bfcafbd8fa029806ee8d50e4b460565e5765fd36
[cascardo/linux.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
1 /*
2  * VGICv3 MMIO handling functions
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13
14 #include <linux/irqchip/arm-gic-v3.h>
15 #include <linux/kvm.h>
16 #include <linux/kvm_host.h>
17 #include <kvm/iodev.h>
18 #include <kvm/arm_vgic.h>
19
20 #include <asm/kvm_emulate.h>
21
22 #include "vgic.h"
23 #include "vgic-mmio.h"
24
25 /* extract @num bytes at @offset bytes offset in data */
26 static unsigned long extract_bytes(unsigned long data, unsigned int offset,
27                                    unsigned int num)
28 {
29         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
30 }
31
32 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
33                                             gpa_t addr, unsigned int len)
34 {
35         u32 value = 0;
36
37         switch (addr & 0x0c) {
38         case GICD_CTLR:
39                 if (vcpu->kvm->arch.vgic.enabled)
40                         value |= GICD_CTLR_ENABLE_SS_G1;
41                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
42                 break;
43         case GICD_TYPER:
44                 value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
45                 value = (value >> 5) - 1;
46                 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
47                 break;
48         case GICD_IIDR:
49                 value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
50                 break;
51         default:
52                 return 0;
53         }
54
55         return value;
56 }
57
58 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
59                                     gpa_t addr, unsigned int len,
60                                     unsigned long val)
61 {
62         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
63         bool was_enabled = dist->enabled;
64
65         switch (addr & 0x0c) {
66         case GICD_CTLR:
67                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
68
69                 if (!was_enabled && dist->enabled)
70                         vgic_kick_vcpus(vcpu->kvm);
71                 break;
72         case GICD_TYPER:
73         case GICD_IIDR:
74                 return;
75         }
76 }
77
78 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
79                                             gpa_t addr, unsigned int len)
80 {
81         int intid = VGIC_ADDR_TO_INTID(addr, 64);
82         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
83         unsigned long ret = 0;
84
85         if (!irq)
86                 return 0;
87
88         /* The upper word is RAZ for us. */
89         if (!(addr & 4))
90                 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
91
92         vgic_put_irq(vcpu->kvm, irq);
93         return ret;
94 }
95
96 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
97                                     gpa_t addr, unsigned int len,
98                                     unsigned long val)
99 {
100         int intid = VGIC_ADDR_TO_INTID(addr, 64);
101         struct vgic_irq *irq;
102
103         /* The upper word is WI for us since we don't implement Aff3. */
104         if (addr & 4)
105                 return;
106
107         irq = vgic_get_irq(vcpu->kvm, NULL, intid);
108
109         if (!irq)
110                 return;
111
112         spin_lock(&irq->irq_lock);
113
114         /* We only care about and preserve Aff0, Aff1 and Aff2. */
115         irq->mpidr = val & GENMASK(23, 0);
116         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
117
118         spin_unlock(&irq->irq_lock);
119         vgic_put_irq(vcpu->kvm, irq);
120 }
121
122 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
123                                               gpa_t addr, unsigned int len)
124 {
125         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
126         int target_vcpu_id = vcpu->vcpu_id;
127         u64 value;
128
129         value = (mpidr & GENMASK(23, 0)) << 32;
130         value |= ((target_vcpu_id & 0xffff) << 8);
131         if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
132                 value |= GICR_TYPER_LAST;
133
134         return extract_bytes(value, addr & 7, len);
135 }
136
137 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
138                                              gpa_t addr, unsigned int len)
139 {
140         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
141 }
142
143 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
144                                               gpa_t addr, unsigned int len)
145 {
146         switch (addr & 0xffff) {
147         case GICD_PIDR2:
148                 /* report a GICv3 compliant implementation */
149                 return 0x3b;
150         }
151
152         return 0;
153 }
154
155 /*
156  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
157  * redistributors, while SPIs are covered by registers in the distributor
158  * block. Trying to set private IRQs in this block gets ignored.
159  * We take some special care here to fix the calculation of the register
160  * offset.
161  */
162 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, bpi, acc)   \
163         {                                                               \
164                 .reg_offset = off,                                      \
165                 .bits_per_irq = bpi,                                    \
166                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
167                 .access_flags = acc,                                    \
168                 .read = vgic_mmio_read_raz,                             \
169                 .write = vgic_mmio_write_wi,                            \
170         }, {                                                            \
171                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
172                 .bits_per_irq = bpi,                                    \
173                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
174                 .access_flags = acc,                                    \
175                 .read = rd,                                             \
176                 .write = wr,                                            \
177         }
178
179 static const struct vgic_register_region vgic_v3_dist_registers[] = {
180         REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
181                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
182                 VGIC_ACCESS_32bit),
183         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
184                 vgic_mmio_read_rao, vgic_mmio_write_wi, 1,
185                 VGIC_ACCESS_32bit),
186         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
187                 vgic_mmio_read_enable, vgic_mmio_write_senable, 1,
188                 VGIC_ACCESS_32bit),
189         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
190                 vgic_mmio_read_enable, vgic_mmio_write_cenable, 1,
191                 VGIC_ACCESS_32bit),
192         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
193                 vgic_mmio_read_pending, vgic_mmio_write_spending, 1,
194                 VGIC_ACCESS_32bit),
195         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
196                 vgic_mmio_read_pending, vgic_mmio_write_cpending, 1,
197                 VGIC_ACCESS_32bit),
198         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
199                 vgic_mmio_read_active, vgic_mmio_write_sactive, 1,
200                 VGIC_ACCESS_32bit),
201         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
202                 vgic_mmio_read_active, vgic_mmio_write_cactive, 1,
203                 VGIC_ACCESS_32bit),
204         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
205                 vgic_mmio_read_priority, vgic_mmio_write_priority, 8,
206                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
207         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
208                 vgic_mmio_read_raz, vgic_mmio_write_wi, 8,
209                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
210         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
211                 vgic_mmio_read_config, vgic_mmio_write_config, 2,
212                 VGIC_ACCESS_32bit),
213         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
214                 vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
215                 VGIC_ACCESS_32bit),
216         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
217                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, 64,
218                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
219         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
220                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
221                 VGIC_ACCESS_32bit),
222 };
223
224 static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
225         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
226                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
227                 VGIC_ACCESS_32bit),
228         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
229                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
230                 VGIC_ACCESS_32bit),
231         REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
232                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
233                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
234         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
235                 vgic_mmio_read_raz, vgic_mmio_write_wi, 8,
236                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
237         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
238                 vgic_mmio_read_raz, vgic_mmio_write_wi, 8,
239                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
240         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
241                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
242                 VGIC_ACCESS_32bit),
243 };
244
245 static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
246         REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
247                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
248                 VGIC_ACCESS_32bit),
249         REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
250                 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
251                 VGIC_ACCESS_32bit),
252         REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
253                 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
254                 VGIC_ACCESS_32bit),
255         REGISTER_DESC_WITH_LENGTH(GICR_ISPENDR0,
256                 vgic_mmio_read_pending, vgic_mmio_write_spending, 4,
257                 VGIC_ACCESS_32bit),
258         REGISTER_DESC_WITH_LENGTH(GICR_ICPENDR0,
259                 vgic_mmio_read_pending, vgic_mmio_write_cpending, 4,
260                 VGIC_ACCESS_32bit),
261         REGISTER_DESC_WITH_LENGTH(GICR_ISACTIVER0,
262                 vgic_mmio_read_active, vgic_mmio_write_sactive, 4,
263                 VGIC_ACCESS_32bit),
264         REGISTER_DESC_WITH_LENGTH(GICR_ICACTIVER0,
265                 vgic_mmio_read_active, vgic_mmio_write_cactive, 4,
266                 VGIC_ACCESS_32bit),
267         REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
268                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
269                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
270         REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
271                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
272                 VGIC_ACCESS_32bit),
273         REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
274                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
275                 VGIC_ACCESS_32bit),
276         REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
277                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
278                 VGIC_ACCESS_32bit),
279 };
280
281 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
282 {
283         dev->regions = vgic_v3_dist_registers;
284         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
285
286         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
287
288         return SZ_64K;
289 }
290
291 int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
292 {
293         struct kvm_vcpu *vcpu;
294         int c, ret = 0;
295
296         kvm_for_each_vcpu(c, vcpu, kvm) {
297                 gpa_t rd_base = redist_base_address + c * SZ_64K * 2;
298                 gpa_t sgi_base = rd_base + SZ_64K;
299                 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
300                 struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
301
302                 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
303                 rd_dev->base_addr = rd_base;
304                 rd_dev->regions = vgic_v3_rdbase_registers;
305                 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
306                 rd_dev->redist_vcpu = vcpu;
307
308                 mutex_lock(&kvm->slots_lock);
309                 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
310                                               SZ_64K, &rd_dev->dev);
311                 mutex_unlock(&kvm->slots_lock);
312
313                 if (ret)
314                         break;
315
316                 kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
317                 sgi_dev->base_addr = sgi_base;
318                 sgi_dev->regions = vgic_v3_sgibase_registers;
319                 sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
320                 sgi_dev->redist_vcpu = vcpu;
321
322                 mutex_lock(&kvm->slots_lock);
323                 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
324                                               SZ_64K, &sgi_dev->dev);
325                 mutex_unlock(&kvm->slots_lock);
326                 if (ret) {
327                         kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
328                                                   &rd_dev->dev);
329                         break;
330                 }
331         }
332
333         if (ret) {
334                 /* The current c failed, so we start with the previous one. */
335                 for (c--; c >= 0; c--) {
336                         struct vgic_cpu *vgic_cpu;
337
338                         vcpu = kvm_get_vcpu(kvm, c);
339                         vgic_cpu = &vcpu->arch.vgic_cpu;
340                         kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
341                                                   &vgic_cpu->rd_iodev.dev);
342                         kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
343                                                   &vgic_cpu->sgi_iodev.dev);
344                 }
345         }
346
347         return ret;
348 }
349
350 /*
351  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
352  * generation register ICC_SGI1R_EL1) with a given VCPU.
353  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
354  * return -1.
355  */
356 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
357 {
358         unsigned long affinity;
359         int level0;
360
361         /*
362          * Split the current VCPU's MPIDR into affinity level 0 and the
363          * rest as this is what we have to compare against.
364          */
365         affinity = kvm_vcpu_get_mpidr_aff(vcpu);
366         level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
367         affinity &= ~MPIDR_LEVEL_MASK;
368
369         /* bail out if the upper three levels don't match */
370         if (sgi_aff != affinity)
371                 return -1;
372
373         /* Is this VCPU's bit set in the mask ? */
374         if (!(sgi_cpu_mask & BIT(level0)))
375                 return -1;
376
377         return level0;
378 }
379
380 /*
381  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
382  * so provide a wrapper to use the existing defines to isolate a certain
383  * affinity level.
384  */
385 #define SGI_AFFINITY_LEVEL(reg, level) \
386         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
387         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
388
389 /**
390  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
391  * @vcpu: The VCPU requesting a SGI
392  * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
393  *
394  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
395  * This will trap in sys_regs.c and call this function.
396  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
397  * target processors as well as a bitmask of 16 Aff0 CPUs.
398  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
399  * check for matching ones. If this bit is set, we signal all, but not the
400  * calling VCPU.
401  */
402 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
403 {
404         struct kvm *kvm = vcpu->kvm;
405         struct kvm_vcpu *c_vcpu;
406         u16 target_cpus;
407         u64 mpidr;
408         int sgi, c;
409         int vcpu_id = vcpu->vcpu_id;
410         bool broadcast;
411
412         sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
413         broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
414         target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
415         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
416         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
417         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
418
419         /*
420          * We iterate over all VCPUs to find the MPIDRs matching the request.
421          * If we have handled one CPU, we clear its bit to detect early
422          * if we are already finished. This avoids iterating through all
423          * VCPUs when most of the times we just signal a single VCPU.
424          */
425         kvm_for_each_vcpu(c, c_vcpu, kvm) {
426                 struct vgic_irq *irq;
427
428                 /* Exit early if we have dealt with all requested CPUs */
429                 if (!broadcast && target_cpus == 0)
430                         break;
431
432                 /* Don't signal the calling VCPU */
433                 if (broadcast && c == vcpu_id)
434                         continue;
435
436                 if (!broadcast) {
437                         int level0;
438
439                         level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
440                         if (level0 == -1)
441                                 continue;
442
443                         /* remove this matching VCPU from the mask */
444                         target_cpus &= ~BIT(level0);
445                 }
446
447                 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
448
449                 spin_lock(&irq->irq_lock);
450                 irq->pending = true;
451
452                 vgic_queue_irq_unlock(vcpu->kvm, irq);
453                 vgic_put_irq(vcpu->kvm, irq);
454         }
455 }