Merge tag 'staging-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[cascardo/linux.git] / tools / perf / util / hist.c
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "session.h"
5 #include "sort.h"
6 #include "evlist.h"
7 #include "evsel.h"
8 #include "annotate.h"
9 #include "ui/progress.h"
10 #include <math.h>
11
12 static bool hists__filter_entry_by_dso(struct hists *hists,
13                                        struct hist_entry *he);
14 static bool hists__filter_entry_by_thread(struct hists *hists,
15                                           struct hist_entry *he);
16 static bool hists__filter_entry_by_symbol(struct hists *hists,
17                                           struct hist_entry *he);
18 static bool hists__filter_entry_by_socket(struct hists *hists,
19                                           struct hist_entry *he);
20
21 u16 hists__col_len(struct hists *hists, enum hist_column col)
22 {
23         return hists->col_len[col];
24 }
25
26 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
27 {
28         hists->col_len[col] = len;
29 }
30
31 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
32 {
33         if (len > hists__col_len(hists, col)) {
34                 hists__set_col_len(hists, col, len);
35                 return true;
36         }
37         return false;
38 }
39
40 void hists__reset_col_len(struct hists *hists)
41 {
42         enum hist_column col;
43
44         for (col = 0; col < HISTC_NR_COLS; ++col)
45                 hists__set_col_len(hists, col, 0);
46 }
47
48 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
49 {
50         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
51
52         if (hists__col_len(hists, dso) < unresolved_col_width &&
53             !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
54             !symbol_conf.dso_list)
55                 hists__set_col_len(hists, dso, unresolved_col_width);
56 }
57
58 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
59 {
60         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
61         int symlen;
62         u16 len;
63
64         /*
65          * +4 accounts for '[x] ' priv level info
66          * +2 accounts for 0x prefix on raw addresses
67          * +3 accounts for ' y ' symtab origin info
68          */
69         if (h->ms.sym) {
70                 symlen = h->ms.sym->namelen + 4;
71                 if (verbose)
72                         symlen += BITS_PER_LONG / 4 + 2 + 3;
73                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
74         } else {
75                 symlen = unresolved_col_width + 4 + 2;
76                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
77                 hists__set_unres_dso_col_len(hists, HISTC_DSO);
78         }
79
80         len = thread__comm_len(h->thread);
81         if (hists__new_col_len(hists, HISTC_COMM, len))
82                 hists__set_col_len(hists, HISTC_THREAD, len + 8);
83
84         if (h->ms.map) {
85                 len = dso__name_len(h->ms.map->dso);
86                 hists__new_col_len(hists, HISTC_DSO, len);
87         }
88
89         if (h->parent)
90                 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
91
92         if (h->branch_info) {
93                 if (h->branch_info->from.sym) {
94                         symlen = (int)h->branch_info->from.sym->namelen + 4;
95                         if (verbose)
96                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
97                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
98
99                         symlen = dso__name_len(h->branch_info->from.map->dso);
100                         hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
101                 } else {
102                         symlen = unresolved_col_width + 4 + 2;
103                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104                         hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
105                 }
106
107                 if (h->branch_info->to.sym) {
108                         symlen = (int)h->branch_info->to.sym->namelen + 4;
109                         if (verbose)
110                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
111                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
112
113                         symlen = dso__name_len(h->branch_info->to.map->dso);
114                         hists__new_col_len(hists, HISTC_DSO_TO, symlen);
115                 } else {
116                         symlen = unresolved_col_width + 4 + 2;
117                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118                         hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
119                 }
120
121                 if (h->branch_info->srcline_from)
122                         hists__new_col_len(hists, HISTC_SRCLINE_FROM,
123                                         strlen(h->branch_info->srcline_from));
124                 if (h->branch_info->srcline_to)
125                         hists__new_col_len(hists, HISTC_SRCLINE_TO,
126                                         strlen(h->branch_info->srcline_to));
127         }
128
129         if (h->mem_info) {
130                 if (h->mem_info->daddr.sym) {
131                         symlen = (int)h->mem_info->daddr.sym->namelen + 4
132                                + unresolved_col_width + 2;
133                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
134                                            symlen);
135                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
136                                            symlen + 1);
137                 } else {
138                         symlen = unresolved_col_width + 4 + 2;
139                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
140                                            symlen);
141                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
142                                            symlen);
143                 }
144
145                 if (h->mem_info->iaddr.sym) {
146                         symlen = (int)h->mem_info->iaddr.sym->namelen + 4
147                                + unresolved_col_width + 2;
148                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
149                                            symlen);
150                 } else {
151                         symlen = unresolved_col_width + 4 + 2;
152                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
153                                            symlen);
154                 }
155
156                 if (h->mem_info->daddr.map) {
157                         symlen = dso__name_len(h->mem_info->daddr.map->dso);
158                         hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
159                                            symlen);
160                 } else {
161                         symlen = unresolved_col_width + 4 + 2;
162                         hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
163                 }
164         } else {
165                 symlen = unresolved_col_width + 4 + 2;
166                 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
167                 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
168                 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
169         }
170
171         hists__new_col_len(hists, HISTC_CPU, 3);
172         hists__new_col_len(hists, HISTC_SOCKET, 6);
173         hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
174         hists__new_col_len(hists, HISTC_MEM_TLB, 22);
175         hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
176         hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
177         hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
178         hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
179
180         if (h->srcline) {
181                 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
182                 hists__new_col_len(hists, HISTC_SRCLINE, len);
183         }
184
185         if (h->srcfile)
186                 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
187
188         if (h->transaction)
189                 hists__new_col_len(hists, HISTC_TRANSACTION,
190                                    hist_entry__transaction_len());
191
192         if (h->trace_output)
193                 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
194 }
195
196 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
197 {
198         struct rb_node *next = rb_first(&hists->entries);
199         struct hist_entry *n;
200         int row = 0;
201
202         hists__reset_col_len(hists);
203
204         while (next && row++ < max_rows) {
205                 n = rb_entry(next, struct hist_entry, rb_node);
206                 if (!n->filtered)
207                         hists__calc_col_len(hists, n);
208                 next = rb_next(&n->rb_node);
209         }
210 }
211
212 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
213                                         unsigned int cpumode, u64 period)
214 {
215         switch (cpumode) {
216         case PERF_RECORD_MISC_KERNEL:
217                 he_stat->period_sys += period;
218                 break;
219         case PERF_RECORD_MISC_USER:
220                 he_stat->period_us += period;
221                 break;
222         case PERF_RECORD_MISC_GUEST_KERNEL:
223                 he_stat->period_guest_sys += period;
224                 break;
225         case PERF_RECORD_MISC_GUEST_USER:
226                 he_stat->period_guest_us += period;
227                 break;
228         default:
229                 break;
230         }
231 }
232
233 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
234                                 u64 weight)
235 {
236
237         he_stat->period         += period;
238         he_stat->weight         += weight;
239         he_stat->nr_events      += 1;
240 }
241
242 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
243 {
244         dest->period            += src->period;
245         dest->period_sys        += src->period_sys;
246         dest->period_us         += src->period_us;
247         dest->period_guest_sys  += src->period_guest_sys;
248         dest->period_guest_us   += src->period_guest_us;
249         dest->nr_events         += src->nr_events;
250         dest->weight            += src->weight;
251 }
252
253 static void he_stat__decay(struct he_stat *he_stat)
254 {
255         he_stat->period = (he_stat->period * 7) / 8;
256         he_stat->nr_events = (he_stat->nr_events * 7) / 8;
257         /* XXX need decay for weight too? */
258 }
259
260 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
261
262 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
263 {
264         u64 prev_period = he->stat.period;
265         u64 diff;
266
267         if (prev_period == 0)
268                 return true;
269
270         he_stat__decay(&he->stat);
271         if (symbol_conf.cumulate_callchain)
272                 he_stat__decay(he->stat_acc);
273         decay_callchain(he->callchain);
274
275         diff = prev_period - he->stat.period;
276
277         if (!he->depth) {
278                 hists->stats.total_period -= diff;
279                 if (!he->filtered)
280                         hists->stats.total_non_filtered_period -= diff;
281         }
282
283         if (!he->leaf) {
284                 struct hist_entry *child;
285                 struct rb_node *node = rb_first(&he->hroot_out);
286                 while (node) {
287                         child = rb_entry(node, struct hist_entry, rb_node);
288                         node = rb_next(node);
289
290                         if (hists__decay_entry(hists, child))
291                                 hists__delete_entry(hists, child);
292                 }
293         }
294
295         return he->stat.period == 0;
296 }
297
298 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
299 {
300         struct rb_root *root_in;
301         struct rb_root *root_out;
302
303         if (he->parent_he) {
304                 root_in  = &he->parent_he->hroot_in;
305                 root_out = &he->parent_he->hroot_out;
306         } else {
307                 if (hists__has(hists, need_collapse))
308                         root_in = &hists->entries_collapsed;
309                 else
310                         root_in = hists->entries_in;
311                 root_out = &hists->entries;
312         }
313
314         rb_erase(&he->rb_node_in, root_in);
315         rb_erase(&he->rb_node, root_out);
316
317         --hists->nr_entries;
318         if (!he->filtered)
319                 --hists->nr_non_filtered_entries;
320
321         hist_entry__delete(he);
322 }
323
324 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
325 {
326         struct rb_node *next = rb_first(&hists->entries);
327         struct hist_entry *n;
328
329         while (next) {
330                 n = rb_entry(next, struct hist_entry, rb_node);
331                 next = rb_next(&n->rb_node);
332                 if (((zap_user && n->level == '.') ||
333                      (zap_kernel && n->level != '.') ||
334                      hists__decay_entry(hists, n))) {
335                         hists__delete_entry(hists, n);
336                 }
337         }
338 }
339
340 void hists__delete_entries(struct hists *hists)
341 {
342         struct rb_node *next = rb_first(&hists->entries);
343         struct hist_entry *n;
344
345         while (next) {
346                 n = rb_entry(next, struct hist_entry, rb_node);
347                 next = rb_next(&n->rb_node);
348
349                 hists__delete_entry(hists, n);
350         }
351 }
352
353 /*
354  * histogram, sorted on item, collects periods
355  */
356
357 static int hist_entry__init(struct hist_entry *he,
358                             struct hist_entry *template,
359                             bool sample_self)
360 {
361         *he = *template;
362
363         if (symbol_conf.cumulate_callchain) {
364                 he->stat_acc = malloc(sizeof(he->stat));
365                 if (he->stat_acc == NULL)
366                         return -ENOMEM;
367                 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
368                 if (!sample_self)
369                         memset(&he->stat, 0, sizeof(he->stat));
370         }
371
372         map__get(he->ms.map);
373
374         if (he->branch_info) {
375                 /*
376                  * This branch info is (a part of) allocated from
377                  * sample__resolve_bstack() and will be freed after
378                  * adding new entries.  So we need to save a copy.
379                  */
380                 he->branch_info = malloc(sizeof(*he->branch_info));
381                 if (he->branch_info == NULL) {
382                         map__zput(he->ms.map);
383                         free(he->stat_acc);
384                         return -ENOMEM;
385                 }
386
387                 memcpy(he->branch_info, template->branch_info,
388                        sizeof(*he->branch_info));
389
390                 map__get(he->branch_info->from.map);
391                 map__get(he->branch_info->to.map);
392         }
393
394         if (he->mem_info) {
395                 map__get(he->mem_info->iaddr.map);
396                 map__get(he->mem_info->daddr.map);
397         }
398
399         if (symbol_conf.use_callchain)
400                 callchain_init(he->callchain);
401
402         if (he->raw_data) {
403                 he->raw_data = memdup(he->raw_data, he->raw_size);
404
405                 if (he->raw_data == NULL) {
406                         map__put(he->ms.map);
407                         if (he->branch_info) {
408                                 map__put(he->branch_info->from.map);
409                                 map__put(he->branch_info->to.map);
410                                 free(he->branch_info);
411                         }
412                         if (he->mem_info) {
413                                 map__put(he->mem_info->iaddr.map);
414                                 map__put(he->mem_info->daddr.map);
415                         }
416                         free(he->stat_acc);
417                         return -ENOMEM;
418                 }
419         }
420         INIT_LIST_HEAD(&he->pairs.node);
421         thread__get(he->thread);
422         he->hroot_in  = RB_ROOT;
423         he->hroot_out = RB_ROOT;
424
425         if (!symbol_conf.report_hierarchy)
426                 he->leaf = true;
427
428         return 0;
429 }
430
431 static void *hist_entry__zalloc(size_t size)
432 {
433         return zalloc(size + sizeof(struct hist_entry));
434 }
435
436 static void hist_entry__free(void *ptr)
437 {
438         free(ptr);
439 }
440
441 static struct hist_entry_ops default_ops = {
442         .new    = hist_entry__zalloc,
443         .free   = hist_entry__free,
444 };
445
446 static struct hist_entry *hist_entry__new(struct hist_entry *template,
447                                           bool sample_self)
448 {
449         struct hist_entry_ops *ops = template->ops;
450         size_t callchain_size = 0;
451         struct hist_entry *he;
452         int err = 0;
453
454         if (!ops)
455                 ops = template->ops = &default_ops;
456
457         if (symbol_conf.use_callchain)
458                 callchain_size = sizeof(struct callchain_root);
459
460         he = ops->new(callchain_size);
461         if (he) {
462                 err = hist_entry__init(he, template, sample_self);
463                 if (err) {
464                         ops->free(he);
465                         he = NULL;
466                 }
467         }
468
469         return he;
470 }
471
472 static u8 symbol__parent_filter(const struct symbol *parent)
473 {
474         if (symbol_conf.exclude_other && parent == NULL)
475                 return 1 << HIST_FILTER__PARENT;
476         return 0;
477 }
478
479 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
480 {
481         if (!symbol_conf.use_callchain)
482                 return;
483
484         he->hists->callchain_period += period;
485         if (!he->filtered)
486                 he->hists->callchain_non_filtered_period += period;
487 }
488
489 static struct hist_entry *hists__findnew_entry(struct hists *hists,
490                                                struct hist_entry *entry,
491                                                struct addr_location *al,
492                                                bool sample_self)
493 {
494         struct rb_node **p;
495         struct rb_node *parent = NULL;
496         struct hist_entry *he;
497         int64_t cmp;
498         u64 period = entry->stat.period;
499         u64 weight = entry->stat.weight;
500
501         p = &hists->entries_in->rb_node;
502
503         while (*p != NULL) {
504                 parent = *p;
505                 he = rb_entry(parent, struct hist_entry, rb_node_in);
506
507                 /*
508                  * Make sure that it receives arguments in a same order as
509                  * hist_entry__collapse() so that we can use an appropriate
510                  * function when searching an entry regardless which sort
511                  * keys were used.
512                  */
513                 cmp = hist_entry__cmp(he, entry);
514
515                 if (!cmp) {
516                         if (sample_self) {
517                                 he_stat__add_period(&he->stat, period, weight);
518                                 hist_entry__add_callchain_period(he, period);
519                         }
520                         if (symbol_conf.cumulate_callchain)
521                                 he_stat__add_period(he->stat_acc, period, weight);
522
523                         /*
524                          * This mem info was allocated from sample__resolve_mem
525                          * and will not be used anymore.
526                          */
527                         zfree(&entry->mem_info);
528
529                         /* If the map of an existing hist_entry has
530                          * become out-of-date due to an exec() or
531                          * similar, update it.  Otherwise we will
532                          * mis-adjust symbol addresses when computing
533                          * the history counter to increment.
534                          */
535                         if (he->ms.map != entry->ms.map) {
536                                 map__put(he->ms.map);
537                                 he->ms.map = map__get(entry->ms.map);
538                         }
539                         goto out;
540                 }
541
542                 if (cmp < 0)
543                         p = &(*p)->rb_left;
544                 else
545                         p = &(*p)->rb_right;
546         }
547
548         he = hist_entry__new(entry, sample_self);
549         if (!he)
550                 return NULL;
551
552         if (sample_self)
553                 hist_entry__add_callchain_period(he, period);
554         hists->nr_entries++;
555
556         rb_link_node(&he->rb_node_in, parent, p);
557         rb_insert_color(&he->rb_node_in, hists->entries_in);
558 out:
559         if (sample_self)
560                 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
561         if (symbol_conf.cumulate_callchain)
562                 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
563         return he;
564 }
565
566 static struct hist_entry*
567 __hists__add_entry(struct hists *hists,
568                    struct addr_location *al,
569                    struct symbol *sym_parent,
570                    struct branch_info *bi,
571                    struct mem_info *mi,
572                    struct perf_sample *sample,
573                    bool sample_self,
574                    struct hist_entry_ops *ops)
575 {
576         struct hist_entry entry = {
577                 .thread = al->thread,
578                 .comm = thread__comm(al->thread),
579                 .ms = {
580                         .map    = al->map,
581                         .sym    = al->sym,
582                 },
583                 .socket  = al->socket,
584                 .cpu     = al->cpu,
585                 .cpumode = al->cpumode,
586                 .ip      = al->addr,
587                 .level   = al->level,
588                 .stat = {
589                         .nr_events = 1,
590                         .period = sample->period,
591                         .weight = sample->weight,
592                 },
593                 .parent = sym_parent,
594                 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
595                 .hists  = hists,
596                 .branch_info = bi,
597                 .mem_info = mi,
598                 .transaction = sample->transaction,
599                 .raw_data = sample->raw_data,
600                 .raw_size = sample->raw_size,
601                 .ops = ops,
602         };
603
604         return hists__findnew_entry(hists, &entry, al, sample_self);
605 }
606
607 struct hist_entry *hists__add_entry(struct hists *hists,
608                                     struct addr_location *al,
609                                     struct symbol *sym_parent,
610                                     struct branch_info *bi,
611                                     struct mem_info *mi,
612                                     struct perf_sample *sample,
613                                     bool sample_self)
614 {
615         return __hists__add_entry(hists, al, sym_parent, bi, mi,
616                                   sample, sample_self, NULL);
617 }
618
619 struct hist_entry *hists__add_entry_ops(struct hists *hists,
620                                         struct hist_entry_ops *ops,
621                                         struct addr_location *al,
622                                         struct symbol *sym_parent,
623                                         struct branch_info *bi,
624                                         struct mem_info *mi,
625                                         struct perf_sample *sample,
626                                         bool sample_self)
627 {
628         return __hists__add_entry(hists, al, sym_parent, bi, mi,
629                                   sample, sample_self, ops);
630 }
631
632 static int
633 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
634                     struct addr_location *al __maybe_unused)
635 {
636         return 0;
637 }
638
639 static int
640 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
641                         struct addr_location *al __maybe_unused)
642 {
643         return 0;
644 }
645
646 static int
647 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
648 {
649         struct perf_sample *sample = iter->sample;
650         struct mem_info *mi;
651
652         mi = sample__resolve_mem(sample, al);
653         if (mi == NULL)
654                 return -ENOMEM;
655
656         iter->priv = mi;
657         return 0;
658 }
659
660 static int
661 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
662 {
663         u64 cost;
664         struct mem_info *mi = iter->priv;
665         struct hists *hists = evsel__hists(iter->evsel);
666         struct perf_sample *sample = iter->sample;
667         struct hist_entry *he;
668
669         if (mi == NULL)
670                 return -EINVAL;
671
672         cost = sample->weight;
673         if (!cost)
674                 cost = 1;
675
676         /*
677          * must pass period=weight in order to get the correct
678          * sorting from hists__collapse_resort() which is solely
679          * based on periods. We want sorting be done on nr_events * weight
680          * and this is indirectly achieved by passing period=weight here
681          * and the he_stat__add_period() function.
682          */
683         sample->period = cost;
684
685         he = hists__add_entry(hists, al, iter->parent, NULL, mi,
686                               sample, true);
687         if (!he)
688                 return -ENOMEM;
689
690         iter->he = he;
691         return 0;
692 }
693
694 static int
695 iter_finish_mem_entry(struct hist_entry_iter *iter,
696                       struct addr_location *al __maybe_unused)
697 {
698         struct perf_evsel *evsel = iter->evsel;
699         struct hists *hists = evsel__hists(evsel);
700         struct hist_entry *he = iter->he;
701         int err = -EINVAL;
702
703         if (he == NULL)
704                 goto out;
705
706         hists__inc_nr_samples(hists, he->filtered);
707
708         err = hist_entry__append_callchain(he, iter->sample);
709
710 out:
711         /*
712          * We don't need to free iter->priv (mem_info) here since the mem info
713          * was either already freed in hists__findnew_entry() or passed to a
714          * new hist entry by hist_entry__new().
715          */
716         iter->priv = NULL;
717
718         iter->he = NULL;
719         return err;
720 }
721
722 static int
723 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
724 {
725         struct branch_info *bi;
726         struct perf_sample *sample = iter->sample;
727
728         bi = sample__resolve_bstack(sample, al);
729         if (!bi)
730                 return -ENOMEM;
731
732         iter->curr = 0;
733         iter->total = sample->branch_stack->nr;
734
735         iter->priv = bi;
736         return 0;
737 }
738
739 static int
740 iter_add_single_branch_entry(struct hist_entry_iter *iter,
741                              struct addr_location *al __maybe_unused)
742 {
743         /* to avoid calling callback function */
744         iter->he = NULL;
745
746         return 0;
747 }
748
749 static int
750 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
751 {
752         struct branch_info *bi = iter->priv;
753         int i = iter->curr;
754
755         if (bi == NULL)
756                 return 0;
757
758         if (iter->curr >= iter->total)
759                 return 0;
760
761         al->map = bi[i].to.map;
762         al->sym = bi[i].to.sym;
763         al->addr = bi[i].to.addr;
764         return 1;
765 }
766
767 static int
768 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
769 {
770         struct branch_info *bi;
771         struct perf_evsel *evsel = iter->evsel;
772         struct hists *hists = evsel__hists(evsel);
773         struct perf_sample *sample = iter->sample;
774         struct hist_entry *he = NULL;
775         int i = iter->curr;
776         int err = 0;
777
778         bi = iter->priv;
779
780         if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
781                 goto out;
782
783         /*
784          * The report shows the percentage of total branches captured
785          * and not events sampled. Thus we use a pseudo period of 1.
786          */
787         sample->period = 1;
788         sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
789
790         he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
791                               sample, true);
792         if (he == NULL)
793                 return -ENOMEM;
794
795         hists__inc_nr_samples(hists, he->filtered);
796
797 out:
798         iter->he = he;
799         iter->curr++;
800         return err;
801 }
802
803 static int
804 iter_finish_branch_entry(struct hist_entry_iter *iter,
805                          struct addr_location *al __maybe_unused)
806 {
807         zfree(&iter->priv);
808         iter->he = NULL;
809
810         return iter->curr >= iter->total ? 0 : -1;
811 }
812
813 static int
814 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
815                           struct addr_location *al __maybe_unused)
816 {
817         return 0;
818 }
819
820 static int
821 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
822 {
823         struct perf_evsel *evsel = iter->evsel;
824         struct perf_sample *sample = iter->sample;
825         struct hist_entry *he;
826
827         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
828                               sample, true);
829         if (he == NULL)
830                 return -ENOMEM;
831
832         iter->he = he;
833         return 0;
834 }
835
836 static int
837 iter_finish_normal_entry(struct hist_entry_iter *iter,
838                          struct addr_location *al __maybe_unused)
839 {
840         struct hist_entry *he = iter->he;
841         struct perf_evsel *evsel = iter->evsel;
842         struct perf_sample *sample = iter->sample;
843
844         if (he == NULL)
845                 return 0;
846
847         iter->he = NULL;
848
849         hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
850
851         return hist_entry__append_callchain(he, sample);
852 }
853
854 static int
855 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
856                               struct addr_location *al __maybe_unused)
857 {
858         struct hist_entry **he_cache;
859
860         callchain_cursor_commit(&callchain_cursor);
861
862         /*
863          * This is for detecting cycles or recursions so that they're
864          * cumulated only one time to prevent entries more than 100%
865          * overhead.
866          */
867         he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
868         if (he_cache == NULL)
869                 return -ENOMEM;
870
871         iter->priv = he_cache;
872         iter->curr = 0;
873
874         return 0;
875 }
876
877 static int
878 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
879                                  struct addr_location *al)
880 {
881         struct perf_evsel *evsel = iter->evsel;
882         struct hists *hists = evsel__hists(evsel);
883         struct perf_sample *sample = iter->sample;
884         struct hist_entry **he_cache = iter->priv;
885         struct hist_entry *he;
886         int err = 0;
887
888         he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
889                               sample, true);
890         if (he == NULL)
891                 return -ENOMEM;
892
893         iter->he = he;
894         he_cache[iter->curr++] = he;
895
896         hist_entry__append_callchain(he, sample);
897
898         /*
899          * We need to re-initialize the cursor since callchain_append()
900          * advanced the cursor to the end.
901          */
902         callchain_cursor_commit(&callchain_cursor);
903
904         hists__inc_nr_samples(hists, he->filtered);
905
906         return err;
907 }
908
909 static int
910 iter_next_cumulative_entry(struct hist_entry_iter *iter,
911                            struct addr_location *al)
912 {
913         struct callchain_cursor_node *node;
914
915         node = callchain_cursor_current(&callchain_cursor);
916         if (node == NULL)
917                 return 0;
918
919         return fill_callchain_info(al, node, iter->hide_unresolved);
920 }
921
922 static int
923 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
924                                struct addr_location *al)
925 {
926         struct perf_evsel *evsel = iter->evsel;
927         struct perf_sample *sample = iter->sample;
928         struct hist_entry **he_cache = iter->priv;
929         struct hist_entry *he;
930         struct hist_entry he_tmp = {
931                 .hists = evsel__hists(evsel),
932                 .cpu = al->cpu,
933                 .thread = al->thread,
934                 .comm = thread__comm(al->thread),
935                 .ip = al->addr,
936                 .ms = {
937                         .map = al->map,
938                         .sym = al->sym,
939                 },
940                 .parent = iter->parent,
941                 .raw_data = sample->raw_data,
942                 .raw_size = sample->raw_size,
943         };
944         int i;
945         struct callchain_cursor cursor;
946
947         callchain_cursor_snapshot(&cursor, &callchain_cursor);
948
949         callchain_cursor_advance(&callchain_cursor);
950
951         /*
952          * Check if there's duplicate entries in the callchain.
953          * It's possible that it has cycles or recursive calls.
954          */
955         for (i = 0; i < iter->curr; i++) {
956                 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
957                         /* to avoid calling callback function */
958                         iter->he = NULL;
959                         return 0;
960                 }
961         }
962
963         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
964                               sample, false);
965         if (he == NULL)
966                 return -ENOMEM;
967
968         iter->he = he;
969         he_cache[iter->curr++] = he;
970
971         if (symbol_conf.use_callchain)
972                 callchain_append(he->callchain, &cursor, sample->period);
973         return 0;
974 }
975
976 static int
977 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
978                              struct addr_location *al __maybe_unused)
979 {
980         zfree(&iter->priv);
981         iter->he = NULL;
982
983         return 0;
984 }
985
986 const struct hist_iter_ops hist_iter_mem = {
987         .prepare_entry          = iter_prepare_mem_entry,
988         .add_single_entry       = iter_add_single_mem_entry,
989         .next_entry             = iter_next_nop_entry,
990         .add_next_entry         = iter_add_next_nop_entry,
991         .finish_entry           = iter_finish_mem_entry,
992 };
993
994 const struct hist_iter_ops hist_iter_branch = {
995         .prepare_entry          = iter_prepare_branch_entry,
996         .add_single_entry       = iter_add_single_branch_entry,
997         .next_entry             = iter_next_branch_entry,
998         .add_next_entry         = iter_add_next_branch_entry,
999         .finish_entry           = iter_finish_branch_entry,
1000 };
1001
1002 const struct hist_iter_ops hist_iter_normal = {
1003         .prepare_entry          = iter_prepare_normal_entry,
1004         .add_single_entry       = iter_add_single_normal_entry,
1005         .next_entry             = iter_next_nop_entry,
1006         .add_next_entry         = iter_add_next_nop_entry,
1007         .finish_entry           = iter_finish_normal_entry,
1008 };
1009
1010 const struct hist_iter_ops hist_iter_cumulative = {
1011         .prepare_entry          = iter_prepare_cumulative_entry,
1012         .add_single_entry       = iter_add_single_cumulative_entry,
1013         .next_entry             = iter_next_cumulative_entry,
1014         .add_next_entry         = iter_add_next_cumulative_entry,
1015         .finish_entry           = iter_finish_cumulative_entry,
1016 };
1017
1018 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1019                          int max_stack_depth, void *arg)
1020 {
1021         int err, err2;
1022
1023         err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1024                                         iter->evsel, al, max_stack_depth);
1025         if (err)
1026                 return err;
1027
1028         iter->max_stack = max_stack_depth;
1029
1030         err = iter->ops->prepare_entry(iter, al);
1031         if (err)
1032                 goto out;
1033
1034         err = iter->ops->add_single_entry(iter, al);
1035         if (err)
1036                 goto out;
1037
1038         if (iter->he && iter->add_entry_cb) {
1039                 err = iter->add_entry_cb(iter, al, true, arg);
1040                 if (err)
1041                         goto out;
1042         }
1043
1044         while (iter->ops->next_entry(iter, al)) {
1045                 err = iter->ops->add_next_entry(iter, al);
1046                 if (err)
1047                         break;
1048
1049                 if (iter->he && iter->add_entry_cb) {
1050                         err = iter->add_entry_cb(iter, al, false, arg);
1051                         if (err)
1052                                 goto out;
1053                 }
1054         }
1055
1056 out:
1057         err2 = iter->ops->finish_entry(iter, al);
1058         if (!err)
1059                 err = err2;
1060
1061         return err;
1062 }
1063
1064 int64_t
1065 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1066 {
1067         struct hists *hists = left->hists;
1068         struct perf_hpp_fmt *fmt;
1069         int64_t cmp = 0;
1070
1071         hists__for_each_sort_list(hists, fmt) {
1072                 if (perf_hpp__is_dynamic_entry(fmt) &&
1073                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1074                         continue;
1075
1076                 cmp = fmt->cmp(fmt, left, right);
1077                 if (cmp)
1078                         break;
1079         }
1080
1081         return cmp;
1082 }
1083
1084 int64_t
1085 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1086 {
1087         struct hists *hists = left->hists;
1088         struct perf_hpp_fmt *fmt;
1089         int64_t cmp = 0;
1090
1091         hists__for_each_sort_list(hists, fmt) {
1092                 if (perf_hpp__is_dynamic_entry(fmt) &&
1093                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1094                         continue;
1095
1096                 cmp = fmt->collapse(fmt, left, right);
1097                 if (cmp)
1098                         break;
1099         }
1100
1101         return cmp;
1102 }
1103
1104 void hist_entry__delete(struct hist_entry *he)
1105 {
1106         struct hist_entry_ops *ops = he->ops;
1107
1108         thread__zput(he->thread);
1109         map__zput(he->ms.map);
1110
1111         if (he->branch_info) {
1112                 map__zput(he->branch_info->from.map);
1113                 map__zput(he->branch_info->to.map);
1114                 free_srcline(he->branch_info->srcline_from);
1115                 free_srcline(he->branch_info->srcline_to);
1116                 zfree(&he->branch_info);
1117         }
1118
1119         if (he->mem_info) {
1120                 map__zput(he->mem_info->iaddr.map);
1121                 map__zput(he->mem_info->daddr.map);
1122                 zfree(&he->mem_info);
1123         }
1124
1125         zfree(&he->stat_acc);
1126         free_srcline(he->srcline);
1127         if (he->srcfile && he->srcfile[0])
1128                 free(he->srcfile);
1129         free_callchain(he->callchain);
1130         free(he->trace_output);
1131         free(he->raw_data);
1132         ops->free(he);
1133 }
1134
1135 /*
1136  * If this is not the last column, then we need to pad it according to the
1137  * pre-calculated max lenght for this column, otherwise don't bother adding
1138  * spaces because that would break viewing this with, for instance, 'less',
1139  * that would show tons of trailing spaces when a long C++ demangled method
1140  * names is sampled.
1141 */
1142 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1143                                    struct perf_hpp_fmt *fmt, int printed)
1144 {
1145         if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1146                 const int width = fmt->width(fmt, hpp, he->hists);
1147                 if (printed < width) {
1148                         advance_hpp(hpp, printed);
1149                         printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1150                 }
1151         }
1152
1153         return printed;
1154 }
1155
1156 /*
1157  * collapse the histogram
1158  */
1159
1160 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1161 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1162                                        enum hist_filter type);
1163
1164 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1165
1166 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1167 {
1168         return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1169 }
1170
1171 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1172                                                 enum hist_filter type,
1173                                                 fmt_chk_fn check)
1174 {
1175         struct perf_hpp_fmt *fmt;
1176         bool type_match = false;
1177         struct hist_entry *parent = he->parent_he;
1178
1179         switch (type) {
1180         case HIST_FILTER__THREAD:
1181                 if (symbol_conf.comm_list == NULL &&
1182                     symbol_conf.pid_list == NULL &&
1183                     symbol_conf.tid_list == NULL)
1184                         return;
1185                 break;
1186         case HIST_FILTER__DSO:
1187                 if (symbol_conf.dso_list == NULL)
1188                         return;
1189                 break;
1190         case HIST_FILTER__SYMBOL:
1191                 if (symbol_conf.sym_list == NULL)
1192                         return;
1193                 break;
1194         case HIST_FILTER__PARENT:
1195         case HIST_FILTER__GUEST:
1196         case HIST_FILTER__HOST:
1197         case HIST_FILTER__SOCKET:
1198         default:
1199                 return;
1200         }
1201
1202         /* if it's filtered by own fmt, it has to have filter bits */
1203         perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1204                 if (check(fmt)) {
1205                         type_match = true;
1206                         break;
1207                 }
1208         }
1209
1210         if (type_match) {
1211                 /*
1212                  * If the filter is for current level entry, propagate
1213                  * filter marker to parents.  The marker bit was
1214                  * already set by default so it only needs to clear
1215                  * non-filtered entries.
1216                  */
1217                 if (!(he->filtered & (1 << type))) {
1218                         while (parent) {
1219                                 parent->filtered &= ~(1 << type);
1220                                 parent = parent->parent_he;
1221                         }
1222                 }
1223         } else {
1224                 /*
1225                  * If current entry doesn't have matching formats, set
1226                  * filter marker for upper level entries.  it will be
1227                  * cleared if its lower level entries is not filtered.
1228                  *
1229                  * For lower-level entries, it inherits parent's
1230                  * filter bit so that lower level entries of a
1231                  * non-filtered entry won't set the filter marker.
1232                  */
1233                 if (parent == NULL)
1234                         he->filtered |= (1 << type);
1235                 else
1236                         he->filtered |= (parent->filtered & (1 << type));
1237         }
1238 }
1239
1240 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1241 {
1242         hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1243                                             check_thread_entry);
1244
1245         hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1246                                             perf_hpp__is_dso_entry);
1247
1248         hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1249                                             perf_hpp__is_sym_entry);
1250
1251         hists__apply_filters(he->hists, he);
1252 }
1253
1254 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1255                                                  struct rb_root *root,
1256                                                  struct hist_entry *he,
1257                                                  struct hist_entry *parent_he,
1258                                                  struct perf_hpp_list *hpp_list)
1259 {
1260         struct rb_node **p = &root->rb_node;
1261         struct rb_node *parent = NULL;
1262         struct hist_entry *iter, *new;
1263         struct perf_hpp_fmt *fmt;
1264         int64_t cmp;
1265
1266         while (*p != NULL) {
1267                 parent = *p;
1268                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1269
1270                 cmp = 0;
1271                 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1272                         cmp = fmt->collapse(fmt, iter, he);
1273                         if (cmp)
1274                                 break;
1275                 }
1276
1277                 if (!cmp) {
1278                         he_stat__add_stat(&iter->stat, &he->stat);
1279                         return iter;
1280                 }
1281
1282                 if (cmp < 0)
1283                         p = &parent->rb_left;
1284                 else
1285                         p = &parent->rb_right;
1286         }
1287
1288         new = hist_entry__new(he, true);
1289         if (new == NULL)
1290                 return NULL;
1291
1292         hists->nr_entries++;
1293
1294         /* save related format list for output */
1295         new->hpp_list = hpp_list;
1296         new->parent_he = parent_he;
1297
1298         hist_entry__apply_hierarchy_filters(new);
1299
1300         /* some fields are now passed to 'new' */
1301         perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1302                 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1303                         he->trace_output = NULL;
1304                 else
1305                         new->trace_output = NULL;
1306
1307                 if (perf_hpp__is_srcline_entry(fmt))
1308                         he->srcline = NULL;
1309                 else
1310                         new->srcline = NULL;
1311
1312                 if (perf_hpp__is_srcfile_entry(fmt))
1313                         he->srcfile = NULL;
1314                 else
1315                         new->srcfile = NULL;
1316         }
1317
1318         rb_link_node(&new->rb_node_in, parent, p);
1319         rb_insert_color(&new->rb_node_in, root);
1320         return new;
1321 }
1322
1323 static int hists__hierarchy_insert_entry(struct hists *hists,
1324                                          struct rb_root *root,
1325                                          struct hist_entry *he)
1326 {
1327         struct perf_hpp_list_node *node;
1328         struct hist_entry *new_he = NULL;
1329         struct hist_entry *parent = NULL;
1330         int depth = 0;
1331         int ret = 0;
1332
1333         list_for_each_entry(node, &hists->hpp_formats, list) {
1334                 /* skip period (overhead) and elided columns */
1335                 if (node->level == 0 || node->skip)
1336                         continue;
1337
1338                 /* insert copy of 'he' for each fmt into the hierarchy */
1339                 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1340                 if (new_he == NULL) {
1341                         ret = -1;
1342                         break;
1343                 }
1344
1345                 root = &new_he->hroot_in;
1346                 new_he->depth = depth++;
1347                 parent = new_he;
1348         }
1349
1350         if (new_he) {
1351                 new_he->leaf = true;
1352
1353                 if (symbol_conf.use_callchain) {
1354                         callchain_cursor_reset(&callchain_cursor);
1355                         if (callchain_merge(&callchain_cursor,
1356                                             new_he->callchain,
1357                                             he->callchain) < 0)
1358                                 ret = -1;
1359                 }
1360         }
1361
1362         /* 'he' is no longer used */
1363         hist_entry__delete(he);
1364
1365         /* return 0 (or -1) since it already applied filters */
1366         return ret;
1367 }
1368
1369 static int hists__collapse_insert_entry(struct hists *hists,
1370                                         struct rb_root *root,
1371                                         struct hist_entry *he)
1372 {
1373         struct rb_node **p = &root->rb_node;
1374         struct rb_node *parent = NULL;
1375         struct hist_entry *iter;
1376         int64_t cmp;
1377
1378         if (symbol_conf.report_hierarchy)
1379                 return hists__hierarchy_insert_entry(hists, root, he);
1380
1381         while (*p != NULL) {
1382                 parent = *p;
1383                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1384
1385                 cmp = hist_entry__collapse(iter, he);
1386
1387                 if (!cmp) {
1388                         int ret = 0;
1389
1390                         he_stat__add_stat(&iter->stat, &he->stat);
1391                         if (symbol_conf.cumulate_callchain)
1392                                 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1393
1394                         if (symbol_conf.use_callchain) {
1395                                 callchain_cursor_reset(&callchain_cursor);
1396                                 if (callchain_merge(&callchain_cursor,
1397                                                     iter->callchain,
1398                                                     he->callchain) < 0)
1399                                         ret = -1;
1400                         }
1401                         hist_entry__delete(he);
1402                         return ret;
1403                 }
1404
1405                 if (cmp < 0)
1406                         p = &(*p)->rb_left;
1407                 else
1408                         p = &(*p)->rb_right;
1409         }
1410         hists->nr_entries++;
1411
1412         rb_link_node(&he->rb_node_in, parent, p);
1413         rb_insert_color(&he->rb_node_in, root);
1414         return 1;
1415 }
1416
1417 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1418 {
1419         struct rb_root *root;
1420
1421         pthread_mutex_lock(&hists->lock);
1422
1423         root = hists->entries_in;
1424         if (++hists->entries_in > &hists->entries_in_array[1])
1425                 hists->entries_in = &hists->entries_in_array[0];
1426
1427         pthread_mutex_unlock(&hists->lock);
1428
1429         return root;
1430 }
1431
1432 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1433 {
1434         hists__filter_entry_by_dso(hists, he);
1435         hists__filter_entry_by_thread(hists, he);
1436         hists__filter_entry_by_symbol(hists, he);
1437         hists__filter_entry_by_socket(hists, he);
1438 }
1439
1440 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1441 {
1442         struct rb_root *root;
1443         struct rb_node *next;
1444         struct hist_entry *n;
1445         int ret;
1446
1447         if (!hists__has(hists, need_collapse))
1448                 return 0;
1449
1450         hists->nr_entries = 0;
1451
1452         root = hists__get_rotate_entries_in(hists);
1453
1454         next = rb_first(root);
1455
1456         while (next) {
1457                 if (session_done())
1458                         break;
1459                 n = rb_entry(next, struct hist_entry, rb_node_in);
1460                 next = rb_next(&n->rb_node_in);
1461
1462                 rb_erase(&n->rb_node_in, root);
1463                 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1464                 if (ret < 0)
1465                         return -1;
1466
1467                 if (ret) {
1468                         /*
1469                          * If it wasn't combined with one of the entries already
1470                          * collapsed, we need to apply the filters that may have
1471                          * been set by, say, the hist_browser.
1472                          */
1473                         hists__apply_filters(hists, n);
1474                 }
1475                 if (prog)
1476                         ui_progress__update(prog, 1);
1477         }
1478         return 0;
1479 }
1480
1481 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1482 {
1483         struct hists *hists = a->hists;
1484         struct perf_hpp_fmt *fmt;
1485         int64_t cmp = 0;
1486
1487         hists__for_each_sort_list(hists, fmt) {
1488                 if (perf_hpp__should_skip(fmt, a->hists))
1489                         continue;
1490
1491                 cmp = fmt->sort(fmt, a, b);
1492                 if (cmp)
1493                         break;
1494         }
1495
1496         return cmp;
1497 }
1498
1499 static void hists__reset_filter_stats(struct hists *hists)
1500 {
1501         hists->nr_non_filtered_entries = 0;
1502         hists->stats.total_non_filtered_period = 0;
1503 }
1504
1505 void hists__reset_stats(struct hists *hists)
1506 {
1507         hists->nr_entries = 0;
1508         hists->stats.total_period = 0;
1509
1510         hists__reset_filter_stats(hists);
1511 }
1512
1513 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1514 {
1515         hists->nr_non_filtered_entries++;
1516         hists->stats.total_non_filtered_period += h->stat.period;
1517 }
1518
1519 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1520 {
1521         if (!h->filtered)
1522                 hists__inc_filter_stats(hists, h);
1523
1524         hists->nr_entries++;
1525         hists->stats.total_period += h->stat.period;
1526 }
1527
1528 static void hierarchy_recalc_total_periods(struct hists *hists)
1529 {
1530         struct rb_node *node;
1531         struct hist_entry *he;
1532
1533         node = rb_first(&hists->entries);
1534
1535         hists->stats.total_period = 0;
1536         hists->stats.total_non_filtered_period = 0;
1537
1538         /*
1539          * recalculate total period using top-level entries only
1540          * since lower level entries only see non-filtered entries
1541          * but upper level entries have sum of both entries.
1542          */
1543         while (node) {
1544                 he = rb_entry(node, struct hist_entry, rb_node);
1545                 node = rb_next(node);
1546
1547                 hists->stats.total_period += he->stat.period;
1548                 if (!he->filtered)
1549                         hists->stats.total_non_filtered_period += he->stat.period;
1550         }
1551 }
1552
1553 static void hierarchy_insert_output_entry(struct rb_root *root,
1554                                           struct hist_entry *he)
1555 {
1556         struct rb_node **p = &root->rb_node;
1557         struct rb_node *parent = NULL;
1558         struct hist_entry *iter;
1559         struct perf_hpp_fmt *fmt;
1560
1561         while (*p != NULL) {
1562                 parent = *p;
1563                 iter = rb_entry(parent, struct hist_entry, rb_node);
1564
1565                 if (hist_entry__sort(he, iter) > 0)
1566                         p = &parent->rb_left;
1567                 else
1568                         p = &parent->rb_right;
1569         }
1570
1571         rb_link_node(&he->rb_node, parent, p);
1572         rb_insert_color(&he->rb_node, root);
1573
1574         /* update column width of dynamic entry */
1575         perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1576                 if (perf_hpp__is_dynamic_entry(fmt))
1577                         fmt->sort(fmt, he, NULL);
1578         }
1579 }
1580
1581 static void hists__hierarchy_output_resort(struct hists *hists,
1582                                            struct ui_progress *prog,
1583                                            struct rb_root *root_in,
1584                                            struct rb_root *root_out,
1585                                            u64 min_callchain_hits,
1586                                            bool use_callchain)
1587 {
1588         struct rb_node *node;
1589         struct hist_entry *he;
1590
1591         *root_out = RB_ROOT;
1592         node = rb_first(root_in);
1593
1594         while (node) {
1595                 he = rb_entry(node, struct hist_entry, rb_node_in);
1596                 node = rb_next(node);
1597
1598                 hierarchy_insert_output_entry(root_out, he);
1599
1600                 if (prog)
1601                         ui_progress__update(prog, 1);
1602
1603                 if (!he->leaf) {
1604                         hists__hierarchy_output_resort(hists, prog,
1605                                                        &he->hroot_in,
1606                                                        &he->hroot_out,
1607                                                        min_callchain_hits,
1608                                                        use_callchain);
1609                         hists->nr_entries++;
1610                         if (!he->filtered) {
1611                                 hists->nr_non_filtered_entries++;
1612                                 hists__calc_col_len(hists, he);
1613                         }
1614
1615                         continue;
1616                 }
1617
1618                 if (!use_callchain)
1619                         continue;
1620
1621                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1622                         u64 total = he->stat.period;
1623
1624                         if (symbol_conf.cumulate_callchain)
1625                                 total = he->stat_acc->period;
1626
1627                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1628                 }
1629
1630                 callchain_param.sort(&he->sorted_chain, he->callchain,
1631                                      min_callchain_hits, &callchain_param);
1632         }
1633 }
1634
1635 static void __hists__insert_output_entry(struct rb_root *entries,
1636                                          struct hist_entry *he,
1637                                          u64 min_callchain_hits,
1638                                          bool use_callchain)
1639 {
1640         struct rb_node **p = &entries->rb_node;
1641         struct rb_node *parent = NULL;
1642         struct hist_entry *iter;
1643         struct perf_hpp_fmt *fmt;
1644
1645         if (use_callchain) {
1646                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1647                         u64 total = he->stat.period;
1648
1649                         if (symbol_conf.cumulate_callchain)
1650                                 total = he->stat_acc->period;
1651
1652                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1653                 }
1654                 callchain_param.sort(&he->sorted_chain, he->callchain,
1655                                       min_callchain_hits, &callchain_param);
1656         }
1657
1658         while (*p != NULL) {
1659                 parent = *p;
1660                 iter = rb_entry(parent, struct hist_entry, rb_node);
1661
1662                 if (hist_entry__sort(he, iter) > 0)
1663                         p = &(*p)->rb_left;
1664                 else
1665                         p = &(*p)->rb_right;
1666         }
1667
1668         rb_link_node(&he->rb_node, parent, p);
1669         rb_insert_color(&he->rb_node, entries);
1670
1671         perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1672                 if (perf_hpp__is_dynamic_entry(fmt) &&
1673                     perf_hpp__defined_dynamic_entry(fmt, he->hists))
1674                         fmt->sort(fmt, he, NULL);  /* update column width */
1675         }
1676 }
1677
1678 static void output_resort(struct hists *hists, struct ui_progress *prog,
1679                           bool use_callchain, hists__resort_cb_t cb)
1680 {
1681         struct rb_root *root;
1682         struct rb_node *next;
1683         struct hist_entry *n;
1684         u64 callchain_total;
1685         u64 min_callchain_hits;
1686
1687         callchain_total = hists->callchain_period;
1688         if (symbol_conf.filter_relative)
1689                 callchain_total = hists->callchain_non_filtered_period;
1690
1691         min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1692
1693         hists__reset_stats(hists);
1694         hists__reset_col_len(hists);
1695
1696         if (symbol_conf.report_hierarchy) {
1697                 hists__hierarchy_output_resort(hists, prog,
1698                                                &hists->entries_collapsed,
1699                                                &hists->entries,
1700                                                min_callchain_hits,
1701                                                use_callchain);
1702                 hierarchy_recalc_total_periods(hists);
1703                 return;
1704         }
1705
1706         if (hists__has(hists, need_collapse))
1707                 root = &hists->entries_collapsed;
1708         else
1709                 root = hists->entries_in;
1710
1711         next = rb_first(root);
1712         hists->entries = RB_ROOT;
1713
1714         while (next) {
1715                 n = rb_entry(next, struct hist_entry, rb_node_in);
1716                 next = rb_next(&n->rb_node_in);
1717
1718                 if (cb && cb(n))
1719                         continue;
1720
1721                 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1722                 hists__inc_stats(hists, n);
1723
1724                 if (!n->filtered)
1725                         hists__calc_col_len(hists, n);
1726
1727                 if (prog)
1728                         ui_progress__update(prog, 1);
1729         }
1730 }
1731
1732 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1733 {
1734         bool use_callchain;
1735
1736         if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1737                 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1738         else
1739                 use_callchain = symbol_conf.use_callchain;
1740
1741         output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1742 }
1743
1744 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1745 {
1746         output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1747 }
1748
1749 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1750                              hists__resort_cb_t cb)
1751 {
1752         output_resort(hists, prog, symbol_conf.use_callchain, cb);
1753 }
1754
1755 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1756 {
1757         if (he->leaf || hmd == HMD_FORCE_SIBLING)
1758                 return false;
1759
1760         if (he->unfolded || hmd == HMD_FORCE_CHILD)
1761                 return true;
1762
1763         return false;
1764 }
1765
1766 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1767 {
1768         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1769
1770         while (can_goto_child(he, HMD_NORMAL)) {
1771                 node = rb_last(&he->hroot_out);
1772                 he = rb_entry(node, struct hist_entry, rb_node);
1773         }
1774         return node;
1775 }
1776
1777 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1778 {
1779         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1780
1781         if (can_goto_child(he, hmd))
1782                 node = rb_first(&he->hroot_out);
1783         else
1784                 node = rb_next(node);
1785
1786         while (node == NULL) {
1787                 he = he->parent_he;
1788                 if (he == NULL)
1789                         break;
1790
1791                 node = rb_next(&he->rb_node);
1792         }
1793         return node;
1794 }
1795
1796 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1797 {
1798         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1799
1800         node = rb_prev(node);
1801         if (node)
1802                 return rb_hierarchy_last(node);
1803
1804         he = he->parent_he;
1805         if (he == NULL)
1806                 return NULL;
1807
1808         return &he->rb_node;
1809 }
1810
1811 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1812 {
1813         struct rb_node *node;
1814         struct hist_entry *child;
1815         float percent;
1816
1817         if (he->leaf)
1818                 return false;
1819
1820         node = rb_first(&he->hroot_out);
1821         child = rb_entry(node, struct hist_entry, rb_node);
1822
1823         while (node && child->filtered) {
1824                 node = rb_next(node);
1825                 child = rb_entry(node, struct hist_entry, rb_node);
1826         }
1827
1828         if (node)
1829                 percent = hist_entry__get_percent_limit(child);
1830         else
1831                 percent = 0;
1832
1833         return node && percent >= limit;
1834 }
1835
1836 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1837                                        enum hist_filter filter)
1838 {
1839         h->filtered &= ~(1 << filter);
1840
1841         if (symbol_conf.report_hierarchy) {
1842                 struct hist_entry *parent = h->parent_he;
1843
1844                 while (parent) {
1845                         he_stat__add_stat(&parent->stat, &h->stat);
1846
1847                         parent->filtered &= ~(1 << filter);
1848
1849                         if (parent->filtered)
1850                                 goto next;
1851
1852                         /* force fold unfiltered entry for simplicity */
1853                         parent->unfolded = false;
1854                         parent->has_no_entry = false;
1855                         parent->row_offset = 0;
1856                         parent->nr_rows = 0;
1857 next:
1858                         parent = parent->parent_he;
1859                 }
1860         }
1861
1862         if (h->filtered)
1863                 return;
1864
1865         /* force fold unfiltered entry for simplicity */
1866         h->unfolded = false;
1867         h->has_no_entry = false;
1868         h->row_offset = 0;
1869         h->nr_rows = 0;
1870
1871         hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1872
1873         hists__inc_filter_stats(hists, h);
1874         hists__calc_col_len(hists, h);
1875 }
1876
1877
1878 static bool hists__filter_entry_by_dso(struct hists *hists,
1879                                        struct hist_entry *he)
1880 {
1881         if (hists->dso_filter != NULL &&
1882             (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1883                 he->filtered |= (1 << HIST_FILTER__DSO);
1884                 return true;
1885         }
1886
1887         return false;
1888 }
1889
1890 static bool hists__filter_entry_by_thread(struct hists *hists,
1891                                           struct hist_entry *he)
1892 {
1893         if (hists->thread_filter != NULL &&
1894             he->thread != hists->thread_filter) {
1895                 he->filtered |= (1 << HIST_FILTER__THREAD);
1896                 return true;
1897         }
1898
1899         return false;
1900 }
1901
1902 static bool hists__filter_entry_by_symbol(struct hists *hists,
1903                                           struct hist_entry *he)
1904 {
1905         if (hists->symbol_filter_str != NULL &&
1906             (!he->ms.sym || strstr(he->ms.sym->name,
1907                                    hists->symbol_filter_str) == NULL)) {
1908                 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1909                 return true;
1910         }
1911
1912         return false;
1913 }
1914
1915 static bool hists__filter_entry_by_socket(struct hists *hists,
1916                                           struct hist_entry *he)
1917 {
1918         if ((hists->socket_filter > -1) &&
1919             (he->socket != hists->socket_filter)) {
1920                 he->filtered |= (1 << HIST_FILTER__SOCKET);
1921                 return true;
1922         }
1923
1924         return false;
1925 }
1926
1927 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1928
1929 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1930 {
1931         struct rb_node *nd;
1932
1933         hists->stats.nr_non_filtered_samples = 0;
1934
1935         hists__reset_filter_stats(hists);
1936         hists__reset_col_len(hists);
1937
1938         for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1939                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1940
1941                 if (filter(hists, h))
1942                         continue;
1943
1944                 hists__remove_entry_filter(hists, h, type);
1945         }
1946 }
1947
1948 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1949 {
1950         struct rb_node **p = &root->rb_node;
1951         struct rb_node *parent = NULL;
1952         struct hist_entry *iter;
1953         struct rb_root new_root = RB_ROOT;
1954         struct rb_node *nd;
1955
1956         while (*p != NULL) {
1957                 parent = *p;
1958                 iter = rb_entry(parent, struct hist_entry, rb_node);
1959
1960                 if (hist_entry__sort(he, iter) > 0)
1961                         p = &(*p)->rb_left;
1962                 else
1963                         p = &(*p)->rb_right;
1964         }
1965
1966         rb_link_node(&he->rb_node, parent, p);
1967         rb_insert_color(&he->rb_node, root);
1968
1969         if (he->leaf || he->filtered)
1970                 return;
1971
1972         nd = rb_first(&he->hroot_out);
1973         while (nd) {
1974                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1975
1976                 nd = rb_next(nd);
1977                 rb_erase(&h->rb_node, &he->hroot_out);
1978
1979                 resort_filtered_entry(&new_root, h);
1980         }
1981
1982         he->hroot_out = new_root;
1983 }
1984
1985 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
1986 {
1987         struct rb_node *nd;
1988         struct rb_root new_root = RB_ROOT;
1989
1990         hists->stats.nr_non_filtered_samples = 0;
1991
1992         hists__reset_filter_stats(hists);
1993         hists__reset_col_len(hists);
1994
1995         nd = rb_first(&hists->entries);
1996         while (nd) {
1997                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1998                 int ret;
1999
2000                 ret = hist_entry__filter(h, type, arg);
2001
2002                 /*
2003                  * case 1. non-matching type
2004                  * zero out the period, set filter marker and move to child
2005                  */
2006                 if (ret < 0) {
2007                         memset(&h->stat, 0, sizeof(h->stat));
2008                         h->filtered |= (1 << type);
2009
2010                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2011                 }
2012                 /*
2013                  * case 2. matched type (filter out)
2014                  * set filter marker and move to next
2015                  */
2016                 else if (ret == 1) {
2017                         h->filtered |= (1 << type);
2018
2019                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2020                 }
2021                 /*
2022                  * case 3. ok (not filtered)
2023                  * add period to hists and parents, erase the filter marker
2024                  * and move to next sibling
2025                  */
2026                 else {
2027                         hists__remove_entry_filter(hists, h, type);
2028
2029                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2030                 }
2031         }
2032
2033         hierarchy_recalc_total_periods(hists);
2034
2035         /*
2036          * resort output after applying a new filter since filter in a lower
2037          * hierarchy can change periods in a upper hierarchy.
2038          */
2039         nd = rb_first(&hists->entries);
2040         while (nd) {
2041                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2042
2043                 nd = rb_next(nd);
2044                 rb_erase(&h->rb_node, &hists->entries);
2045
2046                 resort_filtered_entry(&new_root, h);
2047         }
2048
2049         hists->entries = new_root;
2050 }
2051
2052 void hists__filter_by_thread(struct hists *hists)
2053 {
2054         if (symbol_conf.report_hierarchy)
2055                 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2056                                         hists->thread_filter);
2057         else
2058                 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2059                                       hists__filter_entry_by_thread);
2060 }
2061
2062 void hists__filter_by_dso(struct hists *hists)
2063 {
2064         if (symbol_conf.report_hierarchy)
2065                 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2066                                         hists->dso_filter);
2067         else
2068                 hists__filter_by_type(hists, HIST_FILTER__DSO,
2069                                       hists__filter_entry_by_dso);
2070 }
2071
2072 void hists__filter_by_symbol(struct hists *hists)
2073 {
2074         if (symbol_conf.report_hierarchy)
2075                 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2076                                         hists->symbol_filter_str);
2077         else
2078                 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2079                                       hists__filter_entry_by_symbol);
2080 }
2081
2082 void hists__filter_by_socket(struct hists *hists)
2083 {
2084         if (symbol_conf.report_hierarchy)
2085                 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2086                                         &hists->socket_filter);
2087         else
2088                 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2089                                       hists__filter_entry_by_socket);
2090 }
2091
2092 void events_stats__inc(struct events_stats *stats, u32 type)
2093 {
2094         ++stats->nr_events[0];
2095         ++stats->nr_events[type];
2096 }
2097
2098 void hists__inc_nr_events(struct hists *hists, u32 type)
2099 {
2100         events_stats__inc(&hists->stats, type);
2101 }
2102
2103 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2104 {
2105         events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2106         if (!filtered)
2107                 hists->stats.nr_non_filtered_samples++;
2108 }
2109
2110 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2111                                                  struct hist_entry *pair)
2112 {
2113         struct rb_root *root;
2114         struct rb_node **p;
2115         struct rb_node *parent = NULL;
2116         struct hist_entry *he;
2117         int64_t cmp;
2118
2119         if (hists__has(hists, need_collapse))
2120                 root = &hists->entries_collapsed;
2121         else
2122                 root = hists->entries_in;
2123
2124         p = &root->rb_node;
2125
2126         while (*p != NULL) {
2127                 parent = *p;
2128                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2129
2130                 cmp = hist_entry__collapse(he, pair);
2131
2132                 if (!cmp)
2133                         goto out;
2134
2135                 if (cmp < 0)
2136                         p = &(*p)->rb_left;
2137                 else
2138                         p = &(*p)->rb_right;
2139         }
2140
2141         he = hist_entry__new(pair, true);
2142         if (he) {
2143                 memset(&he->stat, 0, sizeof(he->stat));
2144                 he->hists = hists;
2145                 if (symbol_conf.cumulate_callchain)
2146                         memset(he->stat_acc, 0, sizeof(he->stat));
2147                 rb_link_node(&he->rb_node_in, parent, p);
2148                 rb_insert_color(&he->rb_node_in, root);
2149                 hists__inc_stats(hists, he);
2150                 he->dummy = true;
2151         }
2152 out:
2153         return he;
2154 }
2155
2156 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2157                                                     struct rb_root *root,
2158                                                     struct hist_entry *pair)
2159 {
2160         struct rb_node **p;
2161         struct rb_node *parent = NULL;
2162         struct hist_entry *he;
2163         struct perf_hpp_fmt *fmt;
2164
2165         p = &root->rb_node;
2166         while (*p != NULL) {
2167                 int64_t cmp = 0;
2168
2169                 parent = *p;
2170                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2171
2172                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2173                         cmp = fmt->collapse(fmt, he, pair);
2174                         if (cmp)
2175                                 break;
2176                 }
2177                 if (!cmp)
2178                         goto out;
2179
2180                 if (cmp < 0)
2181                         p = &parent->rb_left;
2182                 else
2183                         p = &parent->rb_right;
2184         }
2185
2186         he = hist_entry__new(pair, true);
2187         if (he) {
2188                 rb_link_node(&he->rb_node_in, parent, p);
2189                 rb_insert_color(&he->rb_node_in, root);
2190
2191                 he->dummy = true;
2192                 he->hists = hists;
2193                 memset(&he->stat, 0, sizeof(he->stat));
2194                 hists__inc_stats(hists, he);
2195         }
2196 out:
2197         return he;
2198 }
2199
2200 static struct hist_entry *hists__find_entry(struct hists *hists,
2201                                             struct hist_entry *he)
2202 {
2203         struct rb_node *n;
2204
2205         if (hists__has(hists, need_collapse))
2206                 n = hists->entries_collapsed.rb_node;
2207         else
2208                 n = hists->entries_in->rb_node;
2209
2210         while (n) {
2211                 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2212                 int64_t cmp = hist_entry__collapse(iter, he);
2213
2214                 if (cmp < 0)
2215                         n = n->rb_left;
2216                 else if (cmp > 0)
2217                         n = n->rb_right;
2218                 else
2219                         return iter;
2220         }
2221
2222         return NULL;
2223 }
2224
2225 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2226                                                       struct hist_entry *he)
2227 {
2228         struct rb_node *n = root->rb_node;
2229
2230         while (n) {
2231                 struct hist_entry *iter;
2232                 struct perf_hpp_fmt *fmt;
2233                 int64_t cmp = 0;
2234
2235                 iter = rb_entry(n, struct hist_entry, rb_node_in);
2236                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2237                         cmp = fmt->collapse(fmt, iter, he);
2238                         if (cmp)
2239                                 break;
2240                 }
2241
2242                 if (cmp < 0)
2243                         n = n->rb_left;
2244                 else if (cmp > 0)
2245                         n = n->rb_right;
2246                 else
2247                         return iter;
2248         }
2249
2250         return NULL;
2251 }
2252
2253 static void hists__match_hierarchy(struct rb_root *leader_root,
2254                                    struct rb_root *other_root)
2255 {
2256         struct rb_node *nd;
2257         struct hist_entry *pos, *pair;
2258
2259         for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2260                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2261                 pair = hists__find_hierarchy_entry(other_root, pos);
2262
2263                 if (pair) {
2264                         hist_entry__add_pair(pair, pos);
2265                         hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2266                 }
2267         }
2268 }
2269
2270 /*
2271  * Look for pairs to link to the leader buckets (hist_entries):
2272  */
2273 void hists__match(struct hists *leader, struct hists *other)
2274 {
2275         struct rb_root *root;
2276         struct rb_node *nd;
2277         struct hist_entry *pos, *pair;
2278
2279         if (symbol_conf.report_hierarchy) {
2280                 /* hierarchy report always collapses entries */
2281                 return hists__match_hierarchy(&leader->entries_collapsed,
2282                                               &other->entries_collapsed);
2283         }
2284
2285         if (hists__has(leader, need_collapse))
2286                 root = &leader->entries_collapsed;
2287         else
2288                 root = leader->entries_in;
2289
2290         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2291                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2292                 pair = hists__find_entry(other, pos);
2293
2294                 if (pair)
2295                         hist_entry__add_pair(pair, pos);
2296         }
2297 }
2298
2299 static int hists__link_hierarchy(struct hists *leader_hists,
2300                                  struct hist_entry *parent,
2301                                  struct rb_root *leader_root,
2302                                  struct rb_root *other_root)
2303 {
2304         struct rb_node *nd;
2305         struct hist_entry *pos, *leader;
2306
2307         for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2308                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2309
2310                 if (hist_entry__has_pairs(pos)) {
2311                         bool found = false;
2312
2313                         list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2314                                 if (leader->hists == leader_hists) {
2315                                         found = true;
2316                                         break;
2317                                 }
2318                         }
2319                         if (!found)
2320                                 return -1;
2321                 } else {
2322                         leader = add_dummy_hierarchy_entry(leader_hists,
2323                                                            leader_root, pos);
2324                         if (leader == NULL)
2325                                 return -1;
2326
2327                         /* do not point parent in the pos */
2328                         leader->parent_he = parent;
2329
2330                         hist_entry__add_pair(pos, leader);
2331                 }
2332
2333                 if (!pos->leaf) {
2334                         if (hists__link_hierarchy(leader_hists, leader,
2335                                                   &leader->hroot_in,
2336                                                   &pos->hroot_in) < 0)
2337                                 return -1;
2338                 }
2339         }
2340         return 0;
2341 }
2342
2343 /*
2344  * Look for entries in the other hists that are not present in the leader, if
2345  * we find them, just add a dummy entry on the leader hists, with period=0,
2346  * nr_events=0, to serve as the list header.
2347  */
2348 int hists__link(struct hists *leader, struct hists *other)
2349 {
2350         struct rb_root *root;
2351         struct rb_node *nd;
2352         struct hist_entry *pos, *pair;
2353
2354         if (symbol_conf.report_hierarchy) {
2355                 /* hierarchy report always collapses entries */
2356                 return hists__link_hierarchy(leader, NULL,
2357                                              &leader->entries_collapsed,
2358                                              &other->entries_collapsed);
2359         }
2360
2361         if (hists__has(other, need_collapse))
2362                 root = &other->entries_collapsed;
2363         else
2364                 root = other->entries_in;
2365
2366         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2367                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2368
2369                 if (!hist_entry__has_pairs(pos)) {
2370                         pair = hists__add_dummy_entry(leader, pos);
2371                         if (pair == NULL)
2372                                 return -1;
2373                         hist_entry__add_pair(pos, pair);
2374                 }
2375         }
2376
2377         return 0;
2378 }
2379
2380 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2381                           struct perf_sample *sample, bool nonany_branch_mode)
2382 {
2383         struct branch_info *bi;
2384
2385         /* If we have branch cycles always annotate them. */
2386         if (bs && bs->nr && bs->entries[0].flags.cycles) {
2387                 int i;
2388
2389                 bi = sample__resolve_bstack(sample, al);
2390                 if (bi) {
2391                         struct addr_map_symbol *prev = NULL;
2392
2393                         /*
2394                          * Ignore errors, still want to process the
2395                          * other entries.
2396                          *
2397                          * For non standard branch modes always
2398                          * force no IPC (prev == NULL)
2399                          *
2400                          * Note that perf stores branches reversed from
2401                          * program order!
2402                          */
2403                         for (i = bs->nr - 1; i >= 0; i--) {
2404                                 addr_map_symbol__account_cycles(&bi[i].from,
2405                                         nonany_branch_mode ? NULL : prev,
2406                                         bi[i].flags.cycles);
2407                                 prev = &bi[i].to;
2408                         }
2409                         free(bi);
2410                 }
2411         }
2412 }
2413
2414 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2415 {
2416         struct perf_evsel *pos;
2417         size_t ret = 0;
2418
2419         evlist__for_each_entry(evlist, pos) {
2420                 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2421                 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2422         }
2423
2424         return ret;
2425 }
2426
2427
2428 u64 hists__total_period(struct hists *hists)
2429 {
2430         return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2431                 hists->stats.total_period;
2432 }
2433
2434 int parse_filter_percentage(const struct option *opt __maybe_unused,
2435                             const char *arg, int unset __maybe_unused)
2436 {
2437         if (!strcmp(arg, "relative"))
2438                 symbol_conf.filter_relative = true;
2439         else if (!strcmp(arg, "absolute"))
2440                 symbol_conf.filter_relative = false;
2441         else
2442                 return -1;
2443
2444         return 0;
2445 }
2446
2447 int perf_hist_config(const char *var, const char *value)
2448 {
2449         if (!strcmp(var, "hist.percentage"))
2450                 return parse_filter_percentage(NULL, value, 0);
2451
2452         return 0;
2453 }
2454
2455 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2456 {
2457         memset(hists, 0, sizeof(*hists));
2458         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2459         hists->entries_in = &hists->entries_in_array[0];
2460         hists->entries_collapsed = RB_ROOT;
2461         hists->entries = RB_ROOT;
2462         pthread_mutex_init(&hists->lock, NULL);
2463         hists->socket_filter = -1;
2464         hists->hpp_list = hpp_list;
2465         INIT_LIST_HEAD(&hists->hpp_formats);
2466         return 0;
2467 }
2468
2469 static void hists__delete_remaining_entries(struct rb_root *root)
2470 {
2471         struct rb_node *node;
2472         struct hist_entry *he;
2473
2474         while (!RB_EMPTY_ROOT(root)) {
2475                 node = rb_first(root);
2476                 rb_erase(node, root);
2477
2478                 he = rb_entry(node, struct hist_entry, rb_node_in);
2479                 hist_entry__delete(he);
2480         }
2481 }
2482
2483 static void hists__delete_all_entries(struct hists *hists)
2484 {
2485         hists__delete_entries(hists);
2486         hists__delete_remaining_entries(&hists->entries_in_array[0]);
2487         hists__delete_remaining_entries(&hists->entries_in_array[1]);
2488         hists__delete_remaining_entries(&hists->entries_collapsed);
2489 }
2490
2491 static void hists_evsel__exit(struct perf_evsel *evsel)
2492 {
2493         struct hists *hists = evsel__hists(evsel);
2494         struct perf_hpp_fmt *fmt, *pos;
2495         struct perf_hpp_list_node *node, *tmp;
2496
2497         hists__delete_all_entries(hists);
2498
2499         list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2500                 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2501                         list_del(&fmt->list);
2502                         free(fmt);
2503                 }
2504                 list_del(&node->list);
2505                 free(node);
2506         }
2507 }
2508
2509 static int hists_evsel__init(struct perf_evsel *evsel)
2510 {
2511         struct hists *hists = evsel__hists(evsel);
2512
2513         __hists__init(hists, &perf_hpp_list);
2514         return 0;
2515 }
2516
2517 /*
2518  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2519  * stored in the rbtree...
2520  */
2521
2522 int hists__init(void)
2523 {
2524         int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2525                                             hists_evsel__init,
2526                                             hists_evsel__exit);
2527         if (err)
2528                 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2529
2530         return err;
2531 }
2532
2533 void perf_hpp_list__init(struct perf_hpp_list *list)
2534 {
2535         INIT_LIST_HEAD(&list->fields);
2536         INIT_LIST_HEAD(&list->sorts);
2537 }