perf machine: Remove machine->symbol_filter and friends
[cascardo/linux.git] / tools / perf / util / machine.c
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18
19 static void dsos__init(struct dsos *dsos)
20 {
21         INIT_LIST_HEAD(&dsos->head);
22         dsos->root = RB_ROOT;
23         pthread_rwlock_init(&dsos->lock, NULL);
24 }
25
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28         memset(machine, 0, sizeof(*machine));
29         map_groups__init(&machine->kmaps, machine);
30         RB_CLEAR_NODE(&machine->rb_node);
31         dsos__init(&machine->dsos);
32
33         machine->threads = RB_ROOT;
34         pthread_rwlock_init(&machine->threads_lock, NULL);
35         machine->nr_threads = 0;
36         INIT_LIST_HEAD(&machine->dead_threads);
37         machine->last_match = NULL;
38
39         machine->vdso_info = NULL;
40         machine->env = NULL;
41
42         machine->pid = pid;
43
44         machine->id_hdr_size = 0;
45         machine->kptr_restrict_warned = false;
46         machine->comm_exec = false;
47         machine->kernel_start = 0;
48
49         memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
50
51         machine->root_dir = strdup(root_dir);
52         if (machine->root_dir == NULL)
53                 return -ENOMEM;
54
55         if (pid != HOST_KERNEL_ID) {
56                 struct thread *thread = machine__findnew_thread(machine, -1,
57                                                                 pid);
58                 char comm[64];
59
60                 if (thread == NULL)
61                         return -ENOMEM;
62
63                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
64                 thread__set_comm(thread, comm, 0);
65                 thread__put(thread);
66         }
67
68         machine->current_tid = NULL;
69
70         return 0;
71 }
72
73 struct machine *machine__new_host(void)
74 {
75         struct machine *machine = malloc(sizeof(*machine));
76
77         if (machine != NULL) {
78                 machine__init(machine, "", HOST_KERNEL_ID);
79
80                 if (machine__create_kernel_maps(machine) < 0)
81                         goto out_delete;
82         }
83
84         return machine;
85 out_delete:
86         free(machine);
87         return NULL;
88 }
89
90 static void dsos__purge(struct dsos *dsos)
91 {
92         struct dso *pos, *n;
93
94         pthread_rwlock_wrlock(&dsos->lock);
95
96         list_for_each_entry_safe(pos, n, &dsos->head, node) {
97                 RB_CLEAR_NODE(&pos->rb_node);
98                 pos->root = NULL;
99                 list_del_init(&pos->node);
100                 dso__put(pos);
101         }
102
103         pthread_rwlock_unlock(&dsos->lock);
104 }
105
106 static void dsos__exit(struct dsos *dsos)
107 {
108         dsos__purge(dsos);
109         pthread_rwlock_destroy(&dsos->lock);
110 }
111
112 void machine__delete_threads(struct machine *machine)
113 {
114         struct rb_node *nd;
115
116         pthread_rwlock_wrlock(&machine->threads_lock);
117         nd = rb_first(&machine->threads);
118         while (nd) {
119                 struct thread *t = rb_entry(nd, struct thread, rb_node);
120
121                 nd = rb_next(nd);
122                 __machine__remove_thread(machine, t, false);
123         }
124         pthread_rwlock_unlock(&machine->threads_lock);
125 }
126
127 void machine__exit(struct machine *machine)
128 {
129         machine__destroy_kernel_maps(machine);
130         map_groups__exit(&machine->kmaps);
131         dsos__exit(&machine->dsos);
132         machine__exit_vdso(machine);
133         zfree(&machine->root_dir);
134         zfree(&machine->current_tid);
135         pthread_rwlock_destroy(&machine->threads_lock);
136 }
137
138 void machine__delete(struct machine *machine)
139 {
140         if (machine) {
141                 machine__exit(machine);
142                 free(machine);
143         }
144 }
145
146 void machines__init(struct machines *machines)
147 {
148         machine__init(&machines->host, "", HOST_KERNEL_ID);
149         machines->guests = RB_ROOT;
150 }
151
152 void machines__exit(struct machines *machines)
153 {
154         machine__exit(&machines->host);
155         /* XXX exit guest */
156 }
157
158 struct machine *machines__add(struct machines *machines, pid_t pid,
159                               const char *root_dir)
160 {
161         struct rb_node **p = &machines->guests.rb_node;
162         struct rb_node *parent = NULL;
163         struct machine *pos, *machine = malloc(sizeof(*machine));
164
165         if (machine == NULL)
166                 return NULL;
167
168         if (machine__init(machine, root_dir, pid) != 0) {
169                 free(machine);
170                 return NULL;
171         }
172
173         while (*p != NULL) {
174                 parent = *p;
175                 pos = rb_entry(parent, struct machine, rb_node);
176                 if (pid < pos->pid)
177                         p = &(*p)->rb_left;
178                 else
179                         p = &(*p)->rb_right;
180         }
181
182         rb_link_node(&machine->rb_node, parent, p);
183         rb_insert_color(&machine->rb_node, &machines->guests);
184
185         return machine;
186 }
187
188 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
189 {
190         struct rb_node *nd;
191
192         machines->host.comm_exec = comm_exec;
193
194         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
195                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
196
197                 machine->comm_exec = comm_exec;
198         }
199 }
200
201 struct machine *machines__find(struct machines *machines, pid_t pid)
202 {
203         struct rb_node **p = &machines->guests.rb_node;
204         struct rb_node *parent = NULL;
205         struct machine *machine;
206         struct machine *default_machine = NULL;
207
208         if (pid == HOST_KERNEL_ID)
209                 return &machines->host;
210
211         while (*p != NULL) {
212                 parent = *p;
213                 machine = rb_entry(parent, struct machine, rb_node);
214                 if (pid < machine->pid)
215                         p = &(*p)->rb_left;
216                 else if (pid > machine->pid)
217                         p = &(*p)->rb_right;
218                 else
219                         return machine;
220                 if (!machine->pid)
221                         default_machine = machine;
222         }
223
224         return default_machine;
225 }
226
227 struct machine *machines__findnew(struct machines *machines, pid_t pid)
228 {
229         char path[PATH_MAX];
230         const char *root_dir = "";
231         struct machine *machine = machines__find(machines, pid);
232
233         if (machine && (machine->pid == pid))
234                 goto out;
235
236         if ((pid != HOST_KERNEL_ID) &&
237             (pid != DEFAULT_GUEST_KERNEL_ID) &&
238             (symbol_conf.guestmount)) {
239                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
240                 if (access(path, R_OK)) {
241                         static struct strlist *seen;
242
243                         if (!seen)
244                                 seen = strlist__new(NULL, NULL);
245
246                         if (!strlist__has_entry(seen, path)) {
247                                 pr_err("Can't access file %s\n", path);
248                                 strlist__add(seen, path);
249                         }
250                         machine = NULL;
251                         goto out;
252                 }
253                 root_dir = path;
254         }
255
256         machine = machines__add(machines, pid, root_dir);
257 out:
258         return machine;
259 }
260
261 void machines__process_guests(struct machines *machines,
262                               machine__process_t process, void *data)
263 {
264         struct rb_node *nd;
265
266         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
267                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
268                 process(pos, data);
269         }
270 }
271
272 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
273 {
274         if (machine__is_host(machine))
275                 snprintf(bf, size, "[%s]", "kernel.kallsyms");
276         else if (machine__is_default_guest(machine))
277                 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
278         else {
279                 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
280                          machine->pid);
281         }
282
283         return bf;
284 }
285
286 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
287 {
288         struct rb_node *node;
289         struct machine *machine;
290
291         machines->host.id_hdr_size = id_hdr_size;
292
293         for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
294                 machine = rb_entry(node, struct machine, rb_node);
295                 machine->id_hdr_size = id_hdr_size;
296         }
297
298         return;
299 }
300
301 static void machine__update_thread_pid(struct machine *machine,
302                                        struct thread *th, pid_t pid)
303 {
304         struct thread *leader;
305
306         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
307                 return;
308
309         th->pid_ = pid;
310
311         if (th->pid_ == th->tid)
312                 return;
313
314         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
315         if (!leader)
316                 goto out_err;
317
318         if (!leader->mg)
319                 leader->mg = map_groups__new(machine);
320
321         if (!leader->mg)
322                 goto out_err;
323
324         if (th->mg == leader->mg)
325                 return;
326
327         if (th->mg) {
328                 /*
329                  * Maps are created from MMAP events which provide the pid and
330                  * tid.  Consequently there never should be any maps on a thread
331                  * with an unknown pid.  Just print an error if there are.
332                  */
333                 if (!map_groups__empty(th->mg))
334                         pr_err("Discarding thread maps for %d:%d\n",
335                                th->pid_, th->tid);
336                 map_groups__put(th->mg);
337         }
338
339         th->mg = map_groups__get(leader->mg);
340 out_put:
341         thread__put(leader);
342         return;
343 out_err:
344         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
345         goto out_put;
346 }
347
348 /*
349  * Caller must eventually drop thread->refcnt returned with a successful
350  * lookup/new thread inserted.
351  */
352 static struct thread *____machine__findnew_thread(struct machine *machine,
353                                                   pid_t pid, pid_t tid,
354                                                   bool create)
355 {
356         struct rb_node **p = &machine->threads.rb_node;
357         struct rb_node *parent = NULL;
358         struct thread *th;
359
360         /*
361          * Front-end cache - TID lookups come in blocks,
362          * so most of the time we dont have to look up
363          * the full rbtree:
364          */
365         th = machine->last_match;
366         if (th != NULL) {
367                 if (th->tid == tid) {
368                         machine__update_thread_pid(machine, th, pid);
369                         return thread__get(th);
370                 }
371
372                 machine->last_match = NULL;
373         }
374
375         while (*p != NULL) {
376                 parent = *p;
377                 th = rb_entry(parent, struct thread, rb_node);
378
379                 if (th->tid == tid) {
380                         machine->last_match = th;
381                         machine__update_thread_pid(machine, th, pid);
382                         return thread__get(th);
383                 }
384
385                 if (tid < th->tid)
386                         p = &(*p)->rb_left;
387                 else
388                         p = &(*p)->rb_right;
389         }
390
391         if (!create)
392                 return NULL;
393
394         th = thread__new(pid, tid);
395         if (th != NULL) {
396                 rb_link_node(&th->rb_node, parent, p);
397                 rb_insert_color(&th->rb_node, &machine->threads);
398
399                 /*
400                  * We have to initialize map_groups separately
401                  * after rb tree is updated.
402                  *
403                  * The reason is that we call machine__findnew_thread
404                  * within thread__init_map_groups to find the thread
405                  * leader and that would screwed the rb tree.
406                  */
407                 if (thread__init_map_groups(th, machine)) {
408                         rb_erase_init(&th->rb_node, &machine->threads);
409                         RB_CLEAR_NODE(&th->rb_node);
410                         thread__put(th);
411                         return NULL;
412                 }
413                 /*
414                  * It is now in the rbtree, get a ref
415                  */
416                 thread__get(th);
417                 machine->last_match = th;
418                 ++machine->nr_threads;
419         }
420
421         return th;
422 }
423
424 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
425 {
426         return ____machine__findnew_thread(machine, pid, tid, true);
427 }
428
429 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
430                                        pid_t tid)
431 {
432         struct thread *th;
433
434         pthread_rwlock_wrlock(&machine->threads_lock);
435         th = __machine__findnew_thread(machine, pid, tid);
436         pthread_rwlock_unlock(&machine->threads_lock);
437         return th;
438 }
439
440 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
441                                     pid_t tid)
442 {
443         struct thread *th;
444         pthread_rwlock_rdlock(&machine->threads_lock);
445         th =  ____machine__findnew_thread(machine, pid, tid, false);
446         pthread_rwlock_unlock(&machine->threads_lock);
447         return th;
448 }
449
450 struct comm *machine__thread_exec_comm(struct machine *machine,
451                                        struct thread *thread)
452 {
453         if (machine->comm_exec)
454                 return thread__exec_comm(thread);
455         else
456                 return thread__comm(thread);
457 }
458
459 int machine__process_comm_event(struct machine *machine, union perf_event *event,
460                                 struct perf_sample *sample)
461 {
462         struct thread *thread = machine__findnew_thread(machine,
463                                                         event->comm.pid,
464                                                         event->comm.tid);
465         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
466         int err = 0;
467
468         if (exec)
469                 machine->comm_exec = true;
470
471         if (dump_trace)
472                 perf_event__fprintf_comm(event, stdout);
473
474         if (thread == NULL ||
475             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
476                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
477                 err = -1;
478         }
479
480         thread__put(thread);
481
482         return err;
483 }
484
485 int machine__process_lost_event(struct machine *machine __maybe_unused,
486                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
487 {
488         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
489                     event->lost.id, event->lost.lost);
490         return 0;
491 }
492
493 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
494                                         union perf_event *event, struct perf_sample *sample)
495 {
496         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
497                     sample->id, event->lost_samples.lost);
498         return 0;
499 }
500
501 static struct dso *machine__findnew_module_dso(struct machine *machine,
502                                                struct kmod_path *m,
503                                                const char *filename)
504 {
505         struct dso *dso;
506
507         pthread_rwlock_wrlock(&machine->dsos.lock);
508
509         dso = __dsos__find(&machine->dsos, m->name, true);
510         if (!dso) {
511                 dso = __dsos__addnew(&machine->dsos, m->name);
512                 if (dso == NULL)
513                         goto out_unlock;
514
515                 if (machine__is_host(machine))
516                         dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
517                 else
518                         dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
519
520                 /* _KMODULE_COMP should be next to _KMODULE */
521                 if (m->kmod && m->comp)
522                         dso->symtab_type++;
523
524                 dso__set_short_name(dso, strdup(m->name), true);
525                 dso__set_long_name(dso, strdup(filename), true);
526         }
527
528         dso__get(dso);
529 out_unlock:
530         pthread_rwlock_unlock(&machine->dsos.lock);
531         return dso;
532 }
533
534 int machine__process_aux_event(struct machine *machine __maybe_unused,
535                                union perf_event *event)
536 {
537         if (dump_trace)
538                 perf_event__fprintf_aux(event, stdout);
539         return 0;
540 }
541
542 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
543                                         union perf_event *event)
544 {
545         if (dump_trace)
546                 perf_event__fprintf_itrace_start(event, stdout);
547         return 0;
548 }
549
550 int machine__process_switch_event(struct machine *machine __maybe_unused,
551                                   union perf_event *event)
552 {
553         if (dump_trace)
554                 perf_event__fprintf_switch(event, stdout);
555         return 0;
556 }
557
558 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
559 {
560         const char *dup_filename;
561
562         if (!filename || !dso || !dso->long_name)
563                 return;
564         if (dso->long_name[0] != '[')
565                 return;
566         if (!strchr(filename, '/'))
567                 return;
568
569         dup_filename = strdup(filename);
570         if (!dup_filename)
571                 return;
572
573         dso__set_long_name(dso, dup_filename, true);
574 }
575
576 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
577                                         const char *filename)
578 {
579         struct map *map = NULL;
580         struct dso *dso = NULL;
581         struct kmod_path m;
582
583         if (kmod_path__parse_name(&m, filename))
584                 return NULL;
585
586         map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
587                                        m.name);
588         if (map) {
589                 /*
590                  * If the map's dso is an offline module, give dso__load()
591                  * a chance to find the file path of that module by fixing
592                  * long_name.
593                  */
594                 dso__adjust_kmod_long_name(map->dso, filename);
595                 goto out;
596         }
597
598         dso = machine__findnew_module_dso(machine, &m, filename);
599         if (dso == NULL)
600                 goto out;
601
602         map = map__new2(start, dso, MAP__FUNCTION);
603         if (map == NULL)
604                 goto out;
605
606         map_groups__insert(&machine->kmaps, map);
607
608         /* Put the map here because map_groups__insert alread got it */
609         map__put(map);
610 out:
611         /* put the dso here, corresponding to  machine__findnew_module_dso */
612         dso__put(dso);
613         free(m.name);
614         return map;
615 }
616
617 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
618 {
619         struct rb_node *nd;
620         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
621
622         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
623                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
624                 ret += __dsos__fprintf(&pos->dsos.head, fp);
625         }
626
627         return ret;
628 }
629
630 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
631                                      bool (skip)(struct dso *dso, int parm), int parm)
632 {
633         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
634 }
635
636 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
637                                      bool (skip)(struct dso *dso, int parm), int parm)
638 {
639         struct rb_node *nd;
640         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
641
642         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
643                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
644                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
645         }
646         return ret;
647 }
648
649 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
650 {
651         int i;
652         size_t printed = 0;
653         struct dso *kdso = machine__kernel_map(machine)->dso;
654
655         if (kdso->has_build_id) {
656                 char filename[PATH_MAX];
657                 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
658                         printed += fprintf(fp, "[0] %s\n", filename);
659         }
660
661         for (i = 0; i < vmlinux_path__nr_entries; ++i)
662                 printed += fprintf(fp, "[%d] %s\n",
663                                    i + kdso->has_build_id, vmlinux_path[i]);
664
665         return printed;
666 }
667
668 size_t machine__fprintf(struct machine *machine, FILE *fp)
669 {
670         size_t ret;
671         struct rb_node *nd;
672
673         pthread_rwlock_rdlock(&machine->threads_lock);
674
675         ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
676
677         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
678                 struct thread *pos = rb_entry(nd, struct thread, rb_node);
679
680                 ret += thread__fprintf(pos, fp);
681         }
682
683         pthread_rwlock_unlock(&machine->threads_lock);
684
685         return ret;
686 }
687
688 static struct dso *machine__get_kernel(struct machine *machine)
689 {
690         const char *vmlinux_name = NULL;
691         struct dso *kernel;
692
693         if (machine__is_host(machine)) {
694                 vmlinux_name = symbol_conf.vmlinux_name;
695                 if (!vmlinux_name)
696                         vmlinux_name = DSO__NAME_KALLSYMS;
697
698                 kernel = machine__findnew_kernel(machine, vmlinux_name,
699                                                  "[kernel]", DSO_TYPE_KERNEL);
700         } else {
701                 char bf[PATH_MAX];
702
703                 if (machine__is_default_guest(machine))
704                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
705                 if (!vmlinux_name)
706                         vmlinux_name = machine__mmap_name(machine, bf,
707                                                           sizeof(bf));
708
709                 kernel = machine__findnew_kernel(machine, vmlinux_name,
710                                                  "[guest.kernel]",
711                                                  DSO_TYPE_GUEST_KERNEL);
712         }
713
714         if (kernel != NULL && (!kernel->has_build_id))
715                 dso__read_running_kernel_build_id(kernel, machine);
716
717         return kernel;
718 }
719
720 struct process_args {
721         u64 start;
722 };
723
724 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
725                                            size_t bufsz)
726 {
727         if (machine__is_default_guest(machine))
728                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
729         else
730                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
731 }
732
733 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
734
735 /* Figure out the start address of kernel map from /proc/kallsyms.
736  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
737  * symbol_name if it's not that important.
738  */
739 static u64 machine__get_running_kernel_start(struct machine *machine,
740                                              const char **symbol_name)
741 {
742         char filename[PATH_MAX];
743         int i;
744         const char *name;
745         u64 addr = 0;
746
747         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
748
749         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
750                 return 0;
751
752         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
753                 addr = kallsyms__get_function_start(filename, name);
754                 if (addr)
755                         break;
756         }
757
758         if (symbol_name)
759                 *symbol_name = name;
760
761         return addr;
762 }
763
764 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
765 {
766         enum map_type type;
767         u64 start = machine__get_running_kernel_start(machine, NULL);
768
769         /* In case of renewal the kernel map, destroy previous one */
770         machine__destroy_kernel_maps(machine);
771
772         for (type = 0; type < MAP__NR_TYPES; ++type) {
773                 struct kmap *kmap;
774                 struct map *map;
775
776                 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
777                 if (machine->vmlinux_maps[type] == NULL)
778                         return -1;
779
780                 machine->vmlinux_maps[type]->map_ip =
781                         machine->vmlinux_maps[type]->unmap_ip =
782                                 identity__map_ip;
783                 map = __machine__kernel_map(machine, type);
784                 kmap = map__kmap(map);
785                 if (!kmap)
786                         return -1;
787
788                 kmap->kmaps = &machine->kmaps;
789                 map_groups__insert(&machine->kmaps, map);
790         }
791
792         return 0;
793 }
794
795 void machine__destroy_kernel_maps(struct machine *machine)
796 {
797         enum map_type type;
798
799         for (type = 0; type < MAP__NR_TYPES; ++type) {
800                 struct kmap *kmap;
801                 struct map *map = __machine__kernel_map(machine, type);
802
803                 if (map == NULL)
804                         continue;
805
806                 kmap = map__kmap(map);
807                 map_groups__remove(&machine->kmaps, map);
808                 if (kmap && kmap->ref_reloc_sym) {
809                         /*
810                          * ref_reloc_sym is shared among all maps, so free just
811                          * on one of them.
812                          */
813                         if (type == MAP__FUNCTION) {
814                                 zfree((char **)&kmap->ref_reloc_sym->name);
815                                 zfree(&kmap->ref_reloc_sym);
816                         } else
817                                 kmap->ref_reloc_sym = NULL;
818                 }
819
820                 map__put(machine->vmlinux_maps[type]);
821                 machine->vmlinux_maps[type] = NULL;
822         }
823 }
824
825 int machines__create_guest_kernel_maps(struct machines *machines)
826 {
827         int ret = 0;
828         struct dirent **namelist = NULL;
829         int i, items = 0;
830         char path[PATH_MAX];
831         pid_t pid;
832         char *endp;
833
834         if (symbol_conf.default_guest_vmlinux_name ||
835             symbol_conf.default_guest_modules ||
836             symbol_conf.default_guest_kallsyms) {
837                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
838         }
839
840         if (symbol_conf.guestmount) {
841                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
842                 if (items <= 0)
843                         return -ENOENT;
844                 for (i = 0; i < items; i++) {
845                         if (!isdigit(namelist[i]->d_name[0])) {
846                                 /* Filter out . and .. */
847                                 continue;
848                         }
849                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
850                         if ((*endp != '\0') ||
851                             (endp == namelist[i]->d_name) ||
852                             (errno == ERANGE)) {
853                                 pr_debug("invalid directory (%s). Skipping.\n",
854                                          namelist[i]->d_name);
855                                 continue;
856                         }
857                         sprintf(path, "%s/%s/proc/kallsyms",
858                                 symbol_conf.guestmount,
859                                 namelist[i]->d_name);
860                         ret = access(path, R_OK);
861                         if (ret) {
862                                 pr_debug("Can't access file %s\n", path);
863                                 goto failure;
864                         }
865                         machines__create_kernel_maps(machines, pid);
866                 }
867 failure:
868                 free(namelist);
869         }
870
871         return ret;
872 }
873
874 void machines__destroy_kernel_maps(struct machines *machines)
875 {
876         struct rb_node *next = rb_first(&machines->guests);
877
878         machine__destroy_kernel_maps(&machines->host);
879
880         while (next) {
881                 struct machine *pos = rb_entry(next, struct machine, rb_node);
882
883                 next = rb_next(&pos->rb_node);
884                 rb_erase(&pos->rb_node, &machines->guests);
885                 machine__delete(pos);
886         }
887 }
888
889 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
890 {
891         struct machine *machine = machines__findnew(machines, pid);
892
893         if (machine == NULL)
894                 return -1;
895
896         return machine__create_kernel_maps(machine);
897 }
898
899 int __machine__load_kallsyms(struct machine *machine, const char *filename,
900                              enum map_type type, bool no_kcore, symbol_filter_t filter)
901 {
902         struct map *map = machine__kernel_map(machine);
903         int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore, filter);
904
905         if (ret > 0) {
906                 dso__set_loaded(map->dso, type);
907                 /*
908                  * Since /proc/kallsyms will have multiple sessions for the
909                  * kernel, with modules between them, fixup the end of all
910                  * sections.
911                  */
912                 __map_groups__fixup_end(&machine->kmaps, type);
913         }
914
915         return ret;
916 }
917
918 int machine__load_kallsyms(struct machine *machine, const char *filename,
919                            enum map_type type, symbol_filter_t filter)
920 {
921         return __machine__load_kallsyms(machine, filename, type, false, filter);
922 }
923
924 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
925                                symbol_filter_t filter)
926 {
927         struct map *map = machine__kernel_map(machine);
928         int ret = dso__load_vmlinux_path(map->dso, map, filter);
929
930         if (ret > 0)
931                 dso__set_loaded(map->dso, type);
932
933         return ret;
934 }
935
936 static void map_groups__fixup_end(struct map_groups *mg)
937 {
938         int i;
939         for (i = 0; i < MAP__NR_TYPES; ++i)
940                 __map_groups__fixup_end(mg, i);
941 }
942
943 static char *get_kernel_version(const char *root_dir)
944 {
945         char version[PATH_MAX];
946         FILE *file;
947         char *name, *tmp;
948         const char *prefix = "Linux version ";
949
950         sprintf(version, "%s/proc/version", root_dir);
951         file = fopen(version, "r");
952         if (!file)
953                 return NULL;
954
955         version[0] = '\0';
956         tmp = fgets(version, sizeof(version), file);
957         fclose(file);
958
959         name = strstr(version, prefix);
960         if (!name)
961                 return NULL;
962         name += strlen(prefix);
963         tmp = strchr(name, ' ');
964         if (tmp)
965                 *tmp = '\0';
966
967         return strdup(name);
968 }
969
970 static bool is_kmod_dso(struct dso *dso)
971 {
972         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
973                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
974 }
975
976 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
977                                        struct kmod_path *m)
978 {
979         struct map *map;
980         char *long_name;
981
982         map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
983         if (map == NULL)
984                 return 0;
985
986         long_name = strdup(path);
987         if (long_name == NULL)
988                 return -ENOMEM;
989
990         dso__set_long_name(map->dso, long_name, true);
991         dso__kernel_module_get_build_id(map->dso, "");
992
993         /*
994          * Full name could reveal us kmod compression, so
995          * we need to update the symtab_type if needed.
996          */
997         if (m->comp && is_kmod_dso(map->dso))
998                 map->dso->symtab_type++;
999
1000         return 0;
1001 }
1002
1003 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1004                                 const char *dir_name, int depth)
1005 {
1006         struct dirent *dent;
1007         DIR *dir = opendir(dir_name);
1008         int ret = 0;
1009
1010         if (!dir) {
1011                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1012                 return -1;
1013         }
1014
1015         while ((dent = readdir(dir)) != NULL) {
1016                 char path[PATH_MAX];
1017                 struct stat st;
1018
1019                 /*sshfs might return bad dent->d_type, so we have to stat*/
1020                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1021                 if (stat(path, &st))
1022                         continue;
1023
1024                 if (S_ISDIR(st.st_mode)) {
1025                         if (!strcmp(dent->d_name, ".") ||
1026                             !strcmp(dent->d_name, ".."))
1027                                 continue;
1028
1029                         /* Do not follow top-level source and build symlinks */
1030                         if (depth == 0) {
1031                                 if (!strcmp(dent->d_name, "source") ||
1032                                     !strcmp(dent->d_name, "build"))
1033                                         continue;
1034                         }
1035
1036                         ret = map_groups__set_modules_path_dir(mg, path,
1037                                                                depth + 1);
1038                         if (ret < 0)
1039                                 goto out;
1040                 } else {
1041                         struct kmod_path m;
1042
1043                         ret = kmod_path__parse_name(&m, dent->d_name);
1044                         if (ret)
1045                                 goto out;
1046
1047                         if (m.kmod)
1048                                 ret = map_groups__set_module_path(mg, path, &m);
1049
1050                         free(m.name);
1051
1052                         if (ret)
1053                                 goto out;
1054                 }
1055         }
1056
1057 out:
1058         closedir(dir);
1059         return ret;
1060 }
1061
1062 static int machine__set_modules_path(struct machine *machine)
1063 {
1064         char *version;
1065         char modules_path[PATH_MAX];
1066
1067         version = get_kernel_version(machine->root_dir);
1068         if (!version)
1069                 return -1;
1070
1071         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1072                  machine->root_dir, version);
1073         free(version);
1074
1075         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1076 }
1077 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1078                                 const char *name __maybe_unused)
1079 {
1080         return 0;
1081 }
1082
1083 static int machine__create_module(void *arg, const char *name, u64 start)
1084 {
1085         struct machine *machine = arg;
1086         struct map *map;
1087
1088         if (arch__fix_module_text_start(&start, name) < 0)
1089                 return -1;
1090
1091         map = machine__findnew_module_map(machine, start, name);
1092         if (map == NULL)
1093                 return -1;
1094
1095         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1096
1097         return 0;
1098 }
1099
1100 static int machine__create_modules(struct machine *machine)
1101 {
1102         const char *modules;
1103         char path[PATH_MAX];
1104
1105         if (machine__is_default_guest(machine)) {
1106                 modules = symbol_conf.default_guest_modules;
1107         } else {
1108                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1109                 modules = path;
1110         }
1111
1112         if (symbol__restricted_filename(modules, "/proc/modules"))
1113                 return -1;
1114
1115         if (modules__parse(modules, machine, machine__create_module))
1116                 return -1;
1117
1118         if (!machine__set_modules_path(machine))
1119                 return 0;
1120
1121         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1122
1123         return 0;
1124 }
1125
1126 int machine__create_kernel_maps(struct machine *machine)
1127 {
1128         struct dso *kernel = machine__get_kernel(machine);
1129         const char *name;
1130         u64 addr;
1131         int ret;
1132
1133         if (kernel == NULL)
1134                 return -1;
1135
1136         ret = __machine__create_kernel_maps(machine, kernel);
1137         dso__put(kernel);
1138         if (ret < 0)
1139                 return -1;
1140
1141         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1142                 if (machine__is_host(machine))
1143                         pr_debug("Problems creating module maps, "
1144                                  "continuing anyway...\n");
1145                 else
1146                         pr_debug("Problems creating module maps for guest %d, "
1147                                  "continuing anyway...\n", machine->pid);
1148         }
1149
1150         /*
1151          * Now that we have all the maps created, just set the ->end of them:
1152          */
1153         map_groups__fixup_end(&machine->kmaps);
1154
1155         addr = machine__get_running_kernel_start(machine, &name);
1156         if (!addr) {
1157         } else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1158                 machine__destroy_kernel_maps(machine);
1159                 return -1;
1160         }
1161
1162         return 0;
1163 }
1164
1165 static void machine__set_kernel_mmap_len(struct machine *machine,
1166                                          union perf_event *event)
1167 {
1168         int i;
1169
1170         for (i = 0; i < MAP__NR_TYPES; i++) {
1171                 machine->vmlinux_maps[i]->start = event->mmap.start;
1172                 machine->vmlinux_maps[i]->end   = (event->mmap.start +
1173                                                    event->mmap.len);
1174                 /*
1175                  * Be a bit paranoid here, some perf.data file came with
1176                  * a zero sized synthesized MMAP event for the kernel.
1177                  */
1178                 if (machine->vmlinux_maps[i]->end == 0)
1179                         machine->vmlinux_maps[i]->end = ~0ULL;
1180         }
1181 }
1182
1183 static bool machine__uses_kcore(struct machine *machine)
1184 {
1185         struct dso *dso;
1186
1187         list_for_each_entry(dso, &machine->dsos.head, node) {
1188                 if (dso__is_kcore(dso))
1189                         return true;
1190         }
1191
1192         return false;
1193 }
1194
1195 static int machine__process_kernel_mmap_event(struct machine *machine,
1196                                               union perf_event *event)
1197 {
1198         struct map *map;
1199         char kmmap_prefix[PATH_MAX];
1200         enum dso_kernel_type kernel_type;
1201         bool is_kernel_mmap;
1202
1203         /* If we have maps from kcore then we do not need or want any others */
1204         if (machine__uses_kcore(machine))
1205                 return 0;
1206
1207         machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1208         if (machine__is_host(machine))
1209                 kernel_type = DSO_TYPE_KERNEL;
1210         else
1211                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1212
1213         is_kernel_mmap = memcmp(event->mmap.filename,
1214                                 kmmap_prefix,
1215                                 strlen(kmmap_prefix) - 1) == 0;
1216         if (event->mmap.filename[0] == '/' ||
1217             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1218                 map = machine__findnew_module_map(machine, event->mmap.start,
1219                                                   event->mmap.filename);
1220                 if (map == NULL)
1221                         goto out_problem;
1222
1223                 map->end = map->start + event->mmap.len;
1224         } else if (is_kernel_mmap) {
1225                 const char *symbol_name = (event->mmap.filename +
1226                                 strlen(kmmap_prefix));
1227                 /*
1228                  * Should be there already, from the build-id table in
1229                  * the header.
1230                  */
1231                 struct dso *kernel = NULL;
1232                 struct dso *dso;
1233
1234                 pthread_rwlock_rdlock(&machine->dsos.lock);
1235
1236                 list_for_each_entry(dso, &machine->dsos.head, node) {
1237
1238                         /*
1239                          * The cpumode passed to is_kernel_module is not the
1240                          * cpumode of *this* event. If we insist on passing
1241                          * correct cpumode to is_kernel_module, we should
1242                          * record the cpumode when we adding this dso to the
1243                          * linked list.
1244                          *
1245                          * However we don't really need passing correct
1246                          * cpumode.  We know the correct cpumode must be kernel
1247                          * mode (if not, we should not link it onto kernel_dsos
1248                          * list).
1249                          *
1250                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1251                          * is_kernel_module() treats it as a kernel cpumode.
1252                          */
1253
1254                         if (!dso->kernel ||
1255                             is_kernel_module(dso->long_name,
1256                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1257                                 continue;
1258
1259
1260                         kernel = dso;
1261                         break;
1262                 }
1263
1264                 pthread_rwlock_unlock(&machine->dsos.lock);
1265
1266                 if (kernel == NULL)
1267                         kernel = machine__findnew_dso(machine, kmmap_prefix);
1268                 if (kernel == NULL)
1269                         goto out_problem;
1270
1271                 kernel->kernel = kernel_type;
1272                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1273                         dso__put(kernel);
1274                         goto out_problem;
1275                 }
1276
1277                 if (strstr(kernel->long_name, "vmlinux"))
1278                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1279
1280                 machine__set_kernel_mmap_len(machine, event);
1281
1282                 /*
1283                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1284                  * symbol. Effectively having zero here means that at record
1285                  * time /proc/sys/kernel/kptr_restrict was non zero.
1286                  */
1287                 if (event->mmap.pgoff != 0) {
1288                         maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1289                                                          symbol_name,
1290                                                          event->mmap.pgoff);
1291                 }
1292
1293                 if (machine__is_default_guest(machine)) {
1294                         /*
1295                          * preload dso of guest kernel and modules
1296                          */
1297                         dso__load(kernel, machine__kernel_map(machine), NULL);
1298                 }
1299         }
1300         return 0;
1301 out_problem:
1302         return -1;
1303 }
1304
1305 int machine__process_mmap2_event(struct machine *machine,
1306                                  union perf_event *event,
1307                                  struct perf_sample *sample)
1308 {
1309         struct thread *thread;
1310         struct map *map;
1311         enum map_type type;
1312         int ret = 0;
1313
1314         if (dump_trace)
1315                 perf_event__fprintf_mmap2(event, stdout);
1316
1317         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1318             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1319                 ret = machine__process_kernel_mmap_event(machine, event);
1320                 if (ret < 0)
1321                         goto out_problem;
1322                 return 0;
1323         }
1324
1325         thread = machine__findnew_thread(machine, event->mmap2.pid,
1326                                         event->mmap2.tid);
1327         if (thread == NULL)
1328                 goto out_problem;
1329
1330         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1331                 type = MAP__VARIABLE;
1332         else
1333                 type = MAP__FUNCTION;
1334
1335         map = map__new(machine, event->mmap2.start,
1336                         event->mmap2.len, event->mmap2.pgoff,
1337                         event->mmap2.pid, event->mmap2.maj,
1338                         event->mmap2.min, event->mmap2.ino,
1339                         event->mmap2.ino_generation,
1340                         event->mmap2.prot,
1341                         event->mmap2.flags,
1342                         event->mmap2.filename, type, thread);
1343
1344         if (map == NULL)
1345                 goto out_problem_map;
1346
1347         ret = thread__insert_map(thread, map);
1348         if (ret)
1349                 goto out_problem_insert;
1350
1351         thread__put(thread);
1352         map__put(map);
1353         return 0;
1354
1355 out_problem_insert:
1356         map__put(map);
1357 out_problem_map:
1358         thread__put(thread);
1359 out_problem:
1360         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1361         return 0;
1362 }
1363
1364 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1365                                 struct perf_sample *sample)
1366 {
1367         struct thread *thread;
1368         struct map *map;
1369         enum map_type type;
1370         int ret = 0;
1371
1372         if (dump_trace)
1373                 perf_event__fprintf_mmap(event, stdout);
1374
1375         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1376             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1377                 ret = machine__process_kernel_mmap_event(machine, event);
1378                 if (ret < 0)
1379                         goto out_problem;
1380                 return 0;
1381         }
1382
1383         thread = machine__findnew_thread(machine, event->mmap.pid,
1384                                          event->mmap.tid);
1385         if (thread == NULL)
1386                 goto out_problem;
1387
1388         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1389                 type = MAP__VARIABLE;
1390         else
1391                 type = MAP__FUNCTION;
1392
1393         map = map__new(machine, event->mmap.start,
1394                         event->mmap.len, event->mmap.pgoff,
1395                         event->mmap.pid, 0, 0, 0, 0, 0, 0,
1396                         event->mmap.filename,
1397                         type, thread);
1398
1399         if (map == NULL)
1400                 goto out_problem_map;
1401
1402         ret = thread__insert_map(thread, map);
1403         if (ret)
1404                 goto out_problem_insert;
1405
1406         thread__put(thread);
1407         map__put(map);
1408         return 0;
1409
1410 out_problem_insert:
1411         map__put(map);
1412 out_problem_map:
1413         thread__put(thread);
1414 out_problem:
1415         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1416         return 0;
1417 }
1418
1419 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1420 {
1421         if (machine->last_match == th)
1422                 machine->last_match = NULL;
1423
1424         BUG_ON(atomic_read(&th->refcnt) == 0);
1425         if (lock)
1426                 pthread_rwlock_wrlock(&machine->threads_lock);
1427         rb_erase_init(&th->rb_node, &machine->threads);
1428         RB_CLEAR_NODE(&th->rb_node);
1429         --machine->nr_threads;
1430         /*
1431          * Move it first to the dead_threads list, then drop the reference,
1432          * if this is the last reference, then the thread__delete destructor
1433          * will be called and we will remove it from the dead_threads list.
1434          */
1435         list_add_tail(&th->node, &machine->dead_threads);
1436         if (lock)
1437                 pthread_rwlock_unlock(&machine->threads_lock);
1438         thread__put(th);
1439 }
1440
1441 void machine__remove_thread(struct machine *machine, struct thread *th)
1442 {
1443         return __machine__remove_thread(machine, th, true);
1444 }
1445
1446 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1447                                 struct perf_sample *sample)
1448 {
1449         struct thread *thread = machine__find_thread(machine,
1450                                                      event->fork.pid,
1451                                                      event->fork.tid);
1452         struct thread *parent = machine__findnew_thread(machine,
1453                                                         event->fork.ppid,
1454                                                         event->fork.ptid);
1455         int err = 0;
1456
1457         if (dump_trace)
1458                 perf_event__fprintf_task(event, stdout);
1459
1460         /*
1461          * There may be an existing thread that is not actually the parent,
1462          * either because we are processing events out of order, or because the
1463          * (fork) event that would have removed the thread was lost. Assume the
1464          * latter case and continue on as best we can.
1465          */
1466         if (parent->pid_ != (pid_t)event->fork.ppid) {
1467                 dump_printf("removing erroneous parent thread %d/%d\n",
1468                             parent->pid_, parent->tid);
1469                 machine__remove_thread(machine, parent);
1470                 thread__put(parent);
1471                 parent = machine__findnew_thread(machine, event->fork.ppid,
1472                                                  event->fork.ptid);
1473         }
1474
1475         /* if a thread currently exists for the thread id remove it */
1476         if (thread != NULL) {
1477                 machine__remove_thread(machine, thread);
1478                 thread__put(thread);
1479         }
1480
1481         thread = machine__findnew_thread(machine, event->fork.pid,
1482                                          event->fork.tid);
1483
1484         if (thread == NULL || parent == NULL ||
1485             thread__fork(thread, parent, sample->time) < 0) {
1486                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1487                 err = -1;
1488         }
1489         thread__put(thread);
1490         thread__put(parent);
1491
1492         return err;
1493 }
1494
1495 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1496                                 struct perf_sample *sample __maybe_unused)
1497 {
1498         struct thread *thread = machine__find_thread(machine,
1499                                                      event->fork.pid,
1500                                                      event->fork.tid);
1501
1502         if (dump_trace)
1503                 perf_event__fprintf_task(event, stdout);
1504
1505         if (thread != NULL) {
1506                 thread__exited(thread);
1507                 thread__put(thread);
1508         }
1509
1510         return 0;
1511 }
1512
1513 int machine__process_event(struct machine *machine, union perf_event *event,
1514                            struct perf_sample *sample)
1515 {
1516         int ret;
1517
1518         switch (event->header.type) {
1519         case PERF_RECORD_COMM:
1520                 ret = machine__process_comm_event(machine, event, sample); break;
1521         case PERF_RECORD_MMAP:
1522                 ret = machine__process_mmap_event(machine, event, sample); break;
1523         case PERF_RECORD_MMAP2:
1524                 ret = machine__process_mmap2_event(machine, event, sample); break;
1525         case PERF_RECORD_FORK:
1526                 ret = machine__process_fork_event(machine, event, sample); break;
1527         case PERF_RECORD_EXIT:
1528                 ret = machine__process_exit_event(machine, event, sample); break;
1529         case PERF_RECORD_LOST:
1530                 ret = machine__process_lost_event(machine, event, sample); break;
1531         case PERF_RECORD_AUX:
1532                 ret = machine__process_aux_event(machine, event); break;
1533         case PERF_RECORD_ITRACE_START:
1534                 ret = machine__process_itrace_start_event(machine, event); break;
1535         case PERF_RECORD_LOST_SAMPLES:
1536                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1537         case PERF_RECORD_SWITCH:
1538         case PERF_RECORD_SWITCH_CPU_WIDE:
1539                 ret = machine__process_switch_event(machine, event); break;
1540         default:
1541                 ret = -1;
1542                 break;
1543         }
1544
1545         return ret;
1546 }
1547
1548 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1549 {
1550         if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1551                 return 1;
1552         return 0;
1553 }
1554
1555 static void ip__resolve_ams(struct thread *thread,
1556                             struct addr_map_symbol *ams,
1557                             u64 ip)
1558 {
1559         struct addr_location al;
1560
1561         memset(&al, 0, sizeof(al));
1562         /*
1563          * We cannot use the header.misc hint to determine whether a
1564          * branch stack address is user, kernel, guest, hypervisor.
1565          * Branches may straddle the kernel/user/hypervisor boundaries.
1566          * Thus, we have to try consecutively until we find a match
1567          * or else, the symbol is unknown
1568          */
1569         thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1570
1571         ams->addr = ip;
1572         ams->al_addr = al.addr;
1573         ams->sym = al.sym;
1574         ams->map = al.map;
1575 }
1576
1577 static void ip__resolve_data(struct thread *thread,
1578                              u8 m, struct addr_map_symbol *ams, u64 addr)
1579 {
1580         struct addr_location al;
1581
1582         memset(&al, 0, sizeof(al));
1583
1584         thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1585         if (al.map == NULL) {
1586                 /*
1587                  * some shared data regions have execute bit set which puts
1588                  * their mapping in the MAP__FUNCTION type array.
1589                  * Check there as a fallback option before dropping the sample.
1590                  */
1591                 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1592         }
1593
1594         ams->addr = addr;
1595         ams->al_addr = al.addr;
1596         ams->sym = al.sym;
1597         ams->map = al.map;
1598 }
1599
1600 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1601                                      struct addr_location *al)
1602 {
1603         struct mem_info *mi = zalloc(sizeof(*mi));
1604
1605         if (!mi)
1606                 return NULL;
1607
1608         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1609         ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1610         mi->data_src.val = sample->data_src;
1611
1612         return mi;
1613 }
1614
1615 static int add_callchain_ip(struct thread *thread,
1616                             struct callchain_cursor *cursor,
1617                             struct symbol **parent,
1618                             struct addr_location *root_al,
1619                             u8 *cpumode,
1620                             u64 ip)
1621 {
1622         struct addr_location al;
1623
1624         al.filtered = 0;
1625         al.sym = NULL;
1626         if (!cpumode) {
1627                 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1628                                                    ip, &al);
1629         } else {
1630                 if (ip >= PERF_CONTEXT_MAX) {
1631                         switch (ip) {
1632                         case PERF_CONTEXT_HV:
1633                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1634                                 break;
1635                         case PERF_CONTEXT_KERNEL:
1636                                 *cpumode = PERF_RECORD_MISC_KERNEL;
1637                                 break;
1638                         case PERF_CONTEXT_USER:
1639                                 *cpumode = PERF_RECORD_MISC_USER;
1640                                 break;
1641                         default:
1642                                 pr_debug("invalid callchain context: "
1643                                          "%"PRId64"\n", (s64) ip);
1644                                 /*
1645                                  * It seems the callchain is corrupted.
1646                                  * Discard all.
1647                                  */
1648                                 callchain_cursor_reset(cursor);
1649                                 return 1;
1650                         }
1651                         return 0;
1652                 }
1653                 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1654                                            ip, &al);
1655         }
1656
1657         if (al.sym != NULL) {
1658                 if (perf_hpp_list.parent && !*parent &&
1659                     symbol__match_regex(al.sym, &parent_regex))
1660                         *parent = al.sym;
1661                 else if (have_ignore_callees && root_al &&
1662                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
1663                         /* Treat this symbol as the root,
1664                            forgetting its callees. */
1665                         *root_al = al;
1666                         callchain_cursor_reset(cursor);
1667                 }
1668         }
1669
1670         if (symbol_conf.hide_unresolved && al.sym == NULL)
1671                 return 0;
1672         return callchain_cursor_append(cursor, al.addr, al.map, al.sym);
1673 }
1674
1675 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1676                                            struct addr_location *al)
1677 {
1678         unsigned int i;
1679         const struct branch_stack *bs = sample->branch_stack;
1680         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1681
1682         if (!bi)
1683                 return NULL;
1684
1685         for (i = 0; i < bs->nr; i++) {
1686                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1687                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1688                 bi[i].flags = bs->entries[i].flags;
1689         }
1690         return bi;
1691 }
1692
1693 #define CHASHSZ 127
1694 #define CHASHBITS 7
1695 #define NO_ENTRY 0xff
1696
1697 #define PERF_MAX_BRANCH_DEPTH 127
1698
1699 /* Remove loops. */
1700 static int remove_loops(struct branch_entry *l, int nr)
1701 {
1702         int i, j, off;
1703         unsigned char chash[CHASHSZ];
1704
1705         memset(chash, NO_ENTRY, sizeof(chash));
1706
1707         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1708
1709         for (i = 0; i < nr; i++) {
1710                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1711
1712                 /* no collision handling for now */
1713                 if (chash[h] == NO_ENTRY) {
1714                         chash[h] = i;
1715                 } else if (l[chash[h]].from == l[i].from) {
1716                         bool is_loop = true;
1717                         /* check if it is a real loop */
1718                         off = 0;
1719                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
1720                                 if (l[j].from != l[i + off].from) {
1721                                         is_loop = false;
1722                                         break;
1723                                 }
1724                         if (is_loop) {
1725                                 memmove(l + i, l + i + off,
1726                                         (nr - (i + off)) * sizeof(*l));
1727                                 nr -= off;
1728                         }
1729                 }
1730         }
1731         return nr;
1732 }
1733
1734 /*
1735  * Recolve LBR callstack chain sample
1736  * Return:
1737  * 1 on success get LBR callchain information
1738  * 0 no available LBR callchain information, should try fp
1739  * negative error code on other errors.
1740  */
1741 static int resolve_lbr_callchain_sample(struct thread *thread,
1742                                         struct callchain_cursor *cursor,
1743                                         struct perf_sample *sample,
1744                                         struct symbol **parent,
1745                                         struct addr_location *root_al,
1746                                         int max_stack)
1747 {
1748         struct ip_callchain *chain = sample->callchain;
1749         int chain_nr = min(max_stack, (int)chain->nr);
1750         u8 cpumode = PERF_RECORD_MISC_USER;
1751         int i, j, err;
1752         u64 ip;
1753
1754         for (i = 0; i < chain_nr; i++) {
1755                 if (chain->ips[i] == PERF_CONTEXT_USER)
1756                         break;
1757         }
1758
1759         /* LBR only affects the user callchain */
1760         if (i != chain_nr) {
1761                 struct branch_stack *lbr_stack = sample->branch_stack;
1762                 int lbr_nr = lbr_stack->nr;
1763                 /*
1764                  * LBR callstack can only get user call chain.
1765                  * The mix_chain_nr is kernel call chain
1766                  * number plus LBR user call chain number.
1767                  * i is kernel call chain number,
1768                  * 1 is PERF_CONTEXT_USER,
1769                  * lbr_nr + 1 is the user call chain number.
1770                  * For details, please refer to the comments
1771                  * in callchain__printf
1772                  */
1773                 int mix_chain_nr = i + 1 + lbr_nr + 1;
1774
1775                 for (j = 0; j < mix_chain_nr; j++) {
1776                         if (callchain_param.order == ORDER_CALLEE) {
1777                                 if (j < i + 1)
1778                                         ip = chain->ips[j];
1779                                 else if (j > i + 1)
1780                                         ip = lbr_stack->entries[j - i - 2].from;
1781                                 else
1782                                         ip = lbr_stack->entries[0].to;
1783                         } else {
1784                                 if (j < lbr_nr)
1785                                         ip = lbr_stack->entries[lbr_nr - j - 1].from;
1786                                 else if (j > lbr_nr)
1787                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
1788                                 else
1789                                         ip = lbr_stack->entries[0].to;
1790                         }
1791
1792                         err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1793                         if (err)
1794                                 return (err < 0) ? err : 0;
1795                 }
1796                 return 1;
1797         }
1798
1799         return 0;
1800 }
1801
1802 static int thread__resolve_callchain_sample(struct thread *thread,
1803                                             struct callchain_cursor *cursor,
1804                                             struct perf_evsel *evsel,
1805                                             struct perf_sample *sample,
1806                                             struct symbol **parent,
1807                                             struct addr_location *root_al,
1808                                             int max_stack)
1809 {
1810         struct branch_stack *branch = sample->branch_stack;
1811         struct ip_callchain *chain = sample->callchain;
1812         int chain_nr = chain->nr;
1813         u8 cpumode = PERF_RECORD_MISC_USER;
1814         int i, j, err, nr_entries;
1815         int skip_idx = -1;
1816         int first_call = 0;
1817
1818         if (perf_evsel__has_branch_callstack(evsel)) {
1819                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1820                                                    root_al, max_stack);
1821                 if (err)
1822                         return (err < 0) ? err : 0;
1823         }
1824
1825         /*
1826          * Based on DWARF debug information, some architectures skip
1827          * a callchain entry saved by the kernel.
1828          */
1829         skip_idx = arch_skip_callchain_idx(thread, chain);
1830
1831         /*
1832          * Add branches to call stack for easier browsing. This gives
1833          * more context for a sample than just the callers.
1834          *
1835          * This uses individual histograms of paths compared to the
1836          * aggregated histograms the normal LBR mode uses.
1837          *
1838          * Limitations for now:
1839          * - No extra filters
1840          * - No annotations (should annotate somehow)
1841          */
1842
1843         if (branch && callchain_param.branch_callstack) {
1844                 int nr = min(max_stack, (int)branch->nr);
1845                 struct branch_entry be[nr];
1846
1847                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1848                         pr_warning("corrupted branch chain. skipping...\n");
1849                         goto check_calls;
1850                 }
1851
1852                 for (i = 0; i < nr; i++) {
1853                         if (callchain_param.order == ORDER_CALLEE) {
1854                                 be[i] = branch->entries[i];
1855                                 /*
1856                                  * Check for overlap into the callchain.
1857                                  * The return address is one off compared to
1858                                  * the branch entry. To adjust for this
1859                                  * assume the calling instruction is not longer
1860                                  * than 8 bytes.
1861                                  */
1862                                 if (i == skip_idx ||
1863                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
1864                                         first_call++;
1865                                 else if (be[i].from < chain->ips[first_call] &&
1866                                     be[i].from >= chain->ips[first_call] - 8)
1867                                         first_call++;
1868                         } else
1869                                 be[i] = branch->entries[branch->nr - i - 1];
1870                 }
1871
1872                 nr = remove_loops(be, nr);
1873
1874                 for (i = 0; i < nr; i++) {
1875                         err = add_callchain_ip(thread, cursor, parent, root_al,
1876                                                NULL, be[i].to);
1877                         if (!err)
1878                                 err = add_callchain_ip(thread, cursor, parent, root_al,
1879                                                        NULL, be[i].from);
1880                         if (err == -EINVAL)
1881                                 break;
1882                         if (err)
1883                                 return err;
1884                 }
1885                 chain_nr -= nr;
1886         }
1887
1888 check_calls:
1889         for (i = first_call, nr_entries = 0;
1890              i < chain_nr && nr_entries < max_stack; i++) {
1891                 u64 ip;
1892
1893                 if (callchain_param.order == ORDER_CALLEE)
1894                         j = i;
1895                 else
1896                         j = chain->nr - i - 1;
1897
1898 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1899                 if (j == skip_idx)
1900                         continue;
1901 #endif
1902                 ip = chain->ips[j];
1903
1904                 if (ip < PERF_CONTEXT_MAX)
1905                        ++nr_entries;
1906
1907                 err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1908
1909                 if (err)
1910                         return (err < 0) ? err : 0;
1911         }
1912
1913         return 0;
1914 }
1915
1916 static int unwind_entry(struct unwind_entry *entry, void *arg)
1917 {
1918         struct callchain_cursor *cursor = arg;
1919
1920         if (symbol_conf.hide_unresolved && entry->sym == NULL)
1921                 return 0;
1922         return callchain_cursor_append(cursor, entry->ip,
1923                                        entry->map, entry->sym);
1924 }
1925
1926 static int thread__resolve_callchain_unwind(struct thread *thread,
1927                                             struct callchain_cursor *cursor,
1928                                             struct perf_evsel *evsel,
1929                                             struct perf_sample *sample,
1930                                             int max_stack)
1931 {
1932         /* Can we do dwarf post unwind? */
1933         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1934               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1935                 return 0;
1936
1937         /* Bail out if nothing was captured. */
1938         if ((!sample->user_regs.regs) ||
1939             (!sample->user_stack.size))
1940                 return 0;
1941
1942         return unwind__get_entries(unwind_entry, cursor,
1943                                    thread, sample, max_stack);
1944 }
1945
1946 int thread__resolve_callchain(struct thread *thread,
1947                               struct callchain_cursor *cursor,
1948                               struct perf_evsel *evsel,
1949                               struct perf_sample *sample,
1950                               struct symbol **parent,
1951                               struct addr_location *root_al,
1952                               int max_stack)
1953 {
1954         int ret = 0;
1955
1956         callchain_cursor_reset(&callchain_cursor);
1957
1958         if (callchain_param.order == ORDER_CALLEE) {
1959                 ret = thread__resolve_callchain_sample(thread, cursor,
1960                                                        evsel, sample,
1961                                                        parent, root_al,
1962                                                        max_stack);
1963                 if (ret)
1964                         return ret;
1965                 ret = thread__resolve_callchain_unwind(thread, cursor,
1966                                                        evsel, sample,
1967                                                        max_stack);
1968         } else {
1969                 ret = thread__resolve_callchain_unwind(thread, cursor,
1970                                                        evsel, sample,
1971                                                        max_stack);
1972                 if (ret)
1973                         return ret;
1974                 ret = thread__resolve_callchain_sample(thread, cursor,
1975                                                        evsel, sample,
1976                                                        parent, root_al,
1977                                                        max_stack);
1978         }
1979
1980         return ret;
1981 }
1982
1983 int machine__for_each_thread(struct machine *machine,
1984                              int (*fn)(struct thread *thread, void *p),
1985                              void *priv)
1986 {
1987         struct rb_node *nd;
1988         struct thread *thread;
1989         int rc = 0;
1990
1991         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1992                 thread = rb_entry(nd, struct thread, rb_node);
1993                 rc = fn(thread, priv);
1994                 if (rc != 0)
1995                         return rc;
1996         }
1997
1998         list_for_each_entry(thread, &machine->dead_threads, node) {
1999                 rc = fn(thread, priv);
2000                 if (rc != 0)
2001                         return rc;
2002         }
2003         return rc;
2004 }
2005
2006 int machines__for_each_thread(struct machines *machines,
2007                               int (*fn)(struct thread *thread, void *p),
2008                               void *priv)
2009 {
2010         struct rb_node *nd;
2011         int rc = 0;
2012
2013         rc = machine__for_each_thread(&machines->host, fn, priv);
2014         if (rc != 0)
2015                 return rc;
2016
2017         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2018                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2019
2020                 rc = machine__for_each_thread(machine, fn, priv);
2021                 if (rc != 0)
2022                         return rc;
2023         }
2024         return rc;
2025 }
2026
2027 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2028                                   struct target *target, struct thread_map *threads,
2029                                   perf_event__handler_t process, bool data_mmap,
2030                                   unsigned int proc_map_timeout)
2031 {
2032         if (target__has_task(target))
2033                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2034         else if (target__has_cpu(target))
2035                 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2036         /* command specified */
2037         return 0;
2038 }
2039
2040 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2041 {
2042         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2043                 return -1;
2044
2045         return machine->current_tid[cpu];
2046 }
2047
2048 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2049                              pid_t tid)
2050 {
2051         struct thread *thread;
2052
2053         if (cpu < 0)
2054                 return -EINVAL;
2055
2056         if (!machine->current_tid) {
2057                 int i;
2058
2059                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2060                 if (!machine->current_tid)
2061                         return -ENOMEM;
2062                 for (i = 0; i < MAX_NR_CPUS; i++)
2063                         machine->current_tid[i] = -1;
2064         }
2065
2066         if (cpu >= MAX_NR_CPUS) {
2067                 pr_err("Requested CPU %d too large. ", cpu);
2068                 pr_err("Consider raising MAX_NR_CPUS\n");
2069                 return -EINVAL;
2070         }
2071
2072         machine->current_tid[cpu] = tid;
2073
2074         thread = machine__findnew_thread(machine, pid, tid);
2075         if (!thread)
2076                 return -ENOMEM;
2077
2078         thread->cpu = cpu;
2079         thread__put(thread);
2080
2081         return 0;
2082 }
2083
2084 int machine__get_kernel_start(struct machine *machine)
2085 {
2086         struct map *map = machine__kernel_map(machine);
2087         int err = 0;
2088
2089         /*
2090          * The only addresses above 2^63 are kernel addresses of a 64-bit
2091          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2092          * all addresses including kernel addresses are less than 2^32.  In
2093          * that case (32-bit system), if the kernel mapping is unknown, all
2094          * addresses will be assumed to be in user space - see
2095          * machine__kernel_ip().
2096          */
2097         machine->kernel_start = 1ULL << 63;
2098         if (map) {
2099                 err = map__load(map, NULL);
2100                 if (map->start)
2101                         machine->kernel_start = map->start;
2102         }
2103         return err;
2104 }
2105
2106 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2107 {
2108         return dsos__findnew(&machine->dsos, filename);
2109 }
2110
2111 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2112 {
2113         struct machine *machine = vmachine;
2114         struct map *map;
2115         struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);
2116
2117         if (sym == NULL)
2118                 return NULL;
2119
2120         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2121         *addrp = map->unmap_ip(map, sym->start);
2122         return sym->name;
2123 }