Merge branches 'acpi-scan', 'acpi-processor' and 'acpi-assorted'
[cascardo/linux.git] / tools / perf / util / machine.c
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18
19 static void dsos__init(struct dsos *dsos)
20 {
21         INIT_LIST_HEAD(&dsos->head);
22         dsos->root = RB_ROOT;
23         pthread_rwlock_init(&dsos->lock, NULL);
24 }
25
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28         map_groups__init(&machine->kmaps, machine);
29         RB_CLEAR_NODE(&machine->rb_node);
30         dsos__init(&machine->dsos);
31
32         machine->threads = RB_ROOT;
33         pthread_rwlock_init(&machine->threads_lock, NULL);
34         INIT_LIST_HEAD(&machine->dead_threads);
35         machine->last_match = NULL;
36
37         machine->vdso_info = NULL;
38
39         machine->pid = pid;
40
41         machine->symbol_filter = NULL;
42         machine->id_hdr_size = 0;
43         machine->comm_exec = false;
44         machine->kernel_start = 0;
45
46         machine->root_dir = strdup(root_dir);
47         if (machine->root_dir == NULL)
48                 return -ENOMEM;
49
50         if (pid != HOST_KERNEL_ID) {
51                 struct thread *thread = machine__findnew_thread(machine, -1,
52                                                                 pid);
53                 char comm[64];
54
55                 if (thread == NULL)
56                         return -ENOMEM;
57
58                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
59                 thread__set_comm(thread, comm, 0);
60                 thread__put(thread);
61         }
62
63         machine->current_tid = NULL;
64
65         return 0;
66 }
67
68 struct machine *machine__new_host(void)
69 {
70         struct machine *machine = malloc(sizeof(*machine));
71
72         if (machine != NULL) {
73                 machine__init(machine, "", HOST_KERNEL_ID);
74
75                 if (machine__create_kernel_maps(machine) < 0)
76                         goto out_delete;
77         }
78
79         return machine;
80 out_delete:
81         free(machine);
82         return NULL;
83 }
84
85 static void dsos__purge(struct dsos *dsos)
86 {
87         struct dso *pos, *n;
88
89         pthread_rwlock_wrlock(&dsos->lock);
90
91         list_for_each_entry_safe(pos, n, &dsos->head, node) {
92                 RB_CLEAR_NODE(&pos->rb_node);
93                 list_del_init(&pos->node);
94                 dso__put(pos);
95         }
96
97         pthread_rwlock_unlock(&dsos->lock);
98 }
99
100 static void dsos__exit(struct dsos *dsos)
101 {
102         dsos__purge(dsos);
103         pthread_rwlock_destroy(&dsos->lock);
104 }
105
106 void machine__delete_threads(struct machine *machine)
107 {
108         struct rb_node *nd;
109
110         pthread_rwlock_wrlock(&machine->threads_lock);
111         nd = rb_first(&machine->threads);
112         while (nd) {
113                 struct thread *t = rb_entry(nd, struct thread, rb_node);
114
115                 nd = rb_next(nd);
116                 __machine__remove_thread(machine, t, false);
117         }
118         pthread_rwlock_unlock(&machine->threads_lock);
119 }
120
121 void machine__exit(struct machine *machine)
122 {
123         map_groups__exit(&machine->kmaps);
124         dsos__exit(&machine->dsos);
125         machine__exit_vdso(machine);
126         zfree(&machine->root_dir);
127         zfree(&machine->current_tid);
128         pthread_rwlock_destroy(&machine->threads_lock);
129 }
130
131 void machine__delete(struct machine *machine)
132 {
133         machine__exit(machine);
134         free(machine);
135 }
136
137 void machines__init(struct machines *machines)
138 {
139         machine__init(&machines->host, "", HOST_KERNEL_ID);
140         machines->guests = RB_ROOT;
141         machines->symbol_filter = NULL;
142 }
143
144 void machines__exit(struct machines *machines)
145 {
146         machine__exit(&machines->host);
147         /* XXX exit guest */
148 }
149
150 struct machine *machines__add(struct machines *machines, pid_t pid,
151                               const char *root_dir)
152 {
153         struct rb_node **p = &machines->guests.rb_node;
154         struct rb_node *parent = NULL;
155         struct machine *pos, *machine = malloc(sizeof(*machine));
156
157         if (machine == NULL)
158                 return NULL;
159
160         if (machine__init(machine, root_dir, pid) != 0) {
161                 free(machine);
162                 return NULL;
163         }
164
165         machine->symbol_filter = machines->symbol_filter;
166
167         while (*p != NULL) {
168                 parent = *p;
169                 pos = rb_entry(parent, struct machine, rb_node);
170                 if (pid < pos->pid)
171                         p = &(*p)->rb_left;
172                 else
173                         p = &(*p)->rb_right;
174         }
175
176         rb_link_node(&machine->rb_node, parent, p);
177         rb_insert_color(&machine->rb_node, &machines->guests);
178
179         return machine;
180 }
181
182 void machines__set_symbol_filter(struct machines *machines,
183                                  symbol_filter_t symbol_filter)
184 {
185         struct rb_node *nd;
186
187         machines->symbol_filter = symbol_filter;
188         machines->host.symbol_filter = symbol_filter;
189
190         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
191                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
192
193                 machine->symbol_filter = symbol_filter;
194         }
195 }
196
197 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
198 {
199         struct rb_node *nd;
200
201         machines->host.comm_exec = comm_exec;
202
203         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
204                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
205
206                 machine->comm_exec = comm_exec;
207         }
208 }
209
210 struct machine *machines__find(struct machines *machines, pid_t pid)
211 {
212         struct rb_node **p = &machines->guests.rb_node;
213         struct rb_node *parent = NULL;
214         struct machine *machine;
215         struct machine *default_machine = NULL;
216
217         if (pid == HOST_KERNEL_ID)
218                 return &machines->host;
219
220         while (*p != NULL) {
221                 parent = *p;
222                 machine = rb_entry(parent, struct machine, rb_node);
223                 if (pid < machine->pid)
224                         p = &(*p)->rb_left;
225                 else if (pid > machine->pid)
226                         p = &(*p)->rb_right;
227                 else
228                         return machine;
229                 if (!machine->pid)
230                         default_machine = machine;
231         }
232
233         return default_machine;
234 }
235
236 struct machine *machines__findnew(struct machines *machines, pid_t pid)
237 {
238         char path[PATH_MAX];
239         const char *root_dir = "";
240         struct machine *machine = machines__find(machines, pid);
241
242         if (machine && (machine->pid == pid))
243                 goto out;
244
245         if ((pid != HOST_KERNEL_ID) &&
246             (pid != DEFAULT_GUEST_KERNEL_ID) &&
247             (symbol_conf.guestmount)) {
248                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
249                 if (access(path, R_OK)) {
250                         static struct strlist *seen;
251
252                         if (!seen)
253                                 seen = strlist__new(true, NULL);
254
255                         if (!strlist__has_entry(seen, path)) {
256                                 pr_err("Can't access file %s\n", path);
257                                 strlist__add(seen, path);
258                         }
259                         machine = NULL;
260                         goto out;
261                 }
262                 root_dir = path;
263         }
264
265         machine = machines__add(machines, pid, root_dir);
266 out:
267         return machine;
268 }
269
270 void machines__process_guests(struct machines *machines,
271                               machine__process_t process, void *data)
272 {
273         struct rb_node *nd;
274
275         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
276                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
277                 process(pos, data);
278         }
279 }
280
281 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
282 {
283         if (machine__is_host(machine))
284                 snprintf(bf, size, "[%s]", "kernel.kallsyms");
285         else if (machine__is_default_guest(machine))
286                 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
287         else {
288                 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
289                          machine->pid);
290         }
291
292         return bf;
293 }
294
295 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
296 {
297         struct rb_node *node;
298         struct machine *machine;
299
300         machines->host.id_hdr_size = id_hdr_size;
301
302         for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
303                 machine = rb_entry(node, struct machine, rb_node);
304                 machine->id_hdr_size = id_hdr_size;
305         }
306
307         return;
308 }
309
310 static void machine__update_thread_pid(struct machine *machine,
311                                        struct thread *th, pid_t pid)
312 {
313         struct thread *leader;
314
315         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
316                 return;
317
318         th->pid_ = pid;
319
320         if (th->pid_ == th->tid)
321                 return;
322
323         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
324         if (!leader)
325                 goto out_err;
326
327         if (!leader->mg)
328                 leader->mg = map_groups__new(machine);
329
330         if (!leader->mg)
331                 goto out_err;
332
333         if (th->mg == leader->mg)
334                 return;
335
336         if (th->mg) {
337                 /*
338                  * Maps are created from MMAP events which provide the pid and
339                  * tid.  Consequently there never should be any maps on a thread
340                  * with an unknown pid.  Just print an error if there are.
341                  */
342                 if (!map_groups__empty(th->mg))
343                         pr_err("Discarding thread maps for %d:%d\n",
344                                th->pid_, th->tid);
345                 map_groups__put(th->mg);
346         }
347
348         th->mg = map_groups__get(leader->mg);
349
350         return;
351
352 out_err:
353         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
354 }
355
356 static struct thread *____machine__findnew_thread(struct machine *machine,
357                                                   pid_t pid, pid_t tid,
358                                                   bool create)
359 {
360         struct rb_node **p = &machine->threads.rb_node;
361         struct rb_node *parent = NULL;
362         struct thread *th;
363
364         /*
365          * Front-end cache - TID lookups come in blocks,
366          * so most of the time we dont have to look up
367          * the full rbtree:
368          */
369         th = machine->last_match;
370         if (th != NULL) {
371                 if (th->tid == tid) {
372                         machine__update_thread_pid(machine, th, pid);
373                         return th;
374                 }
375
376                 machine->last_match = NULL;
377         }
378
379         while (*p != NULL) {
380                 parent = *p;
381                 th = rb_entry(parent, struct thread, rb_node);
382
383                 if (th->tid == tid) {
384                         machine->last_match = th;
385                         machine__update_thread_pid(machine, th, pid);
386                         return th;
387                 }
388
389                 if (tid < th->tid)
390                         p = &(*p)->rb_left;
391                 else
392                         p = &(*p)->rb_right;
393         }
394
395         if (!create)
396                 return NULL;
397
398         th = thread__new(pid, tid);
399         if (th != NULL) {
400                 rb_link_node(&th->rb_node, parent, p);
401                 rb_insert_color(&th->rb_node, &machine->threads);
402
403                 /*
404                  * We have to initialize map_groups separately
405                  * after rb tree is updated.
406                  *
407                  * The reason is that we call machine__findnew_thread
408                  * within thread__init_map_groups to find the thread
409                  * leader and that would screwed the rb tree.
410                  */
411                 if (thread__init_map_groups(th, machine)) {
412                         rb_erase_init(&th->rb_node, &machine->threads);
413                         RB_CLEAR_NODE(&th->rb_node);
414                         thread__delete(th);
415                         return NULL;
416                 }
417                 /*
418                  * It is now in the rbtree, get a ref
419                  */
420                 thread__get(th);
421                 machine->last_match = th;
422         }
423
424         return th;
425 }
426
427 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
428 {
429         return ____machine__findnew_thread(machine, pid, tid, true);
430 }
431
432 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
433                                        pid_t tid)
434 {
435         struct thread *th;
436
437         pthread_rwlock_wrlock(&machine->threads_lock);
438         th = thread__get(__machine__findnew_thread(machine, pid, tid));
439         pthread_rwlock_unlock(&machine->threads_lock);
440         return th;
441 }
442
443 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
444                                     pid_t tid)
445 {
446         struct thread *th;
447         pthread_rwlock_rdlock(&machine->threads_lock);
448         th =  thread__get(____machine__findnew_thread(machine, pid, tid, false));
449         pthread_rwlock_unlock(&machine->threads_lock);
450         return th;
451 }
452
453 struct comm *machine__thread_exec_comm(struct machine *machine,
454                                        struct thread *thread)
455 {
456         if (machine->comm_exec)
457                 return thread__exec_comm(thread);
458         else
459                 return thread__comm(thread);
460 }
461
462 int machine__process_comm_event(struct machine *machine, union perf_event *event,
463                                 struct perf_sample *sample)
464 {
465         struct thread *thread = machine__findnew_thread(machine,
466                                                         event->comm.pid,
467                                                         event->comm.tid);
468         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
469         int err = 0;
470
471         if (exec)
472                 machine->comm_exec = true;
473
474         if (dump_trace)
475                 perf_event__fprintf_comm(event, stdout);
476
477         if (thread == NULL ||
478             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
479                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
480                 err = -1;
481         }
482
483         thread__put(thread);
484
485         return err;
486 }
487
488 int machine__process_lost_event(struct machine *machine __maybe_unused,
489                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
490 {
491         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
492                     event->lost.id, event->lost.lost);
493         return 0;
494 }
495
496 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
497                                         union perf_event *event, struct perf_sample *sample)
498 {
499         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
500                     sample->id, event->lost_samples.lost);
501         return 0;
502 }
503
504 static struct dso *machine__findnew_module_dso(struct machine *machine,
505                                                struct kmod_path *m,
506                                                const char *filename)
507 {
508         struct dso *dso;
509
510         pthread_rwlock_wrlock(&machine->dsos.lock);
511
512         dso = __dsos__find(&machine->dsos, m->name, true);
513         if (!dso) {
514                 dso = __dsos__addnew(&machine->dsos, m->name);
515                 if (dso == NULL)
516                         goto out_unlock;
517
518                 if (machine__is_host(machine))
519                         dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
520                 else
521                         dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
522
523                 /* _KMODULE_COMP should be next to _KMODULE */
524                 if (m->kmod && m->comp)
525                         dso->symtab_type++;
526
527                 dso__set_short_name(dso, strdup(m->name), true);
528                 dso__set_long_name(dso, strdup(filename), true);
529         }
530
531         dso__get(dso);
532 out_unlock:
533         pthread_rwlock_unlock(&machine->dsos.lock);
534         return dso;
535 }
536
537 int machine__process_aux_event(struct machine *machine __maybe_unused,
538                                union perf_event *event)
539 {
540         if (dump_trace)
541                 perf_event__fprintf_aux(event, stdout);
542         return 0;
543 }
544
545 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
546                                         union perf_event *event)
547 {
548         if (dump_trace)
549                 perf_event__fprintf_itrace_start(event, stdout);
550         return 0;
551 }
552
553 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
554                                         const char *filename)
555 {
556         struct map *map = NULL;
557         struct dso *dso;
558         struct kmod_path m;
559
560         if (kmod_path__parse_name(&m, filename))
561                 return NULL;
562
563         map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
564                                        m.name);
565         if (map)
566                 goto out;
567
568         dso = machine__findnew_module_dso(machine, &m, filename);
569         if (dso == NULL)
570                 goto out;
571
572         map = map__new2(start, dso, MAP__FUNCTION);
573         if (map == NULL)
574                 goto out;
575
576         map_groups__insert(&machine->kmaps, map);
577
578 out:
579         free(m.name);
580         return map;
581 }
582
583 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
584 {
585         struct rb_node *nd;
586         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
587
588         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
589                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
590                 ret += __dsos__fprintf(&pos->dsos.head, fp);
591         }
592
593         return ret;
594 }
595
596 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
597                                      bool (skip)(struct dso *dso, int parm), int parm)
598 {
599         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
600 }
601
602 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
603                                      bool (skip)(struct dso *dso, int parm), int parm)
604 {
605         struct rb_node *nd;
606         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
607
608         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
609                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
610                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
611         }
612         return ret;
613 }
614
615 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
616 {
617         int i;
618         size_t printed = 0;
619         struct dso *kdso = machine->vmlinux_maps[MAP__FUNCTION]->dso;
620
621         if (kdso->has_build_id) {
622                 char filename[PATH_MAX];
623                 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
624                         printed += fprintf(fp, "[0] %s\n", filename);
625         }
626
627         for (i = 0; i < vmlinux_path__nr_entries; ++i)
628                 printed += fprintf(fp, "[%d] %s\n",
629                                    i + kdso->has_build_id, vmlinux_path[i]);
630
631         return printed;
632 }
633
634 size_t machine__fprintf(struct machine *machine, FILE *fp)
635 {
636         size_t ret = 0;
637         struct rb_node *nd;
638
639         pthread_rwlock_rdlock(&machine->threads_lock);
640
641         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
642                 struct thread *pos = rb_entry(nd, struct thread, rb_node);
643
644                 ret += thread__fprintf(pos, fp);
645         }
646
647         pthread_rwlock_unlock(&machine->threads_lock);
648
649         return ret;
650 }
651
652 static struct dso *machine__get_kernel(struct machine *machine)
653 {
654         const char *vmlinux_name = NULL;
655         struct dso *kernel;
656
657         if (machine__is_host(machine)) {
658                 vmlinux_name = symbol_conf.vmlinux_name;
659                 if (!vmlinux_name)
660                         vmlinux_name = "[kernel.kallsyms]";
661
662                 kernel = machine__findnew_kernel(machine, vmlinux_name,
663                                                  "[kernel]", DSO_TYPE_KERNEL);
664         } else {
665                 char bf[PATH_MAX];
666
667                 if (machine__is_default_guest(machine))
668                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
669                 if (!vmlinux_name)
670                         vmlinux_name = machine__mmap_name(machine, bf,
671                                                           sizeof(bf));
672
673                 kernel = machine__findnew_kernel(machine, vmlinux_name,
674                                                  "[guest.kernel]",
675                                                  DSO_TYPE_GUEST_KERNEL);
676         }
677
678         if (kernel != NULL && (!kernel->has_build_id))
679                 dso__read_running_kernel_build_id(kernel, machine);
680
681         return kernel;
682 }
683
684 struct process_args {
685         u64 start;
686 };
687
688 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
689                                            size_t bufsz)
690 {
691         if (machine__is_default_guest(machine))
692                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
693         else
694                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
695 }
696
697 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
698
699 /* Figure out the start address of kernel map from /proc/kallsyms.
700  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
701  * symbol_name if it's not that important.
702  */
703 static u64 machine__get_running_kernel_start(struct machine *machine,
704                                              const char **symbol_name)
705 {
706         char filename[PATH_MAX];
707         int i;
708         const char *name;
709         u64 addr = 0;
710
711         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
712
713         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
714                 return 0;
715
716         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
717                 addr = kallsyms__get_function_start(filename, name);
718                 if (addr)
719                         break;
720         }
721
722         if (symbol_name)
723                 *symbol_name = name;
724
725         return addr;
726 }
727
728 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
729 {
730         enum map_type type;
731         u64 start = machine__get_running_kernel_start(machine, NULL);
732
733         for (type = 0; type < MAP__NR_TYPES; ++type) {
734                 struct kmap *kmap;
735
736                 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
737                 if (machine->vmlinux_maps[type] == NULL)
738                         return -1;
739
740                 machine->vmlinux_maps[type]->map_ip =
741                         machine->vmlinux_maps[type]->unmap_ip =
742                                 identity__map_ip;
743                 kmap = map__kmap(machine->vmlinux_maps[type]);
744                 if (!kmap)
745                         return -1;
746
747                 kmap->kmaps = &machine->kmaps;
748                 map_groups__insert(&machine->kmaps,
749                                    machine->vmlinux_maps[type]);
750         }
751
752         return 0;
753 }
754
755 void machine__destroy_kernel_maps(struct machine *machine)
756 {
757         enum map_type type;
758
759         for (type = 0; type < MAP__NR_TYPES; ++type) {
760                 struct kmap *kmap;
761
762                 if (machine->vmlinux_maps[type] == NULL)
763                         continue;
764
765                 kmap = map__kmap(machine->vmlinux_maps[type]);
766                 map_groups__remove(&machine->kmaps,
767                                    machine->vmlinux_maps[type]);
768                 if (kmap && kmap->ref_reloc_sym) {
769                         /*
770                          * ref_reloc_sym is shared among all maps, so free just
771                          * on one of them.
772                          */
773                         if (type == MAP__FUNCTION) {
774                                 zfree((char **)&kmap->ref_reloc_sym->name);
775                                 zfree(&kmap->ref_reloc_sym);
776                         } else
777                                 kmap->ref_reloc_sym = NULL;
778                 }
779
780                 machine->vmlinux_maps[type] = NULL;
781         }
782 }
783
784 int machines__create_guest_kernel_maps(struct machines *machines)
785 {
786         int ret = 0;
787         struct dirent **namelist = NULL;
788         int i, items = 0;
789         char path[PATH_MAX];
790         pid_t pid;
791         char *endp;
792
793         if (symbol_conf.default_guest_vmlinux_name ||
794             symbol_conf.default_guest_modules ||
795             symbol_conf.default_guest_kallsyms) {
796                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
797         }
798
799         if (symbol_conf.guestmount) {
800                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
801                 if (items <= 0)
802                         return -ENOENT;
803                 for (i = 0; i < items; i++) {
804                         if (!isdigit(namelist[i]->d_name[0])) {
805                                 /* Filter out . and .. */
806                                 continue;
807                         }
808                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
809                         if ((*endp != '\0') ||
810                             (endp == namelist[i]->d_name) ||
811                             (errno == ERANGE)) {
812                                 pr_debug("invalid directory (%s). Skipping.\n",
813                                          namelist[i]->d_name);
814                                 continue;
815                         }
816                         sprintf(path, "%s/%s/proc/kallsyms",
817                                 symbol_conf.guestmount,
818                                 namelist[i]->d_name);
819                         ret = access(path, R_OK);
820                         if (ret) {
821                                 pr_debug("Can't access file %s\n", path);
822                                 goto failure;
823                         }
824                         machines__create_kernel_maps(machines, pid);
825                 }
826 failure:
827                 free(namelist);
828         }
829
830         return ret;
831 }
832
833 void machines__destroy_kernel_maps(struct machines *machines)
834 {
835         struct rb_node *next = rb_first(&machines->guests);
836
837         machine__destroy_kernel_maps(&machines->host);
838
839         while (next) {
840                 struct machine *pos = rb_entry(next, struct machine, rb_node);
841
842                 next = rb_next(&pos->rb_node);
843                 rb_erase(&pos->rb_node, &machines->guests);
844                 machine__delete(pos);
845         }
846 }
847
848 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
849 {
850         struct machine *machine = machines__findnew(machines, pid);
851
852         if (machine == NULL)
853                 return -1;
854
855         return machine__create_kernel_maps(machine);
856 }
857
858 int machine__load_kallsyms(struct machine *machine, const char *filename,
859                            enum map_type type, symbol_filter_t filter)
860 {
861         struct map *map = machine->vmlinux_maps[type];
862         int ret = dso__load_kallsyms(map->dso, filename, map, filter);
863
864         if (ret > 0) {
865                 dso__set_loaded(map->dso, type);
866                 /*
867                  * Since /proc/kallsyms will have multiple sessions for the
868                  * kernel, with modules between them, fixup the end of all
869                  * sections.
870                  */
871                 __map_groups__fixup_end(&machine->kmaps, type);
872         }
873
874         return ret;
875 }
876
877 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
878                                symbol_filter_t filter)
879 {
880         struct map *map = machine->vmlinux_maps[type];
881         int ret = dso__load_vmlinux_path(map->dso, map, filter);
882
883         if (ret > 0)
884                 dso__set_loaded(map->dso, type);
885
886         return ret;
887 }
888
889 static void map_groups__fixup_end(struct map_groups *mg)
890 {
891         int i;
892         for (i = 0; i < MAP__NR_TYPES; ++i)
893                 __map_groups__fixup_end(mg, i);
894 }
895
896 static char *get_kernel_version(const char *root_dir)
897 {
898         char version[PATH_MAX];
899         FILE *file;
900         char *name, *tmp;
901         const char *prefix = "Linux version ";
902
903         sprintf(version, "%s/proc/version", root_dir);
904         file = fopen(version, "r");
905         if (!file)
906                 return NULL;
907
908         version[0] = '\0';
909         tmp = fgets(version, sizeof(version), file);
910         fclose(file);
911
912         name = strstr(version, prefix);
913         if (!name)
914                 return NULL;
915         name += strlen(prefix);
916         tmp = strchr(name, ' ');
917         if (tmp)
918                 *tmp = '\0';
919
920         return strdup(name);
921 }
922
923 static bool is_kmod_dso(struct dso *dso)
924 {
925         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
926                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
927 }
928
929 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
930                                        struct kmod_path *m)
931 {
932         struct map *map;
933         char *long_name;
934
935         map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
936         if (map == NULL)
937                 return 0;
938
939         long_name = strdup(path);
940         if (long_name == NULL)
941                 return -ENOMEM;
942
943         dso__set_long_name(map->dso, long_name, true);
944         dso__kernel_module_get_build_id(map->dso, "");
945
946         /*
947          * Full name could reveal us kmod compression, so
948          * we need to update the symtab_type if needed.
949          */
950         if (m->comp && is_kmod_dso(map->dso))
951                 map->dso->symtab_type++;
952
953         return 0;
954 }
955
956 static int map_groups__set_modules_path_dir(struct map_groups *mg,
957                                 const char *dir_name, int depth)
958 {
959         struct dirent *dent;
960         DIR *dir = opendir(dir_name);
961         int ret = 0;
962
963         if (!dir) {
964                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
965                 return -1;
966         }
967
968         while ((dent = readdir(dir)) != NULL) {
969                 char path[PATH_MAX];
970                 struct stat st;
971
972                 /*sshfs might return bad dent->d_type, so we have to stat*/
973                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
974                 if (stat(path, &st))
975                         continue;
976
977                 if (S_ISDIR(st.st_mode)) {
978                         if (!strcmp(dent->d_name, ".") ||
979                             !strcmp(dent->d_name, ".."))
980                                 continue;
981
982                         /* Do not follow top-level source and build symlinks */
983                         if (depth == 0) {
984                                 if (!strcmp(dent->d_name, "source") ||
985                                     !strcmp(dent->d_name, "build"))
986                                         continue;
987                         }
988
989                         ret = map_groups__set_modules_path_dir(mg, path,
990                                                                depth + 1);
991                         if (ret < 0)
992                                 goto out;
993                 } else {
994                         struct kmod_path m;
995
996                         ret = kmod_path__parse_name(&m, dent->d_name);
997                         if (ret)
998                                 goto out;
999
1000                         if (m.kmod)
1001                                 ret = map_groups__set_module_path(mg, path, &m);
1002
1003                         free(m.name);
1004
1005                         if (ret)
1006                                 goto out;
1007                 }
1008         }
1009
1010 out:
1011         closedir(dir);
1012         return ret;
1013 }
1014
1015 static int machine__set_modules_path(struct machine *machine)
1016 {
1017         char *version;
1018         char modules_path[PATH_MAX];
1019
1020         version = get_kernel_version(machine->root_dir);
1021         if (!version)
1022                 return -1;
1023
1024         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1025                  machine->root_dir, version);
1026         free(version);
1027
1028         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1029 }
1030
1031 static int machine__create_module(void *arg, const char *name, u64 start)
1032 {
1033         struct machine *machine = arg;
1034         struct map *map;
1035
1036         map = machine__findnew_module_map(machine, start, name);
1037         if (map == NULL)
1038                 return -1;
1039
1040         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1041
1042         return 0;
1043 }
1044
1045 static int machine__create_modules(struct machine *machine)
1046 {
1047         const char *modules;
1048         char path[PATH_MAX];
1049
1050         if (machine__is_default_guest(machine)) {
1051                 modules = symbol_conf.default_guest_modules;
1052         } else {
1053                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1054                 modules = path;
1055         }
1056
1057         if (symbol__restricted_filename(modules, "/proc/modules"))
1058                 return -1;
1059
1060         if (modules__parse(modules, machine, machine__create_module))
1061                 return -1;
1062
1063         if (!machine__set_modules_path(machine))
1064                 return 0;
1065
1066         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1067
1068         return 0;
1069 }
1070
1071 int machine__create_kernel_maps(struct machine *machine)
1072 {
1073         struct dso *kernel = machine__get_kernel(machine);
1074         const char *name;
1075         u64 addr = machine__get_running_kernel_start(machine, &name);
1076         if (!addr)
1077                 return -1;
1078
1079         if (kernel == NULL ||
1080             __machine__create_kernel_maps(machine, kernel) < 0)
1081                 return -1;
1082
1083         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1084                 if (machine__is_host(machine))
1085                         pr_debug("Problems creating module maps, "
1086                                  "continuing anyway...\n");
1087                 else
1088                         pr_debug("Problems creating module maps for guest %d, "
1089                                  "continuing anyway...\n", machine->pid);
1090         }
1091
1092         /*
1093          * Now that we have all the maps created, just set the ->end of them:
1094          */
1095         map_groups__fixup_end(&machine->kmaps);
1096
1097         if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1098                                              addr)) {
1099                 machine__destroy_kernel_maps(machine);
1100                 return -1;
1101         }
1102
1103         return 0;
1104 }
1105
1106 static void machine__set_kernel_mmap_len(struct machine *machine,
1107                                          union perf_event *event)
1108 {
1109         int i;
1110
1111         for (i = 0; i < MAP__NR_TYPES; i++) {
1112                 machine->vmlinux_maps[i]->start = event->mmap.start;
1113                 machine->vmlinux_maps[i]->end   = (event->mmap.start +
1114                                                    event->mmap.len);
1115                 /*
1116                  * Be a bit paranoid here, some perf.data file came with
1117                  * a zero sized synthesized MMAP event for the kernel.
1118                  */
1119                 if (machine->vmlinux_maps[i]->end == 0)
1120                         machine->vmlinux_maps[i]->end = ~0ULL;
1121         }
1122 }
1123
1124 static bool machine__uses_kcore(struct machine *machine)
1125 {
1126         struct dso *dso;
1127
1128         list_for_each_entry(dso, &machine->dsos.head, node) {
1129                 if (dso__is_kcore(dso))
1130                         return true;
1131         }
1132
1133         return false;
1134 }
1135
1136 static int machine__process_kernel_mmap_event(struct machine *machine,
1137                                               union perf_event *event)
1138 {
1139         struct map *map;
1140         char kmmap_prefix[PATH_MAX];
1141         enum dso_kernel_type kernel_type;
1142         bool is_kernel_mmap;
1143
1144         /* If we have maps from kcore then we do not need or want any others */
1145         if (machine__uses_kcore(machine))
1146                 return 0;
1147
1148         machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1149         if (machine__is_host(machine))
1150                 kernel_type = DSO_TYPE_KERNEL;
1151         else
1152                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1153
1154         is_kernel_mmap = memcmp(event->mmap.filename,
1155                                 kmmap_prefix,
1156                                 strlen(kmmap_prefix) - 1) == 0;
1157         if (event->mmap.filename[0] == '/' ||
1158             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1159                 map = machine__findnew_module_map(machine, event->mmap.start,
1160                                                   event->mmap.filename);
1161                 if (map == NULL)
1162                         goto out_problem;
1163
1164                 map->end = map->start + event->mmap.len;
1165         } else if (is_kernel_mmap) {
1166                 const char *symbol_name = (event->mmap.filename +
1167                                 strlen(kmmap_prefix));
1168                 /*
1169                  * Should be there already, from the build-id table in
1170                  * the header.
1171                  */
1172                 struct dso *kernel = NULL;
1173                 struct dso *dso;
1174
1175                 pthread_rwlock_rdlock(&machine->dsos.lock);
1176
1177                 list_for_each_entry(dso, &machine->dsos.head, node) {
1178
1179                         /*
1180                          * The cpumode passed to is_kernel_module is not the
1181                          * cpumode of *this* event. If we insist on passing
1182                          * correct cpumode to is_kernel_module, we should
1183                          * record the cpumode when we adding this dso to the
1184                          * linked list.
1185                          *
1186                          * However we don't really need passing correct
1187                          * cpumode.  We know the correct cpumode must be kernel
1188                          * mode (if not, we should not link it onto kernel_dsos
1189                          * list).
1190                          *
1191                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1192                          * is_kernel_module() treats it as a kernel cpumode.
1193                          */
1194
1195                         if (!dso->kernel ||
1196                             is_kernel_module(dso->long_name,
1197                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1198                                 continue;
1199
1200
1201                         kernel = dso;
1202                         break;
1203                 }
1204
1205                 pthread_rwlock_unlock(&machine->dsos.lock);
1206
1207                 if (kernel == NULL)
1208                         kernel = machine__findnew_dso(machine, kmmap_prefix);
1209                 if (kernel == NULL)
1210                         goto out_problem;
1211
1212                 kernel->kernel = kernel_type;
1213                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1214                         dso__put(kernel);
1215                         goto out_problem;
1216                 }
1217
1218                 if (strstr(kernel->long_name, "vmlinux"))
1219                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1220
1221                 machine__set_kernel_mmap_len(machine, event);
1222
1223                 /*
1224                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1225                  * symbol. Effectively having zero here means that at record
1226                  * time /proc/sys/kernel/kptr_restrict was non zero.
1227                  */
1228                 if (event->mmap.pgoff != 0) {
1229                         maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1230                                                          symbol_name,
1231                                                          event->mmap.pgoff);
1232                 }
1233
1234                 if (machine__is_default_guest(machine)) {
1235                         /*
1236                          * preload dso of guest kernel and modules
1237                          */
1238                         dso__load(kernel, machine->vmlinux_maps[MAP__FUNCTION],
1239                                   NULL);
1240                 }
1241         }
1242         return 0;
1243 out_problem:
1244         return -1;
1245 }
1246
1247 int machine__process_mmap2_event(struct machine *machine,
1248                                  union perf_event *event,
1249                                  struct perf_sample *sample __maybe_unused)
1250 {
1251         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1252         struct thread *thread;
1253         struct map *map;
1254         enum map_type type;
1255         int ret = 0;
1256
1257         if (dump_trace)
1258                 perf_event__fprintf_mmap2(event, stdout);
1259
1260         if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1261             cpumode == PERF_RECORD_MISC_KERNEL) {
1262                 ret = machine__process_kernel_mmap_event(machine, event);
1263                 if (ret < 0)
1264                         goto out_problem;
1265                 return 0;
1266         }
1267
1268         thread = machine__findnew_thread(machine, event->mmap2.pid,
1269                                         event->mmap2.tid);
1270         if (thread == NULL)
1271                 goto out_problem;
1272
1273         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1274                 type = MAP__VARIABLE;
1275         else
1276                 type = MAP__FUNCTION;
1277
1278         map = map__new(machine, event->mmap2.start,
1279                         event->mmap2.len, event->mmap2.pgoff,
1280                         event->mmap2.pid, event->mmap2.maj,
1281                         event->mmap2.min, event->mmap2.ino,
1282                         event->mmap2.ino_generation,
1283                         event->mmap2.prot,
1284                         event->mmap2.flags,
1285                         event->mmap2.filename, type, thread);
1286
1287         if (map == NULL)
1288                 goto out_problem_map;
1289
1290         thread__insert_map(thread, map);
1291         thread__put(thread);
1292         map__put(map);
1293         return 0;
1294
1295 out_problem_map:
1296         thread__put(thread);
1297 out_problem:
1298         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1299         return 0;
1300 }
1301
1302 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1303                                 struct perf_sample *sample __maybe_unused)
1304 {
1305         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1306         struct thread *thread;
1307         struct map *map;
1308         enum map_type type;
1309         int ret = 0;
1310
1311         if (dump_trace)
1312                 perf_event__fprintf_mmap(event, stdout);
1313
1314         if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1315             cpumode == PERF_RECORD_MISC_KERNEL) {
1316                 ret = machine__process_kernel_mmap_event(machine, event);
1317                 if (ret < 0)
1318                         goto out_problem;
1319                 return 0;
1320         }
1321
1322         thread = machine__findnew_thread(machine, event->mmap.pid,
1323                                          event->mmap.tid);
1324         if (thread == NULL)
1325                 goto out_problem;
1326
1327         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1328                 type = MAP__VARIABLE;
1329         else
1330                 type = MAP__FUNCTION;
1331
1332         map = map__new(machine, event->mmap.start,
1333                         event->mmap.len, event->mmap.pgoff,
1334                         event->mmap.pid, 0, 0, 0, 0, 0, 0,
1335                         event->mmap.filename,
1336                         type, thread);
1337
1338         if (map == NULL)
1339                 goto out_problem_map;
1340
1341         thread__insert_map(thread, map);
1342         thread__put(thread);
1343         map__put(map);
1344         return 0;
1345
1346 out_problem_map:
1347         thread__put(thread);
1348 out_problem:
1349         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1350         return 0;
1351 }
1352
1353 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1354 {
1355         if (machine->last_match == th)
1356                 machine->last_match = NULL;
1357
1358         BUG_ON(atomic_read(&th->refcnt) == 0);
1359         if (lock)
1360                 pthread_rwlock_wrlock(&machine->threads_lock);
1361         rb_erase_init(&th->rb_node, &machine->threads);
1362         RB_CLEAR_NODE(&th->rb_node);
1363         /*
1364          * Move it first to the dead_threads list, then drop the reference,
1365          * if this is the last reference, then the thread__delete destructor
1366          * will be called and we will remove it from the dead_threads list.
1367          */
1368         list_add_tail(&th->node, &machine->dead_threads);
1369         if (lock)
1370                 pthread_rwlock_unlock(&machine->threads_lock);
1371         thread__put(th);
1372 }
1373
1374 void machine__remove_thread(struct machine *machine, struct thread *th)
1375 {
1376         return __machine__remove_thread(machine, th, true);
1377 }
1378
1379 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1380                                 struct perf_sample *sample)
1381 {
1382         struct thread *thread = machine__find_thread(machine,
1383                                                      event->fork.pid,
1384                                                      event->fork.tid);
1385         struct thread *parent = machine__findnew_thread(machine,
1386                                                         event->fork.ppid,
1387                                                         event->fork.ptid);
1388         int err = 0;
1389
1390         if (dump_trace)
1391                 perf_event__fprintf_task(event, stdout);
1392
1393         /*
1394          * There may be an existing thread that is not actually the parent,
1395          * either because we are processing events out of order, or because the
1396          * (fork) event that would have removed the thread was lost. Assume the
1397          * latter case and continue on as best we can.
1398          */
1399         if (parent->pid_ != (pid_t)event->fork.ppid) {
1400                 dump_printf("removing erroneous parent thread %d/%d\n",
1401                             parent->pid_, parent->tid);
1402                 machine__remove_thread(machine, parent);
1403                 thread__put(parent);
1404                 parent = machine__findnew_thread(machine, event->fork.ppid,
1405                                                  event->fork.ptid);
1406         }
1407
1408         /* if a thread currently exists for the thread id remove it */
1409         if (thread != NULL) {
1410                 machine__remove_thread(machine, thread);
1411                 thread__put(thread);
1412         }
1413
1414         thread = machine__findnew_thread(machine, event->fork.pid,
1415                                          event->fork.tid);
1416
1417         if (thread == NULL || parent == NULL ||
1418             thread__fork(thread, parent, sample->time) < 0) {
1419                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1420                 err = -1;
1421         }
1422         thread__put(thread);
1423         thread__put(parent);
1424
1425         return err;
1426 }
1427
1428 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1429                                 struct perf_sample *sample __maybe_unused)
1430 {
1431         struct thread *thread = machine__find_thread(machine,
1432                                                      event->fork.pid,
1433                                                      event->fork.tid);
1434
1435         if (dump_trace)
1436                 perf_event__fprintf_task(event, stdout);
1437
1438         if (thread != NULL) {
1439                 thread__exited(thread);
1440                 thread__put(thread);
1441         }
1442
1443         return 0;
1444 }
1445
1446 int machine__process_event(struct machine *machine, union perf_event *event,
1447                            struct perf_sample *sample)
1448 {
1449         int ret;
1450
1451         switch (event->header.type) {
1452         case PERF_RECORD_COMM:
1453                 ret = machine__process_comm_event(machine, event, sample); break;
1454         case PERF_RECORD_MMAP:
1455                 ret = machine__process_mmap_event(machine, event, sample); break;
1456         case PERF_RECORD_MMAP2:
1457                 ret = machine__process_mmap2_event(machine, event, sample); break;
1458         case PERF_RECORD_FORK:
1459                 ret = machine__process_fork_event(machine, event, sample); break;
1460         case PERF_RECORD_EXIT:
1461                 ret = machine__process_exit_event(machine, event, sample); break;
1462         case PERF_RECORD_LOST:
1463                 ret = machine__process_lost_event(machine, event, sample); break;
1464         case PERF_RECORD_AUX:
1465                 ret = machine__process_aux_event(machine, event); break;
1466         case PERF_RECORD_ITRACE_START:
1467                 ret = machine__process_itrace_start_event(machine, event); break;
1468         case PERF_RECORD_LOST_SAMPLES:
1469                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1470         default:
1471                 ret = -1;
1472                 break;
1473         }
1474
1475         return ret;
1476 }
1477
1478 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1479 {
1480         if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1481                 return 1;
1482         return 0;
1483 }
1484
1485 static void ip__resolve_ams(struct thread *thread,
1486                             struct addr_map_symbol *ams,
1487                             u64 ip)
1488 {
1489         struct addr_location al;
1490
1491         memset(&al, 0, sizeof(al));
1492         /*
1493          * We cannot use the header.misc hint to determine whether a
1494          * branch stack address is user, kernel, guest, hypervisor.
1495          * Branches may straddle the kernel/user/hypervisor boundaries.
1496          * Thus, we have to try consecutively until we find a match
1497          * or else, the symbol is unknown
1498          */
1499         thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1500
1501         ams->addr = ip;
1502         ams->al_addr = al.addr;
1503         ams->sym = al.sym;
1504         ams->map = al.map;
1505 }
1506
1507 static void ip__resolve_data(struct thread *thread,
1508                              u8 m, struct addr_map_symbol *ams, u64 addr)
1509 {
1510         struct addr_location al;
1511
1512         memset(&al, 0, sizeof(al));
1513
1514         thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1515         if (al.map == NULL) {
1516                 /*
1517                  * some shared data regions have execute bit set which puts
1518                  * their mapping in the MAP__FUNCTION type array.
1519                  * Check there as a fallback option before dropping the sample.
1520                  */
1521                 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1522         }
1523
1524         ams->addr = addr;
1525         ams->al_addr = al.addr;
1526         ams->sym = al.sym;
1527         ams->map = al.map;
1528 }
1529
1530 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1531                                      struct addr_location *al)
1532 {
1533         struct mem_info *mi = zalloc(sizeof(*mi));
1534
1535         if (!mi)
1536                 return NULL;
1537
1538         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1539         ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1540         mi->data_src.val = sample->data_src;
1541
1542         return mi;
1543 }
1544
1545 static int add_callchain_ip(struct thread *thread,
1546                             struct symbol **parent,
1547                             struct addr_location *root_al,
1548                             u8 *cpumode,
1549                             u64 ip)
1550 {
1551         struct addr_location al;
1552
1553         al.filtered = 0;
1554         al.sym = NULL;
1555         if (!cpumode) {
1556                 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1557                                                    ip, &al);
1558         } else {
1559                 if (ip >= PERF_CONTEXT_MAX) {
1560                         switch (ip) {
1561                         case PERF_CONTEXT_HV:
1562                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1563                                 break;
1564                         case PERF_CONTEXT_KERNEL:
1565                                 *cpumode = PERF_RECORD_MISC_KERNEL;
1566                                 break;
1567                         case PERF_CONTEXT_USER:
1568                                 *cpumode = PERF_RECORD_MISC_USER;
1569                                 break;
1570                         default:
1571                                 pr_debug("invalid callchain context: "
1572                                          "%"PRId64"\n", (s64) ip);
1573                                 /*
1574                                  * It seems the callchain is corrupted.
1575                                  * Discard all.
1576                                  */
1577                                 callchain_cursor_reset(&callchain_cursor);
1578                                 return 1;
1579                         }
1580                         return 0;
1581                 }
1582                 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1583                                            ip, &al);
1584         }
1585
1586         if (al.sym != NULL) {
1587                 if (sort__has_parent && !*parent &&
1588                     symbol__match_regex(al.sym, &parent_regex))
1589                         *parent = al.sym;
1590                 else if (have_ignore_callees && root_al &&
1591                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
1592                         /* Treat this symbol as the root,
1593                            forgetting its callees. */
1594                         *root_al = al;
1595                         callchain_cursor_reset(&callchain_cursor);
1596                 }
1597         }
1598
1599         return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1600 }
1601
1602 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1603                                            struct addr_location *al)
1604 {
1605         unsigned int i;
1606         const struct branch_stack *bs = sample->branch_stack;
1607         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1608
1609         if (!bi)
1610                 return NULL;
1611
1612         for (i = 0; i < bs->nr; i++) {
1613                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1614                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1615                 bi[i].flags = bs->entries[i].flags;
1616         }
1617         return bi;
1618 }
1619
1620 #define CHASHSZ 127
1621 #define CHASHBITS 7
1622 #define NO_ENTRY 0xff
1623
1624 #define PERF_MAX_BRANCH_DEPTH 127
1625
1626 /* Remove loops. */
1627 static int remove_loops(struct branch_entry *l, int nr)
1628 {
1629         int i, j, off;
1630         unsigned char chash[CHASHSZ];
1631
1632         memset(chash, NO_ENTRY, sizeof(chash));
1633
1634         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1635
1636         for (i = 0; i < nr; i++) {
1637                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1638
1639                 /* no collision handling for now */
1640                 if (chash[h] == NO_ENTRY) {
1641                         chash[h] = i;
1642                 } else if (l[chash[h]].from == l[i].from) {
1643                         bool is_loop = true;
1644                         /* check if it is a real loop */
1645                         off = 0;
1646                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
1647                                 if (l[j].from != l[i + off].from) {
1648                                         is_loop = false;
1649                                         break;
1650                                 }
1651                         if (is_loop) {
1652                                 memmove(l + i, l + i + off,
1653                                         (nr - (i + off)) * sizeof(*l));
1654                                 nr -= off;
1655                         }
1656                 }
1657         }
1658         return nr;
1659 }
1660
1661 /*
1662  * Recolve LBR callstack chain sample
1663  * Return:
1664  * 1 on success get LBR callchain information
1665  * 0 no available LBR callchain information, should try fp
1666  * negative error code on other errors.
1667  */
1668 static int resolve_lbr_callchain_sample(struct thread *thread,
1669                                         struct perf_sample *sample,
1670                                         struct symbol **parent,
1671                                         struct addr_location *root_al,
1672                                         int max_stack)
1673 {
1674         struct ip_callchain *chain = sample->callchain;
1675         int chain_nr = min(max_stack, (int)chain->nr);
1676         u8 cpumode = PERF_RECORD_MISC_USER;
1677         int i, j, err;
1678         u64 ip;
1679
1680         for (i = 0; i < chain_nr; i++) {
1681                 if (chain->ips[i] == PERF_CONTEXT_USER)
1682                         break;
1683         }
1684
1685         /* LBR only affects the user callchain */
1686         if (i != chain_nr) {
1687                 struct branch_stack *lbr_stack = sample->branch_stack;
1688                 int lbr_nr = lbr_stack->nr;
1689                 /*
1690                  * LBR callstack can only get user call chain.
1691                  * The mix_chain_nr is kernel call chain
1692                  * number plus LBR user call chain number.
1693                  * i is kernel call chain number,
1694                  * 1 is PERF_CONTEXT_USER,
1695                  * lbr_nr + 1 is the user call chain number.
1696                  * For details, please refer to the comments
1697                  * in callchain__printf
1698                  */
1699                 int mix_chain_nr = i + 1 + lbr_nr + 1;
1700
1701                 if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1702                         pr_warning("corrupted callchain. skipping...\n");
1703                         return 0;
1704                 }
1705
1706                 for (j = 0; j < mix_chain_nr; j++) {
1707                         if (callchain_param.order == ORDER_CALLEE) {
1708                                 if (j < i + 1)
1709                                         ip = chain->ips[j];
1710                                 else if (j > i + 1)
1711                                         ip = lbr_stack->entries[j - i - 2].from;
1712                                 else
1713                                         ip = lbr_stack->entries[0].to;
1714                         } else {
1715                                 if (j < lbr_nr)
1716                                         ip = lbr_stack->entries[lbr_nr - j - 1].from;
1717                                 else if (j > lbr_nr)
1718                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
1719                                 else
1720                                         ip = lbr_stack->entries[0].to;
1721                         }
1722
1723                         err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1724                         if (err)
1725                                 return (err < 0) ? err : 0;
1726                 }
1727                 return 1;
1728         }
1729
1730         return 0;
1731 }
1732
1733 static int thread__resolve_callchain_sample(struct thread *thread,
1734                                             struct perf_evsel *evsel,
1735                                             struct perf_sample *sample,
1736                                             struct symbol **parent,
1737                                             struct addr_location *root_al,
1738                                             int max_stack)
1739 {
1740         struct branch_stack *branch = sample->branch_stack;
1741         struct ip_callchain *chain = sample->callchain;
1742         int chain_nr = min(max_stack, (int)chain->nr);
1743         u8 cpumode = PERF_RECORD_MISC_USER;
1744         int i, j, err;
1745         int skip_idx = -1;
1746         int first_call = 0;
1747
1748         callchain_cursor_reset(&callchain_cursor);
1749
1750         if (has_branch_callstack(evsel)) {
1751                 err = resolve_lbr_callchain_sample(thread, sample, parent,
1752                                                    root_al, max_stack);
1753                 if (err)
1754                         return (err < 0) ? err : 0;
1755         }
1756
1757         /*
1758          * Based on DWARF debug information, some architectures skip
1759          * a callchain entry saved by the kernel.
1760          */
1761         if (chain->nr < PERF_MAX_STACK_DEPTH)
1762                 skip_idx = arch_skip_callchain_idx(thread, chain);
1763
1764         /*
1765          * Add branches to call stack for easier browsing. This gives
1766          * more context for a sample than just the callers.
1767          *
1768          * This uses individual histograms of paths compared to the
1769          * aggregated histograms the normal LBR mode uses.
1770          *
1771          * Limitations for now:
1772          * - No extra filters
1773          * - No annotations (should annotate somehow)
1774          */
1775
1776         if (branch && callchain_param.branch_callstack) {
1777                 int nr = min(max_stack, (int)branch->nr);
1778                 struct branch_entry be[nr];
1779
1780                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1781                         pr_warning("corrupted branch chain. skipping...\n");
1782                         goto check_calls;
1783                 }
1784
1785                 for (i = 0; i < nr; i++) {
1786                         if (callchain_param.order == ORDER_CALLEE) {
1787                                 be[i] = branch->entries[i];
1788                                 /*
1789                                  * Check for overlap into the callchain.
1790                                  * The return address is one off compared to
1791                                  * the branch entry. To adjust for this
1792                                  * assume the calling instruction is not longer
1793                                  * than 8 bytes.
1794                                  */
1795                                 if (i == skip_idx ||
1796                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
1797                                         first_call++;
1798                                 else if (be[i].from < chain->ips[first_call] &&
1799                                     be[i].from >= chain->ips[first_call] - 8)
1800                                         first_call++;
1801                         } else
1802                                 be[i] = branch->entries[branch->nr - i - 1];
1803                 }
1804
1805                 nr = remove_loops(be, nr);
1806
1807                 for (i = 0; i < nr; i++) {
1808                         err = add_callchain_ip(thread, parent, root_al,
1809                                                NULL, be[i].to);
1810                         if (!err)
1811                                 err = add_callchain_ip(thread, parent, root_al,
1812                                                        NULL, be[i].from);
1813                         if (err == -EINVAL)
1814                                 break;
1815                         if (err)
1816                                 return err;
1817                 }
1818                 chain_nr -= nr;
1819         }
1820
1821 check_calls:
1822         if (chain->nr > PERF_MAX_STACK_DEPTH) {
1823                 pr_warning("corrupted callchain. skipping...\n");
1824                 return 0;
1825         }
1826
1827         for (i = first_call; i < chain_nr; i++) {
1828                 u64 ip;
1829
1830                 if (callchain_param.order == ORDER_CALLEE)
1831                         j = i;
1832                 else
1833                         j = chain->nr - i - 1;
1834
1835 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1836                 if (j == skip_idx)
1837                         continue;
1838 #endif
1839                 ip = chain->ips[j];
1840
1841                 err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1842
1843                 if (err)
1844                         return (err < 0) ? err : 0;
1845         }
1846
1847         return 0;
1848 }
1849
1850 static int unwind_entry(struct unwind_entry *entry, void *arg)
1851 {
1852         struct callchain_cursor *cursor = arg;
1853         return callchain_cursor_append(cursor, entry->ip,
1854                                        entry->map, entry->sym);
1855 }
1856
1857 int thread__resolve_callchain(struct thread *thread,
1858                               struct perf_evsel *evsel,
1859                               struct perf_sample *sample,
1860                               struct symbol **parent,
1861                               struct addr_location *root_al,
1862                               int max_stack)
1863 {
1864         int ret = thread__resolve_callchain_sample(thread, evsel,
1865                                                    sample, parent,
1866                                                    root_al, max_stack);
1867         if (ret)
1868                 return ret;
1869
1870         /* Can we do dwarf post unwind? */
1871         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1872               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1873                 return 0;
1874
1875         /* Bail out if nothing was captured. */
1876         if ((!sample->user_regs.regs) ||
1877             (!sample->user_stack.size))
1878                 return 0;
1879
1880         return unwind__get_entries(unwind_entry, &callchain_cursor,
1881                                    thread, sample, max_stack);
1882
1883 }
1884
1885 int machine__for_each_thread(struct machine *machine,
1886                              int (*fn)(struct thread *thread, void *p),
1887                              void *priv)
1888 {
1889         struct rb_node *nd;
1890         struct thread *thread;
1891         int rc = 0;
1892
1893         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1894                 thread = rb_entry(nd, struct thread, rb_node);
1895                 rc = fn(thread, priv);
1896                 if (rc != 0)
1897                         return rc;
1898         }
1899
1900         list_for_each_entry(thread, &machine->dead_threads, node) {
1901                 rc = fn(thread, priv);
1902                 if (rc != 0)
1903                         return rc;
1904         }
1905         return rc;
1906 }
1907
1908 int machines__for_each_thread(struct machines *machines,
1909                               int (*fn)(struct thread *thread, void *p),
1910                               void *priv)
1911 {
1912         struct rb_node *nd;
1913         int rc = 0;
1914
1915         rc = machine__for_each_thread(&machines->host, fn, priv);
1916         if (rc != 0)
1917                 return rc;
1918
1919         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1920                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
1921
1922                 rc = machine__for_each_thread(machine, fn, priv);
1923                 if (rc != 0)
1924                         return rc;
1925         }
1926         return rc;
1927 }
1928
1929 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1930                                   struct target *target, struct thread_map *threads,
1931                                   perf_event__handler_t process, bool data_mmap,
1932                                   unsigned int proc_map_timeout)
1933 {
1934         if (target__has_task(target))
1935                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1936         else if (target__has_cpu(target))
1937                 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1938         /* command specified */
1939         return 0;
1940 }
1941
1942 pid_t machine__get_current_tid(struct machine *machine, int cpu)
1943 {
1944         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
1945                 return -1;
1946
1947         return machine->current_tid[cpu];
1948 }
1949
1950 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
1951                              pid_t tid)
1952 {
1953         struct thread *thread;
1954
1955         if (cpu < 0)
1956                 return -EINVAL;
1957
1958         if (!machine->current_tid) {
1959                 int i;
1960
1961                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
1962                 if (!machine->current_tid)
1963                         return -ENOMEM;
1964                 for (i = 0; i < MAX_NR_CPUS; i++)
1965                         machine->current_tid[i] = -1;
1966         }
1967
1968         if (cpu >= MAX_NR_CPUS) {
1969                 pr_err("Requested CPU %d too large. ", cpu);
1970                 pr_err("Consider raising MAX_NR_CPUS\n");
1971                 return -EINVAL;
1972         }
1973
1974         machine->current_tid[cpu] = tid;
1975
1976         thread = machine__findnew_thread(machine, pid, tid);
1977         if (!thread)
1978                 return -ENOMEM;
1979
1980         thread->cpu = cpu;
1981         thread__put(thread);
1982
1983         return 0;
1984 }
1985
1986 int machine__get_kernel_start(struct machine *machine)
1987 {
1988         struct map *map = machine__kernel_map(machine, MAP__FUNCTION);
1989         int err = 0;
1990
1991         /*
1992          * The only addresses above 2^63 are kernel addresses of a 64-bit
1993          * kernel.  Note that addresses are unsigned so that on a 32-bit system
1994          * all addresses including kernel addresses are less than 2^32.  In
1995          * that case (32-bit system), if the kernel mapping is unknown, all
1996          * addresses will be assumed to be in user space - see
1997          * machine__kernel_ip().
1998          */
1999         machine->kernel_start = 1ULL << 63;
2000         if (map) {
2001                 err = map__load(map, machine->symbol_filter);
2002                 if (map->start)
2003                         machine->kernel_start = map->start;
2004         }
2005         return err;
2006 }
2007
2008 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2009 {
2010         return dsos__findnew(&machine->dsos, filename);
2011 }