Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[cascardo/linux.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26 #include "trace-event.h"
27
28 static struct {
29         bool sample_id_all;
30         bool exclude_guest;
31         bool mmap2;
32 } perf_missing_features;
33
34 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
35
36 int __perf_evsel__sample_size(u64 sample_type)
37 {
38         u64 mask = sample_type & PERF_SAMPLE_MASK;
39         int size = 0;
40         int i;
41
42         for (i = 0; i < 64; i++) {
43                 if (mask & (1ULL << i))
44                         size++;
45         }
46
47         size *= sizeof(u64);
48
49         return size;
50 }
51
52 /**
53  * __perf_evsel__calc_id_pos - calculate id_pos.
54  * @sample_type: sample type
55  *
56  * This function returns the position of the event id (PERF_SAMPLE_ID or
57  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
58  * sample_event.
59  */
60 static int __perf_evsel__calc_id_pos(u64 sample_type)
61 {
62         int idx = 0;
63
64         if (sample_type & PERF_SAMPLE_IDENTIFIER)
65                 return 0;
66
67         if (!(sample_type & PERF_SAMPLE_ID))
68                 return -1;
69
70         if (sample_type & PERF_SAMPLE_IP)
71                 idx += 1;
72
73         if (sample_type & PERF_SAMPLE_TID)
74                 idx += 1;
75
76         if (sample_type & PERF_SAMPLE_TIME)
77                 idx += 1;
78
79         if (sample_type & PERF_SAMPLE_ADDR)
80                 idx += 1;
81
82         return idx;
83 }
84
85 /**
86  * __perf_evsel__calc_is_pos - calculate is_pos.
87  * @sample_type: sample type
88  *
89  * This function returns the position (counting backwards) of the event id
90  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
91  * sample_id_all is used there is an id sample appended to non-sample events.
92  */
93 static int __perf_evsel__calc_is_pos(u64 sample_type)
94 {
95         int idx = 1;
96
97         if (sample_type & PERF_SAMPLE_IDENTIFIER)
98                 return 1;
99
100         if (!(sample_type & PERF_SAMPLE_ID))
101                 return -1;
102
103         if (sample_type & PERF_SAMPLE_CPU)
104                 idx += 1;
105
106         if (sample_type & PERF_SAMPLE_STREAM_ID)
107                 idx += 1;
108
109         return idx;
110 }
111
112 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
113 {
114         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
115         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
116 }
117
118 void hists__init(struct hists *hists)
119 {
120         memset(hists, 0, sizeof(*hists));
121         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
122         hists->entries_in = &hists->entries_in_array[0];
123         hists->entries_collapsed = RB_ROOT;
124         hists->entries = RB_ROOT;
125         pthread_mutex_init(&hists->lock, NULL);
126 }
127
128 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
129                                   enum perf_event_sample_format bit)
130 {
131         if (!(evsel->attr.sample_type & bit)) {
132                 evsel->attr.sample_type |= bit;
133                 evsel->sample_size += sizeof(u64);
134                 perf_evsel__calc_id_pos(evsel);
135         }
136 }
137
138 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
139                                     enum perf_event_sample_format bit)
140 {
141         if (evsel->attr.sample_type & bit) {
142                 evsel->attr.sample_type &= ~bit;
143                 evsel->sample_size -= sizeof(u64);
144                 perf_evsel__calc_id_pos(evsel);
145         }
146 }
147
148 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
149                                bool can_sample_identifier)
150 {
151         if (can_sample_identifier) {
152                 perf_evsel__reset_sample_bit(evsel, ID);
153                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
154         } else {
155                 perf_evsel__set_sample_bit(evsel, ID);
156         }
157         evsel->attr.read_format |= PERF_FORMAT_ID;
158 }
159
160 void perf_evsel__init(struct perf_evsel *evsel,
161                       struct perf_event_attr *attr, int idx)
162 {
163         evsel->idx         = idx;
164         evsel->attr        = *attr;
165         evsel->leader      = evsel;
166         evsel->unit        = "";
167         evsel->scale       = 1.0;
168         INIT_LIST_HEAD(&evsel->node);
169         hists__init(&evsel->hists);
170         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
171         perf_evsel__calc_id_pos(evsel);
172 }
173
174 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
175 {
176         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
177
178         if (evsel != NULL)
179                 perf_evsel__init(evsel, attr, idx);
180
181         return evsel;
182 }
183
184 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
185 {
186         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
187
188         if (evsel != NULL) {
189                 struct perf_event_attr attr = {
190                         .type          = PERF_TYPE_TRACEPOINT,
191                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
192                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
193                 };
194
195                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
196                         goto out_free;
197
198                 evsel->tp_format = trace_event__tp_format(sys, name);
199                 if (evsel->tp_format == NULL)
200                         goto out_free;
201
202                 event_attr_init(&attr);
203                 attr.config = evsel->tp_format->id;
204                 attr.sample_period = 1;
205                 perf_evsel__init(evsel, &attr, idx);
206         }
207
208         return evsel;
209
210 out_free:
211         zfree(&evsel->name);
212         free(evsel);
213         return NULL;
214 }
215
216 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
217         "cycles",
218         "instructions",
219         "cache-references",
220         "cache-misses",
221         "branches",
222         "branch-misses",
223         "bus-cycles",
224         "stalled-cycles-frontend",
225         "stalled-cycles-backend",
226         "ref-cycles",
227 };
228
229 static const char *__perf_evsel__hw_name(u64 config)
230 {
231         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
232                 return perf_evsel__hw_names[config];
233
234         return "unknown-hardware";
235 }
236
237 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
238 {
239         int colon = 0, r = 0;
240         struct perf_event_attr *attr = &evsel->attr;
241         bool exclude_guest_default = false;
242
243 #define MOD_PRINT(context, mod) do {                                    \
244                 if (!attr->exclude_##context) {                         \
245                         if (!colon) colon = ++r;                        \
246                         r += scnprintf(bf + r, size - r, "%c", mod);    \
247                 } } while(0)
248
249         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
250                 MOD_PRINT(kernel, 'k');
251                 MOD_PRINT(user, 'u');
252                 MOD_PRINT(hv, 'h');
253                 exclude_guest_default = true;
254         }
255
256         if (attr->precise_ip) {
257                 if (!colon)
258                         colon = ++r;
259                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
260                 exclude_guest_default = true;
261         }
262
263         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
264                 MOD_PRINT(host, 'H');
265                 MOD_PRINT(guest, 'G');
266         }
267 #undef MOD_PRINT
268         if (colon)
269                 bf[colon - 1] = ':';
270         return r;
271 }
272
273 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
274 {
275         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
276         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
277 }
278
279 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
280         "cpu-clock",
281         "task-clock",
282         "page-faults",
283         "context-switches",
284         "cpu-migrations",
285         "minor-faults",
286         "major-faults",
287         "alignment-faults",
288         "emulation-faults",
289         "dummy",
290 };
291
292 static const char *__perf_evsel__sw_name(u64 config)
293 {
294         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
295                 return perf_evsel__sw_names[config];
296         return "unknown-software";
297 }
298
299 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
300 {
301         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
302         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
303 }
304
305 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
306 {
307         int r;
308
309         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
310
311         if (type & HW_BREAKPOINT_R)
312                 r += scnprintf(bf + r, size - r, "r");
313
314         if (type & HW_BREAKPOINT_W)
315                 r += scnprintf(bf + r, size - r, "w");
316
317         if (type & HW_BREAKPOINT_X)
318                 r += scnprintf(bf + r, size - r, "x");
319
320         return r;
321 }
322
323 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
324 {
325         struct perf_event_attr *attr = &evsel->attr;
326         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
327         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
328 }
329
330 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
331                                 [PERF_EVSEL__MAX_ALIASES] = {
332  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
333  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
334  { "LLC",       "L2",                                                   },
335  { "dTLB",      "d-tlb",        "Data-TLB",                             },
336  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
337  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
338  { "node",                                                              },
339 };
340
341 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
342                                    [PERF_EVSEL__MAX_ALIASES] = {
343  { "load",      "loads",        "read",                                 },
344  { "store",     "stores",       "write",                                },
345  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
346 };
347
348 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
349                                        [PERF_EVSEL__MAX_ALIASES] = {
350  { "refs",      "Reference",    "ops",          "access",               },
351  { "misses",    "miss",                                                 },
352 };
353
354 #define C(x)            PERF_COUNT_HW_CACHE_##x
355 #define CACHE_READ      (1 << C(OP_READ))
356 #define CACHE_WRITE     (1 << C(OP_WRITE))
357 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
358 #define COP(x)          (1 << x)
359
360 /*
361  * cache operartion stat
362  * L1I : Read and prefetch only
363  * ITLB and BPU : Read-only
364  */
365 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
366  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
367  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
368  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
369  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
370  [C(ITLB)]      = (CACHE_READ),
371  [C(BPU)]       = (CACHE_READ),
372  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
373 };
374
375 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
376 {
377         if (perf_evsel__hw_cache_stat[type] & COP(op))
378                 return true;    /* valid */
379         else
380                 return false;   /* invalid */
381 }
382
383 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
384                                             char *bf, size_t size)
385 {
386         if (result) {
387                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
388                                  perf_evsel__hw_cache_op[op][0],
389                                  perf_evsel__hw_cache_result[result][0]);
390         }
391
392         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
393                          perf_evsel__hw_cache_op[op][1]);
394 }
395
396 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
397 {
398         u8 op, result, type = (config >>  0) & 0xff;
399         const char *err = "unknown-ext-hardware-cache-type";
400
401         if (type > PERF_COUNT_HW_CACHE_MAX)
402                 goto out_err;
403
404         op = (config >>  8) & 0xff;
405         err = "unknown-ext-hardware-cache-op";
406         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
407                 goto out_err;
408
409         result = (config >> 16) & 0xff;
410         err = "unknown-ext-hardware-cache-result";
411         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
412                 goto out_err;
413
414         err = "invalid-cache";
415         if (!perf_evsel__is_cache_op_valid(type, op))
416                 goto out_err;
417
418         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
419 out_err:
420         return scnprintf(bf, size, "%s", err);
421 }
422
423 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
424 {
425         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
426         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
427 }
428
429 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
430 {
431         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
432         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
433 }
434
435 const char *perf_evsel__name(struct perf_evsel *evsel)
436 {
437         char bf[128];
438
439         if (evsel->name)
440                 return evsel->name;
441
442         switch (evsel->attr.type) {
443         case PERF_TYPE_RAW:
444                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
445                 break;
446
447         case PERF_TYPE_HARDWARE:
448                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
449                 break;
450
451         case PERF_TYPE_HW_CACHE:
452                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
453                 break;
454
455         case PERF_TYPE_SOFTWARE:
456                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
457                 break;
458
459         case PERF_TYPE_TRACEPOINT:
460                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
461                 break;
462
463         case PERF_TYPE_BREAKPOINT:
464                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
465                 break;
466
467         default:
468                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
469                           evsel->attr.type);
470                 break;
471         }
472
473         evsel->name = strdup(bf);
474
475         return evsel->name ?: "unknown";
476 }
477
478 const char *perf_evsel__group_name(struct perf_evsel *evsel)
479 {
480         return evsel->group_name ?: "anon group";
481 }
482
483 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
484 {
485         int ret;
486         struct perf_evsel *pos;
487         const char *group_name = perf_evsel__group_name(evsel);
488
489         ret = scnprintf(buf, size, "%s", group_name);
490
491         ret += scnprintf(buf + ret, size - ret, " { %s",
492                          perf_evsel__name(evsel));
493
494         for_each_group_member(pos, evsel)
495                 ret += scnprintf(buf + ret, size - ret, ", %s",
496                                  perf_evsel__name(pos));
497
498         ret += scnprintf(buf + ret, size - ret, " }");
499
500         return ret;
501 }
502
503 static void
504 perf_evsel__config_callgraph(struct perf_evsel *evsel,
505                              struct record_opts *opts)
506 {
507         bool function = perf_evsel__is_function_event(evsel);
508         struct perf_event_attr *attr = &evsel->attr;
509
510         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
511
512         if (opts->call_graph == CALLCHAIN_DWARF) {
513                 if (!function) {
514                         perf_evsel__set_sample_bit(evsel, REGS_USER);
515                         perf_evsel__set_sample_bit(evsel, STACK_USER);
516                         attr->sample_regs_user = PERF_REGS_MASK;
517                         attr->sample_stack_user = opts->stack_dump_size;
518                         attr->exclude_callchain_user = 1;
519                 } else {
520                         pr_info("Cannot use DWARF unwind for function trace event,"
521                                 " falling back to framepointers.\n");
522                 }
523         }
524
525         if (function) {
526                 pr_info("Disabling user space callchains for function trace event.\n");
527                 attr->exclude_callchain_user = 1;
528         }
529 }
530
531 /*
532  * The enable_on_exec/disabled value strategy:
533  *
534  *  1) For any type of traced program:
535  *    - all independent events and group leaders are disabled
536  *    - all group members are enabled
537  *
538  *     Group members are ruled by group leaders. They need to
539  *     be enabled, because the group scheduling relies on that.
540  *
541  *  2) For traced programs executed by perf:
542  *     - all independent events and group leaders have
543  *       enable_on_exec set
544  *     - we don't specifically enable or disable any event during
545  *       the record command
546  *
547  *     Independent events and group leaders are initially disabled
548  *     and get enabled by exec. Group members are ruled by group
549  *     leaders as stated in 1).
550  *
551  *  3) For traced programs attached by perf (pid/tid):
552  *     - we specifically enable or disable all events during
553  *       the record command
554  *
555  *     When attaching events to already running traced we
556  *     enable/disable events specifically, as there's no
557  *     initial traced exec call.
558  */
559 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
560 {
561         struct perf_evsel *leader = evsel->leader;
562         struct perf_event_attr *attr = &evsel->attr;
563         int track = !evsel->idx; /* only the first counter needs these */
564         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
565
566         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
567         attr->inherit       = !opts->no_inherit;
568
569         perf_evsel__set_sample_bit(evsel, IP);
570         perf_evsel__set_sample_bit(evsel, TID);
571
572         if (evsel->sample_read) {
573                 perf_evsel__set_sample_bit(evsel, READ);
574
575                 /*
576                  * We need ID even in case of single event, because
577                  * PERF_SAMPLE_READ process ID specific data.
578                  */
579                 perf_evsel__set_sample_id(evsel, false);
580
581                 /*
582                  * Apply group format only if we belong to group
583                  * with more than one members.
584                  */
585                 if (leader->nr_members > 1) {
586                         attr->read_format |= PERF_FORMAT_GROUP;
587                         attr->inherit = 0;
588                 }
589         }
590
591         /*
592          * We default some events to a 1 default interval. But keep
593          * it a weak assumption overridable by the user.
594          */
595         if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
596                                      opts->user_interval != ULLONG_MAX)) {
597                 if (opts->freq) {
598                         perf_evsel__set_sample_bit(evsel, PERIOD);
599                         attr->freq              = 1;
600                         attr->sample_freq       = opts->freq;
601                 } else {
602                         attr->sample_period = opts->default_interval;
603                 }
604         }
605
606         /*
607          * Disable sampling for all group members other
608          * than leader in case leader 'leads' the sampling.
609          */
610         if ((leader != evsel) && leader->sample_read) {
611                 attr->sample_freq   = 0;
612                 attr->sample_period = 0;
613         }
614
615         if (opts->no_samples)
616                 attr->sample_freq = 0;
617
618         if (opts->inherit_stat)
619                 attr->inherit_stat = 1;
620
621         if (opts->sample_address) {
622                 perf_evsel__set_sample_bit(evsel, ADDR);
623                 attr->mmap_data = track;
624         }
625
626         if (opts->call_graph_enabled)
627                 perf_evsel__config_callgraph(evsel, opts);
628
629         if (target__has_cpu(&opts->target))
630                 perf_evsel__set_sample_bit(evsel, CPU);
631
632         if (opts->period)
633                 perf_evsel__set_sample_bit(evsel, PERIOD);
634
635         if (!perf_missing_features.sample_id_all &&
636             (opts->sample_time || !opts->no_inherit ||
637              target__has_cpu(&opts->target) || per_cpu))
638                 perf_evsel__set_sample_bit(evsel, TIME);
639
640         if (opts->raw_samples) {
641                 perf_evsel__set_sample_bit(evsel, TIME);
642                 perf_evsel__set_sample_bit(evsel, RAW);
643                 perf_evsel__set_sample_bit(evsel, CPU);
644         }
645
646         if (opts->sample_address)
647                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
648
649         if (opts->no_buffering) {
650                 attr->watermark = 0;
651                 attr->wakeup_events = 1;
652         }
653         if (opts->branch_stack) {
654                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
655                 attr->branch_sample_type = opts->branch_stack;
656         }
657
658         if (opts->sample_weight)
659                 perf_evsel__set_sample_bit(evsel, WEIGHT);
660
661         attr->mmap  = track;
662         attr->comm  = track;
663
664         if (opts->sample_transaction)
665                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
666
667         /*
668          * XXX see the function comment above
669          *
670          * Disabling only independent events or group leaders,
671          * keeping group members enabled.
672          */
673         if (perf_evsel__is_group_leader(evsel))
674                 attr->disabled = 1;
675
676         /*
677          * Setting enable_on_exec for independent events and
678          * group leaders for traced executed by perf.
679          */
680         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
681                 !opts->initial_delay)
682                 attr->enable_on_exec = 1;
683 }
684
685 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
686 {
687         int cpu, thread;
688         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
689
690         if (evsel->fd) {
691                 for (cpu = 0; cpu < ncpus; cpu++) {
692                         for (thread = 0; thread < nthreads; thread++) {
693                                 FD(evsel, cpu, thread) = -1;
694                         }
695                 }
696         }
697
698         return evsel->fd != NULL ? 0 : -ENOMEM;
699 }
700
701 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
702                           int ioc,  void *arg)
703 {
704         int cpu, thread;
705
706         for (cpu = 0; cpu < ncpus; cpu++) {
707                 for (thread = 0; thread < nthreads; thread++) {
708                         int fd = FD(evsel, cpu, thread),
709                             err = ioctl(fd, ioc, arg);
710
711                         if (err)
712                                 return err;
713                 }
714         }
715
716         return 0;
717 }
718
719 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
720                            const char *filter)
721 {
722         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
723                                      PERF_EVENT_IOC_SET_FILTER,
724                                      (void *)filter);
725 }
726
727 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
728 {
729         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
730                                      PERF_EVENT_IOC_ENABLE,
731                                      0);
732 }
733
734 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
735 {
736         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
737         if (evsel->sample_id == NULL)
738                 return -ENOMEM;
739
740         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
741         if (evsel->id == NULL) {
742                 xyarray__delete(evsel->sample_id);
743                 evsel->sample_id = NULL;
744                 return -ENOMEM;
745         }
746
747         return 0;
748 }
749
750 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
751 {
752         memset(evsel->counts, 0, (sizeof(*evsel->counts) +
753                                  (ncpus * sizeof(struct perf_counts_values))));
754 }
755
756 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
757 {
758         evsel->counts = zalloc((sizeof(*evsel->counts) +
759                                 (ncpus * sizeof(struct perf_counts_values))));
760         return evsel->counts != NULL ? 0 : -ENOMEM;
761 }
762
763 void perf_evsel__free_fd(struct perf_evsel *evsel)
764 {
765         xyarray__delete(evsel->fd);
766         evsel->fd = NULL;
767 }
768
769 void perf_evsel__free_id(struct perf_evsel *evsel)
770 {
771         xyarray__delete(evsel->sample_id);
772         evsel->sample_id = NULL;
773         zfree(&evsel->id);
774 }
775
776 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
777 {
778         int cpu, thread;
779
780         for (cpu = 0; cpu < ncpus; cpu++)
781                 for (thread = 0; thread < nthreads; ++thread) {
782                         close(FD(evsel, cpu, thread));
783                         FD(evsel, cpu, thread) = -1;
784                 }
785 }
786
787 void perf_evsel__free_counts(struct perf_evsel *evsel)
788 {
789         zfree(&evsel->counts);
790 }
791
792 void perf_evsel__exit(struct perf_evsel *evsel)
793 {
794         assert(list_empty(&evsel->node));
795         perf_evsel__free_fd(evsel);
796         perf_evsel__free_id(evsel);
797 }
798
799 void perf_evsel__delete(struct perf_evsel *evsel)
800 {
801         perf_evsel__exit(evsel);
802         close_cgroup(evsel->cgrp);
803         zfree(&evsel->group_name);
804         if (evsel->tp_format)
805                 pevent_free_format(evsel->tp_format);
806         zfree(&evsel->name);
807         free(evsel);
808 }
809
810 static inline void compute_deltas(struct perf_evsel *evsel,
811                                   int cpu,
812                                   struct perf_counts_values *count)
813 {
814         struct perf_counts_values tmp;
815
816         if (!evsel->prev_raw_counts)
817                 return;
818
819         if (cpu == -1) {
820                 tmp = evsel->prev_raw_counts->aggr;
821                 evsel->prev_raw_counts->aggr = *count;
822         } else {
823                 tmp = evsel->prev_raw_counts->cpu[cpu];
824                 evsel->prev_raw_counts->cpu[cpu] = *count;
825         }
826
827         count->val = count->val - tmp.val;
828         count->ena = count->ena - tmp.ena;
829         count->run = count->run - tmp.run;
830 }
831
832 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
833                               int cpu, int thread, bool scale)
834 {
835         struct perf_counts_values count;
836         size_t nv = scale ? 3 : 1;
837
838         if (FD(evsel, cpu, thread) < 0)
839                 return -EINVAL;
840
841         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
842                 return -ENOMEM;
843
844         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
845                 return -errno;
846
847         compute_deltas(evsel, cpu, &count);
848
849         if (scale) {
850                 if (count.run == 0)
851                         count.val = 0;
852                 else if (count.run < count.ena)
853                         count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
854         } else
855                 count.ena = count.run = 0;
856
857         evsel->counts->cpu[cpu] = count;
858         return 0;
859 }
860
861 int __perf_evsel__read(struct perf_evsel *evsel,
862                        int ncpus, int nthreads, bool scale)
863 {
864         size_t nv = scale ? 3 : 1;
865         int cpu, thread;
866         struct perf_counts_values *aggr = &evsel->counts->aggr, count;
867
868         aggr->val = aggr->ena = aggr->run = 0;
869
870         for (cpu = 0; cpu < ncpus; cpu++) {
871                 for (thread = 0; thread < nthreads; thread++) {
872                         if (FD(evsel, cpu, thread) < 0)
873                                 continue;
874
875                         if (readn(FD(evsel, cpu, thread),
876                                   &count, nv * sizeof(u64)) < 0)
877                                 return -errno;
878
879                         aggr->val += count.val;
880                         if (scale) {
881                                 aggr->ena += count.ena;
882                                 aggr->run += count.run;
883                         }
884                 }
885         }
886
887         compute_deltas(evsel, -1, aggr);
888
889         evsel->counts->scaled = 0;
890         if (scale) {
891                 if (aggr->run == 0) {
892                         evsel->counts->scaled = -1;
893                         aggr->val = 0;
894                         return 0;
895                 }
896
897                 if (aggr->run < aggr->ena) {
898                         evsel->counts->scaled = 1;
899                         aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
900                 }
901         } else
902                 aggr->ena = aggr->run = 0;
903
904         return 0;
905 }
906
907 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
908 {
909         struct perf_evsel *leader = evsel->leader;
910         int fd;
911
912         if (perf_evsel__is_group_leader(evsel))
913                 return -1;
914
915         /*
916          * Leader must be already processed/open,
917          * if not it's a bug.
918          */
919         BUG_ON(!leader->fd);
920
921         fd = FD(leader, cpu, thread);
922         BUG_ON(fd == -1);
923
924         return fd;
925 }
926
927 #define __PRINT_ATTR(fmt, cast, field)  \
928         fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
929
930 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
931 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
932 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
933 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
934
935 #define PRINT_ATTR2N(name1, field1, name2, field2)      \
936         fprintf(fp, "  %-19s %u    %-19s %u\n",         \
937         name1, attr->field1, name2, attr->field2)
938
939 #define PRINT_ATTR2(field1, field2) \
940         PRINT_ATTR2N(#field1, field1, #field2, field2)
941
942 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
943 {
944         size_t ret = 0;
945
946         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
947         ret += fprintf(fp, "perf_event_attr:\n");
948
949         ret += PRINT_ATTR_U32(type);
950         ret += PRINT_ATTR_U32(size);
951         ret += PRINT_ATTR_X64(config);
952         ret += PRINT_ATTR_U64(sample_period);
953         ret += PRINT_ATTR_U64(sample_freq);
954         ret += PRINT_ATTR_X64(sample_type);
955         ret += PRINT_ATTR_X64(read_format);
956
957         ret += PRINT_ATTR2(disabled, inherit);
958         ret += PRINT_ATTR2(pinned, exclusive);
959         ret += PRINT_ATTR2(exclude_user, exclude_kernel);
960         ret += PRINT_ATTR2(exclude_hv, exclude_idle);
961         ret += PRINT_ATTR2(mmap, comm);
962         ret += PRINT_ATTR2(freq, inherit_stat);
963         ret += PRINT_ATTR2(enable_on_exec, task);
964         ret += PRINT_ATTR2(watermark, precise_ip);
965         ret += PRINT_ATTR2(mmap_data, sample_id_all);
966         ret += PRINT_ATTR2(exclude_host, exclude_guest);
967         ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
968                             "excl.callchain_user", exclude_callchain_user);
969         ret += PRINT_ATTR_U32(mmap2);
970
971         ret += PRINT_ATTR_U32(wakeup_events);
972         ret += PRINT_ATTR_U32(wakeup_watermark);
973         ret += PRINT_ATTR_X32(bp_type);
974         ret += PRINT_ATTR_X64(bp_addr);
975         ret += PRINT_ATTR_X64(config1);
976         ret += PRINT_ATTR_U64(bp_len);
977         ret += PRINT_ATTR_X64(config2);
978         ret += PRINT_ATTR_X64(branch_sample_type);
979         ret += PRINT_ATTR_X64(sample_regs_user);
980         ret += PRINT_ATTR_U32(sample_stack_user);
981
982         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
983
984         return ret;
985 }
986
987 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
988                               struct thread_map *threads)
989 {
990         int cpu, thread;
991         unsigned long flags = 0;
992         int pid = -1, err;
993         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
994
995         if (evsel->fd == NULL &&
996             perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
997                 return -ENOMEM;
998
999         if (evsel->cgrp) {
1000                 flags = PERF_FLAG_PID_CGROUP;
1001                 pid = evsel->cgrp->fd;
1002         }
1003
1004 fallback_missing_features:
1005         if (perf_missing_features.mmap2)
1006                 evsel->attr.mmap2 = 0;
1007         if (perf_missing_features.exclude_guest)
1008                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1009 retry_sample_id:
1010         if (perf_missing_features.sample_id_all)
1011                 evsel->attr.sample_id_all = 0;
1012
1013         if (verbose >= 2)
1014                 perf_event_attr__fprintf(&evsel->attr, stderr);
1015
1016         for (cpu = 0; cpu < cpus->nr; cpu++) {
1017
1018                 for (thread = 0; thread < threads->nr; thread++) {
1019                         int group_fd;
1020
1021                         if (!evsel->cgrp)
1022                                 pid = threads->map[thread];
1023
1024                         group_fd = get_group_fd(evsel, cpu, thread);
1025 retry_open:
1026                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1027                                   pid, cpus->map[cpu], group_fd, flags);
1028
1029                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1030                                                                      pid,
1031                                                                      cpus->map[cpu],
1032                                                                      group_fd, flags);
1033                         if (FD(evsel, cpu, thread) < 0) {
1034                                 err = -errno;
1035                                 pr_debug2("sys_perf_event_open failed, error %d\n",
1036                                           err);
1037                                 goto try_fallback;
1038                         }
1039                         set_rlimit = NO_CHANGE;
1040                 }
1041         }
1042
1043         return 0;
1044
1045 try_fallback:
1046         /*
1047          * perf stat needs between 5 and 22 fds per CPU. When we run out
1048          * of them try to increase the limits.
1049          */
1050         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1051                 struct rlimit l;
1052                 int old_errno = errno;
1053
1054                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1055                         if (set_rlimit == NO_CHANGE)
1056                                 l.rlim_cur = l.rlim_max;
1057                         else {
1058                                 l.rlim_cur = l.rlim_max + 1000;
1059                                 l.rlim_max = l.rlim_cur;
1060                         }
1061                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1062                                 set_rlimit++;
1063                                 errno = old_errno;
1064                                 goto retry_open;
1065                         }
1066                 }
1067                 errno = old_errno;
1068         }
1069
1070         if (err != -EINVAL || cpu > 0 || thread > 0)
1071                 goto out_close;
1072
1073         if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1074                 perf_missing_features.mmap2 = true;
1075                 goto fallback_missing_features;
1076         } else if (!perf_missing_features.exclude_guest &&
1077                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1078                 perf_missing_features.exclude_guest = true;
1079                 goto fallback_missing_features;
1080         } else if (!perf_missing_features.sample_id_all) {
1081                 perf_missing_features.sample_id_all = true;
1082                 goto retry_sample_id;
1083         }
1084
1085 out_close:
1086         do {
1087                 while (--thread >= 0) {
1088                         close(FD(evsel, cpu, thread));
1089                         FD(evsel, cpu, thread) = -1;
1090                 }
1091                 thread = threads->nr;
1092         } while (--cpu >= 0);
1093         return err;
1094 }
1095
1096 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1097 {
1098         if (evsel->fd == NULL)
1099                 return;
1100
1101         perf_evsel__close_fd(evsel, ncpus, nthreads);
1102         perf_evsel__free_fd(evsel);
1103 }
1104
1105 static struct {
1106         struct cpu_map map;
1107         int cpus[1];
1108 } empty_cpu_map = {
1109         .map.nr = 1,
1110         .cpus   = { -1, },
1111 };
1112
1113 static struct {
1114         struct thread_map map;
1115         int threads[1];
1116 } empty_thread_map = {
1117         .map.nr  = 1,
1118         .threads = { -1, },
1119 };
1120
1121 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1122                      struct thread_map *threads)
1123 {
1124         if (cpus == NULL) {
1125                 /* Work around old compiler warnings about strict aliasing */
1126                 cpus = &empty_cpu_map.map;
1127         }
1128
1129         if (threads == NULL)
1130                 threads = &empty_thread_map.map;
1131
1132         return __perf_evsel__open(evsel, cpus, threads);
1133 }
1134
1135 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1136                              struct cpu_map *cpus)
1137 {
1138         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1139 }
1140
1141 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1142                                 struct thread_map *threads)
1143 {
1144         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1145 }
1146
1147 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1148                                        const union perf_event *event,
1149                                        struct perf_sample *sample)
1150 {
1151         u64 type = evsel->attr.sample_type;
1152         const u64 *array = event->sample.array;
1153         bool swapped = evsel->needs_swap;
1154         union u64_swap u;
1155
1156         array += ((event->header.size -
1157                    sizeof(event->header)) / sizeof(u64)) - 1;
1158
1159         if (type & PERF_SAMPLE_IDENTIFIER) {
1160                 sample->id = *array;
1161                 array--;
1162         }
1163
1164         if (type & PERF_SAMPLE_CPU) {
1165                 u.val64 = *array;
1166                 if (swapped) {
1167                         /* undo swap of u64, then swap on individual u32s */
1168                         u.val64 = bswap_64(u.val64);
1169                         u.val32[0] = bswap_32(u.val32[0]);
1170                 }
1171
1172                 sample->cpu = u.val32[0];
1173                 array--;
1174         }
1175
1176         if (type & PERF_SAMPLE_STREAM_ID) {
1177                 sample->stream_id = *array;
1178                 array--;
1179         }
1180
1181         if (type & PERF_SAMPLE_ID) {
1182                 sample->id = *array;
1183                 array--;
1184         }
1185
1186         if (type & PERF_SAMPLE_TIME) {
1187                 sample->time = *array;
1188                 array--;
1189         }
1190
1191         if (type & PERF_SAMPLE_TID) {
1192                 u.val64 = *array;
1193                 if (swapped) {
1194                         /* undo swap of u64, then swap on individual u32s */
1195                         u.val64 = bswap_64(u.val64);
1196                         u.val32[0] = bswap_32(u.val32[0]);
1197                         u.val32[1] = bswap_32(u.val32[1]);
1198                 }
1199
1200                 sample->pid = u.val32[0];
1201                 sample->tid = u.val32[1];
1202                 array--;
1203         }
1204
1205         return 0;
1206 }
1207
1208 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1209                             u64 size)
1210 {
1211         return size > max_size || offset + size > endp;
1212 }
1213
1214 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1215         do {                                                            \
1216                 if (overflow(endp, (max_size), (offset), (size)))       \
1217                         return -EFAULT;                                 \
1218         } while (0)
1219
1220 #define OVERFLOW_CHECK_u64(offset) \
1221         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1222
1223 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1224                              struct perf_sample *data)
1225 {
1226         u64 type = evsel->attr.sample_type;
1227         bool swapped = evsel->needs_swap;
1228         const u64 *array;
1229         u16 max_size = event->header.size;
1230         const void *endp = (void *)event + max_size;
1231         u64 sz;
1232
1233         /*
1234          * used for cross-endian analysis. See git commit 65014ab3
1235          * for why this goofiness is needed.
1236          */
1237         union u64_swap u;
1238
1239         memset(data, 0, sizeof(*data));
1240         data->cpu = data->pid = data->tid = -1;
1241         data->stream_id = data->id = data->time = -1ULL;
1242         data->period = evsel->attr.sample_period;
1243         data->weight = 0;
1244
1245         if (event->header.type != PERF_RECORD_SAMPLE) {
1246                 if (!evsel->attr.sample_id_all)
1247                         return 0;
1248                 return perf_evsel__parse_id_sample(evsel, event, data);
1249         }
1250
1251         array = event->sample.array;
1252
1253         /*
1254          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1255          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1256          * check the format does not go past the end of the event.
1257          */
1258         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1259                 return -EFAULT;
1260
1261         data->id = -1ULL;
1262         if (type & PERF_SAMPLE_IDENTIFIER) {
1263                 data->id = *array;
1264                 array++;
1265         }
1266
1267         if (type & PERF_SAMPLE_IP) {
1268                 data->ip = *array;
1269                 array++;
1270         }
1271
1272         if (type & PERF_SAMPLE_TID) {
1273                 u.val64 = *array;
1274                 if (swapped) {
1275                         /* undo swap of u64, then swap on individual u32s */
1276                         u.val64 = bswap_64(u.val64);
1277                         u.val32[0] = bswap_32(u.val32[0]);
1278                         u.val32[1] = bswap_32(u.val32[1]);
1279                 }
1280
1281                 data->pid = u.val32[0];
1282                 data->tid = u.val32[1];
1283                 array++;
1284         }
1285
1286         if (type & PERF_SAMPLE_TIME) {
1287                 data->time = *array;
1288                 array++;
1289         }
1290
1291         data->addr = 0;
1292         if (type & PERF_SAMPLE_ADDR) {
1293                 data->addr = *array;
1294                 array++;
1295         }
1296
1297         if (type & PERF_SAMPLE_ID) {
1298                 data->id = *array;
1299                 array++;
1300         }
1301
1302         if (type & PERF_SAMPLE_STREAM_ID) {
1303                 data->stream_id = *array;
1304                 array++;
1305         }
1306
1307         if (type & PERF_SAMPLE_CPU) {
1308
1309                 u.val64 = *array;
1310                 if (swapped) {
1311                         /* undo swap of u64, then swap on individual u32s */
1312                         u.val64 = bswap_64(u.val64);
1313                         u.val32[0] = bswap_32(u.val32[0]);
1314                 }
1315
1316                 data->cpu = u.val32[0];
1317                 array++;
1318         }
1319
1320         if (type & PERF_SAMPLE_PERIOD) {
1321                 data->period = *array;
1322                 array++;
1323         }
1324
1325         if (type & PERF_SAMPLE_READ) {
1326                 u64 read_format = evsel->attr.read_format;
1327
1328                 OVERFLOW_CHECK_u64(array);
1329                 if (read_format & PERF_FORMAT_GROUP)
1330                         data->read.group.nr = *array;
1331                 else
1332                         data->read.one.value = *array;
1333
1334                 array++;
1335
1336                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1337                         OVERFLOW_CHECK_u64(array);
1338                         data->read.time_enabled = *array;
1339                         array++;
1340                 }
1341
1342                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1343                         OVERFLOW_CHECK_u64(array);
1344                         data->read.time_running = *array;
1345                         array++;
1346                 }
1347
1348                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1349                 if (read_format & PERF_FORMAT_GROUP) {
1350                         const u64 max_group_nr = UINT64_MAX /
1351                                         sizeof(struct sample_read_value);
1352
1353                         if (data->read.group.nr > max_group_nr)
1354                                 return -EFAULT;
1355                         sz = data->read.group.nr *
1356                              sizeof(struct sample_read_value);
1357                         OVERFLOW_CHECK(array, sz, max_size);
1358                         data->read.group.values =
1359                                         (struct sample_read_value *)array;
1360                         array = (void *)array + sz;
1361                 } else {
1362                         OVERFLOW_CHECK_u64(array);
1363                         data->read.one.id = *array;
1364                         array++;
1365                 }
1366         }
1367
1368         if (type & PERF_SAMPLE_CALLCHAIN) {
1369                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1370
1371                 OVERFLOW_CHECK_u64(array);
1372                 data->callchain = (struct ip_callchain *)array++;
1373                 if (data->callchain->nr > max_callchain_nr)
1374                         return -EFAULT;
1375                 sz = data->callchain->nr * sizeof(u64);
1376                 OVERFLOW_CHECK(array, sz, max_size);
1377                 array = (void *)array + sz;
1378         }
1379
1380         if (type & PERF_SAMPLE_RAW) {
1381                 OVERFLOW_CHECK_u64(array);
1382                 u.val64 = *array;
1383                 if (WARN_ONCE(swapped,
1384                               "Endianness of raw data not corrected!\n")) {
1385                         /* undo swap of u64, then swap on individual u32s */
1386                         u.val64 = bswap_64(u.val64);
1387                         u.val32[0] = bswap_32(u.val32[0]);
1388                         u.val32[1] = bswap_32(u.val32[1]);
1389                 }
1390                 data->raw_size = u.val32[0];
1391                 array = (void *)array + sizeof(u32);
1392
1393                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1394                 data->raw_data = (void *)array;
1395                 array = (void *)array + data->raw_size;
1396         }
1397
1398         if (type & PERF_SAMPLE_BRANCH_STACK) {
1399                 const u64 max_branch_nr = UINT64_MAX /
1400                                           sizeof(struct branch_entry);
1401
1402                 OVERFLOW_CHECK_u64(array);
1403                 data->branch_stack = (struct branch_stack *)array++;
1404
1405                 if (data->branch_stack->nr > max_branch_nr)
1406                         return -EFAULT;
1407                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1408                 OVERFLOW_CHECK(array, sz, max_size);
1409                 array = (void *)array + sz;
1410         }
1411
1412         if (type & PERF_SAMPLE_REGS_USER) {
1413                 OVERFLOW_CHECK_u64(array);
1414                 data->user_regs.abi = *array;
1415                 array++;
1416
1417                 if (data->user_regs.abi) {
1418                         u64 mask = evsel->attr.sample_regs_user;
1419
1420                         sz = hweight_long(mask) * sizeof(u64);
1421                         OVERFLOW_CHECK(array, sz, max_size);
1422                         data->user_regs.mask = mask;
1423                         data->user_regs.regs = (u64 *)array;
1424                         array = (void *)array + sz;
1425                 }
1426         }
1427
1428         if (type & PERF_SAMPLE_STACK_USER) {
1429                 OVERFLOW_CHECK_u64(array);
1430                 sz = *array++;
1431
1432                 data->user_stack.offset = ((char *)(array - 1)
1433                                           - (char *) event);
1434
1435                 if (!sz) {
1436                         data->user_stack.size = 0;
1437                 } else {
1438                         OVERFLOW_CHECK(array, sz, max_size);
1439                         data->user_stack.data = (char *)array;
1440                         array = (void *)array + sz;
1441                         OVERFLOW_CHECK_u64(array);
1442                         data->user_stack.size = *array++;
1443                         if (WARN_ONCE(data->user_stack.size > sz,
1444                                       "user stack dump failure\n"))
1445                                 return -EFAULT;
1446                 }
1447         }
1448
1449         data->weight = 0;
1450         if (type & PERF_SAMPLE_WEIGHT) {
1451                 OVERFLOW_CHECK_u64(array);
1452                 data->weight = *array;
1453                 array++;
1454         }
1455
1456         data->data_src = PERF_MEM_DATA_SRC_NONE;
1457         if (type & PERF_SAMPLE_DATA_SRC) {
1458                 OVERFLOW_CHECK_u64(array);
1459                 data->data_src = *array;
1460                 array++;
1461         }
1462
1463         data->transaction = 0;
1464         if (type & PERF_SAMPLE_TRANSACTION) {
1465                 OVERFLOW_CHECK_u64(array);
1466                 data->transaction = *array;
1467                 array++;
1468         }
1469
1470         return 0;
1471 }
1472
1473 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1474                                      u64 read_format)
1475 {
1476         size_t sz, result = sizeof(struct sample_event);
1477
1478         if (type & PERF_SAMPLE_IDENTIFIER)
1479                 result += sizeof(u64);
1480
1481         if (type & PERF_SAMPLE_IP)
1482                 result += sizeof(u64);
1483
1484         if (type & PERF_SAMPLE_TID)
1485                 result += sizeof(u64);
1486
1487         if (type & PERF_SAMPLE_TIME)
1488                 result += sizeof(u64);
1489
1490         if (type & PERF_SAMPLE_ADDR)
1491                 result += sizeof(u64);
1492
1493         if (type & PERF_SAMPLE_ID)
1494                 result += sizeof(u64);
1495
1496         if (type & PERF_SAMPLE_STREAM_ID)
1497                 result += sizeof(u64);
1498
1499         if (type & PERF_SAMPLE_CPU)
1500                 result += sizeof(u64);
1501
1502         if (type & PERF_SAMPLE_PERIOD)
1503                 result += sizeof(u64);
1504
1505         if (type & PERF_SAMPLE_READ) {
1506                 result += sizeof(u64);
1507                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1508                         result += sizeof(u64);
1509                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1510                         result += sizeof(u64);
1511                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1512                 if (read_format & PERF_FORMAT_GROUP) {
1513                         sz = sample->read.group.nr *
1514                              sizeof(struct sample_read_value);
1515                         result += sz;
1516                 } else {
1517                         result += sizeof(u64);
1518                 }
1519         }
1520
1521         if (type & PERF_SAMPLE_CALLCHAIN) {
1522                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1523                 result += sz;
1524         }
1525
1526         if (type & PERF_SAMPLE_RAW) {
1527                 result += sizeof(u32);
1528                 result += sample->raw_size;
1529         }
1530
1531         if (type & PERF_SAMPLE_BRANCH_STACK) {
1532                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1533                 sz += sizeof(u64);
1534                 result += sz;
1535         }
1536
1537         if (type & PERF_SAMPLE_REGS_USER) {
1538                 if (sample->user_regs.abi) {
1539                         result += sizeof(u64);
1540                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1541                         result += sz;
1542                 } else {
1543                         result += sizeof(u64);
1544                 }
1545         }
1546
1547         if (type & PERF_SAMPLE_STACK_USER) {
1548                 sz = sample->user_stack.size;
1549                 result += sizeof(u64);
1550                 if (sz) {
1551                         result += sz;
1552                         result += sizeof(u64);
1553                 }
1554         }
1555
1556         if (type & PERF_SAMPLE_WEIGHT)
1557                 result += sizeof(u64);
1558
1559         if (type & PERF_SAMPLE_DATA_SRC)
1560                 result += sizeof(u64);
1561
1562         if (type & PERF_SAMPLE_TRANSACTION)
1563                 result += sizeof(u64);
1564
1565         return result;
1566 }
1567
1568 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1569                                   u64 read_format,
1570                                   const struct perf_sample *sample,
1571                                   bool swapped)
1572 {
1573         u64 *array;
1574         size_t sz;
1575         /*
1576          * used for cross-endian analysis. See git commit 65014ab3
1577          * for why this goofiness is needed.
1578          */
1579         union u64_swap u;
1580
1581         array = event->sample.array;
1582
1583         if (type & PERF_SAMPLE_IDENTIFIER) {
1584                 *array = sample->id;
1585                 array++;
1586         }
1587
1588         if (type & PERF_SAMPLE_IP) {
1589                 *array = sample->ip;
1590                 array++;
1591         }
1592
1593         if (type & PERF_SAMPLE_TID) {
1594                 u.val32[0] = sample->pid;
1595                 u.val32[1] = sample->tid;
1596                 if (swapped) {
1597                         /*
1598                          * Inverse of what is done in perf_evsel__parse_sample
1599                          */
1600                         u.val32[0] = bswap_32(u.val32[0]);
1601                         u.val32[1] = bswap_32(u.val32[1]);
1602                         u.val64 = bswap_64(u.val64);
1603                 }
1604
1605                 *array = u.val64;
1606                 array++;
1607         }
1608
1609         if (type & PERF_SAMPLE_TIME) {
1610                 *array = sample->time;
1611                 array++;
1612         }
1613
1614         if (type & PERF_SAMPLE_ADDR) {
1615                 *array = sample->addr;
1616                 array++;
1617         }
1618
1619         if (type & PERF_SAMPLE_ID) {
1620                 *array = sample->id;
1621                 array++;
1622         }
1623
1624         if (type & PERF_SAMPLE_STREAM_ID) {
1625                 *array = sample->stream_id;
1626                 array++;
1627         }
1628
1629         if (type & PERF_SAMPLE_CPU) {
1630                 u.val32[0] = sample->cpu;
1631                 if (swapped) {
1632                         /*
1633                          * Inverse of what is done in perf_evsel__parse_sample
1634                          */
1635                         u.val32[0] = bswap_32(u.val32[0]);
1636                         u.val64 = bswap_64(u.val64);
1637                 }
1638                 *array = u.val64;
1639                 array++;
1640         }
1641
1642         if (type & PERF_SAMPLE_PERIOD) {
1643                 *array = sample->period;
1644                 array++;
1645         }
1646
1647         if (type & PERF_SAMPLE_READ) {
1648                 if (read_format & PERF_FORMAT_GROUP)
1649                         *array = sample->read.group.nr;
1650                 else
1651                         *array = sample->read.one.value;
1652                 array++;
1653
1654                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1655                         *array = sample->read.time_enabled;
1656                         array++;
1657                 }
1658
1659                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1660                         *array = sample->read.time_running;
1661                         array++;
1662                 }
1663
1664                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1665                 if (read_format & PERF_FORMAT_GROUP) {
1666                         sz = sample->read.group.nr *
1667                              sizeof(struct sample_read_value);
1668                         memcpy(array, sample->read.group.values, sz);
1669                         array = (void *)array + sz;
1670                 } else {
1671                         *array = sample->read.one.id;
1672                         array++;
1673                 }
1674         }
1675
1676         if (type & PERF_SAMPLE_CALLCHAIN) {
1677                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1678                 memcpy(array, sample->callchain, sz);
1679                 array = (void *)array + sz;
1680         }
1681
1682         if (type & PERF_SAMPLE_RAW) {
1683                 u.val32[0] = sample->raw_size;
1684                 if (WARN_ONCE(swapped,
1685                               "Endianness of raw data not corrected!\n")) {
1686                         /*
1687                          * Inverse of what is done in perf_evsel__parse_sample
1688                          */
1689                         u.val32[0] = bswap_32(u.val32[0]);
1690                         u.val32[1] = bswap_32(u.val32[1]);
1691                         u.val64 = bswap_64(u.val64);
1692                 }
1693                 *array = u.val64;
1694                 array = (void *)array + sizeof(u32);
1695
1696                 memcpy(array, sample->raw_data, sample->raw_size);
1697                 array = (void *)array + sample->raw_size;
1698         }
1699
1700         if (type & PERF_SAMPLE_BRANCH_STACK) {
1701                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1702                 sz += sizeof(u64);
1703                 memcpy(array, sample->branch_stack, sz);
1704                 array = (void *)array + sz;
1705         }
1706
1707         if (type & PERF_SAMPLE_REGS_USER) {
1708                 if (sample->user_regs.abi) {
1709                         *array++ = sample->user_regs.abi;
1710                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1711                         memcpy(array, sample->user_regs.regs, sz);
1712                         array = (void *)array + sz;
1713                 } else {
1714                         *array++ = 0;
1715                 }
1716         }
1717
1718         if (type & PERF_SAMPLE_STACK_USER) {
1719                 sz = sample->user_stack.size;
1720                 *array++ = sz;
1721                 if (sz) {
1722                         memcpy(array, sample->user_stack.data, sz);
1723                         array = (void *)array + sz;
1724                         *array++ = sz;
1725                 }
1726         }
1727
1728         if (type & PERF_SAMPLE_WEIGHT) {
1729                 *array = sample->weight;
1730                 array++;
1731         }
1732
1733         if (type & PERF_SAMPLE_DATA_SRC) {
1734                 *array = sample->data_src;
1735                 array++;
1736         }
1737
1738         if (type & PERF_SAMPLE_TRANSACTION) {
1739                 *array = sample->transaction;
1740                 array++;
1741         }
1742
1743         return 0;
1744 }
1745
1746 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1747 {
1748         return pevent_find_field(evsel->tp_format, name);
1749 }
1750
1751 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1752                          const char *name)
1753 {
1754         struct format_field *field = perf_evsel__field(evsel, name);
1755         int offset;
1756
1757         if (!field)
1758                 return NULL;
1759
1760         offset = field->offset;
1761
1762         if (field->flags & FIELD_IS_DYNAMIC) {
1763                 offset = *(int *)(sample->raw_data + field->offset);
1764                 offset &= 0xffff;
1765         }
1766
1767         return sample->raw_data + offset;
1768 }
1769
1770 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1771                        const char *name)
1772 {
1773         struct format_field *field = perf_evsel__field(evsel, name);
1774         void *ptr;
1775         u64 value;
1776
1777         if (!field)
1778                 return 0;
1779
1780         ptr = sample->raw_data + field->offset;
1781
1782         switch (field->size) {
1783         case 1:
1784                 return *(u8 *)ptr;
1785         case 2:
1786                 value = *(u16 *)ptr;
1787                 break;
1788         case 4:
1789                 value = *(u32 *)ptr;
1790                 break;
1791         case 8:
1792                 value = *(u64 *)ptr;
1793                 break;
1794         default:
1795                 return 0;
1796         }
1797
1798         if (!evsel->needs_swap)
1799                 return value;
1800
1801         switch (field->size) {
1802         case 2:
1803                 return bswap_16(value);
1804         case 4:
1805                 return bswap_32(value);
1806         case 8:
1807                 return bswap_64(value);
1808         default:
1809                 return 0;
1810         }
1811
1812         return 0;
1813 }
1814
1815 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1816 {
1817         va_list args;
1818         int ret = 0;
1819
1820         if (!*first) {
1821                 ret += fprintf(fp, ",");
1822         } else {
1823                 ret += fprintf(fp, ":");
1824                 *first = false;
1825         }
1826
1827         va_start(args, fmt);
1828         ret += vfprintf(fp, fmt, args);
1829         va_end(args);
1830         return ret;
1831 }
1832
1833 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1834 {
1835         if (value == 0)
1836                 return 0;
1837
1838         return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1839 }
1840
1841 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1842
1843 struct bit_names {
1844         int bit;
1845         const char *name;
1846 };
1847
1848 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1849                          struct bit_names *bits, bool *first)
1850 {
1851         int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1852         bool first_bit = true;
1853
1854         do {
1855                 if (value & bits[i].bit) {
1856                         printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1857                         first_bit = false;
1858                 }
1859         } while (bits[++i].name != NULL);
1860
1861         return printed;
1862 }
1863
1864 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1865 {
1866 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1867         struct bit_names bits[] = {
1868                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1869                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1870                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1871                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1872                 bit_name(IDENTIFIER),
1873                 { .name = NULL, }
1874         };
1875 #undef bit_name
1876         return bits__fprintf(fp, "sample_type", value, bits, first);
1877 }
1878
1879 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1880 {
1881 #define bit_name(n) { PERF_FORMAT_##n, #n }
1882         struct bit_names bits[] = {
1883                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1884                 bit_name(ID), bit_name(GROUP),
1885                 { .name = NULL, }
1886         };
1887 #undef bit_name
1888         return bits__fprintf(fp, "read_format", value, bits, first);
1889 }
1890
1891 int perf_evsel__fprintf(struct perf_evsel *evsel,
1892                         struct perf_attr_details *details, FILE *fp)
1893 {
1894         bool first = true;
1895         int printed = 0;
1896
1897         if (details->event_group) {
1898                 struct perf_evsel *pos;
1899
1900                 if (!perf_evsel__is_group_leader(evsel))
1901                         return 0;
1902
1903                 if (evsel->nr_members > 1)
1904                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1905
1906                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1907                 for_each_group_member(pos, evsel)
1908                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1909
1910                 if (evsel->nr_members > 1)
1911                         printed += fprintf(fp, "}");
1912                 goto out;
1913         }
1914
1915         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1916
1917         if (details->verbose || details->freq) {
1918                 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1919                                          (u64)evsel->attr.sample_freq);
1920         }
1921
1922         if (details->verbose) {
1923                 if_print(type);
1924                 if_print(config);
1925                 if_print(config1);
1926                 if_print(config2);
1927                 if_print(size);
1928                 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1929                 if (evsel->attr.read_format)
1930                         printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1931                 if_print(disabled);
1932                 if_print(inherit);
1933                 if_print(pinned);
1934                 if_print(exclusive);
1935                 if_print(exclude_user);
1936                 if_print(exclude_kernel);
1937                 if_print(exclude_hv);
1938                 if_print(exclude_idle);
1939                 if_print(mmap);
1940                 if_print(mmap2);
1941                 if_print(comm);
1942                 if_print(freq);
1943                 if_print(inherit_stat);
1944                 if_print(enable_on_exec);
1945                 if_print(task);
1946                 if_print(watermark);
1947                 if_print(precise_ip);
1948                 if_print(mmap_data);
1949                 if_print(sample_id_all);
1950                 if_print(exclude_host);
1951                 if_print(exclude_guest);
1952                 if_print(__reserved_1);
1953                 if_print(wakeup_events);
1954                 if_print(bp_type);
1955                 if_print(branch_sample_type);
1956         }
1957 out:
1958         fputc('\n', fp);
1959         return ++printed;
1960 }
1961
1962 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1963                           char *msg, size_t msgsize)
1964 {
1965         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1966             evsel->attr.type   == PERF_TYPE_HARDWARE &&
1967             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1968                 /*
1969                  * If it's cycles then fall back to hrtimer based
1970                  * cpu-clock-tick sw counter, which is always available even if
1971                  * no PMU support.
1972                  *
1973                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1974                  * b0a873e).
1975                  */
1976                 scnprintf(msg, msgsize, "%s",
1977 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1978
1979                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
1980                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
1981
1982                 zfree(&evsel->name);
1983                 return true;
1984         }
1985
1986         return false;
1987 }
1988
1989 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
1990                               int err, char *msg, size_t size)
1991 {
1992         switch (err) {
1993         case EPERM:
1994         case EACCES:
1995                 return scnprintf(msg, size,
1996                  "You may not have permission to collect %sstats.\n"
1997                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
1998                  " -1 - Not paranoid at all\n"
1999                  "  0 - Disallow raw tracepoint access for unpriv\n"
2000                  "  1 - Disallow cpu events for unpriv\n"
2001                  "  2 - Disallow kernel profiling for unpriv",
2002                                  target->system_wide ? "system-wide " : "");
2003         case ENOENT:
2004                 return scnprintf(msg, size, "The %s event is not supported.",
2005                                  perf_evsel__name(evsel));
2006         case EMFILE:
2007                 return scnprintf(msg, size, "%s",
2008                          "Too many events are opened.\n"
2009                          "Try again after reducing the number of events.");
2010         case ENODEV:
2011                 if (target->cpu_list)
2012                         return scnprintf(msg, size, "%s",
2013          "No such device - did you specify an out-of-range profile CPU?\n");
2014                 break;
2015         case EOPNOTSUPP:
2016                 if (evsel->attr.precise_ip)
2017                         return scnprintf(msg, size, "%s",
2018         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2019 #if defined(__i386__) || defined(__x86_64__)
2020                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2021                         return scnprintf(msg, size, "%s",
2022         "No hardware sampling interrupt available.\n"
2023         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2024 #endif
2025                 break;
2026         default:
2027                 break;
2028         }
2029
2030         return scnprintf(msg, size,
2031         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
2032         "/bin/dmesg may provide additional information.\n"
2033         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2034                          err, strerror(err), perf_evsel__name(evsel));
2035 }