Merge remote-tracking branch 'regulator/fix/core' into regulator-linus
[cascardo/linux.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31
32 static struct {
33         bool sample_id_all;
34         bool exclude_guest;
35         bool mmap2;
36         bool cloexec;
37         bool clockid;
38         bool clockid_wrong;
39         bool lbr_flags;
40 } perf_missing_features;
41
42 static clockid_t clockid;
43
44 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
45 {
46         return 0;
47 }
48
49 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
50 {
51 }
52
53 static struct {
54         size_t  size;
55         int     (*init)(struct perf_evsel *evsel);
56         void    (*fini)(struct perf_evsel *evsel);
57 } perf_evsel__object = {
58         .size = sizeof(struct perf_evsel),
59         .init = perf_evsel__no_extra_init,
60         .fini = perf_evsel__no_extra_fini,
61 };
62
63 int perf_evsel__object_config(size_t object_size,
64                               int (*init)(struct perf_evsel *evsel),
65                               void (*fini)(struct perf_evsel *evsel))
66 {
67
68         if (object_size == 0)
69                 goto set_methods;
70
71         if (perf_evsel__object.size > object_size)
72                 return -EINVAL;
73
74         perf_evsel__object.size = object_size;
75
76 set_methods:
77         if (init != NULL)
78                 perf_evsel__object.init = init;
79
80         if (fini != NULL)
81                 perf_evsel__object.fini = fini;
82
83         return 0;
84 }
85
86 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
87
88 int __perf_evsel__sample_size(u64 sample_type)
89 {
90         u64 mask = sample_type & PERF_SAMPLE_MASK;
91         int size = 0;
92         int i;
93
94         for (i = 0; i < 64; i++) {
95                 if (mask & (1ULL << i))
96                         size++;
97         }
98
99         size *= sizeof(u64);
100
101         return size;
102 }
103
104 /**
105  * __perf_evsel__calc_id_pos - calculate id_pos.
106  * @sample_type: sample type
107  *
108  * This function returns the position of the event id (PERF_SAMPLE_ID or
109  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
110  * sample_event.
111  */
112 static int __perf_evsel__calc_id_pos(u64 sample_type)
113 {
114         int idx = 0;
115
116         if (sample_type & PERF_SAMPLE_IDENTIFIER)
117                 return 0;
118
119         if (!(sample_type & PERF_SAMPLE_ID))
120                 return -1;
121
122         if (sample_type & PERF_SAMPLE_IP)
123                 idx += 1;
124
125         if (sample_type & PERF_SAMPLE_TID)
126                 idx += 1;
127
128         if (sample_type & PERF_SAMPLE_TIME)
129                 idx += 1;
130
131         if (sample_type & PERF_SAMPLE_ADDR)
132                 idx += 1;
133
134         return idx;
135 }
136
137 /**
138  * __perf_evsel__calc_is_pos - calculate is_pos.
139  * @sample_type: sample type
140  *
141  * This function returns the position (counting backwards) of the event id
142  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
143  * sample_id_all is used there is an id sample appended to non-sample events.
144  */
145 static int __perf_evsel__calc_is_pos(u64 sample_type)
146 {
147         int idx = 1;
148
149         if (sample_type & PERF_SAMPLE_IDENTIFIER)
150                 return 1;
151
152         if (!(sample_type & PERF_SAMPLE_ID))
153                 return -1;
154
155         if (sample_type & PERF_SAMPLE_CPU)
156                 idx += 1;
157
158         if (sample_type & PERF_SAMPLE_STREAM_ID)
159                 idx += 1;
160
161         return idx;
162 }
163
164 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
165 {
166         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
167         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
168 }
169
170 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
171                                   enum perf_event_sample_format bit)
172 {
173         if (!(evsel->attr.sample_type & bit)) {
174                 evsel->attr.sample_type |= bit;
175                 evsel->sample_size += sizeof(u64);
176                 perf_evsel__calc_id_pos(evsel);
177         }
178 }
179
180 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
181                                     enum perf_event_sample_format bit)
182 {
183         if (evsel->attr.sample_type & bit) {
184                 evsel->attr.sample_type &= ~bit;
185                 evsel->sample_size -= sizeof(u64);
186                 perf_evsel__calc_id_pos(evsel);
187         }
188 }
189
190 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
191                                bool can_sample_identifier)
192 {
193         if (can_sample_identifier) {
194                 perf_evsel__reset_sample_bit(evsel, ID);
195                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
196         } else {
197                 perf_evsel__set_sample_bit(evsel, ID);
198         }
199         evsel->attr.read_format |= PERF_FORMAT_ID;
200 }
201
202 void perf_evsel__init(struct perf_evsel *evsel,
203                       struct perf_event_attr *attr, int idx)
204 {
205         evsel->idx         = idx;
206         evsel->tracking    = !idx;
207         evsel->attr        = *attr;
208         evsel->leader      = evsel;
209         evsel->unit        = "";
210         evsel->scale       = 1.0;
211         evsel->evlist      = NULL;
212         evsel->bpf_fd      = -1;
213         INIT_LIST_HEAD(&evsel->node);
214         INIT_LIST_HEAD(&evsel->config_terms);
215         perf_evsel__object.init(evsel);
216         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
217         perf_evsel__calc_id_pos(evsel);
218         evsel->cmdline_group_boundary = false;
219 }
220
221 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
222 {
223         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
224
225         if (evsel != NULL)
226                 perf_evsel__init(evsel, attr, idx);
227
228         if (perf_evsel__is_bpf_output(evsel)) {
229                 evsel->attr.sample_type |= PERF_SAMPLE_RAW;
230                 evsel->attr.sample_period = 1;
231         }
232
233         return evsel;
234 }
235
236 /*
237  * Returns pointer with encoded error via <linux/err.h> interface.
238  */
239 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
240 {
241         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
242         int err = -ENOMEM;
243
244         if (evsel == NULL) {
245                 goto out_err;
246         } else {
247                 struct perf_event_attr attr = {
248                         .type          = PERF_TYPE_TRACEPOINT,
249                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
250                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
251                 };
252
253                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
254                         goto out_free;
255
256                 evsel->tp_format = trace_event__tp_format(sys, name);
257                 if (IS_ERR(evsel->tp_format)) {
258                         err = PTR_ERR(evsel->tp_format);
259                         goto out_free;
260                 }
261
262                 event_attr_init(&attr);
263                 attr.config = evsel->tp_format->id;
264                 attr.sample_period = 1;
265                 perf_evsel__init(evsel, &attr, idx);
266         }
267
268         return evsel;
269
270 out_free:
271         zfree(&evsel->name);
272         free(evsel);
273 out_err:
274         return ERR_PTR(err);
275 }
276
277 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
278         "cycles",
279         "instructions",
280         "cache-references",
281         "cache-misses",
282         "branches",
283         "branch-misses",
284         "bus-cycles",
285         "stalled-cycles-frontend",
286         "stalled-cycles-backend",
287         "ref-cycles",
288 };
289
290 static const char *__perf_evsel__hw_name(u64 config)
291 {
292         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
293                 return perf_evsel__hw_names[config];
294
295         return "unknown-hardware";
296 }
297
298 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
299 {
300         int colon = 0, r = 0;
301         struct perf_event_attr *attr = &evsel->attr;
302         bool exclude_guest_default = false;
303
304 #define MOD_PRINT(context, mod) do {                                    \
305                 if (!attr->exclude_##context) {                         \
306                         if (!colon) colon = ++r;                        \
307                         r += scnprintf(bf + r, size - r, "%c", mod);    \
308                 } } while(0)
309
310         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
311                 MOD_PRINT(kernel, 'k');
312                 MOD_PRINT(user, 'u');
313                 MOD_PRINT(hv, 'h');
314                 exclude_guest_default = true;
315         }
316
317         if (attr->precise_ip) {
318                 if (!colon)
319                         colon = ++r;
320                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
321                 exclude_guest_default = true;
322         }
323
324         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
325                 MOD_PRINT(host, 'H');
326                 MOD_PRINT(guest, 'G');
327         }
328 #undef MOD_PRINT
329         if (colon)
330                 bf[colon - 1] = ':';
331         return r;
332 }
333
334 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
335 {
336         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
337         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
338 }
339
340 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
341         "cpu-clock",
342         "task-clock",
343         "page-faults",
344         "context-switches",
345         "cpu-migrations",
346         "minor-faults",
347         "major-faults",
348         "alignment-faults",
349         "emulation-faults",
350         "dummy",
351 };
352
353 static const char *__perf_evsel__sw_name(u64 config)
354 {
355         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
356                 return perf_evsel__sw_names[config];
357         return "unknown-software";
358 }
359
360 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
361 {
362         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
363         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
364 }
365
366 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
367 {
368         int r;
369
370         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
371
372         if (type & HW_BREAKPOINT_R)
373                 r += scnprintf(bf + r, size - r, "r");
374
375         if (type & HW_BREAKPOINT_W)
376                 r += scnprintf(bf + r, size - r, "w");
377
378         if (type & HW_BREAKPOINT_X)
379                 r += scnprintf(bf + r, size - r, "x");
380
381         return r;
382 }
383
384 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
385 {
386         struct perf_event_attr *attr = &evsel->attr;
387         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
388         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
389 }
390
391 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
392                                 [PERF_EVSEL__MAX_ALIASES] = {
393  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
394  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
395  { "LLC",       "L2",                                                   },
396  { "dTLB",      "d-tlb",        "Data-TLB",                             },
397  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
398  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
399  { "node",                                                              },
400 };
401
402 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
403                                    [PERF_EVSEL__MAX_ALIASES] = {
404  { "load",      "loads",        "read",                                 },
405  { "store",     "stores",       "write",                                },
406  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
407 };
408
409 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
410                                        [PERF_EVSEL__MAX_ALIASES] = {
411  { "refs",      "Reference",    "ops",          "access",               },
412  { "misses",    "miss",                                                 },
413 };
414
415 #define C(x)            PERF_COUNT_HW_CACHE_##x
416 #define CACHE_READ      (1 << C(OP_READ))
417 #define CACHE_WRITE     (1 << C(OP_WRITE))
418 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
419 #define COP(x)          (1 << x)
420
421 /*
422  * cache operartion stat
423  * L1I : Read and prefetch only
424  * ITLB and BPU : Read-only
425  */
426 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
427  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
428  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
429  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
430  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
431  [C(ITLB)]      = (CACHE_READ),
432  [C(BPU)]       = (CACHE_READ),
433  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
434 };
435
436 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
437 {
438         if (perf_evsel__hw_cache_stat[type] & COP(op))
439                 return true;    /* valid */
440         else
441                 return false;   /* invalid */
442 }
443
444 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
445                                             char *bf, size_t size)
446 {
447         if (result) {
448                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
449                                  perf_evsel__hw_cache_op[op][0],
450                                  perf_evsel__hw_cache_result[result][0]);
451         }
452
453         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
454                          perf_evsel__hw_cache_op[op][1]);
455 }
456
457 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
458 {
459         u8 op, result, type = (config >>  0) & 0xff;
460         const char *err = "unknown-ext-hardware-cache-type";
461
462         if (type > PERF_COUNT_HW_CACHE_MAX)
463                 goto out_err;
464
465         op = (config >>  8) & 0xff;
466         err = "unknown-ext-hardware-cache-op";
467         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
468                 goto out_err;
469
470         result = (config >> 16) & 0xff;
471         err = "unknown-ext-hardware-cache-result";
472         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
473                 goto out_err;
474
475         err = "invalid-cache";
476         if (!perf_evsel__is_cache_op_valid(type, op))
477                 goto out_err;
478
479         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
480 out_err:
481         return scnprintf(bf, size, "%s", err);
482 }
483
484 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
485 {
486         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
487         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
488 }
489
490 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
491 {
492         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
493         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
494 }
495
496 const char *perf_evsel__name(struct perf_evsel *evsel)
497 {
498         char bf[128];
499
500         if (evsel->name)
501                 return evsel->name;
502
503         switch (evsel->attr.type) {
504         case PERF_TYPE_RAW:
505                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
506                 break;
507
508         case PERF_TYPE_HARDWARE:
509                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
510                 break;
511
512         case PERF_TYPE_HW_CACHE:
513                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
514                 break;
515
516         case PERF_TYPE_SOFTWARE:
517                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
518                 break;
519
520         case PERF_TYPE_TRACEPOINT:
521                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
522                 break;
523
524         case PERF_TYPE_BREAKPOINT:
525                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
526                 break;
527
528         default:
529                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
530                           evsel->attr.type);
531                 break;
532         }
533
534         evsel->name = strdup(bf);
535
536         return evsel->name ?: "unknown";
537 }
538
539 const char *perf_evsel__group_name(struct perf_evsel *evsel)
540 {
541         return evsel->group_name ?: "anon group";
542 }
543
544 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
545 {
546         int ret;
547         struct perf_evsel *pos;
548         const char *group_name = perf_evsel__group_name(evsel);
549
550         ret = scnprintf(buf, size, "%s", group_name);
551
552         ret += scnprintf(buf + ret, size - ret, " { %s",
553                          perf_evsel__name(evsel));
554
555         for_each_group_member(pos, evsel)
556                 ret += scnprintf(buf + ret, size - ret, ", %s",
557                                  perf_evsel__name(pos));
558
559         ret += scnprintf(buf + ret, size - ret, " }");
560
561         return ret;
562 }
563
564 static void
565 perf_evsel__config_callgraph(struct perf_evsel *evsel,
566                              struct record_opts *opts,
567                              struct callchain_param *param)
568 {
569         bool function = perf_evsel__is_function_event(evsel);
570         struct perf_event_attr *attr = &evsel->attr;
571
572         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
573
574         if (param->record_mode == CALLCHAIN_LBR) {
575                 if (!opts->branch_stack) {
576                         if (attr->exclude_user) {
577                                 pr_warning("LBR callstack option is only available "
578                                            "to get user callchain information. "
579                                            "Falling back to framepointers.\n");
580                         } else {
581                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
582                                 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
583                                                         PERF_SAMPLE_BRANCH_CALL_STACK |
584                                                         PERF_SAMPLE_BRANCH_NO_CYCLES |
585                                                         PERF_SAMPLE_BRANCH_NO_FLAGS;
586                         }
587                 } else
588                          pr_warning("Cannot use LBR callstack with branch stack. "
589                                     "Falling back to framepointers.\n");
590         }
591
592         if (param->record_mode == CALLCHAIN_DWARF) {
593                 if (!function) {
594                         perf_evsel__set_sample_bit(evsel, REGS_USER);
595                         perf_evsel__set_sample_bit(evsel, STACK_USER);
596                         attr->sample_regs_user = PERF_REGS_MASK;
597                         attr->sample_stack_user = param->dump_size;
598                         attr->exclude_callchain_user = 1;
599                 } else {
600                         pr_info("Cannot use DWARF unwind for function trace event,"
601                                 " falling back to framepointers.\n");
602                 }
603         }
604
605         if (function) {
606                 pr_info("Disabling user space callchains for function trace event.\n");
607                 attr->exclude_callchain_user = 1;
608         }
609 }
610
611 static void
612 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
613                             struct callchain_param *param)
614 {
615         struct perf_event_attr *attr = &evsel->attr;
616
617         perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
618         if (param->record_mode == CALLCHAIN_LBR) {
619                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
620                 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
621                                               PERF_SAMPLE_BRANCH_CALL_STACK);
622         }
623         if (param->record_mode == CALLCHAIN_DWARF) {
624                 perf_evsel__reset_sample_bit(evsel, REGS_USER);
625                 perf_evsel__reset_sample_bit(evsel, STACK_USER);
626         }
627 }
628
629 static void apply_config_terms(struct perf_evsel *evsel,
630                                struct record_opts *opts)
631 {
632         struct perf_evsel_config_term *term;
633         struct list_head *config_terms = &evsel->config_terms;
634         struct perf_event_attr *attr = &evsel->attr;
635         struct callchain_param param;
636         u32 dump_size = 0;
637         char *callgraph_buf = NULL;
638
639         /* callgraph default */
640         param.record_mode = callchain_param.record_mode;
641
642         list_for_each_entry(term, config_terms, list) {
643                 switch (term->type) {
644                 case PERF_EVSEL__CONFIG_TERM_PERIOD:
645                         attr->sample_period = term->val.period;
646                         attr->freq = 0;
647                         break;
648                 case PERF_EVSEL__CONFIG_TERM_FREQ:
649                         attr->sample_freq = term->val.freq;
650                         attr->freq = 1;
651                         break;
652                 case PERF_EVSEL__CONFIG_TERM_TIME:
653                         if (term->val.time)
654                                 perf_evsel__set_sample_bit(evsel, TIME);
655                         else
656                                 perf_evsel__reset_sample_bit(evsel, TIME);
657                         break;
658                 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
659                         callgraph_buf = term->val.callgraph;
660                         break;
661                 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
662                         dump_size = term->val.stack_user;
663                         break;
664                 case PERF_EVSEL__CONFIG_TERM_INHERIT:
665                         /*
666                          * attr->inherit should has already been set by
667                          * perf_evsel__config. If user explicitly set
668                          * inherit using config terms, override global
669                          * opt->no_inherit setting.
670                          */
671                         attr->inherit = term->val.inherit ? 1 : 0;
672                         break;
673                 default:
674                         break;
675                 }
676         }
677
678         /* User explicitly set per-event callgraph, clear the old setting and reset. */
679         if ((callgraph_buf != NULL) || (dump_size > 0)) {
680
681                 /* parse callgraph parameters */
682                 if (callgraph_buf != NULL) {
683                         if (!strcmp(callgraph_buf, "no")) {
684                                 param.enabled = false;
685                                 param.record_mode = CALLCHAIN_NONE;
686                         } else {
687                                 param.enabled = true;
688                                 if (parse_callchain_record(callgraph_buf, &param)) {
689                                         pr_err("per-event callgraph setting for %s failed. "
690                                                "Apply callgraph global setting for it\n",
691                                                evsel->name);
692                                         return;
693                                 }
694                         }
695                 }
696                 if (dump_size > 0) {
697                         dump_size = round_up(dump_size, sizeof(u64));
698                         param.dump_size = dump_size;
699                 }
700
701                 /* If global callgraph set, clear it */
702                 if (callchain_param.enabled)
703                         perf_evsel__reset_callgraph(evsel, &callchain_param);
704
705                 /* set perf-event callgraph */
706                 if (param.enabled)
707                         perf_evsel__config_callgraph(evsel, opts, &param);
708         }
709 }
710
711 /*
712  * The enable_on_exec/disabled value strategy:
713  *
714  *  1) For any type of traced program:
715  *    - all independent events and group leaders are disabled
716  *    - all group members are enabled
717  *
718  *     Group members are ruled by group leaders. They need to
719  *     be enabled, because the group scheduling relies on that.
720  *
721  *  2) For traced programs executed by perf:
722  *     - all independent events and group leaders have
723  *       enable_on_exec set
724  *     - we don't specifically enable or disable any event during
725  *       the record command
726  *
727  *     Independent events and group leaders are initially disabled
728  *     and get enabled by exec. Group members are ruled by group
729  *     leaders as stated in 1).
730  *
731  *  3) For traced programs attached by perf (pid/tid):
732  *     - we specifically enable or disable all events during
733  *       the record command
734  *
735  *     When attaching events to already running traced we
736  *     enable/disable events specifically, as there's no
737  *     initial traced exec call.
738  */
739 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
740 {
741         struct perf_evsel *leader = evsel->leader;
742         struct perf_event_attr *attr = &evsel->attr;
743         int track = evsel->tracking;
744         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
745
746         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
747         attr->inherit       = !opts->no_inherit;
748
749         perf_evsel__set_sample_bit(evsel, IP);
750         perf_evsel__set_sample_bit(evsel, TID);
751
752         if (evsel->sample_read) {
753                 perf_evsel__set_sample_bit(evsel, READ);
754
755                 /*
756                  * We need ID even in case of single event, because
757                  * PERF_SAMPLE_READ process ID specific data.
758                  */
759                 perf_evsel__set_sample_id(evsel, false);
760
761                 /*
762                  * Apply group format only if we belong to group
763                  * with more than one members.
764                  */
765                 if (leader->nr_members > 1) {
766                         attr->read_format |= PERF_FORMAT_GROUP;
767                         attr->inherit = 0;
768                 }
769         }
770
771         /*
772          * We default some events to have a default interval. But keep
773          * it a weak assumption overridable by the user.
774          */
775         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
776                                      opts->user_interval != ULLONG_MAX)) {
777                 if (opts->freq) {
778                         perf_evsel__set_sample_bit(evsel, PERIOD);
779                         attr->freq              = 1;
780                         attr->sample_freq       = opts->freq;
781                 } else {
782                         attr->sample_period = opts->default_interval;
783                 }
784         }
785
786         /*
787          * Disable sampling for all group members other
788          * than leader in case leader 'leads' the sampling.
789          */
790         if ((leader != evsel) && leader->sample_read) {
791                 attr->sample_freq   = 0;
792                 attr->sample_period = 0;
793         }
794
795         if (opts->no_samples)
796                 attr->sample_freq = 0;
797
798         if (opts->inherit_stat)
799                 attr->inherit_stat = 1;
800
801         if (opts->sample_address) {
802                 perf_evsel__set_sample_bit(evsel, ADDR);
803                 attr->mmap_data = track;
804         }
805
806         /*
807          * We don't allow user space callchains for  function trace
808          * event, due to issues with page faults while tracing page
809          * fault handler and its overall trickiness nature.
810          */
811         if (perf_evsel__is_function_event(evsel))
812                 evsel->attr.exclude_callchain_user = 1;
813
814         if (callchain_param.enabled && !evsel->no_aux_samples)
815                 perf_evsel__config_callgraph(evsel, opts, &callchain_param);
816
817         if (opts->sample_intr_regs) {
818                 attr->sample_regs_intr = opts->sample_intr_regs;
819                 perf_evsel__set_sample_bit(evsel, REGS_INTR);
820         }
821
822         if (target__has_cpu(&opts->target))
823                 perf_evsel__set_sample_bit(evsel, CPU);
824
825         if (opts->period)
826                 perf_evsel__set_sample_bit(evsel, PERIOD);
827
828         /*
829          * When the user explicitely disabled time don't force it here.
830          */
831         if (opts->sample_time &&
832             (!perf_missing_features.sample_id_all &&
833             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
834              opts->sample_time_set)))
835                 perf_evsel__set_sample_bit(evsel, TIME);
836
837         if (opts->raw_samples && !evsel->no_aux_samples) {
838                 perf_evsel__set_sample_bit(evsel, TIME);
839                 perf_evsel__set_sample_bit(evsel, RAW);
840                 perf_evsel__set_sample_bit(evsel, CPU);
841         }
842
843         if (opts->sample_address)
844                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
845
846         if (opts->no_buffering) {
847                 attr->watermark = 0;
848                 attr->wakeup_events = 1;
849         }
850         if (opts->branch_stack && !evsel->no_aux_samples) {
851                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
852                 attr->branch_sample_type = opts->branch_stack;
853         }
854
855         if (opts->sample_weight)
856                 perf_evsel__set_sample_bit(evsel, WEIGHT);
857
858         attr->task  = track;
859         attr->mmap  = track;
860         attr->mmap2 = track && !perf_missing_features.mmap2;
861         attr->comm  = track;
862
863         if (opts->record_switch_events)
864                 attr->context_switch = track;
865
866         if (opts->sample_transaction)
867                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
868
869         if (opts->running_time) {
870                 evsel->attr.read_format |=
871                         PERF_FORMAT_TOTAL_TIME_ENABLED |
872                         PERF_FORMAT_TOTAL_TIME_RUNNING;
873         }
874
875         /*
876          * XXX see the function comment above
877          *
878          * Disabling only independent events or group leaders,
879          * keeping group members enabled.
880          */
881         if (perf_evsel__is_group_leader(evsel))
882                 attr->disabled = 1;
883
884         /*
885          * Setting enable_on_exec for independent events and
886          * group leaders for traced executed by perf.
887          */
888         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
889                 !opts->initial_delay)
890                 attr->enable_on_exec = 1;
891
892         if (evsel->immediate) {
893                 attr->disabled = 0;
894                 attr->enable_on_exec = 0;
895         }
896
897         clockid = opts->clockid;
898         if (opts->use_clockid) {
899                 attr->use_clockid = 1;
900                 attr->clockid = opts->clockid;
901         }
902
903         if (evsel->precise_max)
904                 perf_event_attr__set_max_precise_ip(attr);
905
906         if (opts->all_user) {
907                 attr->exclude_kernel = 1;
908                 attr->exclude_user   = 0;
909         }
910
911         if (opts->all_kernel) {
912                 attr->exclude_kernel = 0;
913                 attr->exclude_user   = 1;
914         }
915
916         /*
917          * Apply event specific term settings,
918          * it overloads any global configuration.
919          */
920         apply_config_terms(evsel, opts);
921 }
922
923 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
924 {
925         int cpu, thread;
926
927         if (evsel->system_wide)
928                 nthreads = 1;
929
930         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
931
932         if (evsel->fd) {
933                 for (cpu = 0; cpu < ncpus; cpu++) {
934                         for (thread = 0; thread < nthreads; thread++) {
935                                 FD(evsel, cpu, thread) = -1;
936                         }
937                 }
938         }
939
940         return evsel->fd != NULL ? 0 : -ENOMEM;
941 }
942
943 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
944                           int ioc,  void *arg)
945 {
946         int cpu, thread;
947
948         if (evsel->system_wide)
949                 nthreads = 1;
950
951         for (cpu = 0; cpu < ncpus; cpu++) {
952                 for (thread = 0; thread < nthreads; thread++) {
953                         int fd = FD(evsel, cpu, thread),
954                             err = ioctl(fd, ioc, arg);
955
956                         if (err)
957                                 return err;
958                 }
959         }
960
961         return 0;
962 }
963
964 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
965                              const char *filter)
966 {
967         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
968                                      PERF_EVENT_IOC_SET_FILTER,
969                                      (void *)filter);
970 }
971
972 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
973 {
974         char *new_filter = strdup(filter);
975
976         if (new_filter != NULL) {
977                 free(evsel->filter);
978                 evsel->filter = new_filter;
979                 return 0;
980         }
981
982         return -1;
983 }
984
985 int perf_evsel__append_filter(struct perf_evsel *evsel,
986                               const char *op, const char *filter)
987 {
988         char *new_filter;
989
990         if (evsel->filter == NULL)
991                 return perf_evsel__set_filter(evsel, filter);
992
993         if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
994                 free(evsel->filter);
995                 evsel->filter = new_filter;
996                 return 0;
997         }
998
999         return -1;
1000 }
1001
1002 int perf_evsel__enable(struct perf_evsel *evsel)
1003 {
1004         int nthreads = thread_map__nr(evsel->threads);
1005         int ncpus = cpu_map__nr(evsel->cpus);
1006
1007         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1008                                      PERF_EVENT_IOC_ENABLE,
1009                                      0);
1010 }
1011
1012 int perf_evsel__disable(struct perf_evsel *evsel)
1013 {
1014         int nthreads = thread_map__nr(evsel->threads);
1015         int ncpus = cpu_map__nr(evsel->cpus);
1016
1017         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1018                                      PERF_EVENT_IOC_DISABLE,
1019                                      0);
1020 }
1021
1022 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1023 {
1024         if (ncpus == 0 || nthreads == 0)
1025                 return 0;
1026
1027         if (evsel->system_wide)
1028                 nthreads = 1;
1029
1030         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1031         if (evsel->sample_id == NULL)
1032                 return -ENOMEM;
1033
1034         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1035         if (evsel->id == NULL) {
1036                 xyarray__delete(evsel->sample_id);
1037                 evsel->sample_id = NULL;
1038                 return -ENOMEM;
1039         }
1040
1041         return 0;
1042 }
1043
1044 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1045 {
1046         xyarray__delete(evsel->fd);
1047         evsel->fd = NULL;
1048 }
1049
1050 static void perf_evsel__free_id(struct perf_evsel *evsel)
1051 {
1052         xyarray__delete(evsel->sample_id);
1053         evsel->sample_id = NULL;
1054         zfree(&evsel->id);
1055 }
1056
1057 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1058 {
1059         struct perf_evsel_config_term *term, *h;
1060
1061         list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1062                 list_del(&term->list);
1063                 free(term);
1064         }
1065 }
1066
1067 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1068 {
1069         int cpu, thread;
1070
1071         if (evsel->system_wide)
1072                 nthreads = 1;
1073
1074         for (cpu = 0; cpu < ncpus; cpu++)
1075                 for (thread = 0; thread < nthreads; ++thread) {
1076                         close(FD(evsel, cpu, thread));
1077                         FD(evsel, cpu, thread) = -1;
1078                 }
1079 }
1080
1081 void perf_evsel__exit(struct perf_evsel *evsel)
1082 {
1083         assert(list_empty(&evsel->node));
1084         assert(evsel->evlist == NULL);
1085         perf_evsel__free_fd(evsel);
1086         perf_evsel__free_id(evsel);
1087         perf_evsel__free_config_terms(evsel);
1088         close_cgroup(evsel->cgrp);
1089         cpu_map__put(evsel->cpus);
1090         cpu_map__put(evsel->own_cpus);
1091         thread_map__put(evsel->threads);
1092         zfree(&evsel->group_name);
1093         zfree(&evsel->name);
1094         perf_evsel__object.fini(evsel);
1095 }
1096
1097 void perf_evsel__delete(struct perf_evsel *evsel)
1098 {
1099         perf_evsel__exit(evsel);
1100         free(evsel);
1101 }
1102
1103 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1104                                 struct perf_counts_values *count)
1105 {
1106         struct perf_counts_values tmp;
1107
1108         if (!evsel->prev_raw_counts)
1109                 return;
1110
1111         if (cpu == -1) {
1112                 tmp = evsel->prev_raw_counts->aggr;
1113                 evsel->prev_raw_counts->aggr = *count;
1114         } else {
1115                 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1116                 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1117         }
1118
1119         count->val = count->val - tmp.val;
1120         count->ena = count->ena - tmp.ena;
1121         count->run = count->run - tmp.run;
1122 }
1123
1124 void perf_counts_values__scale(struct perf_counts_values *count,
1125                                bool scale, s8 *pscaled)
1126 {
1127         s8 scaled = 0;
1128
1129         if (scale) {
1130                 if (count->run == 0) {
1131                         scaled = -1;
1132                         count->val = 0;
1133                 } else if (count->run < count->ena) {
1134                         scaled = 1;
1135                         count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1136                 }
1137         } else
1138                 count->ena = count->run = 0;
1139
1140         if (pscaled)
1141                 *pscaled = scaled;
1142 }
1143
1144 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1145                      struct perf_counts_values *count)
1146 {
1147         memset(count, 0, sizeof(*count));
1148
1149         if (FD(evsel, cpu, thread) < 0)
1150                 return -EINVAL;
1151
1152         if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1153                 return -errno;
1154
1155         return 0;
1156 }
1157
1158 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1159                               int cpu, int thread, bool scale)
1160 {
1161         struct perf_counts_values count;
1162         size_t nv = scale ? 3 : 1;
1163
1164         if (FD(evsel, cpu, thread) < 0)
1165                 return -EINVAL;
1166
1167         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1168                 return -ENOMEM;
1169
1170         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1171                 return -errno;
1172
1173         perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1174         perf_counts_values__scale(&count, scale, NULL);
1175         *perf_counts(evsel->counts, cpu, thread) = count;
1176         return 0;
1177 }
1178
1179 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1180 {
1181         struct perf_evsel *leader = evsel->leader;
1182         int fd;
1183
1184         if (perf_evsel__is_group_leader(evsel))
1185                 return -1;
1186
1187         /*
1188          * Leader must be already processed/open,
1189          * if not it's a bug.
1190          */
1191         BUG_ON(!leader->fd);
1192
1193         fd = FD(leader, cpu, thread);
1194         BUG_ON(fd == -1);
1195
1196         return fd;
1197 }
1198
1199 struct bit_names {
1200         int bit;
1201         const char *name;
1202 };
1203
1204 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1205 {
1206         bool first_bit = true;
1207         int i = 0;
1208
1209         do {
1210                 if (value & bits[i].bit) {
1211                         buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1212                         first_bit = false;
1213                 }
1214         } while (bits[++i].name != NULL);
1215 }
1216
1217 static void __p_sample_type(char *buf, size_t size, u64 value)
1218 {
1219 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1220         struct bit_names bits[] = {
1221                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1222                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1223                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1224                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1225                 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1226                 bit_name(WEIGHT),
1227                 { .name = NULL, }
1228         };
1229 #undef bit_name
1230         __p_bits(buf, size, value, bits);
1231 }
1232
1233 static void __p_read_format(char *buf, size_t size, u64 value)
1234 {
1235 #define bit_name(n) { PERF_FORMAT_##n, #n }
1236         struct bit_names bits[] = {
1237                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1238                 bit_name(ID), bit_name(GROUP),
1239                 { .name = NULL, }
1240         };
1241 #undef bit_name
1242         __p_bits(buf, size, value, bits);
1243 }
1244
1245 #define BUF_SIZE                1024
1246
1247 #define p_hex(val)              snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1248 #define p_unsigned(val)         snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1249 #define p_signed(val)           snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1250 #define p_sample_type(val)      __p_sample_type(buf, BUF_SIZE, val)
1251 #define p_read_format(val)      __p_read_format(buf, BUF_SIZE, val)
1252
1253 #define PRINT_ATTRn(_n, _f, _p)                         \
1254 do {                                                    \
1255         if (attr->_f) {                                 \
1256                 _p(attr->_f);                           \
1257                 ret += attr__fprintf(fp, _n, buf, priv);\
1258         }                                               \
1259 } while (0)
1260
1261 #define PRINT_ATTRf(_f, _p)     PRINT_ATTRn(#_f, _f, _p)
1262
1263 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1264                              attr__fprintf_f attr__fprintf, void *priv)
1265 {
1266         char buf[BUF_SIZE];
1267         int ret = 0;
1268
1269         PRINT_ATTRf(type, p_unsigned);
1270         PRINT_ATTRf(size, p_unsigned);
1271         PRINT_ATTRf(config, p_hex);
1272         PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1273         PRINT_ATTRf(sample_type, p_sample_type);
1274         PRINT_ATTRf(read_format, p_read_format);
1275
1276         PRINT_ATTRf(disabled, p_unsigned);
1277         PRINT_ATTRf(inherit, p_unsigned);
1278         PRINT_ATTRf(pinned, p_unsigned);
1279         PRINT_ATTRf(exclusive, p_unsigned);
1280         PRINT_ATTRf(exclude_user, p_unsigned);
1281         PRINT_ATTRf(exclude_kernel, p_unsigned);
1282         PRINT_ATTRf(exclude_hv, p_unsigned);
1283         PRINT_ATTRf(exclude_idle, p_unsigned);
1284         PRINT_ATTRf(mmap, p_unsigned);
1285         PRINT_ATTRf(comm, p_unsigned);
1286         PRINT_ATTRf(freq, p_unsigned);
1287         PRINT_ATTRf(inherit_stat, p_unsigned);
1288         PRINT_ATTRf(enable_on_exec, p_unsigned);
1289         PRINT_ATTRf(task, p_unsigned);
1290         PRINT_ATTRf(watermark, p_unsigned);
1291         PRINT_ATTRf(precise_ip, p_unsigned);
1292         PRINT_ATTRf(mmap_data, p_unsigned);
1293         PRINT_ATTRf(sample_id_all, p_unsigned);
1294         PRINT_ATTRf(exclude_host, p_unsigned);
1295         PRINT_ATTRf(exclude_guest, p_unsigned);
1296         PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1297         PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1298         PRINT_ATTRf(mmap2, p_unsigned);
1299         PRINT_ATTRf(comm_exec, p_unsigned);
1300         PRINT_ATTRf(use_clockid, p_unsigned);
1301         PRINT_ATTRf(context_switch, p_unsigned);
1302
1303         PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1304         PRINT_ATTRf(bp_type, p_unsigned);
1305         PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1306         PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1307         PRINT_ATTRf(branch_sample_type, p_unsigned);
1308         PRINT_ATTRf(sample_regs_user, p_hex);
1309         PRINT_ATTRf(sample_stack_user, p_unsigned);
1310         PRINT_ATTRf(clockid, p_signed);
1311         PRINT_ATTRf(sample_regs_intr, p_hex);
1312         PRINT_ATTRf(aux_watermark, p_unsigned);
1313
1314         return ret;
1315 }
1316
1317 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1318                                 void *priv __attribute__((unused)))
1319 {
1320         return fprintf(fp, "  %-32s %s\n", name, val);
1321 }
1322
1323 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1324                               struct thread_map *threads)
1325 {
1326         int cpu, thread, nthreads;
1327         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1328         int pid = -1, err;
1329         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1330
1331         if (evsel->system_wide)
1332                 nthreads = 1;
1333         else
1334                 nthreads = threads->nr;
1335
1336         if (evsel->fd == NULL &&
1337             perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1338                 return -ENOMEM;
1339
1340         if (evsel->cgrp) {
1341                 flags |= PERF_FLAG_PID_CGROUP;
1342                 pid = evsel->cgrp->fd;
1343         }
1344
1345 fallback_missing_features:
1346         if (perf_missing_features.clockid_wrong)
1347                 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1348         if (perf_missing_features.clockid) {
1349                 evsel->attr.use_clockid = 0;
1350                 evsel->attr.clockid = 0;
1351         }
1352         if (perf_missing_features.cloexec)
1353                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1354         if (perf_missing_features.mmap2)
1355                 evsel->attr.mmap2 = 0;
1356         if (perf_missing_features.exclude_guest)
1357                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1358         if (perf_missing_features.lbr_flags)
1359                 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1360                                      PERF_SAMPLE_BRANCH_NO_CYCLES);
1361 retry_sample_id:
1362         if (perf_missing_features.sample_id_all)
1363                 evsel->attr.sample_id_all = 0;
1364
1365         if (verbose >= 2) {
1366                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1367                 fprintf(stderr, "perf_event_attr:\n");
1368                 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1369                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1370         }
1371
1372         for (cpu = 0; cpu < cpus->nr; cpu++) {
1373
1374                 for (thread = 0; thread < nthreads; thread++) {
1375                         int group_fd;
1376
1377                         if (!evsel->cgrp && !evsel->system_wide)
1378                                 pid = thread_map__pid(threads, thread);
1379
1380                         group_fd = get_group_fd(evsel, cpu, thread);
1381 retry_open:
1382                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1383                                   pid, cpus->map[cpu], group_fd, flags);
1384
1385                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1386                                                                      pid,
1387                                                                      cpus->map[cpu],
1388                                                                      group_fd, flags);
1389                         if (FD(evsel, cpu, thread) < 0) {
1390                                 err = -errno;
1391                                 pr_debug2("sys_perf_event_open failed, error %d\n",
1392                                           err);
1393                                 goto try_fallback;
1394                         }
1395
1396                         if (evsel->bpf_fd >= 0) {
1397                                 int evt_fd = FD(evsel, cpu, thread);
1398                                 int bpf_fd = evsel->bpf_fd;
1399
1400                                 err = ioctl(evt_fd,
1401                                             PERF_EVENT_IOC_SET_BPF,
1402                                             bpf_fd);
1403                                 if (err && errno != EEXIST) {
1404                                         pr_err("failed to attach bpf fd %d: %s\n",
1405                                                bpf_fd, strerror(errno));
1406                                         err = -EINVAL;
1407                                         goto out_close;
1408                                 }
1409                         }
1410
1411                         set_rlimit = NO_CHANGE;
1412
1413                         /*
1414                          * If we succeeded but had to kill clockid, fail and
1415                          * have perf_evsel__open_strerror() print us a nice
1416                          * error.
1417                          */
1418                         if (perf_missing_features.clockid ||
1419                             perf_missing_features.clockid_wrong) {
1420                                 err = -EINVAL;
1421                                 goto out_close;
1422                         }
1423                 }
1424         }
1425
1426         return 0;
1427
1428 try_fallback:
1429         /*
1430          * perf stat needs between 5 and 22 fds per CPU. When we run out
1431          * of them try to increase the limits.
1432          */
1433         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1434                 struct rlimit l;
1435                 int old_errno = errno;
1436
1437                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1438                         if (set_rlimit == NO_CHANGE)
1439                                 l.rlim_cur = l.rlim_max;
1440                         else {
1441                                 l.rlim_cur = l.rlim_max + 1000;
1442                                 l.rlim_max = l.rlim_cur;
1443                         }
1444                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1445                                 set_rlimit++;
1446                                 errno = old_errno;
1447                                 goto retry_open;
1448                         }
1449                 }
1450                 errno = old_errno;
1451         }
1452
1453         if (err != -EINVAL || cpu > 0 || thread > 0)
1454                 goto out_close;
1455
1456         /*
1457          * Must probe features in the order they were added to the
1458          * perf_event_attr interface.
1459          */
1460         if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1461                 perf_missing_features.clockid_wrong = true;
1462                 goto fallback_missing_features;
1463         } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1464                 perf_missing_features.clockid = true;
1465                 goto fallback_missing_features;
1466         } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1467                 perf_missing_features.cloexec = true;
1468                 goto fallback_missing_features;
1469         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1470                 perf_missing_features.mmap2 = true;
1471                 goto fallback_missing_features;
1472         } else if (!perf_missing_features.exclude_guest &&
1473                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1474                 perf_missing_features.exclude_guest = true;
1475                 goto fallback_missing_features;
1476         } else if (!perf_missing_features.sample_id_all) {
1477                 perf_missing_features.sample_id_all = true;
1478                 goto retry_sample_id;
1479         } else if (!perf_missing_features.lbr_flags &&
1480                         (evsel->attr.branch_sample_type &
1481                          (PERF_SAMPLE_BRANCH_NO_CYCLES |
1482                           PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1483                 perf_missing_features.lbr_flags = true;
1484                 goto fallback_missing_features;
1485         }
1486
1487 out_close:
1488         do {
1489                 while (--thread >= 0) {
1490                         close(FD(evsel, cpu, thread));
1491                         FD(evsel, cpu, thread) = -1;
1492                 }
1493                 thread = nthreads;
1494         } while (--cpu >= 0);
1495         return err;
1496 }
1497
1498 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1499 {
1500         if (evsel->fd == NULL)
1501                 return;
1502
1503         perf_evsel__close_fd(evsel, ncpus, nthreads);
1504         perf_evsel__free_fd(evsel);
1505 }
1506
1507 static struct {
1508         struct cpu_map map;
1509         int cpus[1];
1510 } empty_cpu_map = {
1511         .map.nr = 1,
1512         .cpus   = { -1, },
1513 };
1514
1515 static struct {
1516         struct thread_map map;
1517         int threads[1];
1518 } empty_thread_map = {
1519         .map.nr  = 1,
1520         .threads = { -1, },
1521 };
1522
1523 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1524                      struct thread_map *threads)
1525 {
1526         if (cpus == NULL) {
1527                 /* Work around old compiler warnings about strict aliasing */
1528                 cpus = &empty_cpu_map.map;
1529         }
1530
1531         if (threads == NULL)
1532                 threads = &empty_thread_map.map;
1533
1534         return __perf_evsel__open(evsel, cpus, threads);
1535 }
1536
1537 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1538                              struct cpu_map *cpus)
1539 {
1540         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1541 }
1542
1543 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1544                                 struct thread_map *threads)
1545 {
1546         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1547 }
1548
1549 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1550                                        const union perf_event *event,
1551                                        struct perf_sample *sample)
1552 {
1553         u64 type = evsel->attr.sample_type;
1554         const u64 *array = event->sample.array;
1555         bool swapped = evsel->needs_swap;
1556         union u64_swap u;
1557
1558         array += ((event->header.size -
1559                    sizeof(event->header)) / sizeof(u64)) - 1;
1560
1561         if (type & PERF_SAMPLE_IDENTIFIER) {
1562                 sample->id = *array;
1563                 array--;
1564         }
1565
1566         if (type & PERF_SAMPLE_CPU) {
1567                 u.val64 = *array;
1568                 if (swapped) {
1569                         /* undo swap of u64, then swap on individual u32s */
1570                         u.val64 = bswap_64(u.val64);
1571                         u.val32[0] = bswap_32(u.val32[0]);
1572                 }
1573
1574                 sample->cpu = u.val32[0];
1575                 array--;
1576         }
1577
1578         if (type & PERF_SAMPLE_STREAM_ID) {
1579                 sample->stream_id = *array;
1580                 array--;
1581         }
1582
1583         if (type & PERF_SAMPLE_ID) {
1584                 sample->id = *array;
1585                 array--;
1586         }
1587
1588         if (type & PERF_SAMPLE_TIME) {
1589                 sample->time = *array;
1590                 array--;
1591         }
1592
1593         if (type & PERF_SAMPLE_TID) {
1594                 u.val64 = *array;
1595                 if (swapped) {
1596                         /* undo swap of u64, then swap on individual u32s */
1597                         u.val64 = bswap_64(u.val64);
1598                         u.val32[0] = bswap_32(u.val32[0]);
1599                         u.val32[1] = bswap_32(u.val32[1]);
1600                 }
1601
1602                 sample->pid = u.val32[0];
1603                 sample->tid = u.val32[1];
1604                 array--;
1605         }
1606
1607         return 0;
1608 }
1609
1610 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1611                             u64 size)
1612 {
1613         return size > max_size || offset + size > endp;
1614 }
1615
1616 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1617         do {                                                            \
1618                 if (overflow(endp, (max_size), (offset), (size)))       \
1619                         return -EFAULT;                                 \
1620         } while (0)
1621
1622 #define OVERFLOW_CHECK_u64(offset) \
1623         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1624
1625 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1626                              struct perf_sample *data)
1627 {
1628         u64 type = evsel->attr.sample_type;
1629         bool swapped = evsel->needs_swap;
1630         const u64 *array;
1631         u16 max_size = event->header.size;
1632         const void *endp = (void *)event + max_size;
1633         u64 sz;
1634
1635         /*
1636          * used for cross-endian analysis. See git commit 65014ab3
1637          * for why this goofiness is needed.
1638          */
1639         union u64_swap u;
1640
1641         memset(data, 0, sizeof(*data));
1642         data->cpu = data->pid = data->tid = -1;
1643         data->stream_id = data->id = data->time = -1ULL;
1644         data->period = evsel->attr.sample_period;
1645         data->weight = 0;
1646         data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1647
1648         if (event->header.type != PERF_RECORD_SAMPLE) {
1649                 if (!evsel->attr.sample_id_all)
1650                         return 0;
1651                 return perf_evsel__parse_id_sample(evsel, event, data);
1652         }
1653
1654         array = event->sample.array;
1655
1656         /*
1657          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1658          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1659          * check the format does not go past the end of the event.
1660          */
1661         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1662                 return -EFAULT;
1663
1664         data->id = -1ULL;
1665         if (type & PERF_SAMPLE_IDENTIFIER) {
1666                 data->id = *array;
1667                 array++;
1668         }
1669
1670         if (type & PERF_SAMPLE_IP) {
1671                 data->ip = *array;
1672                 array++;
1673         }
1674
1675         if (type & PERF_SAMPLE_TID) {
1676                 u.val64 = *array;
1677                 if (swapped) {
1678                         /* undo swap of u64, then swap on individual u32s */
1679                         u.val64 = bswap_64(u.val64);
1680                         u.val32[0] = bswap_32(u.val32[0]);
1681                         u.val32[1] = bswap_32(u.val32[1]);
1682                 }
1683
1684                 data->pid = u.val32[0];
1685                 data->tid = u.val32[1];
1686                 array++;
1687         }
1688
1689         if (type & PERF_SAMPLE_TIME) {
1690                 data->time = *array;
1691                 array++;
1692         }
1693
1694         data->addr = 0;
1695         if (type & PERF_SAMPLE_ADDR) {
1696                 data->addr = *array;
1697                 array++;
1698         }
1699
1700         if (type & PERF_SAMPLE_ID) {
1701                 data->id = *array;
1702                 array++;
1703         }
1704
1705         if (type & PERF_SAMPLE_STREAM_ID) {
1706                 data->stream_id = *array;
1707                 array++;
1708         }
1709
1710         if (type & PERF_SAMPLE_CPU) {
1711
1712                 u.val64 = *array;
1713                 if (swapped) {
1714                         /* undo swap of u64, then swap on individual u32s */
1715                         u.val64 = bswap_64(u.val64);
1716                         u.val32[0] = bswap_32(u.val32[0]);
1717                 }
1718
1719                 data->cpu = u.val32[0];
1720                 array++;
1721         }
1722
1723         if (type & PERF_SAMPLE_PERIOD) {
1724                 data->period = *array;
1725                 array++;
1726         }
1727
1728         if (type & PERF_SAMPLE_READ) {
1729                 u64 read_format = evsel->attr.read_format;
1730
1731                 OVERFLOW_CHECK_u64(array);
1732                 if (read_format & PERF_FORMAT_GROUP)
1733                         data->read.group.nr = *array;
1734                 else
1735                         data->read.one.value = *array;
1736
1737                 array++;
1738
1739                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1740                         OVERFLOW_CHECK_u64(array);
1741                         data->read.time_enabled = *array;
1742                         array++;
1743                 }
1744
1745                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1746                         OVERFLOW_CHECK_u64(array);
1747                         data->read.time_running = *array;
1748                         array++;
1749                 }
1750
1751                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1752                 if (read_format & PERF_FORMAT_GROUP) {
1753                         const u64 max_group_nr = UINT64_MAX /
1754                                         sizeof(struct sample_read_value);
1755
1756                         if (data->read.group.nr > max_group_nr)
1757                                 return -EFAULT;
1758                         sz = data->read.group.nr *
1759                              sizeof(struct sample_read_value);
1760                         OVERFLOW_CHECK(array, sz, max_size);
1761                         data->read.group.values =
1762                                         (struct sample_read_value *)array;
1763                         array = (void *)array + sz;
1764                 } else {
1765                         OVERFLOW_CHECK_u64(array);
1766                         data->read.one.id = *array;
1767                         array++;
1768                 }
1769         }
1770
1771         if (type & PERF_SAMPLE_CALLCHAIN) {
1772                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1773
1774                 OVERFLOW_CHECK_u64(array);
1775                 data->callchain = (struct ip_callchain *)array++;
1776                 if (data->callchain->nr > max_callchain_nr)
1777                         return -EFAULT;
1778                 sz = data->callchain->nr * sizeof(u64);
1779                 OVERFLOW_CHECK(array, sz, max_size);
1780                 array = (void *)array + sz;
1781         }
1782
1783         if (type & PERF_SAMPLE_RAW) {
1784                 OVERFLOW_CHECK_u64(array);
1785                 u.val64 = *array;
1786                 if (WARN_ONCE(swapped,
1787                               "Endianness of raw data not corrected!\n")) {
1788                         /* undo swap of u64, then swap on individual u32s */
1789                         u.val64 = bswap_64(u.val64);
1790                         u.val32[0] = bswap_32(u.val32[0]);
1791                         u.val32[1] = bswap_32(u.val32[1]);
1792                 }
1793                 data->raw_size = u.val32[0];
1794                 array = (void *)array + sizeof(u32);
1795
1796                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1797                 data->raw_data = (void *)array;
1798                 array = (void *)array + data->raw_size;
1799         }
1800
1801         if (type & PERF_SAMPLE_BRANCH_STACK) {
1802                 const u64 max_branch_nr = UINT64_MAX /
1803                                           sizeof(struct branch_entry);
1804
1805                 OVERFLOW_CHECK_u64(array);
1806                 data->branch_stack = (struct branch_stack *)array++;
1807
1808                 if (data->branch_stack->nr > max_branch_nr)
1809                         return -EFAULT;
1810                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1811                 OVERFLOW_CHECK(array, sz, max_size);
1812                 array = (void *)array + sz;
1813         }
1814
1815         if (type & PERF_SAMPLE_REGS_USER) {
1816                 OVERFLOW_CHECK_u64(array);
1817                 data->user_regs.abi = *array;
1818                 array++;
1819
1820                 if (data->user_regs.abi) {
1821                         u64 mask = evsel->attr.sample_regs_user;
1822
1823                         sz = hweight_long(mask) * sizeof(u64);
1824                         OVERFLOW_CHECK(array, sz, max_size);
1825                         data->user_regs.mask = mask;
1826                         data->user_regs.regs = (u64 *)array;
1827                         array = (void *)array + sz;
1828                 }
1829         }
1830
1831         if (type & PERF_SAMPLE_STACK_USER) {
1832                 OVERFLOW_CHECK_u64(array);
1833                 sz = *array++;
1834
1835                 data->user_stack.offset = ((char *)(array - 1)
1836                                           - (char *) event);
1837
1838                 if (!sz) {
1839                         data->user_stack.size = 0;
1840                 } else {
1841                         OVERFLOW_CHECK(array, sz, max_size);
1842                         data->user_stack.data = (char *)array;
1843                         array = (void *)array + sz;
1844                         OVERFLOW_CHECK_u64(array);
1845                         data->user_stack.size = *array++;
1846                         if (WARN_ONCE(data->user_stack.size > sz,
1847                                       "user stack dump failure\n"))
1848                                 return -EFAULT;
1849                 }
1850         }
1851
1852         data->weight = 0;
1853         if (type & PERF_SAMPLE_WEIGHT) {
1854                 OVERFLOW_CHECK_u64(array);
1855                 data->weight = *array;
1856                 array++;
1857         }
1858
1859         data->data_src = PERF_MEM_DATA_SRC_NONE;
1860         if (type & PERF_SAMPLE_DATA_SRC) {
1861                 OVERFLOW_CHECK_u64(array);
1862                 data->data_src = *array;
1863                 array++;
1864         }
1865
1866         data->transaction = 0;
1867         if (type & PERF_SAMPLE_TRANSACTION) {
1868                 OVERFLOW_CHECK_u64(array);
1869                 data->transaction = *array;
1870                 array++;
1871         }
1872
1873         data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1874         if (type & PERF_SAMPLE_REGS_INTR) {
1875                 OVERFLOW_CHECK_u64(array);
1876                 data->intr_regs.abi = *array;
1877                 array++;
1878
1879                 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1880                         u64 mask = evsel->attr.sample_regs_intr;
1881
1882                         sz = hweight_long(mask) * sizeof(u64);
1883                         OVERFLOW_CHECK(array, sz, max_size);
1884                         data->intr_regs.mask = mask;
1885                         data->intr_regs.regs = (u64 *)array;
1886                         array = (void *)array + sz;
1887                 }
1888         }
1889
1890         return 0;
1891 }
1892
1893 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1894                                      u64 read_format)
1895 {
1896         size_t sz, result = sizeof(struct sample_event);
1897
1898         if (type & PERF_SAMPLE_IDENTIFIER)
1899                 result += sizeof(u64);
1900
1901         if (type & PERF_SAMPLE_IP)
1902                 result += sizeof(u64);
1903
1904         if (type & PERF_SAMPLE_TID)
1905                 result += sizeof(u64);
1906
1907         if (type & PERF_SAMPLE_TIME)
1908                 result += sizeof(u64);
1909
1910         if (type & PERF_SAMPLE_ADDR)
1911                 result += sizeof(u64);
1912
1913         if (type & PERF_SAMPLE_ID)
1914                 result += sizeof(u64);
1915
1916         if (type & PERF_SAMPLE_STREAM_ID)
1917                 result += sizeof(u64);
1918
1919         if (type & PERF_SAMPLE_CPU)
1920                 result += sizeof(u64);
1921
1922         if (type & PERF_SAMPLE_PERIOD)
1923                 result += sizeof(u64);
1924
1925         if (type & PERF_SAMPLE_READ) {
1926                 result += sizeof(u64);
1927                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1928                         result += sizeof(u64);
1929                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1930                         result += sizeof(u64);
1931                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1932                 if (read_format & PERF_FORMAT_GROUP) {
1933                         sz = sample->read.group.nr *
1934                              sizeof(struct sample_read_value);
1935                         result += sz;
1936                 } else {
1937                         result += sizeof(u64);
1938                 }
1939         }
1940
1941         if (type & PERF_SAMPLE_CALLCHAIN) {
1942                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1943                 result += sz;
1944         }
1945
1946         if (type & PERF_SAMPLE_RAW) {
1947                 result += sizeof(u32);
1948                 result += sample->raw_size;
1949         }
1950
1951         if (type & PERF_SAMPLE_BRANCH_STACK) {
1952                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1953                 sz += sizeof(u64);
1954                 result += sz;
1955         }
1956
1957         if (type & PERF_SAMPLE_REGS_USER) {
1958                 if (sample->user_regs.abi) {
1959                         result += sizeof(u64);
1960                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1961                         result += sz;
1962                 } else {
1963                         result += sizeof(u64);
1964                 }
1965         }
1966
1967         if (type & PERF_SAMPLE_STACK_USER) {
1968                 sz = sample->user_stack.size;
1969                 result += sizeof(u64);
1970                 if (sz) {
1971                         result += sz;
1972                         result += sizeof(u64);
1973                 }
1974         }
1975
1976         if (type & PERF_SAMPLE_WEIGHT)
1977                 result += sizeof(u64);
1978
1979         if (type & PERF_SAMPLE_DATA_SRC)
1980                 result += sizeof(u64);
1981
1982         if (type & PERF_SAMPLE_TRANSACTION)
1983                 result += sizeof(u64);
1984
1985         if (type & PERF_SAMPLE_REGS_INTR) {
1986                 if (sample->intr_regs.abi) {
1987                         result += sizeof(u64);
1988                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1989                         result += sz;
1990                 } else {
1991                         result += sizeof(u64);
1992                 }
1993         }
1994
1995         return result;
1996 }
1997
1998 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1999                                   u64 read_format,
2000                                   const struct perf_sample *sample,
2001                                   bool swapped)
2002 {
2003         u64 *array;
2004         size_t sz;
2005         /*
2006          * used for cross-endian analysis. See git commit 65014ab3
2007          * for why this goofiness is needed.
2008          */
2009         union u64_swap u;
2010
2011         array = event->sample.array;
2012
2013         if (type & PERF_SAMPLE_IDENTIFIER) {
2014                 *array = sample->id;
2015                 array++;
2016         }
2017
2018         if (type & PERF_SAMPLE_IP) {
2019                 *array = sample->ip;
2020                 array++;
2021         }
2022
2023         if (type & PERF_SAMPLE_TID) {
2024                 u.val32[0] = sample->pid;
2025                 u.val32[1] = sample->tid;
2026                 if (swapped) {
2027                         /*
2028                          * Inverse of what is done in perf_evsel__parse_sample
2029                          */
2030                         u.val32[0] = bswap_32(u.val32[0]);
2031                         u.val32[1] = bswap_32(u.val32[1]);
2032                         u.val64 = bswap_64(u.val64);
2033                 }
2034
2035                 *array = u.val64;
2036                 array++;
2037         }
2038
2039         if (type & PERF_SAMPLE_TIME) {
2040                 *array = sample->time;
2041                 array++;
2042         }
2043
2044         if (type & PERF_SAMPLE_ADDR) {
2045                 *array = sample->addr;
2046                 array++;
2047         }
2048
2049         if (type & PERF_SAMPLE_ID) {
2050                 *array = sample->id;
2051                 array++;
2052         }
2053
2054         if (type & PERF_SAMPLE_STREAM_ID) {
2055                 *array = sample->stream_id;
2056                 array++;
2057         }
2058
2059         if (type & PERF_SAMPLE_CPU) {
2060                 u.val32[0] = sample->cpu;
2061                 if (swapped) {
2062                         /*
2063                          * Inverse of what is done in perf_evsel__parse_sample
2064                          */
2065                         u.val32[0] = bswap_32(u.val32[0]);
2066                         u.val64 = bswap_64(u.val64);
2067                 }
2068                 *array = u.val64;
2069                 array++;
2070         }
2071
2072         if (type & PERF_SAMPLE_PERIOD) {
2073                 *array = sample->period;
2074                 array++;
2075         }
2076
2077         if (type & PERF_SAMPLE_READ) {
2078                 if (read_format & PERF_FORMAT_GROUP)
2079                         *array = sample->read.group.nr;
2080                 else
2081                         *array = sample->read.one.value;
2082                 array++;
2083
2084                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2085                         *array = sample->read.time_enabled;
2086                         array++;
2087                 }
2088
2089                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2090                         *array = sample->read.time_running;
2091                         array++;
2092                 }
2093
2094                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2095                 if (read_format & PERF_FORMAT_GROUP) {
2096                         sz = sample->read.group.nr *
2097                              sizeof(struct sample_read_value);
2098                         memcpy(array, sample->read.group.values, sz);
2099                         array = (void *)array + sz;
2100                 } else {
2101                         *array = sample->read.one.id;
2102                         array++;
2103                 }
2104         }
2105
2106         if (type & PERF_SAMPLE_CALLCHAIN) {
2107                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2108                 memcpy(array, sample->callchain, sz);
2109                 array = (void *)array + sz;
2110         }
2111
2112         if (type & PERF_SAMPLE_RAW) {
2113                 u.val32[0] = sample->raw_size;
2114                 if (WARN_ONCE(swapped,
2115                               "Endianness of raw data not corrected!\n")) {
2116                         /*
2117                          * Inverse of what is done in perf_evsel__parse_sample
2118                          */
2119                         u.val32[0] = bswap_32(u.val32[0]);
2120                         u.val32[1] = bswap_32(u.val32[1]);
2121                         u.val64 = bswap_64(u.val64);
2122                 }
2123                 *array = u.val64;
2124                 array = (void *)array + sizeof(u32);
2125
2126                 memcpy(array, sample->raw_data, sample->raw_size);
2127                 array = (void *)array + sample->raw_size;
2128         }
2129
2130         if (type & PERF_SAMPLE_BRANCH_STACK) {
2131                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2132                 sz += sizeof(u64);
2133                 memcpy(array, sample->branch_stack, sz);
2134                 array = (void *)array + sz;
2135         }
2136
2137         if (type & PERF_SAMPLE_REGS_USER) {
2138                 if (sample->user_regs.abi) {
2139                         *array++ = sample->user_regs.abi;
2140                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2141                         memcpy(array, sample->user_regs.regs, sz);
2142                         array = (void *)array + sz;
2143                 } else {
2144                         *array++ = 0;
2145                 }
2146         }
2147
2148         if (type & PERF_SAMPLE_STACK_USER) {
2149                 sz = sample->user_stack.size;
2150                 *array++ = sz;
2151                 if (sz) {
2152                         memcpy(array, sample->user_stack.data, sz);
2153                         array = (void *)array + sz;
2154                         *array++ = sz;
2155                 }
2156         }
2157
2158         if (type & PERF_SAMPLE_WEIGHT) {
2159                 *array = sample->weight;
2160                 array++;
2161         }
2162
2163         if (type & PERF_SAMPLE_DATA_SRC) {
2164                 *array = sample->data_src;
2165                 array++;
2166         }
2167
2168         if (type & PERF_SAMPLE_TRANSACTION) {
2169                 *array = sample->transaction;
2170                 array++;
2171         }
2172
2173         if (type & PERF_SAMPLE_REGS_INTR) {
2174                 if (sample->intr_regs.abi) {
2175                         *array++ = sample->intr_regs.abi;
2176                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2177                         memcpy(array, sample->intr_regs.regs, sz);
2178                         array = (void *)array + sz;
2179                 } else {
2180                         *array++ = 0;
2181                 }
2182         }
2183
2184         return 0;
2185 }
2186
2187 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2188 {
2189         return pevent_find_field(evsel->tp_format, name);
2190 }
2191
2192 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2193                          const char *name)
2194 {
2195         struct format_field *field = perf_evsel__field(evsel, name);
2196         int offset;
2197
2198         if (!field)
2199                 return NULL;
2200
2201         offset = field->offset;
2202
2203         if (field->flags & FIELD_IS_DYNAMIC) {
2204                 offset = *(int *)(sample->raw_data + field->offset);
2205                 offset &= 0xffff;
2206         }
2207
2208         return sample->raw_data + offset;
2209 }
2210
2211 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2212                        const char *name)
2213 {
2214         struct format_field *field = perf_evsel__field(evsel, name);
2215         void *ptr;
2216         u64 value;
2217
2218         if (!field)
2219                 return 0;
2220
2221         ptr = sample->raw_data + field->offset;
2222
2223         switch (field->size) {
2224         case 1:
2225                 return *(u8 *)ptr;
2226         case 2:
2227                 value = *(u16 *)ptr;
2228                 break;
2229         case 4:
2230                 value = *(u32 *)ptr;
2231                 break;
2232         case 8:
2233                 memcpy(&value, ptr, sizeof(u64));
2234                 break;
2235         default:
2236                 return 0;
2237         }
2238
2239         if (!evsel->needs_swap)
2240                 return value;
2241
2242         switch (field->size) {
2243         case 2:
2244                 return bswap_16(value);
2245         case 4:
2246                 return bswap_32(value);
2247         case 8:
2248                 return bswap_64(value);
2249         default:
2250                 return 0;
2251         }
2252
2253         return 0;
2254 }
2255
2256 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
2257 {
2258         va_list args;
2259         int ret = 0;
2260
2261         if (!*first) {
2262                 ret += fprintf(fp, ",");
2263         } else {
2264                 ret += fprintf(fp, ":");
2265                 *first = false;
2266         }
2267
2268         va_start(args, fmt);
2269         ret += vfprintf(fp, fmt, args);
2270         va_end(args);
2271         return ret;
2272 }
2273
2274 static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2275 {
2276         return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2277 }
2278
2279 int perf_evsel__fprintf(struct perf_evsel *evsel,
2280                         struct perf_attr_details *details, FILE *fp)
2281 {
2282         bool first = true;
2283         int printed = 0;
2284
2285         if (details->event_group) {
2286                 struct perf_evsel *pos;
2287
2288                 if (!perf_evsel__is_group_leader(evsel))
2289                         return 0;
2290
2291                 if (evsel->nr_members > 1)
2292                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2293
2294                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2295                 for_each_group_member(pos, evsel)
2296                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2297
2298                 if (evsel->nr_members > 1)
2299                         printed += fprintf(fp, "}");
2300                 goto out;
2301         }
2302
2303         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2304
2305         if (details->verbose) {
2306                 printed += perf_event_attr__fprintf(fp, &evsel->attr,
2307                                                     __print_attr__fprintf, &first);
2308         } else if (details->freq) {
2309                 const char *term = "sample_freq";
2310
2311                 if (!evsel->attr.freq)
2312                         term = "sample_period";
2313
2314                 printed += comma_fprintf(fp, &first, " %s=%" PRIu64,
2315                                          term, (u64)evsel->attr.sample_freq);
2316         }
2317
2318         if (details->trace_fields) {
2319                 struct format_field *field;
2320
2321                 if (evsel->attr.type != PERF_TYPE_TRACEPOINT) {
2322                         printed += comma_fprintf(fp, &first, " (not a tracepoint)");
2323                         goto out;
2324                 }
2325
2326                 field = evsel->tp_format->format.fields;
2327                 if (field == NULL) {
2328                         printed += comma_fprintf(fp, &first, " (no trace field)");
2329                         goto out;
2330                 }
2331
2332                 printed += comma_fprintf(fp, &first, " trace_fields: %s", field->name);
2333
2334                 field = field->next;
2335                 while (field) {
2336                         printed += comma_fprintf(fp, &first, "%s", field->name);
2337                         field = field->next;
2338                 }
2339         }
2340 out:
2341         fputc('\n', fp);
2342         return ++printed;
2343 }
2344
2345 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2346                           char *msg, size_t msgsize)
2347 {
2348         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2349             evsel->attr.type   == PERF_TYPE_HARDWARE &&
2350             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2351                 /*
2352                  * If it's cycles then fall back to hrtimer based
2353                  * cpu-clock-tick sw counter, which is always available even if
2354                  * no PMU support.
2355                  *
2356                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2357                  * b0a873e).
2358                  */
2359                 scnprintf(msg, msgsize, "%s",
2360 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2361
2362                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2363                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2364
2365                 zfree(&evsel->name);
2366                 return true;
2367         }
2368
2369         return false;
2370 }
2371
2372 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2373                               int err, char *msg, size_t size)
2374 {
2375         char sbuf[STRERR_BUFSIZE];
2376
2377         switch (err) {
2378         case EPERM:
2379         case EACCES:
2380                 return scnprintf(msg, size,
2381                  "You may not have permission to collect %sstats.\n\n"
2382                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2383                  "which controls use of the performance events system by\n"
2384                  "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2385                  "The default value is 1:\n\n"
2386                  "  -1: Allow use of (almost) all events by all users\n"
2387                  ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2388                  ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2389                  ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2390                                  target->system_wide ? "system-wide " : "");
2391         case ENOENT:
2392                 return scnprintf(msg, size, "The %s event is not supported.",
2393                                  perf_evsel__name(evsel));
2394         case EMFILE:
2395                 return scnprintf(msg, size, "%s",
2396                          "Too many events are opened.\n"
2397                          "Probably the maximum number of open file descriptors has been reached.\n"
2398                          "Hint: Try again after reducing the number of events.\n"
2399                          "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2400         case ENODEV:
2401                 if (target->cpu_list)
2402                         return scnprintf(msg, size, "%s",
2403          "No such device - did you specify an out-of-range profile CPU?\n");
2404                 break;
2405         case EOPNOTSUPP:
2406                 if (evsel->attr.precise_ip)
2407                         return scnprintf(msg, size, "%s",
2408         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2409 #if defined(__i386__) || defined(__x86_64__)
2410                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2411                         return scnprintf(msg, size, "%s",
2412         "No hardware sampling interrupt available.\n"
2413         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2414 #endif
2415                 break;
2416         case EBUSY:
2417                 if (find_process("oprofiled"))
2418                         return scnprintf(msg, size,
2419         "The PMU counters are busy/taken by another profiler.\n"
2420         "We found oprofile daemon running, please stop it and try again.");
2421                 break;
2422         case EINVAL:
2423                 if (perf_missing_features.clockid)
2424                         return scnprintf(msg, size, "clockid feature not supported.");
2425                 if (perf_missing_features.clockid_wrong)
2426                         return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2427                 break;
2428         default:
2429                 break;
2430         }
2431
2432         return scnprintf(msg, size,
2433         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2434         "/bin/dmesg may provide additional information.\n"
2435         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2436                          err, strerror_r(err, sbuf, sizeof(sbuf)),
2437                          perf_evsel__name(evsel));
2438 }