Merge tag 'mvebu-dt64-4.8-1' of git://git.infradead.org/linux-mvebu into next/dt64
[cascardo/linux.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
1 /*
2  * VGICv3 MMIO handling functions
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13
14 #include <linux/irqchip/arm-gic-v3.h>
15 #include <linux/kvm.h>
16 #include <linux/kvm_host.h>
17 #include <kvm/iodev.h>
18 #include <kvm/arm_vgic.h>
19
20 #include <asm/kvm_emulate.h>
21
22 #include "vgic.h"
23 #include "vgic-mmio.h"
24
25 /* extract @num bytes at @offset bytes offset in data */
26 static unsigned long extract_bytes(unsigned long data, unsigned int offset,
27                                    unsigned int num)
28 {
29         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
30 }
31
32 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
33                                             gpa_t addr, unsigned int len)
34 {
35         u32 value = 0;
36
37         switch (addr & 0x0c) {
38         case GICD_CTLR:
39                 if (vcpu->kvm->arch.vgic.enabled)
40                         value |= GICD_CTLR_ENABLE_SS_G1;
41                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
42                 break;
43         case GICD_TYPER:
44                 value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
45                 value = (value >> 5) - 1;
46                 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
47                 break;
48         case GICD_IIDR:
49                 value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
50                 break;
51         default:
52                 return 0;
53         }
54
55         return value;
56 }
57
58 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
59                                     gpa_t addr, unsigned int len,
60                                     unsigned long val)
61 {
62         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
63         bool was_enabled = dist->enabled;
64
65         switch (addr & 0x0c) {
66         case GICD_CTLR:
67                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
68
69                 if (!was_enabled && dist->enabled)
70                         vgic_kick_vcpus(vcpu->kvm);
71                 break;
72         case GICD_TYPER:
73         case GICD_IIDR:
74                 return;
75         }
76 }
77
78 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
79                                             gpa_t addr, unsigned int len)
80 {
81         int intid = VGIC_ADDR_TO_INTID(addr, 64);
82         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
83
84         if (!irq)
85                 return 0;
86
87         /* The upper word is RAZ for us. */
88         if (addr & 4)
89                 return 0;
90
91         return extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
92 }
93
94 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
95                                     gpa_t addr, unsigned int len,
96                                     unsigned long val)
97 {
98         int intid = VGIC_ADDR_TO_INTID(addr, 64);
99         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
100
101         if (!irq)
102                 return;
103
104         /* The upper word is WI for us since we don't implement Aff3. */
105         if (addr & 4)
106                 return;
107
108         spin_lock(&irq->irq_lock);
109
110         /* We only care about and preserve Aff0, Aff1 and Aff2. */
111         irq->mpidr = val & GENMASK(23, 0);
112         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
113
114         spin_unlock(&irq->irq_lock);
115 }
116
117 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
118                                               gpa_t addr, unsigned int len)
119 {
120         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
121         int target_vcpu_id = vcpu->vcpu_id;
122         u64 value;
123
124         value = (mpidr & GENMASK(23, 0)) << 32;
125         value |= ((target_vcpu_id & 0xffff) << 8);
126         if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
127                 value |= GICR_TYPER_LAST;
128
129         return extract_bytes(value, addr & 7, len);
130 }
131
132 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
133                                              gpa_t addr, unsigned int len)
134 {
135         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
136 }
137
138 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
139                                               gpa_t addr, unsigned int len)
140 {
141         switch (addr & 0xffff) {
142         case GICD_PIDR2:
143                 /* report a GICv3 compliant implementation */
144                 return 0x3b;
145         }
146
147         return 0;
148 }
149
150 /*
151  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
152  * redistributors, while SPIs are covered by registers in the distributor
153  * block. Trying to set private IRQs in this block gets ignored.
154  * We take some special care here to fix the calculation of the register
155  * offset.
156  */
157 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, bpi, acc)   \
158         {                                                               \
159                 .reg_offset = off,                                      \
160                 .bits_per_irq = bpi,                                    \
161                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
162                 .access_flags = acc,                                    \
163                 .read = vgic_mmio_read_raz,                             \
164                 .write = vgic_mmio_write_wi,                            \
165         }, {                                                            \
166                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
167                 .bits_per_irq = bpi,                                    \
168                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
169                 .access_flags = acc,                                    \
170                 .read = rd,                                             \
171                 .write = wr,                                            \
172         }
173
174 static const struct vgic_register_region vgic_v3_dist_registers[] = {
175         REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
176                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
177                 VGIC_ACCESS_32bit),
178         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
179                 vgic_mmio_read_rao, vgic_mmio_write_wi, 1,
180                 VGIC_ACCESS_32bit),
181         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
182                 vgic_mmio_read_enable, vgic_mmio_write_senable, 1,
183                 VGIC_ACCESS_32bit),
184         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
185                 vgic_mmio_read_enable, vgic_mmio_write_cenable, 1,
186                 VGIC_ACCESS_32bit),
187         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
188                 vgic_mmio_read_pending, vgic_mmio_write_spending, 1,
189                 VGIC_ACCESS_32bit),
190         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
191                 vgic_mmio_read_pending, vgic_mmio_write_cpending, 1,
192                 VGIC_ACCESS_32bit),
193         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
194                 vgic_mmio_read_active, vgic_mmio_write_sactive, 1,
195                 VGIC_ACCESS_32bit),
196         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
197                 vgic_mmio_read_active, vgic_mmio_write_cactive, 1,
198                 VGIC_ACCESS_32bit),
199         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
200                 vgic_mmio_read_priority, vgic_mmio_write_priority, 8,
201                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
202         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
203                 vgic_mmio_read_raz, vgic_mmio_write_wi, 8,
204                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
205         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
206                 vgic_mmio_read_config, vgic_mmio_write_config, 2,
207                 VGIC_ACCESS_32bit),
208         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
209                 vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
210                 VGIC_ACCESS_32bit),
211         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
212                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, 64,
213                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
214         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
215                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
216                 VGIC_ACCESS_32bit),
217 };
218
219 static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
220         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
221                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
222                 VGIC_ACCESS_32bit),
223         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
224                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
225                 VGIC_ACCESS_32bit),
226         REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
227                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
228                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
229         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
230                 vgic_mmio_read_raz, vgic_mmio_write_wi, 8,
231                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
232         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
233                 vgic_mmio_read_raz, vgic_mmio_write_wi, 8,
234                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
235         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
236                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
237                 VGIC_ACCESS_32bit),
238 };
239
240 static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
241         REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
242                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
243                 VGIC_ACCESS_32bit),
244         REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
245                 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
246                 VGIC_ACCESS_32bit),
247         REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
248                 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
249                 VGIC_ACCESS_32bit),
250         REGISTER_DESC_WITH_LENGTH(GICR_ISPENDR0,
251                 vgic_mmio_read_pending, vgic_mmio_write_spending, 4,
252                 VGIC_ACCESS_32bit),
253         REGISTER_DESC_WITH_LENGTH(GICR_ICPENDR0,
254                 vgic_mmio_read_pending, vgic_mmio_write_cpending, 4,
255                 VGIC_ACCESS_32bit),
256         REGISTER_DESC_WITH_LENGTH(GICR_ISACTIVER0,
257                 vgic_mmio_read_active, vgic_mmio_write_sactive, 4,
258                 VGIC_ACCESS_32bit),
259         REGISTER_DESC_WITH_LENGTH(GICR_ICACTIVER0,
260                 vgic_mmio_read_active, vgic_mmio_write_cactive, 4,
261                 VGIC_ACCESS_32bit),
262         REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
263                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
264                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
265         REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
266                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
267                 VGIC_ACCESS_32bit),
268         REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
269                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
270                 VGIC_ACCESS_32bit),
271         REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
272                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
273                 VGIC_ACCESS_32bit),
274 };
275
276 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
277 {
278         dev->regions = vgic_v3_dist_registers;
279         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
280
281         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
282
283         return SZ_64K;
284 }
285
286 int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
287 {
288         int nr_vcpus = atomic_read(&kvm->online_vcpus);
289         struct kvm_vcpu *vcpu;
290         struct vgic_io_device *devices;
291         int c, ret = 0;
292
293         devices = kmalloc(sizeof(struct vgic_io_device) * nr_vcpus * 2,
294                           GFP_KERNEL);
295         if (!devices)
296                 return -ENOMEM;
297
298         kvm_for_each_vcpu(c, vcpu, kvm) {
299                 gpa_t rd_base = redist_base_address + c * SZ_64K * 2;
300                 gpa_t sgi_base = rd_base + SZ_64K;
301                 struct vgic_io_device *rd_dev = &devices[c * 2];
302                 struct vgic_io_device *sgi_dev = &devices[c * 2 + 1];
303
304                 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
305                 rd_dev->base_addr = rd_base;
306                 rd_dev->regions = vgic_v3_rdbase_registers;
307                 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
308                 rd_dev->redist_vcpu = vcpu;
309
310                 mutex_lock(&kvm->slots_lock);
311                 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
312                                               SZ_64K, &rd_dev->dev);
313                 mutex_unlock(&kvm->slots_lock);
314
315                 if (ret)
316                         break;
317
318                 kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
319                 sgi_dev->base_addr = sgi_base;
320                 sgi_dev->regions = vgic_v3_sgibase_registers;
321                 sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
322                 sgi_dev->redist_vcpu = vcpu;
323
324                 mutex_lock(&kvm->slots_lock);
325                 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
326                                               SZ_64K, &sgi_dev->dev);
327                 mutex_unlock(&kvm->slots_lock);
328                 if (ret) {
329                         kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
330                                                   &rd_dev->dev);
331                         break;
332                 }
333         }
334
335         if (ret) {
336                 /* The current c failed, so we start with the previous one. */
337                 for (c--; c >= 0; c--) {
338                         kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
339                                                   &devices[c * 2].dev);
340                         kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
341                                                   &devices[c * 2 + 1].dev);
342                 }
343                 kfree(devices);
344         } else {
345                 kvm->arch.vgic.redist_iodevs = devices;
346         }
347
348         return ret;
349 }
350
351 /*
352  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
353  * generation register ICC_SGI1R_EL1) with a given VCPU.
354  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
355  * return -1.
356  */
357 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
358 {
359         unsigned long affinity;
360         int level0;
361
362         /*
363          * Split the current VCPU's MPIDR into affinity level 0 and the
364          * rest as this is what we have to compare against.
365          */
366         affinity = kvm_vcpu_get_mpidr_aff(vcpu);
367         level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
368         affinity &= ~MPIDR_LEVEL_MASK;
369
370         /* bail out if the upper three levels don't match */
371         if (sgi_aff != affinity)
372                 return -1;
373
374         /* Is this VCPU's bit set in the mask ? */
375         if (!(sgi_cpu_mask & BIT(level0)))
376                 return -1;
377
378         return level0;
379 }
380
381 /*
382  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
383  * so provide a wrapper to use the existing defines to isolate a certain
384  * affinity level.
385  */
386 #define SGI_AFFINITY_LEVEL(reg, level) \
387         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
388         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
389
390 /**
391  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
392  * @vcpu: The VCPU requesting a SGI
393  * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
394  *
395  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
396  * This will trap in sys_regs.c and call this function.
397  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
398  * target processors as well as a bitmask of 16 Aff0 CPUs.
399  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
400  * check for matching ones. If this bit is set, we signal all, but not the
401  * calling VCPU.
402  */
403 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
404 {
405         struct kvm *kvm = vcpu->kvm;
406         struct kvm_vcpu *c_vcpu;
407         u16 target_cpus;
408         u64 mpidr;
409         int sgi, c;
410         int vcpu_id = vcpu->vcpu_id;
411         bool broadcast;
412
413         sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
414         broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
415         target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
416         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
417         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
418         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
419
420         /*
421          * We iterate over all VCPUs to find the MPIDRs matching the request.
422          * If we have handled one CPU, we clear its bit to detect early
423          * if we are already finished. This avoids iterating through all
424          * VCPUs when most of the times we just signal a single VCPU.
425          */
426         kvm_for_each_vcpu(c, c_vcpu, kvm) {
427                 struct vgic_irq *irq;
428
429                 /* Exit early if we have dealt with all requested CPUs */
430                 if (!broadcast && target_cpus == 0)
431                         break;
432
433                 /* Don't signal the calling VCPU */
434                 if (broadcast && c == vcpu_id)
435                         continue;
436
437                 if (!broadcast) {
438                         int level0;
439
440                         level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
441                         if (level0 == -1)
442                                 continue;
443
444                         /* remove this matching VCPU from the mask */
445                         target_cpus &= ~BIT(level0);
446                 }
447
448                 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
449
450                 spin_lock(&irq->irq_lock);
451                 irq->pending = true;
452
453                 vgic_queue_irq_unlock(vcpu->kvm, irq);
454         }
455 }