1676                         data->read.one.id = *array;
1677                         array++;
1678                 }
1679         }
1680
1681         if (type & PERF_SAMPLE_CALLCHAIN) {
1682                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1683
1684                 OVERFLOW_CHECK_u64(array);
1685                 data->callchain = (struct ip_callchain *)array++;
1686                 if (data->callchain->nr > max_callchain_nr)
1687                         return -EFAULT;
1688                 sz = data->callchain->nr * sizeof(u64);
1689                 OVERFLOW_CHECK(array, sz, max_size);
1690                 array = (void *)array + sz;
1691         }
1692
1693         if (type & PERF_SAMPLE_RAW) {
1694                 OVERFLOW_CHECK_u64(array);
1695                 u.val64 = *array;
1696                 if (WARN_ONCE(swapped,
1697                               "Endianness of raw data not corrected!\n")) {
1698                         /* undo swap of u64, then swap on individual u32s */
1699                         u.val64 = bswap_64(u.val64);
1700                         u.val32[0] = bswap_32(u.val32[0]);
1701                         u.val32[1] = bswap_32(u.val32[1]);
1702                 }
1703                 data->raw_size = u.val32[0];
1704                 array = (void *)array + sizeof(u32);
1705
1706                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1707                 data->raw_data = (void *)array;
1708                 array = (void *)array + data->raw_size;
1709         }
1710
1711         if (type & PERF_SAMPLE_BRANCH_STACK) {
1712                 const u64 max_branch_nr = UINT64_MAX /
1713                                           sizeof(struct branch_entry);
1714
1715                 OVERFLOW_CHECK_u64(array);
1716                 data->branch_stack = (struct branch_stack *)array++;
1717
1718                 if (data->branch_stack->nr > max_branch_nr)
1719                         return -EFAULT;
1720                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1721                 OVERFLOW_CHECK(array, sz, max_size);
1722                 array = (void *)array + sz;
1723         }
1724
1725         if (type & PERF_SAMPLE_REGS_USER) {
1726                 OVERFLOW_CHECK_u64(array);
1727                 data->user_regs.abi = *array;
1728                 array++;
1729
1730                 if (data->user_regs.abi) {
1731                         u64 mask = evsel->attr.sample_regs_user;
1732
1733                         sz = hweight_long(mask) * sizeof(u64);
1734                         OVERFLOW_CHECK(array, sz, max_size);
1735                         data->user_regs.mask = mask;
1736                         data->user_regs.regs = (u64 *)array;
1737                         array = (void *)array + sz;
1738                 }
1739         }
1740
1741         if (type & PERF_SAMPLE_STACK_USER) {
1742                 OVERFLOW_CHECK_u64(array);
1743                 sz = *array++;
1744
1745                 data->user_stack.offset = ((char *)(array - 1)
1746                                           - (char *) event);
1747
1748                 if (!sz) {
1749                         data->user_stack.size = 0;
1750                 } else {
1751                         OVERFLOW_CHECK(array, sz, max_size);
1752                         data->user_stack.data = (char *)array;
1753                         array = (void *)array + sz;
1754                         OVERFLOW_CHECK_u64(array);
1755                         data->user_stack.size = *array++;
1756                         if (WARN_ONCE(data->user_stack.size > sz,
1757                                       "user stack dump failure\n"))
1758                                 return -EFAULT;
1759                 }
1760         }
1761
1762         data->weight = 0;
1763         if (type & PERF_SAMPLE_WEIGHT) {
1764                 OVERFLOW_CHECK_u64(array);
1765                 data->weight = *array;
1766                 array++;
1767         }
1768
1769         data->data_src = PERF_MEM_DATA_SRC_NONE;
1770         if (type & PERF_SAMPLE_DATA_SRC) {
1771                 OVERFLOW_CHECK_u64(array);
1772                 data->data_src = *array;
1773                 array++;
1774         }
1775
1776         data->transaction = 0;
1777         if (type & PERF_SAMPLE_TRANSACTION) {
1778                 OVERFLOW_CHECK_u64(array);
1779                 data->transaction = *array;
1780                 array++;
1781         }
1782
1783         data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1784         if (type & PERF_SAMPLE_REGS_INTR) {
1785                 OVERFLOW_CHECK_u64(array);
1786                 data->intr_regs.abi = *array;
1787                 array++;
1788
1789                 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1790                         u64 mask = evsel->attr.sample_regs_intr;
1791
1792                         sz = hweight_long(mask) * sizeof(u64);
1793                         OVERFLOW_CHECK(array, sz, max_size);
1794                         data->intr_regs.mask = mask;
1795                         data->intr_regs.regs = (u64 *)array;
1796                         array = (void *)array + sz;
1797                 }
1798         }
1799
1800         return 0;
1801 }
1802
1803 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1804                                      u64 read_format)
1805 {
1806         size_t sz, result = sizeof(struct sample_event);
1807
1808         if (type & PERF_SAMPLE_IDENTIFIER)
1809                 result += sizeof(u64);
1810
1811         if (type & PERF_SAMPLE_IP)
1812                 result += sizeof(u64);
1813
1814         if (type & PERF_SAMPLE_TID)
1815                 result += sizeof(u64);
1816
1817         if (type & PERF_SAMPLE_TIME)
1818                 result += sizeof(u64);
1819
1820         if (type & PERF_SAMPLE_ADDR)
1821                 result += sizeof(u64);
1822
1823         if (type & PERF_SAMPLE_ID)
1824                 result += sizeof(u64);
1825
1826         if (type & PERF_SAMPLE_STREAM_ID)
1827                 result += sizeof(u64);
1828
1829         if (type & PERF_SAMPLE_CPU)
1830                 result += sizeof(u64);
1831
1832         if (type & PERF_SAMPLE_PERIOD)
1833                 result += sizeof(u64);
1834
1835         if (type & PERF_SAMPLE_READ) {
1836                 result += sizeof(u64);
1837                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1838                         result += sizeof(u64);
1839                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1840                         result += sizeof(u64);
1841                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1842                 if (read_format & PERF_FORMAT_GROUP) {
1843                         sz = sample->read.group.nr *
1844                              sizeof(struct sample_read_value);
1845                         result += sz;
1846                 } else {
1847                         result += sizeof(u64);
1848                 }
1849         }
1850
1851         if (type & PERF_SAMPLE_CALLCHAIN) {
1852                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1853                 result += sz;
1854         }
1855
1856         if (type & PERF_SAMPLE_RAW) {
1857                 result += sizeof(u32);
1858                 result += sample->raw_size;
1859         }
1860
1861         if (type & PERF_SAMPLE_BRANCH_STACK) {
1862                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1863                 sz += sizeof(u64);
1864                 result += sz;
1865         }
1866
1867         if (type & PERF_SAMPLE_REGS_USER) {
1868                 if (sample->user_regs.abi) {
1869                         result += sizeof(u64);
1870                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1871                         result += sz;
1872                 } else {
1873                         result += sizeof(u64);
1874                 }
1875         }
1876
1877         if (type & PERF_SAMPLE_STACK_USER) {
1878                 sz = sample->user_stack.size;
1879                 result += sizeof(u64);
1880                 if (sz) {
1881                         result += sz;
1882                         result += sizeof(u64);
1883                 }
1884         }
1885
1886         if (type & PERF_SAMPLE_WEIGHT)
1887                 result += sizeof(u64);
1888
1889         if (type & PERF_SAMPLE_DATA_SRC)
1890                 result += sizeof(u64);
1891
1892         if (type & PERF_SAMPLE_TRANSACTION)
1893                 result += sizeof(u64);
1894
1895         if (type & PERF_SAMPLE_REGS_INTR) {
1896                 if (sample->intr_regs.abi) {
1897                         result += sizeof(u64);
1898                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1899                         result += sz;
1900                 } else {
1901                         result += sizeof(u64);
1902                 }
1903         }
1904
1905         return result;
1906 }
1907
1908 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1909                                   u64 read_format,
1910                                   const struct perf_sample *sample,
1911                                   bool swapped)
1912 {
1913         u64 *array;
1914         size_t sz;
1915         /*
1916          * used for cross-endian analysis. See git commit 65014ab3
1917          * for why this goofiness is needed.
1918          */
1919         union u64_swap u;
1920
1921         array = event->sample.array;
1922
1923         if (type & PERF_SAMPLE_IDENTIFIER) {
1924                 *array = sample->id;
1925                 array++;
1926         }
1927
1928         if (type & PERF_SAMPLE_IP) {
1929                 *array = sample->ip;
1930                 array++;
1931         }
1932
1933         if (type & PERF_SAMPLE_TID) {
1934                 u.val32[0] = sample->pid;
1935                 u.val32[1] = sample->tid;
1936                 if (swapped) {
1937                         /*
1938                          * Inverse of what is done in perf_evsel__parse_sample
1939                          */
1940                         u.val32[0] = bswap_32(u.val32[0]);
1941                         u.val32[1] = bswap_32(u.val32[1]);
1942                         u.val64 = bswap_64(u.val64);
1943                 }
1944
1945                 *array = u.val64;
1946                 array++;
1947         }
1948
1949         if (type & PERF_SAMPLE_TIME) {
1950                 *array = sample->time;
1951                 array++;
1952         }
1953
1954         if (type & PERF_SAMPLE_ADDR) {
1955                 *array = sample->addr;
1956                 array++;
1957         }
1958
1959         if (type & PERF_SAMPLE_ID) {
1960                 *array = sample->id;
1961                 array++;
1962         }
1963
1964         if (type & PERF_SAMPLE_STREAM_ID) {
1965                 *array = sample->stream_id;
1966                 array++;
1967         }
1968
1969         if (type & PERF_SAMPLE_CPU) {
1970                 u.val32[0] = sample->cpu;
1971                 if (swapped) {
1972                         /*
1973                          * Inverse of what is done in perf_evsel__parse_sample
1974                          */
1975                         u.val32[0] = bswap_32(u.val32[0]);
1976                         u.val64 = bswap_64(u.val64);
1977                 }
1978                 *array = u.val64;
1979                 array++;
1980         }
1981
1982         if (type & PERF_SAMPLE_PERIOD) {
1983                 *array = sample->period;
1984                 array++;
1985         }
1986
1987         if (type & PERF_SAMPLE_READ) {
1988                 if (read_format & PERF_FORMAT_GROUP)
1989                         *array = sample->read.group.nr;
1990                 else
1991                         *array = sample->read.one.value;
1992                 array++;
1993
1994                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1995                         *array = sample->read.time_enabled;
1996                         array++;
1997                 }
1998
1999                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2000                         *array = sample->read.time_running;
2001                         array++;
2002                 }
2003
2004                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2005                 if (read_format & PERF_FORMAT_GROUP) {
2006                         sz = sample->read.group.nr *
2007                              sizeof(struct sample_read_value);
2008                         memcpy(array, sample->read.group.values, sz);
2009                         array = (void *)array + sz;
2010                 } else {
2011                         *array = sample->read.one.id;
2012                         array++;
2013                 }
2014         }
2015
2016         if (type & PERF_SAMPLE_CALLCHAIN) {
2017                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2018                 memcpy(array, sample->callchain, sz);
2019                 array = (void *)array + sz;
2020         }
2021
2022         if (type & PERF_SAMPLE_RAW) {
2023                 u.val32[0] = sample->raw_size;
2024                 if (WARN_ONCE(swapped,
2025                               "Endianness of raw data not corrected!\n")) {
2026                         /*
2027                          * Inverse of what is done in perf_evsel__parse_sample
2028                          */
2029                         u.val32[0] = bswap_32(u.val32[0]);
2030                         u.val32[1] = bswap_32(u.val32[1]);
2031                         u.val64 = bswap_64(u.val64);
2032                 }
2033                 *array = u.val64;
2034                 array = (void *)array + sizeof(u32);
2035
2036                 memcpy(array, sample->raw_data, sample->raw_size);
2037                 array = (void *)array + sample->raw_size;
2038         }
2039
2040         if (type & PERF_SAMPLE_BRANCH_STACK) {
2041                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2042                 sz += sizeof(u64);
2043                 memcpy(array, sample->branch_stack, sz);
2044                 array = (void *)array + sz;
2045         }
2046
2047         if (type & PERF_SAMPLE_REGS_USER) {
2048                 if (sample->user_regs.abi) {
2049                         *array++ = sample->user_regs.abi;
2050                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2051                         memcpy(array, sample->user_regs.regs, sz);
2052                         array = (void *)array + sz;
2053                 } else {
2054                         *array++ = 0;
2055                 }
2056         }
2057
2058         if (type & PERF_SAMPLE_STACK_USER) {
2059                 sz = sample->user_stack.size;
2060                 *array++ = sz;
2061                 if (sz) {
2062                         memcpy(array, sample->user_stack.data, sz);
2063                         array = (void *)array + sz;
2064                         *array++ = sz;
2065                 }
2066         }
2067
2068         if (type & PERF_SAMPLE_WEIGHT) {
2069                 *array = sample->weight;
2070                 array++;
2071         }
2072
2073         if (type & PERF_SAMPLE_DATA_SRC) {
2074                 *array = sample->data_src;
2075                 array++;
2076         }
2077
2078         if (type & PERF_SAMPLE_TRANSACTION) {
2079                 *array = sample->transaction;
2080                 array++;
2081         }
2082
2083         if (type & PERF_SAMPLE_REGS_INTR) {
2084                 if (sample->intr_regs.abi) {
2085                         *array++ = sample->intr_regs.abi;
2086                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2087                         memcpy(array, sample->intr_regs.regs, sz);
2088                         array = (void *)array + sz;
2089                 } else {
2090                         *array++ = 0;
2091                 }
2092         }
2093
2094         return 0;
2095 }
2096
2097 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2098 {
2099         return pevent_find_field(evsel->tp_format, name);
2100 }
2101
2102 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2103                          const char *name)
2104 {
2105         struct format_field *field = perf_evsel__field(evsel, name);
2106         int offset;
2107
2108         if (!field)
2109                 return NULL;
2110
2111         offset = field->offset;
2112
2113         if (field->flags & FIELD_IS_DYNAMIC) {
2114                 offset = *(int *)(sample->raw_data + field->offset);
2115                 offset &= 0xffff;
2116         }
2117
2118         return sample->raw_data + offset;
2119 }
2120
2121 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2122                        const char *name)
2123 {
2124         struct format_field *field = perf_evsel__field(evsel, name);
2125         void *ptr;
2126         u64 value;
2127
2128         if (!field)
2129                 return 0;
2130
2131         ptr = sample->raw_data + field->offset;
2132
2133         switch (field->size) {
2134         case 1:
2135                 return *(u8 *)ptr;
2136         case 2:
2137                 value = *(u16 *)ptr;
2138                 break;
2139         case 4:
2140                 value = *(u32 *)ptr;
2141                 break;
2142         case 8:
2143                 memcpy(&value, ptr, sizeof(u64));
2144                 break;
2145         default:
2146                 return 0;
2147         }
2148
2149         if (!evsel->needs_swap)
2150                 return value;
2151
2152         switch (field->size) {
2153         case 2:
2154                 return bswap_16(value);
2155         case 4:
2156                 return bswap_32(value);
2157         case 8:
2158                 return bswap_64(value);
2159         default:
2160                 return 0;
2161         }
2162
2163         return 0;
2164 }
2165
2166 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
2167 {
2168         va_list args;
2169         int ret = 0;
2170
2171         if (!*first) {
2172                 ret += fprintf(fp, ",");
2173         } else {
2174                 ret += fprintf(fp, ":");
2175                 *first = false;
2176         }
2177
2178         va_start(args, fmt);
2179         ret += vfprintf(fp, fmt, args);
2180         va_end(args);
2181         return ret;
2182 }
2183
2184 static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2185 {
2186         return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2187 }
2188
2189 int perf_evsel__fprintf(struct perf_evsel *evsel,
2190                         struct perf_attr_details *details, FILE *fp)
2191 {
2192         bool first = true;
2193         int printed = 0;
2194
2195         if (details->event_group) {
2196                 struct perf_evsel *pos;
2197
2198                 if (!perf_evsel__is_group_leader(evsel))
2199                         return 0;
2200
2201                 if (evsel->nr_members > 1)
2202                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2203
2204                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2205                 for_each_group_member(pos, evsel)
2206                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2207
2208                 if (evsel->nr_members > 1)
2209                         printed += fprintf(fp, "}");
2210                 goto out;
2211         }
2212
2213         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2214
2215         if (details->verbose) {
2216                 printed += perf_event_attr__fprintf(fp, &evsel->attr,
2217                                                     __print_attr__fprintf, &first);
2218         } else if (details->freq) {
2219                 const char *term = "sample_freq";
2220
2221                 if (!evsel->attr.freq)
2222                         term = "sample_period";
2223
2224                 printed += comma_fprintf(fp, &first, " %s=%" PRIu64,
2225                                          term, (u64)evsel->attr.sample_freq);
2226         }
2227 out:
2228         fputc('\n', fp);
2229         return ++printed;
2230 }
2231
2232 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2233                           char *msg, size_t msgsize)
2234 {
2235         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2236             evsel->attr.type   == PERF_TYPE_HARDWARE &&
2237             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2238                 /*
2239                  * If it's cycles then fall back to hrtimer based
2240                  * cpu-clock-tick sw counter, which is always available even if
2241                  * no PMU support.
2242                  *
2243                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2244                  * b0a873e).
2245                  */
2246                 scnprintf(msg, msgsize, "%s",
2247 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2248
2249                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2250                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2251
2252                 zfree(&evsel->name);
2253                 return true;
2254         }
2255
2256         return false;
2257 }
2258
2259 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2260                               int err, char *msg, size_t size)
2261 {
2262         char sbuf[STRERR_BUFSIZE];
2263
2264         switch (err) {
2265         case EPERM:
2266         case EACCES:
2267                 return scnprintf(msg, size,
2268                  "You may not have permission to collect %sstats.\n"
2269                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2270                  " -1 - Not paranoid at all\n"
2271                  "  0 - Disallow raw tracepoint access for unpriv\n"
2272                  "  1 - Disallow cpu events for unpriv\n"
2273                  "  2 - Disallow kernel profiling for unpriv",
2274                                  target->system_wide ? "system-wide " : "");
2275         case ENOENT:
2276                 return scnprintf(msg, size, "The %s event is not supported.",
2277                                  perf_evsel__name(evsel));
2278         case EMFILE:
2279                 return scnprintf(msg, size, "%s",
2280                          "Too many events are opened.\n"
2281                          "Probably the maximum number of open file descriptors has been reached.\n"
2282                          "Hint: Try again after reducing the number of events.\n"
2283                          "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2284         case ENODEV:
2285                 if (target->cpu_list)
2286                         return scnprintf(msg, size, "%s",
2287          "No such device - did you specify an out-of-range profile CPU?\n");
2288                 break;
2289         case EOPNOTSUPP:
2290                 if (evsel->attr.precise_ip)
2291                         return scnprintf(msg, size, "%s",
2292         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2293 #if defined(__i386__) || defined(__x86_64__)
2294                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2295                         return scnprintf(msg, size, "%s",
2296         "No hardware sampling interrupt available.\n"
2297         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2298 #endif
2299                 break;
2300         case EBUSY:
2301                 if (find_process("oprofiled"))
2302                         return scnprintf(msg, size,
2303         "The PMU counters are busy/taken by another profiler.\n"
2304         "We found oprofile daemon running, please stop it and try again.");
2305                 break;
2306         case EINVAL:
2307                 if (perf_missing_features.clockid)
2308                         return scnprintf(msg, size, "clockid feature not supported.");
2309                 if (perf_missing_features.clockid_wrong)
2310                         return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2311                 break;
2312         default:
2313                 break;
2314         }
2315
2316         return scnprintf(msg, size,
2317         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2318         "/bin/dmesg may provide additional information.\n"
2319         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2320                          err, strerror_r(err, sbuf, sizeof(sbuf)),
2321                          perf_evsel__name(evsel));
2322 }