Merge tag 'pm+acpi-3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[cascardo/linux.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <lk/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26
27 static struct {
28         bool sample_id_all;
29         bool exclude_guest;
30         bool mmap2;
31 } perf_missing_features;
32
33 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
34
35 int __perf_evsel__sample_size(u64 sample_type)
36 {
37         u64 mask = sample_type & PERF_SAMPLE_MASK;
38         int size = 0;
39         int i;
40
41         for (i = 0; i < 64; i++) {
42                 if (mask & (1ULL << i))
43                         size++;
44         }
45
46         size *= sizeof(u64);
47
48         return size;
49 }
50
51 /**
52  * __perf_evsel__calc_id_pos - calculate id_pos.
53  * @sample_type: sample type
54  *
55  * This function returns the position of the event id (PERF_SAMPLE_ID or
56  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
57  * sample_event.
58  */
59 static int __perf_evsel__calc_id_pos(u64 sample_type)
60 {
61         int idx = 0;
62
63         if (sample_type & PERF_SAMPLE_IDENTIFIER)
64                 return 0;
65
66         if (!(sample_type & PERF_SAMPLE_ID))
67                 return -1;
68
69         if (sample_type & PERF_SAMPLE_IP)
70                 idx += 1;
71
72         if (sample_type & PERF_SAMPLE_TID)
73                 idx += 1;
74
75         if (sample_type & PERF_SAMPLE_TIME)
76                 idx += 1;
77
78         if (sample_type & PERF_SAMPLE_ADDR)
79                 idx += 1;
80
81         return idx;
82 }
83
84 /**
85  * __perf_evsel__calc_is_pos - calculate is_pos.
86  * @sample_type: sample type
87  *
88  * This function returns the position (counting backwards) of the event id
89  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
90  * sample_id_all is used there is an id sample appended to non-sample events.
91  */
92 static int __perf_evsel__calc_is_pos(u64 sample_type)
93 {
94         int idx = 1;
95
96         if (sample_type & PERF_SAMPLE_IDENTIFIER)
97                 return 1;
98
99         if (!(sample_type & PERF_SAMPLE_ID))
100                 return -1;
101
102         if (sample_type & PERF_SAMPLE_CPU)
103                 idx += 1;
104
105         if (sample_type & PERF_SAMPLE_STREAM_ID)
106                 idx += 1;
107
108         return idx;
109 }
110
111 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
112 {
113         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
114         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
115 }
116
117 void hists__init(struct hists *hists)
118 {
119         memset(hists, 0, sizeof(*hists));
120         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
121         hists->entries_in = &hists->entries_in_array[0];
122         hists->entries_collapsed = RB_ROOT;
123         hists->entries = RB_ROOT;
124         pthread_mutex_init(&hists->lock, NULL);
125 }
126
127 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
128                                   enum perf_event_sample_format bit)
129 {
130         if (!(evsel->attr.sample_type & bit)) {
131                 evsel->attr.sample_type |= bit;
132                 evsel->sample_size += sizeof(u64);
133                 perf_evsel__calc_id_pos(evsel);
134         }
135 }
136
137 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
138                                     enum perf_event_sample_format bit)
139 {
140         if (evsel->attr.sample_type & bit) {
141                 evsel->attr.sample_type &= ~bit;
142                 evsel->sample_size -= sizeof(u64);
143                 perf_evsel__calc_id_pos(evsel);
144         }
145 }
146
147 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
148                                bool can_sample_identifier)
149 {
150         if (can_sample_identifier) {
151                 perf_evsel__reset_sample_bit(evsel, ID);
152                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
153         } else {
154                 perf_evsel__set_sample_bit(evsel, ID);
155         }
156         evsel->attr.read_format |= PERF_FORMAT_ID;
157 }
158
159 void perf_evsel__init(struct perf_evsel *evsel,
160                       struct perf_event_attr *attr, int idx)
161 {
162         evsel->idx         = idx;
163         evsel->attr        = *attr;
164         evsel->leader      = evsel;
165         INIT_LIST_HEAD(&evsel->node);
166         hists__init(&evsel->hists);
167         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
168         perf_evsel__calc_id_pos(evsel);
169 }
170
171 struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx)
172 {
173         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
174
175         if (evsel != NULL)
176                 perf_evsel__init(evsel, attr, idx);
177
178         return evsel;
179 }
180
181 struct event_format *event_format__new(const char *sys, const char *name)
182 {
183         int fd, n;
184         char *filename;
185         void *bf = NULL, *nbf;
186         size_t size = 0, alloc_size = 0;
187         struct event_format *format = NULL;
188
189         if (asprintf(&filename, "%s/%s/%s/format", tracing_events_path, sys, name) < 0)
190                 goto out;
191
192         fd = open(filename, O_RDONLY);
193         if (fd < 0)
194                 goto out_free_filename;
195
196         do {
197                 if (size == alloc_size) {
198                         alloc_size += BUFSIZ;
199                         nbf = realloc(bf, alloc_size);
200                         if (nbf == NULL)
201                                 goto out_free_bf;
202                         bf = nbf;
203                 }
204
205                 n = read(fd, bf + size, alloc_size - size);
206                 if (n < 0)
207                         goto out_free_bf;
208                 size += n;
209         } while (n > 0);
210
211         pevent_parse_format(&format, bf, size, sys);
212
213 out_free_bf:
214         free(bf);
215         close(fd);
216 out_free_filename:
217         free(filename);
218 out:
219         return format;
220 }
221
222 struct perf_evsel *perf_evsel__newtp(const char *sys, const char *name, int idx)
223 {
224         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
225
226         if (evsel != NULL) {
227                 struct perf_event_attr attr = {
228                         .type          = PERF_TYPE_TRACEPOINT,
229                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
230                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
231                 };
232
233                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
234                         goto out_free;
235
236                 evsel->tp_format = event_format__new(sys, name);
237                 if (evsel->tp_format == NULL)
238                         goto out_free;
239
240                 event_attr_init(&attr);
241                 attr.config = evsel->tp_format->id;
242                 attr.sample_period = 1;
243                 perf_evsel__init(evsel, &attr, idx);
244         }
245
246         return evsel;
247
248 out_free:
249         free(evsel->name);
250         free(evsel);
251         return NULL;
252 }
253
254 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
255         "cycles",
256         "instructions",
257         "cache-references",
258         "cache-misses",
259         "branches",
260         "branch-misses",
261         "bus-cycles",
262         "stalled-cycles-frontend",
263         "stalled-cycles-backend",
264         "ref-cycles",
265 };
266
267 static const char *__perf_evsel__hw_name(u64 config)
268 {
269         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
270                 return perf_evsel__hw_names[config];
271
272         return "unknown-hardware";
273 }
274
275 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
276 {
277         int colon = 0, r = 0;
278         struct perf_event_attr *attr = &evsel->attr;
279         bool exclude_guest_default = false;
280
281 #define MOD_PRINT(context, mod) do {                                    \
282                 if (!attr->exclude_##context) {                         \
283                         if (!colon) colon = ++r;                        \
284                         r += scnprintf(bf + r, size - r, "%c", mod);    \
285                 } } while(0)
286
287         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
288                 MOD_PRINT(kernel, 'k');
289                 MOD_PRINT(user, 'u');
290                 MOD_PRINT(hv, 'h');
291                 exclude_guest_default = true;
292         }
293
294         if (attr->precise_ip) {
295                 if (!colon)
296                         colon = ++r;
297                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
298                 exclude_guest_default = true;
299         }
300
301         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
302                 MOD_PRINT(host, 'H');
303                 MOD_PRINT(guest, 'G');
304         }
305 #undef MOD_PRINT
306         if (colon)
307                 bf[colon - 1] = ':';
308         return r;
309 }
310
311 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
312 {
313         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
314         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
315 }
316
317 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
318         "cpu-clock",
319         "task-clock",
320         "page-faults",
321         "context-switches",
322         "cpu-migrations",
323         "minor-faults",
324         "major-faults",
325         "alignment-faults",
326         "emulation-faults",
327         "dummy",
328 };
329
330 static const char *__perf_evsel__sw_name(u64 config)
331 {
332         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
333                 return perf_evsel__sw_names[config];
334         return "unknown-software";
335 }
336
337 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
338 {
339         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
340         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
341 }
342
343 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
344 {
345         int r;
346
347         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
348
349         if (type & HW_BREAKPOINT_R)
350                 r += scnprintf(bf + r, size - r, "r");
351
352         if (type & HW_BREAKPOINT_W)
353                 r += scnprintf(bf + r, size - r, "w");
354
355         if (type & HW_BREAKPOINT_X)
356                 r += scnprintf(bf + r, size - r, "x");
357
358         return r;
359 }
360
361 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
362 {
363         struct perf_event_attr *attr = &evsel->attr;
364         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
365         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
366 }
367
368 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
369                                 [PERF_EVSEL__MAX_ALIASES] = {
370  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
371  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
372  { "LLC",       "L2",                                                   },
373  { "dTLB",      "d-tlb",        "Data-TLB",                             },
374  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
375  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
376  { "node",                                                              },
377 };
378
379 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
380                                    [PERF_EVSEL__MAX_ALIASES] = {
381  { "load",      "loads",        "read",                                 },
382  { "store",     "stores",       "write",                                },
383  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
384 };
385
386 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
387                                        [PERF_EVSEL__MAX_ALIASES] = {
388  { "refs",      "Reference",    "ops",          "access",               },
389  { "misses",    "miss",                                                 },
390 };
391
392 #define C(x)            PERF_COUNT_HW_CACHE_##x
393 #define CACHE_READ      (1 << C(OP_READ))
394 #define CACHE_WRITE     (1 << C(OP_WRITE))
395 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
396 #define COP(x)          (1 << x)
397
398 /*
399  * cache operartion stat
400  * L1I : Read and prefetch only
401  * ITLB and BPU : Read-only
402  */
403 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
404  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
405  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
406  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
407  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
408  [C(ITLB)]      = (CACHE_READ),
409  [C(BPU)]       = (CACHE_READ),
410  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
411 };
412
413 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
414 {
415         if (perf_evsel__hw_cache_stat[type] & COP(op))
416                 return true;    /* valid */
417         else
418                 return false;   /* invalid */
419 }
420
421 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
422                                             char *bf, size_t size)
423 {
424         if (result) {
425                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
426                                  perf_evsel__hw_cache_op[op][0],
427                                  perf_evsel__hw_cache_result[result][0]);
428         }
429
430         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
431                          perf_evsel__hw_cache_op[op][1]);
432 }
433
434 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
435 {
436         u8 op, result, type = (config >>  0) & 0xff;
437         const char *err = "unknown-ext-hardware-cache-type";
438
439         if (type > PERF_COUNT_HW_CACHE_MAX)
440                 goto out_err;
441
442         op = (config >>  8) & 0xff;
443         err = "unknown-ext-hardware-cache-op";
444         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
445                 goto out_err;
446
447         result = (config >> 16) & 0xff;
448         err = "unknown-ext-hardware-cache-result";
449         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
450                 goto out_err;
451
452         err = "invalid-cache";
453         if (!perf_evsel__is_cache_op_valid(type, op))
454                 goto out_err;
455
456         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
457 out_err:
458         return scnprintf(bf, size, "%s", err);
459 }
460
461 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
462 {
463         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
464         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
465 }
466
467 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
468 {
469         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
470         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
471 }
472
473 const char *perf_evsel__name(struct perf_evsel *evsel)
474 {
475         char bf[128];
476
477         if (evsel->name)
478                 return evsel->name;
479
480         switch (evsel->attr.type) {
481         case PERF_TYPE_RAW:
482                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
483                 break;
484
485         case PERF_TYPE_HARDWARE:
486                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
487                 break;
488
489         case PERF_TYPE_HW_CACHE:
490                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
491                 break;
492
493         case PERF_TYPE_SOFTWARE:
494                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
495                 break;
496
497         case PERF_TYPE_TRACEPOINT:
498                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
499                 break;
500
501         case PERF_TYPE_BREAKPOINT:
502                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
503                 break;
504
505         default:
506                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
507                           evsel->attr.type);
508                 break;
509         }
510
511         evsel->name = strdup(bf);
512
513         return evsel->name ?: "unknown";
514 }
515
516 const char *perf_evsel__group_name(struct perf_evsel *evsel)
517 {
518         return evsel->group_name ?: "anon group";
519 }
520
521 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
522 {
523         int ret;
524         struct perf_evsel *pos;
525         const char *group_name = perf_evsel__group_name(evsel);
526
527         ret = scnprintf(buf, size, "%s", group_name);
528
529         ret += scnprintf(buf + ret, size - ret, " { %s",
530                          perf_evsel__name(evsel));
531
532         for_each_group_member(pos, evsel)
533                 ret += scnprintf(buf + ret, size - ret, ", %s",
534                                  perf_evsel__name(pos));
535
536         ret += scnprintf(buf + ret, size - ret, " }");
537
538         return ret;
539 }
540
541 /*
542  * The enable_on_exec/disabled value strategy:
543  *
544  *  1) For any type of traced program:
545  *    - all independent events and group leaders are disabled
546  *    - all group members are enabled
547  *
548  *     Group members are ruled by group leaders. They need to
549  *     be enabled, because the group scheduling relies on that.
550  *
551  *  2) For traced programs executed by perf:
552  *     - all independent events and group leaders have
553  *       enable_on_exec set
554  *     - we don't specifically enable or disable any event during
555  *       the record command
556  *
557  *     Independent events and group leaders are initially disabled
558  *     and get enabled by exec. Group members are ruled by group
559  *     leaders as stated in 1).
560  *
561  *  3) For traced programs attached by perf (pid/tid):
562  *     - we specifically enable or disable all events during
563  *       the record command
564  *
565  *     When attaching events to already running traced we
566  *     enable/disable events specifically, as there's no
567  *     initial traced exec call.
568  */
569 void perf_evsel__config(struct perf_evsel *evsel,
570                         struct perf_record_opts *opts)
571 {
572         struct perf_evsel *leader = evsel->leader;
573         struct perf_event_attr *attr = &evsel->attr;
574         int track = !evsel->idx; /* only the first counter needs these */
575
576         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
577         attr->inherit       = !opts->no_inherit;
578
579         perf_evsel__set_sample_bit(evsel, IP);
580         perf_evsel__set_sample_bit(evsel, TID);
581
582         if (evsel->sample_read) {
583                 perf_evsel__set_sample_bit(evsel, READ);
584
585                 /*
586                  * We need ID even in case of single event, because
587                  * PERF_SAMPLE_READ process ID specific data.
588                  */
589                 perf_evsel__set_sample_id(evsel, false);
590
591                 /*
592                  * Apply group format only if we belong to group
593                  * with more than one members.
594                  */
595                 if (leader->nr_members > 1) {
596                         attr->read_format |= PERF_FORMAT_GROUP;
597                         attr->inherit = 0;
598                 }
599         }
600
601         /*
602          * We default some events to a 1 default interval. But keep
603          * it a weak assumption overridable by the user.
604          */
605         if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
606                                      opts->user_interval != ULLONG_MAX)) {
607                 if (opts->freq) {
608                         perf_evsel__set_sample_bit(evsel, PERIOD);
609                         attr->freq              = 1;
610                         attr->sample_freq       = opts->freq;
611                 } else {
612                         attr->sample_period = opts->default_interval;
613                 }
614         }
615
616         /*
617          * Disable sampling for all group members other
618          * than leader in case leader 'leads' the sampling.
619          */
620         if ((leader != evsel) && leader->sample_read) {
621                 attr->sample_freq   = 0;
622                 attr->sample_period = 0;
623         }
624
625         if (opts->no_samples)
626                 attr->sample_freq = 0;
627
628         if (opts->inherit_stat)
629                 attr->inherit_stat = 1;
630
631         if (opts->sample_address) {
632                 perf_evsel__set_sample_bit(evsel, ADDR);
633                 attr->mmap_data = track;
634         }
635
636         if (opts->call_graph) {
637                 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
638
639                 if (opts->call_graph == CALLCHAIN_DWARF) {
640                         perf_evsel__set_sample_bit(evsel, REGS_USER);
641                         perf_evsel__set_sample_bit(evsel, STACK_USER);
642                         attr->sample_regs_user = PERF_REGS_MASK;
643                         attr->sample_stack_user = opts->stack_dump_size;
644                         attr->exclude_callchain_user = 1;
645                 }
646         }
647
648         if (perf_target__has_cpu(&opts->target))
649                 perf_evsel__set_sample_bit(evsel, CPU);
650
651         if (opts->period)
652                 perf_evsel__set_sample_bit(evsel, PERIOD);
653
654         if (!perf_missing_features.sample_id_all &&
655             (opts->sample_time || !opts->no_inherit ||
656              perf_target__has_cpu(&opts->target)))
657                 perf_evsel__set_sample_bit(evsel, TIME);
658
659         if (opts->raw_samples) {
660                 perf_evsel__set_sample_bit(evsel, TIME);
661                 perf_evsel__set_sample_bit(evsel, RAW);
662                 perf_evsel__set_sample_bit(evsel, CPU);
663         }
664
665         if (opts->sample_address)
666                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
667
668         if (opts->no_delay) {
669                 attr->watermark = 0;
670                 attr->wakeup_events = 1;
671         }
672         if (opts->branch_stack) {
673                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
674                 attr->branch_sample_type = opts->branch_stack;
675         }
676
677         if (opts->sample_weight)
678                 perf_evsel__set_sample_bit(evsel, WEIGHT);
679
680         attr->mmap  = track;
681         attr->comm  = track;
682
683         if (opts->sample_transaction)
684                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
685
686         /*
687          * XXX see the function comment above
688          *
689          * Disabling only independent events or group leaders,
690          * keeping group members enabled.
691          */
692         if (perf_evsel__is_group_leader(evsel))
693                 attr->disabled = 1;
694
695         /*
696          * Setting enable_on_exec for independent events and
697          * group leaders for traced executed by perf.
698          */
699         if (perf_target__none(&opts->target) && perf_evsel__is_group_leader(evsel))
700                 attr->enable_on_exec = 1;
701 }
702
703 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
704 {
705         int cpu, thread;
706         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
707
708         if (evsel->fd) {
709                 for (cpu = 0; cpu < ncpus; cpu++) {
710                         for (thread = 0; thread < nthreads; thread++) {
711                                 FD(evsel, cpu, thread) = -1;
712                         }
713                 }
714         }
715
716         return evsel->fd != NULL ? 0 : -ENOMEM;
717 }
718
719 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
720                           int ioc,  void *arg)
721 {
722         int cpu, thread;
723
724         for (cpu = 0; cpu < ncpus; cpu++) {
725                 for (thread = 0; thread < nthreads; thread++) {
726                         int fd = FD(evsel, cpu, thread),
727                             err = ioctl(fd, ioc, arg);
728
729                         if (err)
730                                 return err;
731                 }
732         }
733
734         return 0;
735 }
736
737 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
738                            const char *filter)
739 {
740         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
741                                      PERF_EVENT_IOC_SET_FILTER,
742                                      (void *)filter);
743 }
744
745 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
746 {
747         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
748                                      PERF_EVENT_IOC_ENABLE,
749                                      0);
750 }
751
752 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
753 {
754         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
755         if (evsel->sample_id == NULL)
756                 return -ENOMEM;
757
758         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
759         if (evsel->id == NULL) {
760                 xyarray__delete(evsel->sample_id);
761                 evsel->sample_id = NULL;
762                 return -ENOMEM;
763         }
764
765         return 0;
766 }
767
768 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
769 {
770         memset(evsel->counts, 0, (sizeof(*evsel->counts) +
771                                  (ncpus * sizeof(struct perf_counts_values))));
772 }
773
774 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
775 {
776         evsel->counts = zalloc((sizeof(*evsel->counts) +
777                                 (ncpus * sizeof(struct perf_counts_values))));
778         return evsel->counts != NULL ? 0 : -ENOMEM;
779 }
780
781 void perf_evsel__free_fd(struct perf_evsel *evsel)
782 {
783         xyarray__delete(evsel->fd);
784         evsel->fd = NULL;
785 }
786
787 void perf_evsel__free_id(struct perf_evsel *evsel)
788 {
789         xyarray__delete(evsel->sample_id);
790         evsel->sample_id = NULL;
791         free(evsel->id);
792         evsel->id = NULL;
793 }
794
795 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
796 {
797         int cpu, thread;
798
799         for (cpu = 0; cpu < ncpus; cpu++)
800                 for (thread = 0; thread < nthreads; ++thread) {
801                         close(FD(evsel, cpu, thread));
802                         FD(evsel, cpu, thread) = -1;
803                 }
804 }
805
806 void perf_evsel__free_counts(struct perf_evsel *evsel)
807 {
808         free(evsel->counts);
809 }
810
811 void perf_evsel__exit(struct perf_evsel *evsel)
812 {
813         assert(list_empty(&evsel->node));
814         perf_evsel__free_fd(evsel);
815         perf_evsel__free_id(evsel);
816 }
817
818 void perf_evsel__delete(struct perf_evsel *evsel)
819 {
820         perf_evsel__exit(evsel);
821         close_cgroup(evsel->cgrp);
822         free(evsel->group_name);
823         if (evsel->tp_format)
824                 pevent_free_format(evsel->tp_format);
825         free(evsel->name);
826         free(evsel);
827 }
828
829 static inline void compute_deltas(struct perf_evsel *evsel,
830                                   int cpu,
831                                   struct perf_counts_values *count)
832 {
833         struct perf_counts_values tmp;
834
835         if (!evsel->prev_raw_counts)
836                 return;
837
838         if (cpu == -1) {
839                 tmp = evsel->prev_raw_counts->aggr;
840                 evsel->prev_raw_counts->aggr = *count;
841         } else {
842                 tmp = evsel->prev_raw_counts->cpu[cpu];
843                 evsel->prev_raw_counts->cpu[cpu] = *count;
844         }
845
846         count->val = count->val - tmp.val;
847         count->ena = count->ena - tmp.ena;
848         count->run = count->run - tmp.run;
849 }
850
851 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
852                               int cpu, int thread, bool scale)
853 {
854         struct perf_counts_values count;
855         size_t nv = scale ? 3 : 1;
856
857         if (FD(evsel, cpu, thread) < 0)
858                 return -EINVAL;
859
860         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
861                 return -ENOMEM;
862
863         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
864                 return -errno;
865
866         compute_deltas(evsel, cpu, &count);
867
868         if (scale) {
869                 if (count.run == 0)
870                         count.val = 0;
871                 else if (count.run < count.ena)
872                         count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
873         } else
874                 count.ena = count.run = 0;
875
876         evsel->counts->cpu[cpu] = count;
877         return 0;
878 }
879
880 int __perf_evsel__read(struct perf_evsel *evsel,
881                        int ncpus, int nthreads, bool scale)
882 {
883         size_t nv = scale ? 3 : 1;
884         int cpu, thread;
885         struct perf_counts_values *aggr = &evsel->counts->aggr, count;
886
887         aggr->val = aggr->ena = aggr->run = 0;
888
889         for (cpu = 0; cpu < ncpus; cpu++) {
890                 for (thread = 0; thread < nthreads; thread++) {
891                         if (FD(evsel, cpu, thread) < 0)
892                                 continue;
893
894                         if (readn(FD(evsel, cpu, thread),
895                                   &count, nv * sizeof(u64)) < 0)
896                                 return -errno;
897
898                         aggr->val += count.val;
899                         if (scale) {
900                                 aggr->ena += count.ena;
901                                 aggr->run += count.run;
902                         }
903                 }
904         }
905
906         compute_deltas(evsel, -1, aggr);
907
908         evsel->counts->scaled = 0;
909         if (scale) {
910                 if (aggr->run == 0) {
911                         evsel->counts->scaled = -1;
912                         aggr->val = 0;
913                         return 0;
914                 }
915
916                 if (aggr->run < aggr->ena) {
917                         evsel->counts->scaled = 1;
918                         aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
919                 }
920         } else
921                 aggr->ena = aggr->run = 0;
922
923         return 0;
924 }
925
926 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
927 {
928         struct perf_evsel *leader = evsel->leader;
929         int fd;
930
931         if (perf_evsel__is_group_leader(evsel))
932                 return -1;
933
934         /*
935          * Leader must be already processed/open,
936          * if not it's a bug.
937          */
938         BUG_ON(!leader->fd);
939
940         fd = FD(leader, cpu, thread);
941         BUG_ON(fd == -1);
942
943         return fd;
944 }
945
946 #define __PRINT_ATTR(fmt, cast, field)  \
947         fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
948
949 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
950 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
951 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
952 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
953
954 #define PRINT_ATTR2N(name1, field1, name2, field2)      \
955         fprintf(fp, "  %-19s %u    %-19s %u\n",         \
956         name1, attr->field1, name2, attr->field2)
957
958 #define PRINT_ATTR2(field1, field2) \
959         PRINT_ATTR2N(#field1, field1, #field2, field2)
960
961 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
962 {
963         size_t ret = 0;
964
965         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
966         ret += fprintf(fp, "perf_event_attr:\n");
967
968         ret += PRINT_ATTR_U32(type);
969         ret += PRINT_ATTR_U32(size);
970         ret += PRINT_ATTR_X64(config);
971         ret += PRINT_ATTR_U64(sample_period);
972         ret += PRINT_ATTR_U64(sample_freq);
973         ret += PRINT_ATTR_X64(sample_type);
974         ret += PRINT_ATTR_X64(read_format);
975
976         ret += PRINT_ATTR2(disabled, inherit);
977         ret += PRINT_ATTR2(pinned, exclusive);
978         ret += PRINT_ATTR2(exclude_user, exclude_kernel);
979         ret += PRINT_ATTR2(exclude_hv, exclude_idle);
980         ret += PRINT_ATTR2(mmap, comm);
981         ret += PRINT_ATTR2(freq, inherit_stat);
982         ret += PRINT_ATTR2(enable_on_exec, task);
983         ret += PRINT_ATTR2(watermark, precise_ip);
984         ret += PRINT_ATTR2(mmap_data, sample_id_all);
985         ret += PRINT_ATTR2(exclude_host, exclude_guest);
986         ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
987                             "excl.callchain_user", exclude_callchain_user);
988         ret += PRINT_ATTR_U32(mmap2);
989
990         ret += PRINT_ATTR_U32(wakeup_events);
991         ret += PRINT_ATTR_U32(wakeup_watermark);
992         ret += PRINT_ATTR_X32(bp_type);
993         ret += PRINT_ATTR_X64(bp_addr);
994         ret += PRINT_ATTR_X64(config1);
995         ret += PRINT_ATTR_U64(bp_len);
996         ret += PRINT_ATTR_X64(config2);
997         ret += PRINT_ATTR_X64(branch_sample_type);
998         ret += PRINT_ATTR_X64(sample_regs_user);
999         ret += PRINT_ATTR_U32(sample_stack_user);
1000
1001         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
1002
1003         return ret;
1004 }
1005
1006 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1007                               struct thread_map *threads)
1008 {
1009         int cpu, thread;
1010         unsigned long flags = 0;
1011         int pid = -1, err;
1012         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1013
1014         if (evsel->fd == NULL &&
1015             perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
1016                 return -ENOMEM;
1017
1018         if (evsel->cgrp) {
1019                 flags = PERF_FLAG_PID_CGROUP;
1020                 pid = evsel->cgrp->fd;
1021         }
1022
1023 fallback_missing_features:
1024         if (perf_missing_features.mmap2)
1025                 evsel->attr.mmap2 = 0;
1026         if (perf_missing_features.exclude_guest)
1027                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1028 retry_sample_id:
1029         if (perf_missing_features.sample_id_all)
1030                 evsel->attr.sample_id_all = 0;
1031
1032         if (verbose >= 2)
1033                 perf_event_attr__fprintf(&evsel->attr, stderr);
1034
1035         for (cpu = 0; cpu < cpus->nr; cpu++) {
1036
1037                 for (thread = 0; thread < threads->nr; thread++) {
1038                         int group_fd;
1039
1040                         if (!evsel->cgrp)
1041                                 pid = threads->map[thread];
1042
1043                         group_fd = get_group_fd(evsel, cpu, thread);
1044 retry_open:
1045                         pr_debug2("perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1046                                   pid, cpus->map[cpu], group_fd, flags);
1047
1048                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1049                                                                      pid,
1050                                                                      cpus->map[cpu],
1051                                                                      group_fd, flags);
1052                         if (FD(evsel, cpu, thread) < 0) {
1053                                 err = -errno;
1054                                 pr_debug2("perf_event_open failed, error %d\n",
1055                                           err);
1056                                 goto try_fallback;
1057                         }
1058                         set_rlimit = NO_CHANGE;
1059                 }
1060         }
1061
1062         return 0;
1063
1064 try_fallback:
1065         /*
1066          * perf stat needs between 5 and 22 fds per CPU. When we run out
1067          * of them try to increase the limits.
1068          */
1069         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1070                 struct rlimit l;
1071                 int old_errno = errno;
1072
1073                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1074                         if (set_rlimit == NO_CHANGE)
1075                                 l.rlim_cur = l.rlim_max;
1076                         else {
1077                                 l.rlim_cur = l.rlim_max + 1000;
1078                                 l.rlim_max = l.rlim_cur;
1079                         }
1080                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1081                                 set_rlimit++;
1082                                 errno = old_errno;
1083                                 goto retry_open;
1084                         }
1085                 }
1086                 errno = old_errno;
1087         }
1088
1089         if (err != -EINVAL || cpu > 0 || thread > 0)
1090                 goto out_close;
1091
1092         if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1093                 perf_missing_features.mmap2 = true;
1094                 goto fallback_missing_features;
1095         } else if (!perf_missing_features.exclude_guest &&
1096                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1097                 perf_missing_features.exclude_guest = true;
1098                 goto fallback_missing_features;
1099         } else if (!perf_missing_features.sample_id_all) {
1100                 perf_missing_features.sample_id_all = true;
1101                 goto retry_sample_id;
1102         }
1103
1104 out_close:
1105         do {
1106                 while (--thread >= 0) {
1107                         close(FD(evsel, cpu, thread));
1108                         FD(evsel, cpu, thread) = -1;
1109                 }
1110                 thread = threads->nr;
1111         } while (--cpu >= 0);
1112         return err;
1113 }
1114
1115 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1116 {
1117         if (evsel->fd == NULL)
1118                 return;
1119
1120         perf_evsel__close_fd(evsel, ncpus, nthreads);
1121         perf_evsel__free_fd(evsel);
1122         evsel->fd = NULL;
1123 }
1124
1125 static struct {
1126         struct cpu_map map;
1127         int cpus[1];
1128 } empty_cpu_map = {
1129         .map.nr = 1,
1130         .cpus   = { -1, },
1131 };
1132
1133 static struct {
1134         struct thread_map map;
1135         int threads[1];
1136 } empty_thread_map = {
1137         .map.nr  = 1,
1138         .threads = { -1, },
1139 };
1140
1141 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1142                      struct thread_map *threads)
1143 {
1144         if (cpus == NULL) {
1145                 /* Work around old compiler warnings about strict aliasing */
1146                 cpus = &empty_cpu_map.map;
1147         }
1148
1149         if (threads == NULL)
1150                 threads = &empty_thread_map.map;
1151
1152         return __perf_evsel__open(evsel, cpus, threads);
1153 }
1154
1155 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1156                              struct cpu_map *cpus)
1157 {
1158         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1159 }
1160
1161 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1162                                 struct thread_map *threads)
1163 {
1164         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1165 }
1166
1167 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1168                                        const union perf_event *event,
1169                                        struct perf_sample *sample)
1170 {
1171         u64 type = evsel->attr.sample_type;
1172         const u64 *array = event->sample.array;
1173         bool swapped = evsel->needs_swap;
1174         union u64_swap u;
1175
1176         array += ((event->header.size -
1177                    sizeof(event->header)) / sizeof(u64)) - 1;
1178
1179         if (type & PERF_SAMPLE_IDENTIFIER) {
1180                 sample->id = *array;
1181                 array--;
1182         }
1183
1184         if (type & PERF_SAMPLE_CPU) {
1185                 u.val64 = *array;
1186                 if (swapped) {
1187                         /* undo swap of u64, then swap on individual u32s */
1188                         u.val64 = bswap_64(u.val64);
1189                         u.val32[0] = bswap_32(u.val32[0]);
1190                 }
1191
1192                 sample->cpu = u.val32[0];
1193                 array--;
1194         }
1195
1196         if (type & PERF_SAMPLE_STREAM_ID) {
1197                 sample->stream_id = *array;
1198                 array--;
1199         }
1200
1201         if (type & PERF_SAMPLE_ID) {
1202                 sample->id = *array;
1203                 array--;
1204         }
1205
1206         if (type & PERF_SAMPLE_TIME) {
1207                 sample->time = *array;
1208                 array--;
1209         }
1210
1211         if (type & PERF_SAMPLE_TID) {
1212                 u.val64 = *array;
1213                 if (swapped) {
1214                         /* undo swap of u64, then swap on individual u32s */
1215                         u.val64 = bswap_64(u.val64);
1216                         u.val32[0] = bswap_32(u.val32[0]);
1217                         u.val32[1] = bswap_32(u.val32[1]);
1218                 }
1219
1220                 sample->pid = u.val32[0];
1221                 sample->tid = u.val32[1];
1222                 array--;
1223         }
1224
1225         return 0;
1226 }
1227
1228 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1229                             u64 size)
1230 {
1231         return size > max_size || offset + size > endp;
1232 }
1233
1234 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1235         do {                                                            \
1236                 if (overflow(endp, (max_size), (offset), (size)))       \
1237                         return -EFAULT;                                 \
1238         } while (0)
1239
1240 #define OVERFLOW_CHECK_u64(offset) \
1241         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1242
1243 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1244                              struct perf_sample *data)
1245 {
1246         u64 type = evsel->attr.sample_type;
1247         bool swapped = evsel->needs_swap;
1248         const u64 *array;
1249         u16 max_size = event->header.size;
1250         const void *endp = (void *)event + max_size;
1251         u64 sz;
1252
1253         /*
1254          * used for cross-endian analysis. See git commit 65014ab3
1255          * for why this goofiness is needed.
1256          */
1257         union u64_swap u;
1258
1259         memset(data, 0, sizeof(*data));
1260         data->cpu = data->pid = data->tid = -1;
1261         data->stream_id = data->id = data->time = -1ULL;
1262         data->period = 1;
1263         data->weight = 0;
1264
1265         if (event->header.type != PERF_RECORD_SAMPLE) {
1266                 if (!evsel->attr.sample_id_all)
1267                         return 0;
1268                 return perf_evsel__parse_id_sample(evsel, event, data);
1269         }
1270
1271         array = event->sample.array;
1272
1273         /*
1274          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1275          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1276          * check the format does not go past the end of the event.
1277          */
1278         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1279                 return -EFAULT;
1280
1281         data->id = -1ULL;
1282         if (type & PERF_SAMPLE_IDENTIFIER) {
1283                 data->id = *array;
1284                 array++;
1285         }
1286
1287         if (type & PERF_SAMPLE_IP) {
1288                 data->ip = *array;
1289                 array++;
1290         }
1291
1292         if (type & PERF_SAMPLE_TID) {
1293                 u.val64 = *array;
1294                 if (swapped) {
1295                         /* undo swap of u64, then swap on individual u32s */
1296                         u.val64 = bswap_64(u.val64);
1297                         u.val32[0] = bswap_32(u.val32[0]);
1298                         u.val32[1] = bswap_32(u.val32[1]);
1299                 }
1300
1301                 data->pid = u.val32[0];
1302                 data->tid = u.val32[1];
1303                 array++;
1304         }
1305
1306         if (type & PERF_SAMPLE_TIME) {
1307                 data->time = *array;
1308                 array++;
1309         }
1310
1311         data->addr = 0;
1312         if (type & PERF_SAMPLE_ADDR) {
1313                 data->addr = *array;
1314                 array++;
1315         }
1316
1317         if (type & PERF_SAMPLE_ID) {
1318                 data->id = *array;
1319                 array++;
1320         }
1321
1322         if (type & PERF_SAMPLE_STREAM_ID) {
1323                 data->stream_id = *array;
1324                 array++;
1325         }
1326
1327         if (type & PERF_SAMPLE_CPU) {
1328
1329                 u.val64 = *array;
1330                 if (swapped) {
1331                         /* undo swap of u64, then swap on individual u32s */
1332                         u.val64 = bswap_64(u.val64);
1333                         u.val32[0] = bswap_32(u.val32[0]);
1334                 }
1335
1336                 data->cpu = u.val32[0];
1337                 array++;
1338         }
1339
1340         if (type & PERF_SAMPLE_PERIOD) {
1341                 data->period = *array;
1342                 array++;
1343         }
1344
1345         if (type & PERF_SAMPLE_READ) {
1346                 u64 read_format = evsel->attr.read_format;
1347
1348                 OVERFLOW_CHECK_u64(array);
1349                 if (read_format & PERF_FORMAT_GROUP)
1350                         data->read.group.nr = *array;
1351                 else
1352                         data->read.one.value = *array;
1353
1354                 array++;
1355
1356                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1357                         OVERFLOW_CHECK_u64(array);
1358                         data->read.time_enabled = *array;
1359                         array++;
1360                 }
1361
1362                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1363                         OVERFLOW_CHECK_u64(array);
1364                         data->read.time_running = *array;
1365                         array++;
1366                 }
1367
1368                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1369                 if (read_format & PERF_FORMAT_GROUP) {
1370                         const u64 max_group_nr = UINT64_MAX /
1371                                         sizeof(struct sample_read_value);
1372
1373                         if (data->read.group.nr > max_group_nr)
1374                                 return -EFAULT;
1375                         sz = data->read.group.nr *
1376                              sizeof(struct sample_read_value);
1377                         OVERFLOW_CHECK(array, sz, max_size);
1378                         data->read.group.values =
1379                                         (struct sample_read_value *)array;
1380                         array = (void *)array + sz;
1381                 } else {
1382                         OVERFLOW_CHECK_u64(array);
1383                         data->read.one.id = *array;
1384                         array++;
1385                 }
1386         }
1387
1388         if (type & PERF_SAMPLE_CALLCHAIN) {
1389                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1390
1391                 OVERFLOW_CHECK_u64(array);
1392                 data->callchain = (struct ip_callchain *)array++;
1393                 if (data->callchain->nr > max_callchain_nr)
1394                         return -EFAULT;
1395                 sz = data->callchain->nr * sizeof(u64);
1396                 OVERFLOW_CHECK(array, sz, max_size);
1397                 array = (void *)array + sz;
1398         }
1399
1400         if (type & PERF_SAMPLE_RAW) {
1401                 OVERFLOW_CHECK_u64(array);
1402                 u.val64 = *array;
1403                 if (WARN_ONCE(swapped,
1404                               "Endianness of raw data not corrected!\n")) {
1405                         /* undo swap of u64, then swap on individual u32s */
1406                         u.val64 = bswap_64(u.val64);
1407                         u.val32[0] = bswap_32(u.val32[0]);
1408                         u.val32[1] = bswap_32(u.val32[1]);
1409                 }
1410                 data->raw_size = u.val32[0];
1411                 array = (void *)array + sizeof(u32);
1412
1413                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1414                 data->raw_data = (void *)array;
1415                 array = (void *)array + data->raw_size;
1416         }
1417
1418         if (type & PERF_SAMPLE_BRANCH_STACK) {
1419                 const u64 max_branch_nr = UINT64_MAX /
1420                                           sizeof(struct branch_entry);
1421
1422                 OVERFLOW_CHECK_u64(array);
1423                 data->branch_stack = (struct branch_stack *)array++;
1424
1425                 if (data->branch_stack->nr > max_branch_nr)
1426                         return -EFAULT;
1427                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1428                 OVERFLOW_CHECK(array, sz, max_size);
1429                 array = (void *)array + sz;
1430         }
1431
1432         if (type & PERF_SAMPLE_REGS_USER) {
1433                 OVERFLOW_CHECK_u64(array);
1434                 data->user_regs.abi = *array;
1435                 array++;
1436
1437                 if (data->user_regs.abi) {
1438                         u64 regs_user = evsel->attr.sample_regs_user;
1439
1440                         sz = hweight_long(regs_user) * sizeof(u64);
1441                         OVERFLOW_CHECK(array, sz, max_size);
1442                         data->user_regs.regs = (u64 *)array;
1443                         array = (void *)array + sz;
1444                 }
1445         }
1446
1447         if (type & PERF_SAMPLE_STACK_USER) {
1448                 OVERFLOW_CHECK_u64(array);
1449                 sz = *array++;
1450
1451                 data->user_stack.offset = ((char *)(array - 1)
1452                                           - (char *) event);
1453
1454                 if (!sz) {
1455                         data->user_stack.size = 0;
1456                 } else {
1457                         OVERFLOW_CHECK(array, sz, max_size);
1458                         data->user_stack.data = (char *)array;
1459                         array = (void *)array + sz;
1460                         OVERFLOW_CHECK_u64(array);
1461                         data->user_stack.size = *array++;
1462                         if (WARN_ONCE(data->user_stack.size > sz,
1463                                       "user stack dump failure\n"))
1464                                 return -EFAULT;
1465                 }
1466         }
1467
1468         data->weight = 0;
1469         if (type & PERF_SAMPLE_WEIGHT) {
1470                 OVERFLOW_CHECK_u64(array);
1471                 data->weight = *array;
1472                 array++;
1473         }
1474
1475         data->data_src = PERF_MEM_DATA_SRC_NONE;
1476         if (type & PERF_SAMPLE_DATA_SRC) {
1477                 OVERFLOW_CHECK_u64(array);
1478                 data->data_src = *array;
1479                 array++;
1480         }
1481
1482         data->transaction = 0;
1483         if (type & PERF_SAMPLE_TRANSACTION) {
1484                 OVERFLOW_CHECK_u64(array);
1485                 data->transaction = *array;
1486                 array++;
1487         }
1488
1489         return 0;
1490 }
1491
1492 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1493                                      u64 sample_regs_user, u64 read_format)
1494 {
1495         size_t sz, result = sizeof(struct sample_event);
1496
1497         if (type & PERF_SAMPLE_IDENTIFIER)
1498                 result += sizeof(u64);
1499
1500         if (type & PERF_SAMPLE_IP)
1501                 result += sizeof(u64);
1502
1503         if (type & PERF_SAMPLE_TID)
1504                 result += sizeof(u64);
1505
1506         if (type & PERF_SAMPLE_TIME)
1507                 result += sizeof(u64);
1508
1509         if (type & PERF_SAMPLE_ADDR)
1510                 result += sizeof(u64);
1511
1512         if (type & PERF_SAMPLE_ID)
1513                 result += sizeof(u64);
1514
1515         if (type & PERF_SAMPLE_STREAM_ID)
1516                 result += sizeof(u64);
1517
1518         if (type & PERF_SAMPLE_CPU)
1519                 result += sizeof(u64);
1520
1521         if (type & PERF_SAMPLE_PERIOD)
1522                 result += sizeof(u64);
1523
1524         if (type & PERF_SAMPLE_READ) {
1525                 result += sizeof(u64);
1526                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1527                         result += sizeof(u64);
1528                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1529                         result += sizeof(u64);
1530                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1531                 if (read_format & PERF_FORMAT_GROUP) {
1532                         sz = sample->read.group.nr *
1533                              sizeof(struct sample_read_value);
1534                         result += sz;
1535                 } else {
1536                         result += sizeof(u64);
1537                 }
1538         }
1539
1540         if (type & PERF_SAMPLE_CALLCHAIN) {
1541                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1542                 result += sz;
1543         }
1544
1545         if (type & PERF_SAMPLE_RAW) {
1546                 result += sizeof(u32);
1547                 result += sample->raw_size;
1548         }
1549
1550         if (type & PERF_SAMPLE_BRANCH_STACK) {
1551                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1552                 sz += sizeof(u64);
1553                 result += sz;
1554         }
1555
1556         if (type & PERF_SAMPLE_REGS_USER) {
1557                 if (sample->user_regs.abi) {
1558                         result += sizeof(u64);
1559                         sz = hweight_long(sample_regs_user) * sizeof(u64);
1560                         result += sz;
1561                 } else {
1562                         result += sizeof(u64);
1563                 }
1564         }
1565
1566         if (type & PERF_SAMPLE_STACK_USER) {
1567                 sz = sample->user_stack.size;
1568                 result += sizeof(u64);
1569                 if (sz) {
1570                         result += sz;
1571                         result += sizeof(u64);
1572                 }
1573         }
1574
1575         if (type & PERF_SAMPLE_WEIGHT)
1576                 result += sizeof(u64);
1577
1578         if (type & PERF_SAMPLE_DATA_SRC)
1579                 result += sizeof(u64);
1580
1581         if (type & PERF_SAMPLE_TRANSACTION)
1582                 result += sizeof(u64);
1583
1584         return result;
1585 }
1586
1587 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1588                                   u64 sample_regs_user, u64 read_format,
1589                                   const struct perf_sample *sample,
1590                                   bool swapped)
1591 {
1592         u64 *array;
1593         size_t sz;
1594         /*
1595          * used for cross-endian analysis. See git commit 65014ab3
1596          * for why this goofiness is needed.
1597          */
1598         union u64_swap u;
1599
1600         array = event->sample.array;
1601
1602         if (type & PERF_SAMPLE_IDENTIFIER) {
1603                 *array = sample->id;
1604                 array++;
1605         }
1606
1607         if (type & PERF_SAMPLE_IP) {
1608                 *array = sample->ip;
1609                 array++;
1610         }
1611
1612         if (type & PERF_SAMPLE_TID) {
1613                 u.val32[0] = sample->pid;
1614                 u.val32[1] = sample->tid;
1615                 if (swapped) {
1616                         /*
1617                          * Inverse of what is done in perf_evsel__parse_sample
1618                          */
1619                         u.val32[0] = bswap_32(u.val32[0]);
1620                         u.val32[1] = bswap_32(u.val32[1]);
1621                         u.val64 = bswap_64(u.val64);
1622                 }
1623
1624                 *array = u.val64;
1625                 array++;
1626         }
1627
1628         if (type & PERF_SAMPLE_TIME) {
1629                 *array = sample->time;
1630                 array++;
1631         }
1632
1633         if (type & PERF_SAMPLE_ADDR) {
1634                 *array = sample->addr;
1635                 array++;
1636         }
1637
1638         if (type & PERF_SAMPLE_ID) {
1639                 *array = sample->id;
1640                 array++;
1641         }
1642
1643         if (type & PERF_SAMPLE_STREAM_ID) {
1644                 *array = sample->stream_id;
1645                 array++;
1646         }
1647
1648         if (type & PERF_SAMPLE_CPU) {
1649                 u.val32[0] = sample->cpu;
1650                 if (swapped) {
1651                         /*
1652                          * Inverse of what is done in perf_evsel__parse_sample
1653                          */
1654                         u.val32[0] = bswap_32(u.val32[0]);
1655                         u.val64 = bswap_64(u.val64);
1656                 }
1657                 *array = u.val64;
1658                 array++;
1659         }
1660
1661         if (type & PERF_SAMPLE_PERIOD) {
1662                 *array = sample->period;
1663                 array++;
1664         }
1665
1666         if (type & PERF_SAMPLE_READ) {
1667                 if (read_format & PERF_FORMAT_GROUP)
1668                         *array = sample->read.group.nr;
1669                 else
1670                         *array = sample->read.one.value;
1671                 array++;
1672
1673                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1674                         *array = sample->read.time_enabled;
1675                         array++;
1676                 }
1677
1678                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1679                         *array = sample->read.time_running;
1680                         array++;
1681                 }
1682
1683                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1684                 if (read_format & PERF_FORMAT_GROUP) {
1685                         sz = sample->read.group.nr *
1686                              sizeof(struct sample_read_value);
1687                         memcpy(array, sample->read.group.values, sz);
1688                         array = (void *)array + sz;
1689                 } else {
1690                         *array = sample->read.one.id;
1691                         array++;
1692                 }
1693         }
1694
1695         if (type & PERF_SAMPLE_CALLCHAIN) {
1696                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1697                 memcpy(array, sample->callchain, sz);
1698                 array = (void *)array + sz;
1699         }
1700
1701         if (type & PERF_SAMPLE_RAW) {
1702                 u.val32[0] = sample->raw_size;
1703                 if (WARN_ONCE(swapped,
1704                               "Endianness of raw data not corrected!\n")) {
1705                         /*
1706                          * Inverse of what is done in perf_evsel__parse_sample
1707                          */
1708                         u.val32[0] = bswap_32(u.val32[0]);
1709                         u.val32[1] = bswap_32(u.val32[1]);
1710                         u.val64 = bswap_64(u.val64);
1711                 }
1712                 *array = u.val64;
1713                 array = (void *)array + sizeof(u32);
1714
1715                 memcpy(array, sample->raw_data, sample->raw_size);
1716                 array = (void *)array + sample->raw_size;
1717         }
1718
1719         if (type & PERF_SAMPLE_BRANCH_STACK) {
1720                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1721                 sz += sizeof(u64);
1722                 memcpy(array, sample->branch_stack, sz);
1723                 array = (void *)array + sz;
1724         }
1725
1726         if (type & PERF_SAMPLE_REGS_USER) {
1727                 if (sample->user_regs.abi) {
1728                         *array++ = sample->user_regs.abi;
1729                         sz = hweight_long(sample_regs_user) * sizeof(u64);
1730                         memcpy(array, sample->user_regs.regs, sz);
1731                         array = (void *)array + sz;
1732                 } else {
1733                         *array++ = 0;
1734                 }
1735         }
1736
1737         if (type & PERF_SAMPLE_STACK_USER) {
1738                 sz = sample->user_stack.size;
1739                 *array++ = sz;
1740                 if (sz) {
1741                         memcpy(array, sample->user_stack.data, sz);
1742                         array = (void *)array + sz;
1743                         *array++ = sz;
1744                 }
1745         }
1746
1747         if (type & PERF_SAMPLE_WEIGHT) {
1748                 *array = sample->weight;
1749                 array++;
1750         }
1751
1752         if (type & PERF_SAMPLE_DATA_SRC) {
1753                 *array = sample->data_src;
1754                 array++;
1755         }
1756
1757         if (type & PERF_SAMPLE_TRANSACTION) {
1758                 *array = sample->transaction;
1759                 array++;
1760         }
1761
1762         return 0;
1763 }
1764
1765 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1766 {
1767         return pevent_find_field(evsel->tp_format, name);
1768 }
1769
1770 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1771                          const char *name)
1772 {
1773         struct format_field *field = perf_evsel__field(evsel, name);
1774         int offset;
1775
1776         if (!field)
1777                 return NULL;
1778
1779         offset = field->offset;
1780
1781         if (field->flags & FIELD_IS_DYNAMIC) {
1782                 offset = *(int *)(sample->raw_data + field->offset);
1783                 offset &= 0xffff;
1784         }
1785
1786         return sample->raw_data + offset;
1787 }
1788
1789 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1790                        const char *name)
1791 {
1792         struct format_field *field = perf_evsel__field(evsel, name);
1793         void *ptr;
1794         u64 value;
1795
1796         if (!field)
1797                 return 0;
1798
1799         ptr = sample->raw_data + field->offset;
1800
1801         switch (field->size) {
1802         case 1:
1803                 return *(u8 *)ptr;
1804         case 2:
1805                 value = *(u16 *)ptr;
1806                 break;
1807         case 4:
1808                 value = *(u32 *)ptr;
1809                 break;
1810         case 8:
1811                 value = *(u64 *)ptr;
1812                 break;
1813         default:
1814                 return 0;
1815         }
1816
1817         if (!evsel->needs_swap)
1818                 return value;
1819
1820         switch (field->size) {
1821         case 2:
1822                 return bswap_16(value);
1823         case 4:
1824                 return bswap_32(value);
1825         case 8:
1826                 return bswap_64(value);
1827         default:
1828                 return 0;
1829         }
1830
1831         return 0;
1832 }
1833
1834 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1835 {
1836         va_list args;
1837         int ret = 0;
1838
1839         if (!*first) {
1840                 ret += fprintf(fp, ",");
1841         } else {
1842                 ret += fprintf(fp, ":");
1843                 *first = false;
1844         }
1845
1846         va_start(args, fmt);
1847         ret += vfprintf(fp, fmt, args);
1848         va_end(args);
1849         return ret;
1850 }
1851
1852 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1853 {
1854         if (value == 0)
1855                 return 0;
1856
1857         return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1858 }
1859
1860 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1861
1862 struct bit_names {
1863         int bit;
1864         const char *name;
1865 };
1866
1867 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1868                          struct bit_names *bits, bool *first)
1869 {
1870         int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1871         bool first_bit = true;
1872
1873         do {
1874                 if (value & bits[i].bit) {
1875                         printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1876                         first_bit = false;
1877                 }
1878         } while (bits[++i].name != NULL);
1879
1880         return printed;
1881 }
1882
1883 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1884 {
1885 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1886         struct bit_names bits[] = {
1887                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1888                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1889                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1890                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1891                 bit_name(IDENTIFIER),
1892                 { .name = NULL, }
1893         };
1894 #undef bit_name
1895         return bits__fprintf(fp, "sample_type", value, bits, first);
1896 }
1897
1898 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1899 {
1900 #define bit_name(n) { PERF_FORMAT_##n, #n }
1901         struct bit_names bits[] = {
1902                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1903                 bit_name(ID), bit_name(GROUP),
1904                 { .name = NULL, }
1905         };
1906 #undef bit_name
1907         return bits__fprintf(fp, "read_format", value, bits, first);
1908 }
1909
1910 int perf_evsel__fprintf(struct perf_evsel *evsel,
1911                         struct perf_attr_details *details, FILE *fp)
1912 {
1913         bool first = true;
1914         int printed = 0;
1915
1916         if (details->event_group) {
1917                 struct perf_evsel *pos;
1918
1919                 if (!perf_evsel__is_group_leader(evsel))
1920                         return 0;
1921
1922                 if (evsel->nr_members > 1)
1923                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1924
1925                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1926                 for_each_group_member(pos, evsel)
1927                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1928
1929                 if (evsel->nr_members > 1)
1930                         printed += fprintf(fp, "}");
1931                 goto out;
1932         }
1933
1934         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1935
1936         if (details->verbose || details->freq) {
1937                 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1938                                          (u64)evsel->attr.sample_freq);
1939         }
1940
1941         if (details->verbose) {
1942                 if_print(type);
1943                 if_print(config);
1944                 if_print(config1);
1945                 if_print(config2);
1946                 if_print(size);
1947                 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1948                 if (evsel->attr.read_format)
1949                         printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1950                 if_print(disabled);
1951                 if_print(inherit);
1952                 if_print(pinned);
1953                 if_print(exclusive);
1954                 if_print(exclude_user);
1955                 if_print(exclude_kernel);
1956                 if_print(exclude_hv);
1957                 if_print(exclude_idle);
1958                 if_print(mmap);
1959                 if_print(mmap2);
1960                 if_print(comm);
1961                 if_print(freq);
1962                 if_print(inherit_stat);
1963                 if_print(enable_on_exec);
1964                 if_print(task);
1965                 if_print(watermark);
1966                 if_print(precise_ip);
1967                 if_print(mmap_data);
1968                 if_print(sample_id_all);
1969                 if_print(exclude_host);
1970                 if_print(exclude_guest);
1971                 if_print(__reserved_1);
1972                 if_print(wakeup_events);
1973                 if_print(bp_type);
1974                 if_print(branch_sample_type);
1975         }
1976 out:
1977         fputc('\n', fp);
1978         return ++printed;
1979 }
1980
1981 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1982                           char *msg, size_t msgsize)
1983 {
1984         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1985             evsel->attr.type   == PERF_TYPE_HARDWARE &&
1986             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1987                 /*
1988                  * If it's cycles then fall back to hrtimer based
1989                  * cpu-clock-tick sw counter, which is always available even if
1990                  * no PMU support.
1991                  *
1992                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1993                  * b0a873e).
1994                  */
1995                 scnprintf(msg, msgsize, "%s",
1996 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1997
1998                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
1999                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2000
2001                 free(evsel->name);
2002                 evsel->name = NULL;
2003                 return true;
2004         }
2005
2006         return false;
2007 }
2008
2009 int perf_evsel__open_strerror(struct perf_evsel *evsel,
2010                               struct perf_target *target,
2011                               int err, char *msg, size_t size)
2012 {
2013         switch (err) {
2014         case EPERM:
2015         case EACCES:
2016                 return scnprintf(msg, size,
2017                  "You may not have permission to collect %sstats.\n"
2018                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2019                  " -1 - Not paranoid at all\n"
2020                  "  0 - Disallow raw tracepoint access for unpriv\n"
2021                  "  1 - Disallow cpu events for unpriv\n"
2022                  "  2 - Disallow kernel profiling for unpriv",
2023                                  target->system_wide ? "system-wide " : "");
2024         case ENOENT:
2025                 return scnprintf(msg, size, "The %s event is not supported.",
2026                                  perf_evsel__name(evsel));
2027         case EMFILE:
2028                 return scnprintf(msg, size, "%s",
2029                          "Too many events are opened.\n"
2030                          "Try again after reducing the number of events.");
2031         case ENODEV:
2032                 if (target->cpu_list)
2033                         return scnprintf(msg, size, "%s",
2034          "No such device - did you specify an out-of-range profile CPU?\n");
2035                 break;
2036         case EOPNOTSUPP:
2037                 if (evsel->attr.precise_ip)
2038                         return scnprintf(msg, size, "%s",
2039         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2040 #if defined(__i386__) || defined(__x86_64__)
2041                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2042                         return scnprintf(msg, size, "%s",
2043         "No hardware sampling interrupt available.\n"
2044         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2045 #endif
2046                 break;
2047         default:
2048                 break;
2049         }
2050
2051         return scnprintf(msg, size,
2052         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
2053         "/bin/dmesg may provide additional information.\n"
2054         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2055                          err, strerror(err), perf_evsel__name(evsel));
2056 }