Merge tag 'trace-seq-buf-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/roste...
[cascardo/linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /*
70  * Ordering of locks:
71  *
72  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73  */
74
75 DEFINE_SPINLOCK(kvm_lock);
76 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
77 LIST_HEAD(vm_list);
78
79 static cpumask_var_t cpus_hardware_enabled;
80 static int kvm_usage_count = 0;
81 static atomic_t hardware_enable_failed;
82
83 struct kmem_cache *kvm_vcpu_cache;
84 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
85
86 static __read_mostly struct preempt_ops kvm_preempt_ops;
87
88 struct dentry *kvm_debugfs_dir;
89
90 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
91                            unsigned long arg);
92 #ifdef CONFIG_COMPAT
93 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
94                                   unsigned long arg);
95 #endif
96 static int hardware_enable_all(void);
97 static void hardware_disable_all(void);
98
99 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
100
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103                                     struct kvm_memory_slot *memslot, gfn_t gfn);
104
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107
108 static bool largepages_enabled = true;
109
110 bool kvm_is_reserved_pfn(pfn_t pfn)
111 {
112         if (pfn_valid(pfn))
113                 return PageReserved(pfn_to_page(pfn));
114
115         return true;
116 }
117
118 /*
119  * Switches to specified vcpu, until a matching vcpu_put()
120  */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123         int cpu;
124
125         if (mutex_lock_killable(&vcpu->mutex))
126                 return -EINTR;
127         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128                 /* The thread running this VCPU changed. */
129                 struct pid *oldpid = vcpu->pid;
130                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131                 rcu_assign_pointer(vcpu->pid, newpid);
132                 if (oldpid)
133                         synchronize_rcu();
134                 put_pid(oldpid);
135         }
136         cpu = get_cpu();
137         preempt_notifier_register(&vcpu->preempt_notifier);
138         kvm_arch_vcpu_load(vcpu, cpu);
139         put_cpu();
140         return 0;
141 }
142
143 void vcpu_put(struct kvm_vcpu *vcpu)
144 {
145         preempt_disable();
146         kvm_arch_vcpu_put(vcpu);
147         preempt_notifier_unregister(&vcpu->preempt_notifier);
148         preempt_enable();
149         mutex_unlock(&vcpu->mutex);
150 }
151
152 static void ack_flush(void *_completed)
153 {
154 }
155
156 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
157 {
158         int i, cpu, me;
159         cpumask_var_t cpus;
160         bool called = true;
161         struct kvm_vcpu *vcpu;
162
163         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
164
165         me = get_cpu();
166         kvm_for_each_vcpu(i, vcpu, kvm) {
167                 kvm_make_request(req, vcpu);
168                 cpu = vcpu->cpu;
169
170                 /* Set ->requests bit before we read ->mode */
171                 smp_mb();
172
173                 if (cpus != NULL && cpu != -1 && cpu != me &&
174                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
175                         cpumask_set_cpu(cpu, cpus);
176         }
177         if (unlikely(cpus == NULL))
178                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
179         else if (!cpumask_empty(cpus))
180                 smp_call_function_many(cpus, ack_flush, NULL, 1);
181         else
182                 called = false;
183         put_cpu();
184         free_cpumask_var(cpus);
185         return called;
186 }
187
188 void kvm_flush_remote_tlbs(struct kvm *kvm)
189 {
190         long dirty_count = kvm->tlbs_dirty;
191
192         smp_mb();
193         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
194                 ++kvm->stat.remote_tlb_flush;
195         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
196 }
197 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
198
199 void kvm_reload_remote_mmus(struct kvm *kvm)
200 {
201         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
202 }
203
204 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
205 {
206         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
207 }
208
209 void kvm_make_scan_ioapic_request(struct kvm *kvm)
210 {
211         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
212 }
213
214 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
215 {
216         struct page *page;
217         int r;
218
219         mutex_init(&vcpu->mutex);
220         vcpu->cpu = -1;
221         vcpu->kvm = kvm;
222         vcpu->vcpu_id = id;
223         vcpu->pid = NULL;
224         init_waitqueue_head(&vcpu->wq);
225         kvm_async_pf_vcpu_init(vcpu);
226
227         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
228         if (!page) {
229                 r = -ENOMEM;
230                 goto fail;
231         }
232         vcpu->run = page_address(page);
233
234         kvm_vcpu_set_in_spin_loop(vcpu, false);
235         kvm_vcpu_set_dy_eligible(vcpu, false);
236         vcpu->preempted = false;
237
238         r = kvm_arch_vcpu_init(vcpu);
239         if (r < 0)
240                 goto fail_free_run;
241         return 0;
242
243 fail_free_run:
244         free_page((unsigned long)vcpu->run);
245 fail:
246         return r;
247 }
248 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
249
250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
251 {
252         put_pid(vcpu->pid);
253         kvm_arch_vcpu_uninit(vcpu);
254         free_page((unsigned long)vcpu->run);
255 }
256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
257
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
260 {
261         return container_of(mn, struct kvm, mmu_notifier);
262 }
263
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
265                                              struct mm_struct *mm,
266                                              unsigned long address)
267 {
268         struct kvm *kvm = mmu_notifier_to_kvm(mn);
269         int need_tlb_flush, idx;
270
271         /*
272          * When ->invalidate_page runs, the linux pte has been zapped
273          * already but the page is still allocated until
274          * ->invalidate_page returns. So if we increase the sequence
275          * here the kvm page fault will notice if the spte can't be
276          * established because the page is going to be freed. If
277          * instead the kvm page fault establishes the spte before
278          * ->invalidate_page runs, kvm_unmap_hva will release it
279          * before returning.
280          *
281          * The sequence increase only need to be seen at spin_unlock
282          * time, and not at spin_lock time.
283          *
284          * Increasing the sequence after the spin_unlock would be
285          * unsafe because the kvm page fault could then establish the
286          * pte after kvm_unmap_hva returned, without noticing the page
287          * is going to be freed.
288          */
289         idx = srcu_read_lock(&kvm->srcu);
290         spin_lock(&kvm->mmu_lock);
291
292         kvm->mmu_notifier_seq++;
293         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294         /* we've to flush the tlb before the pages can be freed */
295         if (need_tlb_flush)
296                 kvm_flush_remote_tlbs(kvm);
297
298         spin_unlock(&kvm->mmu_lock);
299
300         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
301
302         srcu_read_unlock(&kvm->srcu, idx);
303 }
304
305 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
306                                         struct mm_struct *mm,
307                                         unsigned long address,
308                                         pte_t pte)
309 {
310         struct kvm *kvm = mmu_notifier_to_kvm(mn);
311         int idx;
312
313         idx = srcu_read_lock(&kvm->srcu);
314         spin_lock(&kvm->mmu_lock);
315         kvm->mmu_notifier_seq++;
316         kvm_set_spte_hva(kvm, address, pte);
317         spin_unlock(&kvm->mmu_lock);
318         srcu_read_unlock(&kvm->srcu, idx);
319 }
320
321 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
322                                                     struct mm_struct *mm,
323                                                     unsigned long start,
324                                                     unsigned long end)
325 {
326         struct kvm *kvm = mmu_notifier_to_kvm(mn);
327         int need_tlb_flush = 0, idx;
328
329         idx = srcu_read_lock(&kvm->srcu);
330         spin_lock(&kvm->mmu_lock);
331         /*
332          * The count increase must become visible at unlock time as no
333          * spte can be established without taking the mmu_lock and
334          * count is also read inside the mmu_lock critical section.
335          */
336         kvm->mmu_notifier_count++;
337         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
338         need_tlb_flush |= kvm->tlbs_dirty;
339         /* we've to flush the tlb before the pages can be freed */
340         if (need_tlb_flush)
341                 kvm_flush_remote_tlbs(kvm);
342
343         spin_unlock(&kvm->mmu_lock);
344         srcu_read_unlock(&kvm->srcu, idx);
345 }
346
347 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
348                                                   struct mm_struct *mm,
349                                                   unsigned long start,
350                                                   unsigned long end)
351 {
352         struct kvm *kvm = mmu_notifier_to_kvm(mn);
353
354         spin_lock(&kvm->mmu_lock);
355         /*
356          * This sequence increase will notify the kvm page fault that
357          * the page that is going to be mapped in the spte could have
358          * been freed.
359          */
360         kvm->mmu_notifier_seq++;
361         smp_wmb();
362         /*
363          * The above sequence increase must be visible before the
364          * below count decrease, which is ensured by the smp_wmb above
365          * in conjunction with the smp_rmb in mmu_notifier_retry().
366          */
367         kvm->mmu_notifier_count--;
368         spin_unlock(&kvm->mmu_lock);
369
370         BUG_ON(kvm->mmu_notifier_count < 0);
371 }
372
373 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
374                                               struct mm_struct *mm,
375                                               unsigned long start,
376                                               unsigned long end)
377 {
378         struct kvm *kvm = mmu_notifier_to_kvm(mn);
379         int young, idx;
380
381         idx = srcu_read_lock(&kvm->srcu);
382         spin_lock(&kvm->mmu_lock);
383
384         young = kvm_age_hva(kvm, start, end);
385         if (young)
386                 kvm_flush_remote_tlbs(kvm);
387
388         spin_unlock(&kvm->mmu_lock);
389         srcu_read_unlock(&kvm->srcu, idx);
390
391         return young;
392 }
393
394 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
395                                        struct mm_struct *mm,
396                                        unsigned long address)
397 {
398         struct kvm *kvm = mmu_notifier_to_kvm(mn);
399         int young, idx;
400
401         idx = srcu_read_lock(&kvm->srcu);
402         spin_lock(&kvm->mmu_lock);
403         young = kvm_test_age_hva(kvm, address);
404         spin_unlock(&kvm->mmu_lock);
405         srcu_read_unlock(&kvm->srcu, idx);
406
407         return young;
408 }
409
410 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
411                                      struct mm_struct *mm)
412 {
413         struct kvm *kvm = mmu_notifier_to_kvm(mn);
414         int idx;
415
416         idx = srcu_read_lock(&kvm->srcu);
417         kvm_arch_flush_shadow_all(kvm);
418         srcu_read_unlock(&kvm->srcu, idx);
419 }
420
421 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
422         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
423         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
424         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
425         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
426         .test_young             = kvm_mmu_notifier_test_young,
427         .change_pte             = kvm_mmu_notifier_change_pte,
428         .release                = kvm_mmu_notifier_release,
429 };
430
431 static int kvm_init_mmu_notifier(struct kvm *kvm)
432 {
433         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
434         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
435 }
436
437 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
438
439 static int kvm_init_mmu_notifier(struct kvm *kvm)
440 {
441         return 0;
442 }
443
444 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
445
446 static void kvm_init_memslots_id(struct kvm *kvm)
447 {
448         int i;
449         struct kvm_memslots *slots = kvm->memslots;
450
451         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
452                 slots->id_to_index[i] = slots->memslots[i].id = i;
453 }
454
455 static struct kvm *kvm_create_vm(unsigned long type)
456 {
457         int r, i;
458         struct kvm *kvm = kvm_arch_alloc_vm();
459
460         if (!kvm)
461                 return ERR_PTR(-ENOMEM);
462
463         r = kvm_arch_init_vm(kvm, type);
464         if (r)
465                 goto out_err_no_disable;
466
467         r = hardware_enable_all();
468         if (r)
469                 goto out_err_no_disable;
470
471 #ifdef CONFIG_HAVE_KVM_IRQCHIP
472         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
473 #endif
474 #ifdef CONFIG_HAVE_KVM_IRQFD
475         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
476 #endif
477
478         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
479
480         r = -ENOMEM;
481         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
482         if (!kvm->memslots)
483                 goto out_err_no_srcu;
484
485         /*
486          * Init kvm generation close to the maximum to easily test the
487          * code of handling generation number wrap-around.
488          */
489         kvm->memslots->generation = -150;
490
491         kvm_init_memslots_id(kvm);
492         if (init_srcu_struct(&kvm->srcu))
493                 goto out_err_no_srcu;
494         if (init_srcu_struct(&kvm->irq_srcu))
495                 goto out_err_no_irq_srcu;
496         for (i = 0; i < KVM_NR_BUSES; i++) {
497                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
498                                         GFP_KERNEL);
499                 if (!kvm->buses[i])
500                         goto out_err;
501         }
502
503         spin_lock_init(&kvm->mmu_lock);
504         kvm->mm = current->mm;
505         atomic_inc(&kvm->mm->mm_count);
506         kvm_eventfd_init(kvm);
507         mutex_init(&kvm->lock);
508         mutex_init(&kvm->irq_lock);
509         mutex_init(&kvm->slots_lock);
510         atomic_set(&kvm->users_count, 1);
511         INIT_LIST_HEAD(&kvm->devices);
512
513         r = kvm_init_mmu_notifier(kvm);
514         if (r)
515                 goto out_err;
516
517         spin_lock(&kvm_lock);
518         list_add(&kvm->vm_list, &vm_list);
519         spin_unlock(&kvm_lock);
520
521         return kvm;
522
523 out_err:
524         cleanup_srcu_struct(&kvm->irq_srcu);
525 out_err_no_irq_srcu:
526         cleanup_srcu_struct(&kvm->srcu);
527 out_err_no_srcu:
528         hardware_disable_all();
529 out_err_no_disable:
530         for (i = 0; i < KVM_NR_BUSES; i++)
531                 kfree(kvm->buses[i]);
532         kfree(kvm->memslots);
533         kvm_arch_free_vm(kvm);
534         return ERR_PTR(r);
535 }
536
537 /*
538  * Avoid using vmalloc for a small buffer.
539  * Should not be used when the size is statically known.
540  */
541 void *kvm_kvzalloc(unsigned long size)
542 {
543         if (size > PAGE_SIZE)
544                 return vzalloc(size);
545         else
546                 return kzalloc(size, GFP_KERNEL);
547 }
548
549 void kvm_kvfree(const void *addr)
550 {
551         if (is_vmalloc_addr(addr))
552                 vfree(addr);
553         else
554                 kfree(addr);
555 }
556
557 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
558 {
559         if (!memslot->dirty_bitmap)
560                 return;
561
562         kvm_kvfree(memslot->dirty_bitmap);
563         memslot->dirty_bitmap = NULL;
564 }
565
566 /*
567  * Free any memory in @free but not in @dont.
568  */
569 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
570                                   struct kvm_memory_slot *dont)
571 {
572         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
573                 kvm_destroy_dirty_bitmap(free);
574
575         kvm_arch_free_memslot(kvm, free, dont);
576
577         free->npages = 0;
578 }
579
580 static void kvm_free_physmem(struct kvm *kvm)
581 {
582         struct kvm_memslots *slots = kvm->memslots;
583         struct kvm_memory_slot *memslot;
584
585         kvm_for_each_memslot(memslot, slots)
586                 kvm_free_physmem_slot(kvm, memslot, NULL);
587
588         kfree(kvm->memslots);
589 }
590
591 static void kvm_destroy_devices(struct kvm *kvm)
592 {
593         struct list_head *node, *tmp;
594
595         list_for_each_safe(node, tmp, &kvm->devices) {
596                 struct kvm_device *dev =
597                         list_entry(node, struct kvm_device, vm_node);
598
599                 list_del(node);
600                 dev->ops->destroy(dev);
601         }
602 }
603
604 static void kvm_destroy_vm(struct kvm *kvm)
605 {
606         int i;
607         struct mm_struct *mm = kvm->mm;
608
609         kvm_arch_sync_events(kvm);
610         spin_lock(&kvm_lock);
611         list_del(&kvm->vm_list);
612         spin_unlock(&kvm_lock);
613         kvm_free_irq_routing(kvm);
614         for (i = 0; i < KVM_NR_BUSES; i++)
615                 kvm_io_bus_destroy(kvm->buses[i]);
616         kvm_coalesced_mmio_free(kvm);
617 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
618         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
619 #else
620         kvm_arch_flush_shadow_all(kvm);
621 #endif
622         kvm_arch_destroy_vm(kvm);
623         kvm_destroy_devices(kvm);
624         kvm_free_physmem(kvm);
625         cleanup_srcu_struct(&kvm->irq_srcu);
626         cleanup_srcu_struct(&kvm->srcu);
627         kvm_arch_free_vm(kvm);
628         hardware_disable_all();
629         mmdrop(mm);
630 }
631
632 void kvm_get_kvm(struct kvm *kvm)
633 {
634         atomic_inc(&kvm->users_count);
635 }
636 EXPORT_SYMBOL_GPL(kvm_get_kvm);
637
638 void kvm_put_kvm(struct kvm *kvm)
639 {
640         if (atomic_dec_and_test(&kvm->users_count))
641                 kvm_destroy_vm(kvm);
642 }
643 EXPORT_SYMBOL_GPL(kvm_put_kvm);
644
645
646 static int kvm_vm_release(struct inode *inode, struct file *filp)
647 {
648         struct kvm *kvm = filp->private_data;
649
650         kvm_irqfd_release(kvm);
651
652         kvm_put_kvm(kvm);
653         return 0;
654 }
655
656 /*
657  * Allocation size is twice as large as the actual dirty bitmap size.
658  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
659  */
660 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
661 {
662         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
663
664         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
665         if (!memslot->dirty_bitmap)
666                 return -ENOMEM;
667
668         return 0;
669 }
670
671 static int cmp_memslot(const void *slot1, const void *slot2)
672 {
673         struct kvm_memory_slot *s1, *s2;
674
675         s1 = (struct kvm_memory_slot *)slot1;
676         s2 = (struct kvm_memory_slot *)slot2;
677
678         if (s1->npages < s2->npages)
679                 return 1;
680         if (s1->npages > s2->npages)
681                 return -1;
682
683         return 0;
684 }
685
686 /*
687  * Sort the memslots base on its size, so the larger slots
688  * will get better fit.
689  */
690 static void sort_memslots(struct kvm_memslots *slots)
691 {
692         int i;
693
694         sort(slots->memslots, KVM_MEM_SLOTS_NUM,
695               sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
696
697         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
698                 slots->id_to_index[slots->memslots[i].id] = i;
699 }
700
701 static void update_memslots(struct kvm_memslots *slots,
702                             struct kvm_memory_slot *new)
703 {
704         if (new) {
705                 int id = new->id;
706                 struct kvm_memory_slot *old = id_to_memslot(slots, id);
707                 unsigned long npages = old->npages;
708
709                 *old = *new;
710                 if (new->npages != npages)
711                         sort_memslots(slots);
712         }
713 }
714
715 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
716 {
717         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
718
719 #ifdef __KVM_HAVE_READONLY_MEM
720         valid_flags |= KVM_MEM_READONLY;
721 #endif
722
723         if (mem->flags & ~valid_flags)
724                 return -EINVAL;
725
726         return 0;
727 }
728
729 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
730                 struct kvm_memslots *slots, struct kvm_memory_slot *new)
731 {
732         struct kvm_memslots *old_memslots = kvm->memslots;
733
734         /*
735          * Set the low bit in the generation, which disables SPTE caching
736          * until the end of synchronize_srcu_expedited.
737          */
738         WARN_ON(old_memslots->generation & 1);
739         slots->generation = old_memslots->generation + 1;
740
741         update_memslots(slots, new);
742         rcu_assign_pointer(kvm->memslots, slots);
743         synchronize_srcu_expedited(&kvm->srcu);
744
745         /*
746          * Increment the new memslot generation a second time. This prevents
747          * vm exits that race with memslot updates from caching a memslot
748          * generation that will (potentially) be valid forever.
749          */
750         slots->generation++;
751
752         kvm_arch_memslots_updated(kvm);
753
754         return old_memslots;
755 }
756
757 /*
758  * Allocate some memory and give it an address in the guest physical address
759  * space.
760  *
761  * Discontiguous memory is allowed, mostly for framebuffers.
762  *
763  * Must be called holding mmap_sem for write.
764  */
765 int __kvm_set_memory_region(struct kvm *kvm,
766                             struct kvm_userspace_memory_region *mem)
767 {
768         int r;
769         gfn_t base_gfn;
770         unsigned long npages;
771         struct kvm_memory_slot *slot;
772         struct kvm_memory_slot old, new;
773         struct kvm_memslots *slots = NULL, *old_memslots;
774         enum kvm_mr_change change;
775
776         r = check_memory_region_flags(mem);
777         if (r)
778                 goto out;
779
780         r = -EINVAL;
781         /* General sanity checks */
782         if (mem->memory_size & (PAGE_SIZE - 1))
783                 goto out;
784         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
785                 goto out;
786         /* We can read the guest memory with __xxx_user() later on. */
787         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
788             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
789              !access_ok(VERIFY_WRITE,
790                         (void __user *)(unsigned long)mem->userspace_addr,
791                         mem->memory_size)))
792                 goto out;
793         if (mem->slot >= KVM_MEM_SLOTS_NUM)
794                 goto out;
795         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
796                 goto out;
797
798         slot = id_to_memslot(kvm->memslots, mem->slot);
799         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
800         npages = mem->memory_size >> PAGE_SHIFT;
801
802         if (npages > KVM_MEM_MAX_NR_PAGES)
803                 goto out;
804
805         if (!npages)
806                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
807
808         new = old = *slot;
809
810         new.id = mem->slot;
811         new.base_gfn = base_gfn;
812         new.npages = npages;
813         new.flags = mem->flags;
814
815         if (npages) {
816                 if (!old.npages)
817                         change = KVM_MR_CREATE;
818                 else { /* Modify an existing slot. */
819                         if ((mem->userspace_addr != old.userspace_addr) ||
820                             (npages != old.npages) ||
821                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
822                                 goto out;
823
824                         if (base_gfn != old.base_gfn)
825                                 change = KVM_MR_MOVE;
826                         else if (new.flags != old.flags)
827                                 change = KVM_MR_FLAGS_ONLY;
828                         else { /* Nothing to change. */
829                                 r = 0;
830                                 goto out;
831                         }
832                 }
833         } else if (old.npages) {
834                 change = KVM_MR_DELETE;
835         } else /* Modify a non-existent slot: disallowed. */
836                 goto out;
837
838         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
839                 /* Check for overlaps */
840                 r = -EEXIST;
841                 kvm_for_each_memslot(slot, kvm->memslots) {
842                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
843                             (slot->id == mem->slot))
844                                 continue;
845                         if (!((base_gfn + npages <= slot->base_gfn) ||
846                               (base_gfn >= slot->base_gfn + slot->npages)))
847                                 goto out;
848                 }
849         }
850
851         /* Free page dirty bitmap if unneeded */
852         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
853                 new.dirty_bitmap = NULL;
854
855         r = -ENOMEM;
856         if (change == KVM_MR_CREATE) {
857                 new.userspace_addr = mem->userspace_addr;
858
859                 if (kvm_arch_create_memslot(kvm, &new, npages))
860                         goto out_free;
861         }
862
863         /* Allocate page dirty bitmap if needed */
864         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
865                 if (kvm_create_dirty_bitmap(&new) < 0)
866                         goto out_free;
867         }
868
869         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
870                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
871                                 GFP_KERNEL);
872                 if (!slots)
873                         goto out_free;
874                 slot = id_to_memslot(slots, mem->slot);
875                 slot->flags |= KVM_MEMSLOT_INVALID;
876
877                 old_memslots = install_new_memslots(kvm, slots, NULL);
878
879                 /* slot was deleted or moved, clear iommu mapping */
880                 kvm_iommu_unmap_pages(kvm, &old);
881                 /* From this point no new shadow pages pointing to a deleted,
882                  * or moved, memslot will be created.
883                  *
884                  * validation of sp->gfn happens in:
885                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
886                  *      - kvm_is_visible_gfn (mmu_check_roots)
887                  */
888                 kvm_arch_flush_shadow_memslot(kvm, slot);
889                 slots = old_memslots;
890         }
891
892         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
893         if (r)
894                 goto out_slots;
895
896         r = -ENOMEM;
897         /*
898          * We can re-use the old_memslots from above, the only difference
899          * from the currently installed memslots is the invalid flag.  This
900          * will get overwritten by update_memslots anyway.
901          */
902         if (!slots) {
903                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
904                                 GFP_KERNEL);
905                 if (!slots)
906                         goto out_free;
907         }
908
909         /* actual memory is freed via old in kvm_free_physmem_slot below */
910         if (change == KVM_MR_DELETE) {
911                 new.dirty_bitmap = NULL;
912                 memset(&new.arch, 0, sizeof(new.arch));
913         }
914
915         old_memslots = install_new_memslots(kvm, slots, &new);
916
917         kvm_arch_commit_memory_region(kvm, mem, &old, change);
918
919         kvm_free_physmem_slot(kvm, &old, &new);
920         kfree(old_memslots);
921
922         /*
923          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
924          * un-mapped and re-mapped if their base changes.  Since base change
925          * unmapping is handled above with slot deletion, mapping alone is
926          * needed here.  Anything else the iommu might care about for existing
927          * slots (size changes, userspace addr changes and read-only flag
928          * changes) is disallowed above, so any other attribute changes getting
929          * here can be skipped.
930          */
931         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
932                 r = kvm_iommu_map_pages(kvm, &new);
933                 return r;
934         }
935
936         return 0;
937
938 out_slots:
939         kfree(slots);
940 out_free:
941         kvm_free_physmem_slot(kvm, &new, &old);
942 out:
943         return r;
944 }
945 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
946
947 int kvm_set_memory_region(struct kvm *kvm,
948                           struct kvm_userspace_memory_region *mem)
949 {
950         int r;
951
952         mutex_lock(&kvm->slots_lock);
953         r = __kvm_set_memory_region(kvm, mem);
954         mutex_unlock(&kvm->slots_lock);
955         return r;
956 }
957 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
958
959 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
960                                           struct kvm_userspace_memory_region *mem)
961 {
962         if (mem->slot >= KVM_USER_MEM_SLOTS)
963                 return -EINVAL;
964         return kvm_set_memory_region(kvm, mem);
965 }
966
967 int kvm_get_dirty_log(struct kvm *kvm,
968                         struct kvm_dirty_log *log, int *is_dirty)
969 {
970         struct kvm_memory_slot *memslot;
971         int r, i;
972         unsigned long n;
973         unsigned long any = 0;
974
975         r = -EINVAL;
976         if (log->slot >= KVM_USER_MEM_SLOTS)
977                 goto out;
978
979         memslot = id_to_memslot(kvm->memslots, log->slot);
980         r = -ENOENT;
981         if (!memslot->dirty_bitmap)
982                 goto out;
983
984         n = kvm_dirty_bitmap_bytes(memslot);
985
986         for (i = 0; !any && i < n/sizeof(long); ++i)
987                 any = memslot->dirty_bitmap[i];
988
989         r = -EFAULT;
990         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
991                 goto out;
992
993         if (any)
994                 *is_dirty = 1;
995
996         r = 0;
997 out:
998         return r;
999 }
1000 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1001
1002 bool kvm_largepages_enabled(void)
1003 {
1004         return largepages_enabled;
1005 }
1006
1007 void kvm_disable_largepages(void)
1008 {
1009         largepages_enabled = false;
1010 }
1011 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1012
1013 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1014 {
1015         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1016 }
1017 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1018
1019 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1020 {
1021         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1022
1023         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1024               memslot->flags & KVM_MEMSLOT_INVALID)
1025                 return 0;
1026
1027         return 1;
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1030
1031 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1032 {
1033         struct vm_area_struct *vma;
1034         unsigned long addr, size;
1035
1036         size = PAGE_SIZE;
1037
1038         addr = gfn_to_hva(kvm, gfn);
1039         if (kvm_is_error_hva(addr))
1040                 return PAGE_SIZE;
1041
1042         down_read(&current->mm->mmap_sem);
1043         vma = find_vma(current->mm, addr);
1044         if (!vma)
1045                 goto out;
1046
1047         size = vma_kernel_pagesize(vma);
1048
1049 out:
1050         up_read(&current->mm->mmap_sem);
1051
1052         return size;
1053 }
1054
1055 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1056 {
1057         return slot->flags & KVM_MEM_READONLY;
1058 }
1059
1060 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1061                                        gfn_t *nr_pages, bool write)
1062 {
1063         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1064                 return KVM_HVA_ERR_BAD;
1065
1066         if (memslot_is_readonly(slot) && write)
1067                 return KVM_HVA_ERR_RO_BAD;
1068
1069         if (nr_pages)
1070                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1071
1072         return __gfn_to_hva_memslot(slot, gfn);
1073 }
1074
1075 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1076                                      gfn_t *nr_pages)
1077 {
1078         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1079 }
1080
1081 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1082                                         gfn_t gfn)
1083 {
1084         return gfn_to_hva_many(slot, gfn, NULL);
1085 }
1086 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1087
1088 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1089 {
1090         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1091 }
1092 EXPORT_SYMBOL_GPL(gfn_to_hva);
1093
1094 /*
1095  * If writable is set to false, the hva returned by this function is only
1096  * allowed to be read.
1097  */
1098 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1099                                       gfn_t gfn, bool *writable)
1100 {
1101         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1102
1103         if (!kvm_is_error_hva(hva) && writable)
1104                 *writable = !memslot_is_readonly(slot);
1105
1106         return hva;
1107 }
1108
1109 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1110 {
1111         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1112
1113         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1114 }
1115
1116 static int kvm_read_hva(void *data, void __user *hva, int len)
1117 {
1118         return __copy_from_user(data, hva, len);
1119 }
1120
1121 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1122 {
1123         return __copy_from_user_inatomic(data, hva, len);
1124 }
1125
1126 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1127         unsigned long start, int write, struct page **page)
1128 {
1129         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1130
1131         if (write)
1132                 flags |= FOLL_WRITE;
1133
1134         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1135 }
1136
1137 int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
1138                          unsigned long addr, bool write_fault,
1139                          struct page **pagep)
1140 {
1141         int npages;
1142         int locked = 1;
1143         int flags = FOLL_TOUCH | FOLL_HWPOISON |
1144                     (pagep ? FOLL_GET : 0) |
1145                     (write_fault ? FOLL_WRITE : 0);
1146
1147         /*
1148          * If retrying the fault, we get here *not* having allowed the filemap
1149          * to wait on the page lock. We should now allow waiting on the IO with
1150          * the mmap semaphore released.
1151          */
1152         down_read(&mm->mmap_sem);
1153         npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
1154                                   &locked);
1155         if (!locked) {
1156                 VM_BUG_ON(npages);
1157
1158                 if (!pagep)
1159                         return 0;
1160
1161                 /*
1162                  * The previous call has now waited on the IO. Now we can
1163                  * retry and complete. Pass TRIED to ensure we do not re
1164                  * schedule async IO (see e.g. filemap_fault).
1165                  */
1166                 down_read(&mm->mmap_sem);
1167                 npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
1168                                           pagep, NULL, NULL);
1169         }
1170         up_read(&mm->mmap_sem);
1171         return npages;
1172 }
1173
1174 static inline int check_user_page_hwpoison(unsigned long addr)
1175 {
1176         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1177
1178         rc = __get_user_pages(current, current->mm, addr, 1,
1179                               flags, NULL, NULL, NULL);
1180         return rc == -EHWPOISON;
1181 }
1182
1183 /*
1184  * The atomic path to get the writable pfn which will be stored in @pfn,
1185  * true indicates success, otherwise false is returned.
1186  */
1187 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1188                             bool write_fault, bool *writable, pfn_t *pfn)
1189 {
1190         struct page *page[1];
1191         int npages;
1192
1193         if (!(async || atomic))
1194                 return false;
1195
1196         /*
1197          * Fast pin a writable pfn only if it is a write fault request
1198          * or the caller allows to map a writable pfn for a read fault
1199          * request.
1200          */
1201         if (!(write_fault || writable))
1202                 return false;
1203
1204         npages = __get_user_pages_fast(addr, 1, 1, page);
1205         if (npages == 1) {
1206                 *pfn = page_to_pfn(page[0]);
1207
1208                 if (writable)
1209                         *writable = true;
1210                 return true;
1211         }
1212
1213         return false;
1214 }
1215
1216 /*
1217  * The slow path to get the pfn of the specified host virtual address,
1218  * 1 indicates success, -errno is returned if error is detected.
1219  */
1220 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1221                            bool *writable, pfn_t *pfn)
1222 {
1223         struct page *page[1];
1224         int npages = 0;
1225
1226         might_sleep();
1227
1228         if (writable)
1229                 *writable = write_fault;
1230
1231         if (async) {
1232                 down_read(&current->mm->mmap_sem);
1233                 npages = get_user_page_nowait(current, current->mm,
1234                                               addr, write_fault, page);
1235                 up_read(&current->mm->mmap_sem);
1236         } else {
1237                 /*
1238                  * By now we have tried gup_fast, and possibly async_pf, and we
1239                  * are certainly not atomic. Time to retry the gup, allowing
1240                  * mmap semaphore to be relinquished in the case of IO.
1241                  */
1242                 npages = kvm_get_user_page_io(current, current->mm, addr,
1243                                               write_fault, page);
1244         }
1245         if (npages != 1)
1246                 return npages;
1247
1248         /* map read fault as writable if possible */
1249         if (unlikely(!write_fault) && writable) {
1250                 struct page *wpage[1];
1251
1252                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1253                 if (npages == 1) {
1254                         *writable = true;
1255                         put_page(page[0]);
1256                         page[0] = wpage[0];
1257                 }
1258
1259                 npages = 1;
1260         }
1261         *pfn = page_to_pfn(page[0]);
1262         return npages;
1263 }
1264
1265 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1266 {
1267         if (unlikely(!(vma->vm_flags & VM_READ)))
1268                 return false;
1269
1270         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1271                 return false;
1272
1273         return true;
1274 }
1275
1276 /*
1277  * Pin guest page in memory and return its pfn.
1278  * @addr: host virtual address which maps memory to the guest
1279  * @atomic: whether this function can sleep
1280  * @async: whether this function need to wait IO complete if the
1281  *         host page is not in the memory
1282  * @write_fault: whether we should get a writable host page
1283  * @writable: whether it allows to map a writable host page for !@write_fault
1284  *
1285  * The function will map a writable host page for these two cases:
1286  * 1): @write_fault = true
1287  * 2): @write_fault = false && @writable, @writable will tell the caller
1288  *     whether the mapping is writable.
1289  */
1290 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1291                         bool write_fault, bool *writable)
1292 {
1293         struct vm_area_struct *vma;
1294         pfn_t pfn = 0;
1295         int npages;
1296
1297         /* we can do it either atomically or asynchronously, not both */
1298         BUG_ON(atomic && async);
1299
1300         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1301                 return pfn;
1302
1303         if (atomic)
1304                 return KVM_PFN_ERR_FAULT;
1305
1306         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1307         if (npages == 1)
1308                 return pfn;
1309
1310         down_read(&current->mm->mmap_sem);
1311         if (npages == -EHWPOISON ||
1312               (!async && check_user_page_hwpoison(addr))) {
1313                 pfn = KVM_PFN_ERR_HWPOISON;
1314                 goto exit;
1315         }
1316
1317         vma = find_vma_intersection(current->mm, addr, addr + 1);
1318
1319         if (vma == NULL)
1320                 pfn = KVM_PFN_ERR_FAULT;
1321         else if ((vma->vm_flags & VM_PFNMAP)) {
1322                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1323                         vma->vm_pgoff;
1324                 BUG_ON(!kvm_is_reserved_pfn(pfn));
1325         } else {
1326                 if (async && vma_is_valid(vma, write_fault))
1327                         *async = true;
1328                 pfn = KVM_PFN_ERR_FAULT;
1329         }
1330 exit:
1331         up_read(&current->mm->mmap_sem);
1332         return pfn;
1333 }
1334
1335 static pfn_t
1336 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1337                      bool *async, bool write_fault, bool *writable)
1338 {
1339         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1340
1341         if (addr == KVM_HVA_ERR_RO_BAD)
1342                 return KVM_PFN_ERR_RO_FAULT;
1343
1344         if (kvm_is_error_hva(addr))
1345                 return KVM_PFN_NOSLOT;
1346
1347         /* Do not map writable pfn in the readonly memslot. */
1348         if (writable && memslot_is_readonly(slot)) {
1349                 *writable = false;
1350                 writable = NULL;
1351         }
1352
1353         return hva_to_pfn(addr, atomic, async, write_fault,
1354                           writable);
1355 }
1356
1357 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1358                           bool write_fault, bool *writable)
1359 {
1360         struct kvm_memory_slot *slot;
1361
1362         if (async)
1363                 *async = false;
1364
1365         slot = gfn_to_memslot(kvm, gfn);
1366
1367         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1368                                     writable);
1369 }
1370
1371 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1372 {
1373         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1374 }
1375 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1376
1377 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1378                        bool write_fault, bool *writable)
1379 {
1380         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1381 }
1382 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1383
1384 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1385 {
1386         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1387 }
1388 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1389
1390 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1391                       bool *writable)
1392 {
1393         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1394 }
1395 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1396
1397 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1398 {
1399         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1400 }
1401
1402 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1403 {
1404         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1405 }
1406 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1407
1408 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1409                                                                   int nr_pages)
1410 {
1411         unsigned long addr;
1412         gfn_t entry;
1413
1414         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1415         if (kvm_is_error_hva(addr))
1416                 return -1;
1417
1418         if (entry < nr_pages)
1419                 return 0;
1420
1421         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1422 }
1423 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1424
1425 static struct page *kvm_pfn_to_page(pfn_t pfn)
1426 {
1427         if (is_error_noslot_pfn(pfn))
1428                 return KVM_ERR_PTR_BAD_PAGE;
1429
1430         if (kvm_is_reserved_pfn(pfn)) {
1431                 WARN_ON(1);
1432                 return KVM_ERR_PTR_BAD_PAGE;
1433         }
1434
1435         return pfn_to_page(pfn);
1436 }
1437
1438 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1439 {
1440         pfn_t pfn;
1441
1442         pfn = gfn_to_pfn(kvm, gfn);
1443
1444         return kvm_pfn_to_page(pfn);
1445 }
1446
1447 EXPORT_SYMBOL_GPL(gfn_to_page);
1448
1449 void kvm_release_page_clean(struct page *page)
1450 {
1451         WARN_ON(is_error_page(page));
1452
1453         kvm_release_pfn_clean(page_to_pfn(page));
1454 }
1455 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1456
1457 void kvm_release_pfn_clean(pfn_t pfn)
1458 {
1459         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1460                 put_page(pfn_to_page(pfn));
1461 }
1462 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1463
1464 void kvm_release_page_dirty(struct page *page)
1465 {
1466         WARN_ON(is_error_page(page));
1467
1468         kvm_release_pfn_dirty(page_to_pfn(page));
1469 }
1470 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1471
1472 static void kvm_release_pfn_dirty(pfn_t pfn)
1473 {
1474         kvm_set_pfn_dirty(pfn);
1475         kvm_release_pfn_clean(pfn);
1476 }
1477
1478 void kvm_set_pfn_dirty(pfn_t pfn)
1479 {
1480         if (!kvm_is_reserved_pfn(pfn)) {
1481                 struct page *page = pfn_to_page(pfn);
1482                 if (!PageReserved(page))
1483                         SetPageDirty(page);
1484         }
1485 }
1486 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1487
1488 void kvm_set_pfn_accessed(pfn_t pfn)
1489 {
1490         if (!kvm_is_reserved_pfn(pfn))
1491                 mark_page_accessed(pfn_to_page(pfn));
1492 }
1493 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1494
1495 void kvm_get_pfn(pfn_t pfn)
1496 {
1497         if (!kvm_is_reserved_pfn(pfn))
1498                 get_page(pfn_to_page(pfn));
1499 }
1500 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1501
1502 static int next_segment(unsigned long len, int offset)
1503 {
1504         if (len > PAGE_SIZE - offset)
1505                 return PAGE_SIZE - offset;
1506         else
1507                 return len;
1508 }
1509
1510 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1511                         int len)
1512 {
1513         int r;
1514         unsigned long addr;
1515
1516         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1517         if (kvm_is_error_hva(addr))
1518                 return -EFAULT;
1519         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1520         if (r)
1521                 return -EFAULT;
1522         return 0;
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1525
1526 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1527 {
1528         gfn_t gfn = gpa >> PAGE_SHIFT;
1529         int seg;
1530         int offset = offset_in_page(gpa);
1531         int ret;
1532
1533         while ((seg = next_segment(len, offset)) != 0) {
1534                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1535                 if (ret < 0)
1536                         return ret;
1537                 offset = 0;
1538                 len -= seg;
1539                 data += seg;
1540                 ++gfn;
1541         }
1542         return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_read_guest);
1545
1546 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1547                           unsigned long len)
1548 {
1549         int r;
1550         unsigned long addr;
1551         gfn_t gfn = gpa >> PAGE_SHIFT;
1552         int offset = offset_in_page(gpa);
1553
1554         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1555         if (kvm_is_error_hva(addr))
1556                 return -EFAULT;
1557         pagefault_disable();
1558         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1559         pagefault_enable();
1560         if (r)
1561                 return -EFAULT;
1562         return 0;
1563 }
1564 EXPORT_SYMBOL(kvm_read_guest_atomic);
1565
1566 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1567                          int offset, int len)
1568 {
1569         int r;
1570         unsigned long addr;
1571
1572         addr = gfn_to_hva(kvm, gfn);
1573         if (kvm_is_error_hva(addr))
1574                 return -EFAULT;
1575         r = __copy_to_user((void __user *)addr + offset, data, len);
1576         if (r)
1577                 return -EFAULT;
1578         mark_page_dirty(kvm, gfn);
1579         return 0;
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1582
1583 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1584                     unsigned long len)
1585 {
1586         gfn_t gfn = gpa >> PAGE_SHIFT;
1587         int seg;
1588         int offset = offset_in_page(gpa);
1589         int ret;
1590
1591         while ((seg = next_segment(len, offset)) != 0) {
1592                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1593                 if (ret < 0)
1594                         return ret;
1595                 offset = 0;
1596                 len -= seg;
1597                 data += seg;
1598                 ++gfn;
1599         }
1600         return 0;
1601 }
1602
1603 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1604                               gpa_t gpa, unsigned long len)
1605 {
1606         struct kvm_memslots *slots = kvm_memslots(kvm);
1607         int offset = offset_in_page(gpa);
1608         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1609         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1610         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1611         gfn_t nr_pages_avail;
1612
1613         ghc->gpa = gpa;
1614         ghc->generation = slots->generation;
1615         ghc->len = len;
1616         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1617         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1618         if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1619                 ghc->hva += offset;
1620         } else {
1621                 /*
1622                  * If the requested region crosses two memslots, we still
1623                  * verify that the entire region is valid here.
1624                  */
1625                 while (start_gfn <= end_gfn) {
1626                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1627                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1628                                                    &nr_pages_avail);
1629                         if (kvm_is_error_hva(ghc->hva))
1630                                 return -EFAULT;
1631                         start_gfn += nr_pages_avail;
1632                 }
1633                 /* Use the slow path for cross page reads and writes. */
1634                 ghc->memslot = NULL;
1635         }
1636         return 0;
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1639
1640 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1641                            void *data, unsigned long len)
1642 {
1643         struct kvm_memslots *slots = kvm_memslots(kvm);
1644         int r;
1645
1646         BUG_ON(len > ghc->len);
1647
1648         if (slots->generation != ghc->generation)
1649                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1650
1651         if (unlikely(!ghc->memslot))
1652                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1653
1654         if (kvm_is_error_hva(ghc->hva))
1655                 return -EFAULT;
1656
1657         r = __copy_to_user((void __user *)ghc->hva, data, len);
1658         if (r)
1659                 return -EFAULT;
1660         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1661
1662         return 0;
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1665
1666 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1667                            void *data, unsigned long len)
1668 {
1669         struct kvm_memslots *slots = kvm_memslots(kvm);
1670         int r;
1671
1672         BUG_ON(len > ghc->len);
1673
1674         if (slots->generation != ghc->generation)
1675                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1676
1677         if (unlikely(!ghc->memslot))
1678                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1679
1680         if (kvm_is_error_hva(ghc->hva))
1681                 return -EFAULT;
1682
1683         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1684         if (r)
1685                 return -EFAULT;
1686
1687         return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1690
1691 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1692 {
1693         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1694
1695         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1698
1699 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1700 {
1701         gfn_t gfn = gpa >> PAGE_SHIFT;
1702         int seg;
1703         int offset = offset_in_page(gpa);
1704         int ret;
1705
1706         while ((seg = next_segment(len, offset)) != 0) {
1707                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1708                 if (ret < 0)
1709                         return ret;
1710                 offset = 0;
1711                 len -= seg;
1712                 ++gfn;
1713         }
1714         return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1717
1718 static void mark_page_dirty_in_slot(struct kvm *kvm,
1719                                     struct kvm_memory_slot *memslot,
1720                                     gfn_t gfn)
1721 {
1722         if (memslot && memslot->dirty_bitmap) {
1723                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1724
1725                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1726         }
1727 }
1728
1729 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1730 {
1731         struct kvm_memory_slot *memslot;
1732
1733         memslot = gfn_to_memslot(kvm, gfn);
1734         mark_page_dirty_in_slot(kvm, memslot, gfn);
1735 }
1736 EXPORT_SYMBOL_GPL(mark_page_dirty);
1737
1738 /*
1739  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1740  */
1741 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1742 {
1743         DEFINE_WAIT(wait);
1744
1745         for (;;) {
1746                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1747
1748                 if (kvm_arch_vcpu_runnable(vcpu)) {
1749                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1750                         break;
1751                 }
1752                 if (kvm_cpu_has_pending_timer(vcpu))
1753                         break;
1754                 if (signal_pending(current))
1755                         break;
1756
1757                 schedule();
1758         }
1759
1760         finish_wait(&vcpu->wq, &wait);
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1763
1764 #ifndef CONFIG_S390
1765 /*
1766  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1767  */
1768 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1769 {
1770         int me;
1771         int cpu = vcpu->cpu;
1772         wait_queue_head_t *wqp;
1773
1774         wqp = kvm_arch_vcpu_wq(vcpu);
1775         if (waitqueue_active(wqp)) {
1776                 wake_up_interruptible(wqp);
1777                 ++vcpu->stat.halt_wakeup;
1778         }
1779
1780         me = get_cpu();
1781         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1782                 if (kvm_arch_vcpu_should_kick(vcpu))
1783                         smp_send_reschedule(cpu);
1784         put_cpu();
1785 }
1786 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1787 #endif /* !CONFIG_S390 */
1788
1789 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1790 {
1791         struct pid *pid;
1792         struct task_struct *task = NULL;
1793         int ret = 0;
1794
1795         rcu_read_lock();
1796         pid = rcu_dereference(target->pid);
1797         if (pid)
1798                 task = get_pid_task(pid, PIDTYPE_PID);
1799         rcu_read_unlock();
1800         if (!task)
1801                 return ret;
1802         if (task->flags & PF_VCPU) {
1803                 put_task_struct(task);
1804                 return ret;
1805         }
1806         ret = yield_to(task, 1);
1807         put_task_struct(task);
1808
1809         return ret;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1812
1813 /*
1814  * Helper that checks whether a VCPU is eligible for directed yield.
1815  * Most eligible candidate to yield is decided by following heuristics:
1816  *
1817  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1818  *  (preempted lock holder), indicated by @in_spin_loop.
1819  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1820  *
1821  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1822  *  chance last time (mostly it has become eligible now since we have probably
1823  *  yielded to lockholder in last iteration. This is done by toggling
1824  *  @dy_eligible each time a VCPU checked for eligibility.)
1825  *
1826  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1827  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1828  *  burning. Giving priority for a potential lock-holder increases lock
1829  *  progress.
1830  *
1831  *  Since algorithm is based on heuristics, accessing another VCPU data without
1832  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1833  *  and continue with next VCPU and so on.
1834  */
1835 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1836 {
1837 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1838         bool eligible;
1839
1840         eligible = !vcpu->spin_loop.in_spin_loop ||
1841                     vcpu->spin_loop.dy_eligible;
1842
1843         if (vcpu->spin_loop.in_spin_loop)
1844                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1845
1846         return eligible;
1847 #else
1848         return true;
1849 #endif
1850 }
1851
1852 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1853 {
1854         struct kvm *kvm = me->kvm;
1855         struct kvm_vcpu *vcpu;
1856         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1857         int yielded = 0;
1858         int try = 3;
1859         int pass;
1860         int i;
1861
1862         kvm_vcpu_set_in_spin_loop(me, true);
1863         /*
1864          * We boost the priority of a VCPU that is runnable but not
1865          * currently running, because it got preempted by something
1866          * else and called schedule in __vcpu_run.  Hopefully that
1867          * VCPU is holding the lock that we need and will release it.
1868          * We approximate round-robin by starting at the last boosted VCPU.
1869          */
1870         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1871                 kvm_for_each_vcpu(i, vcpu, kvm) {
1872                         if (!pass && i <= last_boosted_vcpu) {
1873                                 i = last_boosted_vcpu;
1874                                 continue;
1875                         } else if (pass && i > last_boosted_vcpu)
1876                                 break;
1877                         if (!ACCESS_ONCE(vcpu->preempted))
1878                                 continue;
1879                         if (vcpu == me)
1880                                 continue;
1881                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1882                                 continue;
1883                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1884                                 continue;
1885
1886                         yielded = kvm_vcpu_yield_to(vcpu);
1887                         if (yielded > 0) {
1888                                 kvm->last_boosted_vcpu = i;
1889                                 break;
1890                         } else if (yielded < 0) {
1891                                 try--;
1892                                 if (!try)
1893                                         break;
1894                         }
1895                 }
1896         }
1897         kvm_vcpu_set_in_spin_loop(me, false);
1898
1899         /* Ensure vcpu is not eligible during next spinloop */
1900         kvm_vcpu_set_dy_eligible(me, false);
1901 }
1902 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1903
1904 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1905 {
1906         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1907         struct page *page;
1908
1909         if (vmf->pgoff == 0)
1910                 page = virt_to_page(vcpu->run);
1911 #ifdef CONFIG_X86
1912         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1913                 page = virt_to_page(vcpu->arch.pio_data);
1914 #endif
1915 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1916         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1917                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1918 #endif
1919         else
1920                 return kvm_arch_vcpu_fault(vcpu, vmf);
1921         get_page(page);
1922         vmf->page = page;
1923         return 0;
1924 }
1925
1926 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1927         .fault = kvm_vcpu_fault,
1928 };
1929
1930 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1931 {
1932         vma->vm_ops = &kvm_vcpu_vm_ops;
1933         return 0;
1934 }
1935
1936 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1937 {
1938         struct kvm_vcpu *vcpu = filp->private_data;
1939
1940         kvm_put_kvm(vcpu->kvm);
1941         return 0;
1942 }
1943
1944 static struct file_operations kvm_vcpu_fops = {
1945         .release        = kvm_vcpu_release,
1946         .unlocked_ioctl = kvm_vcpu_ioctl,
1947 #ifdef CONFIG_COMPAT
1948         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1949 #endif
1950         .mmap           = kvm_vcpu_mmap,
1951         .llseek         = noop_llseek,
1952 };
1953
1954 /*
1955  * Allocates an inode for the vcpu.
1956  */
1957 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1958 {
1959         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1960 }
1961
1962 /*
1963  * Creates some virtual cpus.  Good luck creating more than one.
1964  */
1965 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1966 {
1967         int r;
1968         struct kvm_vcpu *vcpu, *v;
1969
1970         if (id >= KVM_MAX_VCPUS)
1971                 return -EINVAL;
1972
1973         vcpu = kvm_arch_vcpu_create(kvm, id);
1974         if (IS_ERR(vcpu))
1975                 return PTR_ERR(vcpu);
1976
1977         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1978
1979         r = kvm_arch_vcpu_setup(vcpu);
1980         if (r)
1981                 goto vcpu_destroy;
1982
1983         mutex_lock(&kvm->lock);
1984         if (!kvm_vcpu_compatible(vcpu)) {
1985                 r = -EINVAL;
1986                 goto unlock_vcpu_destroy;
1987         }
1988         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1989                 r = -EINVAL;
1990                 goto unlock_vcpu_destroy;
1991         }
1992
1993         kvm_for_each_vcpu(r, v, kvm)
1994                 if (v->vcpu_id == id) {
1995                         r = -EEXIST;
1996                         goto unlock_vcpu_destroy;
1997                 }
1998
1999         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2000
2001         /* Now it's all set up, let userspace reach it */
2002         kvm_get_kvm(kvm);
2003         r = create_vcpu_fd(vcpu);
2004         if (r < 0) {
2005                 kvm_put_kvm(kvm);
2006                 goto unlock_vcpu_destroy;
2007         }
2008
2009         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2010         smp_wmb();
2011         atomic_inc(&kvm->online_vcpus);
2012
2013         mutex_unlock(&kvm->lock);
2014         kvm_arch_vcpu_postcreate(vcpu);
2015         return r;
2016
2017 unlock_vcpu_destroy:
2018         mutex_unlock(&kvm->lock);
2019 vcpu_destroy:
2020         kvm_arch_vcpu_destroy(vcpu);
2021         return r;
2022 }
2023
2024 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2025 {
2026         if (sigset) {
2027                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2028                 vcpu->sigset_active = 1;
2029                 vcpu->sigset = *sigset;
2030         } else
2031                 vcpu->sigset_active = 0;
2032         return 0;
2033 }
2034
2035 static long kvm_vcpu_ioctl(struct file *filp,
2036                            unsigned int ioctl, unsigned long arg)
2037 {
2038         struct kvm_vcpu *vcpu = filp->private_data;
2039         void __user *argp = (void __user *)arg;
2040         int r;
2041         struct kvm_fpu *fpu = NULL;
2042         struct kvm_sregs *kvm_sregs = NULL;
2043
2044         if (vcpu->kvm->mm != current->mm)
2045                 return -EIO;
2046
2047         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2048                 return -EINVAL;
2049
2050 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2051         /*
2052          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2053          * so vcpu_load() would break it.
2054          */
2055         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2056                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2057 #endif
2058
2059
2060         r = vcpu_load(vcpu);
2061         if (r)
2062                 return r;
2063         switch (ioctl) {
2064         case KVM_RUN:
2065                 r = -EINVAL;
2066                 if (arg)
2067                         goto out;
2068                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2069                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2070                 break;
2071         case KVM_GET_REGS: {
2072                 struct kvm_regs *kvm_regs;
2073
2074                 r = -ENOMEM;
2075                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2076                 if (!kvm_regs)
2077                         goto out;
2078                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2079                 if (r)
2080                         goto out_free1;
2081                 r = -EFAULT;
2082                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2083                         goto out_free1;
2084                 r = 0;
2085 out_free1:
2086                 kfree(kvm_regs);
2087                 break;
2088         }
2089         case KVM_SET_REGS: {
2090                 struct kvm_regs *kvm_regs;
2091
2092                 r = -ENOMEM;
2093                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2094                 if (IS_ERR(kvm_regs)) {
2095                         r = PTR_ERR(kvm_regs);
2096                         goto out;
2097                 }
2098                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2099                 kfree(kvm_regs);
2100                 break;
2101         }
2102         case KVM_GET_SREGS: {
2103                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2104                 r = -ENOMEM;
2105                 if (!kvm_sregs)
2106                         goto out;
2107                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2108                 if (r)
2109                         goto out;
2110                 r = -EFAULT;
2111                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2112                         goto out;
2113                 r = 0;
2114                 break;
2115         }
2116         case KVM_SET_SREGS: {
2117                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2118                 if (IS_ERR(kvm_sregs)) {
2119                         r = PTR_ERR(kvm_sregs);
2120                         kvm_sregs = NULL;
2121                         goto out;
2122                 }
2123                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2124                 break;
2125         }
2126         case KVM_GET_MP_STATE: {
2127                 struct kvm_mp_state mp_state;
2128
2129                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2130                 if (r)
2131                         goto out;
2132                 r = -EFAULT;
2133                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2134                         goto out;
2135                 r = 0;
2136                 break;
2137         }
2138         case KVM_SET_MP_STATE: {
2139                 struct kvm_mp_state mp_state;
2140
2141                 r = -EFAULT;
2142                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2143                         goto out;
2144                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2145                 break;
2146         }
2147         case KVM_TRANSLATE: {
2148                 struct kvm_translation tr;
2149
2150                 r = -EFAULT;
2151                 if (copy_from_user(&tr, argp, sizeof tr))
2152                         goto out;
2153                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2154                 if (r)
2155                         goto out;
2156                 r = -EFAULT;
2157                 if (copy_to_user(argp, &tr, sizeof tr))
2158                         goto out;
2159                 r = 0;
2160                 break;
2161         }
2162         case KVM_SET_GUEST_DEBUG: {
2163                 struct kvm_guest_debug dbg;
2164
2165                 r = -EFAULT;
2166                 if (copy_from_user(&dbg, argp, sizeof dbg))
2167                         goto out;
2168                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2169                 break;
2170         }
2171         case KVM_SET_SIGNAL_MASK: {
2172                 struct kvm_signal_mask __user *sigmask_arg = argp;
2173                 struct kvm_signal_mask kvm_sigmask;
2174                 sigset_t sigset, *p;
2175
2176                 p = NULL;
2177                 if (argp) {
2178                         r = -EFAULT;
2179                         if (copy_from_user(&kvm_sigmask, argp,
2180                                            sizeof kvm_sigmask))
2181                                 goto out;
2182                         r = -EINVAL;
2183                         if (kvm_sigmask.len != sizeof sigset)
2184                                 goto out;
2185                         r = -EFAULT;
2186                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2187                                            sizeof sigset))
2188                                 goto out;
2189                         p = &sigset;
2190                 }
2191                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2192                 break;
2193         }
2194         case KVM_GET_FPU: {
2195                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2196                 r = -ENOMEM;
2197                 if (!fpu)
2198                         goto out;
2199                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2200                 if (r)
2201                         goto out;
2202                 r = -EFAULT;
2203                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2204                         goto out;
2205                 r = 0;
2206                 break;
2207         }
2208         case KVM_SET_FPU: {
2209                 fpu = memdup_user(argp, sizeof(*fpu));
2210                 if (IS_ERR(fpu)) {
2211                         r = PTR_ERR(fpu);
2212                         fpu = NULL;
2213                         goto out;
2214                 }
2215                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2216                 break;
2217         }
2218         default:
2219                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2220         }
2221 out:
2222         vcpu_put(vcpu);
2223         kfree(fpu);
2224         kfree(kvm_sregs);
2225         return r;
2226 }
2227
2228 #ifdef CONFIG_COMPAT
2229 static long kvm_vcpu_compat_ioctl(struct file *filp,
2230                                   unsigned int ioctl, unsigned long arg)
2231 {
2232         struct kvm_vcpu *vcpu = filp->private_data;
2233         void __user *argp = compat_ptr(arg);
2234         int r;
2235
2236         if (vcpu->kvm->mm != current->mm)
2237                 return -EIO;
2238
2239         switch (ioctl) {
2240         case KVM_SET_SIGNAL_MASK: {
2241                 struct kvm_signal_mask __user *sigmask_arg = argp;
2242                 struct kvm_signal_mask kvm_sigmask;
2243                 compat_sigset_t csigset;
2244                 sigset_t sigset;
2245
2246                 if (argp) {
2247                         r = -EFAULT;
2248                         if (copy_from_user(&kvm_sigmask, argp,
2249                                            sizeof kvm_sigmask))
2250                                 goto out;
2251                         r = -EINVAL;
2252                         if (kvm_sigmask.len != sizeof csigset)
2253                                 goto out;
2254                         r = -EFAULT;
2255                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2256                                            sizeof csigset))
2257                                 goto out;
2258                         sigset_from_compat(&sigset, &csigset);
2259                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2260                 } else
2261                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2262                 break;
2263         }
2264         default:
2265                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2266         }
2267
2268 out:
2269         return r;
2270 }
2271 #endif
2272
2273 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2274                                  int (*accessor)(struct kvm_device *dev,
2275                                                  struct kvm_device_attr *attr),
2276                                  unsigned long arg)
2277 {
2278         struct kvm_device_attr attr;
2279
2280         if (!accessor)
2281                 return -EPERM;
2282
2283         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2284                 return -EFAULT;
2285
2286         return accessor(dev, &attr);
2287 }
2288
2289 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2290                              unsigned long arg)
2291 {
2292         struct kvm_device *dev = filp->private_data;
2293
2294         switch (ioctl) {
2295         case KVM_SET_DEVICE_ATTR:
2296                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2297         case KVM_GET_DEVICE_ATTR:
2298                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2299         case KVM_HAS_DEVICE_ATTR:
2300                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2301         default:
2302                 if (dev->ops->ioctl)
2303                         return dev->ops->ioctl(dev, ioctl, arg);
2304
2305                 return -ENOTTY;
2306         }
2307 }
2308
2309 static int kvm_device_release(struct inode *inode, struct file *filp)
2310 {
2311         struct kvm_device *dev = filp->private_data;
2312         struct kvm *kvm = dev->kvm;
2313
2314         kvm_put_kvm(kvm);
2315         return 0;
2316 }
2317
2318 static const struct file_operations kvm_device_fops = {
2319         .unlocked_ioctl = kvm_device_ioctl,
2320 #ifdef CONFIG_COMPAT
2321         .compat_ioctl = kvm_device_ioctl,
2322 #endif
2323         .release = kvm_device_release,
2324 };
2325
2326 struct kvm_device *kvm_device_from_filp(struct file *filp)
2327 {
2328         if (filp->f_op != &kvm_device_fops)
2329                 return NULL;
2330
2331         return filp->private_data;
2332 }
2333
2334 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2335 #ifdef CONFIG_KVM_MPIC
2336         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2337         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2338 #endif
2339
2340 #ifdef CONFIG_KVM_XICS
2341         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2342 #endif
2343 };
2344
2345 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2346 {
2347         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2348                 return -ENOSPC;
2349
2350         if (kvm_device_ops_table[type] != NULL)
2351                 return -EEXIST;
2352
2353         kvm_device_ops_table[type] = ops;
2354         return 0;
2355 }
2356
2357 void kvm_unregister_device_ops(u32 type)
2358 {
2359         if (kvm_device_ops_table[type] != NULL)
2360                 kvm_device_ops_table[type] = NULL;
2361 }
2362
2363 static int kvm_ioctl_create_device(struct kvm *kvm,
2364                                    struct kvm_create_device *cd)
2365 {
2366         struct kvm_device_ops *ops = NULL;
2367         struct kvm_device *dev;
2368         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2369         int ret;
2370
2371         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2372                 return -ENODEV;
2373
2374         ops = kvm_device_ops_table[cd->type];
2375         if (ops == NULL)
2376                 return -ENODEV;
2377
2378         if (test)
2379                 return 0;
2380
2381         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2382         if (!dev)
2383                 return -ENOMEM;
2384
2385         dev->ops = ops;
2386         dev->kvm = kvm;
2387
2388         ret = ops->create(dev, cd->type);
2389         if (ret < 0) {
2390                 kfree(dev);
2391                 return ret;
2392         }
2393
2394         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2395         if (ret < 0) {
2396                 ops->destroy(dev);
2397                 return ret;
2398         }
2399
2400         list_add(&dev->vm_node, &kvm->devices);
2401         kvm_get_kvm(kvm);
2402         cd->fd = ret;
2403         return 0;
2404 }
2405
2406 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2407 {
2408         switch (arg) {
2409         case KVM_CAP_USER_MEMORY:
2410         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2411         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2412 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2413         case KVM_CAP_SET_BOOT_CPU_ID:
2414 #endif
2415         case KVM_CAP_INTERNAL_ERROR_DATA:
2416 #ifdef CONFIG_HAVE_KVM_MSI
2417         case KVM_CAP_SIGNAL_MSI:
2418 #endif
2419 #ifdef CONFIG_HAVE_KVM_IRQFD
2420         case KVM_CAP_IRQFD_RESAMPLE:
2421 #endif
2422         case KVM_CAP_CHECK_EXTENSION_VM:
2423                 return 1;
2424 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2425         case KVM_CAP_IRQ_ROUTING:
2426                 return KVM_MAX_IRQ_ROUTES;
2427 #endif
2428         default:
2429                 break;
2430         }
2431         return kvm_vm_ioctl_check_extension(kvm, arg);
2432 }
2433
2434 static long kvm_vm_ioctl(struct file *filp,
2435                            unsigned int ioctl, unsigned long arg)
2436 {
2437         struct kvm *kvm = filp->private_data;
2438         void __user *argp = (void __user *)arg;
2439         int r;
2440
2441         if (kvm->mm != current->mm)
2442                 return -EIO;
2443         switch (ioctl) {
2444         case KVM_CREATE_VCPU:
2445                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2446                 break;
2447         case KVM_SET_USER_MEMORY_REGION: {
2448                 struct kvm_userspace_memory_region kvm_userspace_mem;
2449
2450                 r = -EFAULT;
2451                 if (copy_from_user(&kvm_userspace_mem, argp,
2452                                                 sizeof kvm_userspace_mem))
2453                         goto out;
2454
2455                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2456                 break;
2457         }
2458         case KVM_GET_DIRTY_LOG: {
2459                 struct kvm_dirty_log log;
2460
2461                 r = -EFAULT;
2462                 if (copy_from_user(&log, argp, sizeof log))
2463                         goto out;
2464                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2465                 break;
2466         }
2467 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2468         case KVM_REGISTER_COALESCED_MMIO: {
2469                 struct kvm_coalesced_mmio_zone zone;
2470                 r = -EFAULT;
2471                 if (copy_from_user(&zone, argp, sizeof zone))
2472                         goto out;
2473                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2474                 break;
2475         }
2476         case KVM_UNREGISTER_COALESCED_MMIO: {
2477                 struct kvm_coalesced_mmio_zone zone;
2478                 r = -EFAULT;
2479                 if (copy_from_user(&zone, argp, sizeof zone))
2480                         goto out;
2481                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2482                 break;
2483         }
2484 #endif
2485         case KVM_IRQFD: {
2486                 struct kvm_irqfd data;
2487
2488                 r = -EFAULT;
2489                 if (copy_from_user(&data, argp, sizeof data))
2490                         goto out;
2491                 r = kvm_irqfd(kvm, &data);
2492                 break;
2493         }
2494         case KVM_IOEVENTFD: {
2495                 struct kvm_ioeventfd data;
2496
2497                 r = -EFAULT;
2498                 if (copy_from_user(&data, argp, sizeof data))
2499                         goto out;
2500                 r = kvm_ioeventfd(kvm, &data);
2501                 break;
2502         }
2503 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2504         case KVM_SET_BOOT_CPU_ID:
2505                 r = 0;
2506                 mutex_lock(&kvm->lock);
2507                 if (atomic_read(&kvm->online_vcpus) != 0)
2508                         r = -EBUSY;
2509                 else
2510                         kvm->bsp_vcpu_id = arg;
2511                 mutex_unlock(&kvm->lock);
2512                 break;
2513 #endif
2514 #ifdef CONFIG_HAVE_KVM_MSI
2515         case KVM_SIGNAL_MSI: {
2516                 struct kvm_msi msi;
2517
2518                 r = -EFAULT;
2519                 if (copy_from_user(&msi, argp, sizeof msi))
2520                         goto out;
2521                 r = kvm_send_userspace_msi(kvm, &msi);
2522                 break;
2523         }
2524 #endif
2525 #ifdef __KVM_HAVE_IRQ_LINE
2526         case KVM_IRQ_LINE_STATUS:
2527         case KVM_IRQ_LINE: {
2528                 struct kvm_irq_level irq_event;
2529
2530                 r = -EFAULT;
2531                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2532                         goto out;
2533
2534                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2535                                         ioctl == KVM_IRQ_LINE_STATUS);
2536                 if (r)
2537                         goto out;
2538
2539                 r = -EFAULT;
2540                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2541                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2542                                 goto out;
2543                 }
2544
2545                 r = 0;
2546                 break;
2547         }
2548 #endif
2549 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2550         case KVM_SET_GSI_ROUTING: {
2551                 struct kvm_irq_routing routing;
2552                 struct kvm_irq_routing __user *urouting;
2553                 struct kvm_irq_routing_entry *entries;
2554
2555                 r = -EFAULT;
2556                 if (copy_from_user(&routing, argp, sizeof(routing)))
2557                         goto out;
2558                 r = -EINVAL;
2559                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2560                         goto out;
2561                 if (routing.flags)
2562                         goto out;
2563                 r = -ENOMEM;
2564                 entries = vmalloc(routing.nr * sizeof(*entries));
2565                 if (!entries)
2566                         goto out;
2567                 r = -EFAULT;
2568                 urouting = argp;
2569                 if (copy_from_user(entries, urouting->entries,
2570                                    routing.nr * sizeof(*entries)))
2571                         goto out_free_irq_routing;
2572                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2573                                         routing.flags);
2574         out_free_irq_routing:
2575                 vfree(entries);
2576                 break;
2577         }
2578 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2579         case KVM_CREATE_DEVICE: {
2580                 struct kvm_create_device cd;
2581
2582                 r = -EFAULT;
2583                 if (copy_from_user(&cd, argp, sizeof(cd)))
2584                         goto out;
2585
2586                 r = kvm_ioctl_create_device(kvm, &cd);
2587                 if (r)
2588                         goto out;
2589
2590                 r = -EFAULT;
2591                 if (copy_to_user(argp, &cd, sizeof(cd)))
2592                         goto out;
2593
2594                 r = 0;
2595                 break;
2596         }
2597         case KVM_CHECK_EXTENSION:
2598                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2599                 break;
2600         default:
2601                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2602                 if (r == -ENOTTY)
2603                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2604         }
2605 out:
2606         return r;
2607 }
2608
2609 #ifdef CONFIG_COMPAT
2610 struct compat_kvm_dirty_log {
2611         __u32 slot;
2612         __u32 padding1;
2613         union {
2614                 compat_uptr_t dirty_bitmap; /* one bit per page */
2615                 __u64 padding2;
2616         };
2617 };
2618
2619 static long kvm_vm_compat_ioctl(struct file *filp,
2620                            unsigned int ioctl, unsigned long arg)
2621 {
2622         struct kvm *kvm = filp->private_data;
2623         int r;
2624
2625         if (kvm->mm != current->mm)
2626                 return -EIO;
2627         switch (ioctl) {
2628         case KVM_GET_DIRTY_LOG: {
2629                 struct compat_kvm_dirty_log compat_log;
2630                 struct kvm_dirty_log log;
2631
2632                 r = -EFAULT;
2633                 if (copy_from_user(&compat_log, (void __user *)arg,
2634                                    sizeof(compat_log)))
2635                         goto out;
2636                 log.slot         = compat_log.slot;
2637                 log.padding1     = compat_log.padding1;
2638                 log.padding2     = compat_log.padding2;
2639                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2640
2641                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2642                 break;
2643         }
2644         default:
2645                 r = kvm_vm_ioctl(filp, ioctl, arg);
2646         }
2647
2648 out:
2649         return r;
2650 }
2651 #endif
2652
2653 static struct file_operations kvm_vm_fops = {
2654         .release        = kvm_vm_release,
2655         .unlocked_ioctl = kvm_vm_ioctl,
2656 #ifdef CONFIG_COMPAT
2657         .compat_ioctl   = kvm_vm_compat_ioctl,
2658 #endif
2659         .llseek         = noop_llseek,
2660 };
2661
2662 static int kvm_dev_ioctl_create_vm(unsigned long type)
2663 {
2664         int r;
2665         struct kvm *kvm;
2666
2667         kvm = kvm_create_vm(type);
2668         if (IS_ERR(kvm))
2669                 return PTR_ERR(kvm);
2670 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2671         r = kvm_coalesced_mmio_init(kvm);
2672         if (r < 0) {
2673                 kvm_put_kvm(kvm);
2674                 return r;
2675         }
2676 #endif
2677         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2678         if (r < 0)
2679                 kvm_put_kvm(kvm);
2680
2681         return r;
2682 }
2683
2684 static long kvm_dev_ioctl(struct file *filp,
2685                           unsigned int ioctl, unsigned long arg)
2686 {
2687         long r = -EINVAL;
2688
2689         switch (ioctl) {
2690         case KVM_GET_API_VERSION:
2691                 if (arg)
2692                         goto out;
2693                 r = KVM_API_VERSION;
2694                 break;
2695         case KVM_CREATE_VM:
2696                 r = kvm_dev_ioctl_create_vm(arg);
2697                 break;
2698         case KVM_CHECK_EXTENSION:
2699                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2700                 break;
2701         case KVM_GET_VCPU_MMAP_SIZE:
2702                 if (arg)
2703                         goto out;
2704                 r = PAGE_SIZE;     /* struct kvm_run */
2705 #ifdef CONFIG_X86
2706                 r += PAGE_SIZE;    /* pio data page */
2707 #endif
2708 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2709                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2710 #endif
2711                 break;
2712         case KVM_TRACE_ENABLE:
2713         case KVM_TRACE_PAUSE:
2714         case KVM_TRACE_DISABLE:
2715                 r = -EOPNOTSUPP;
2716                 break;
2717         default:
2718                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2719         }
2720 out:
2721         return r;
2722 }
2723
2724 static struct file_operations kvm_chardev_ops = {
2725         .unlocked_ioctl = kvm_dev_ioctl,
2726         .compat_ioctl   = kvm_dev_ioctl,
2727         .llseek         = noop_llseek,
2728 };
2729
2730 static struct miscdevice kvm_dev = {
2731         KVM_MINOR,
2732         "kvm",
2733         &kvm_chardev_ops,
2734 };
2735
2736 static void hardware_enable_nolock(void *junk)
2737 {
2738         int cpu = raw_smp_processor_id();
2739         int r;
2740
2741         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2742                 return;
2743
2744         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2745
2746         r = kvm_arch_hardware_enable();
2747
2748         if (r) {
2749                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2750                 atomic_inc(&hardware_enable_failed);
2751                 printk(KERN_INFO "kvm: enabling virtualization on "
2752                                  "CPU%d failed\n", cpu);
2753         }
2754 }
2755
2756 static void hardware_enable(void)
2757 {
2758         raw_spin_lock(&kvm_count_lock);
2759         if (kvm_usage_count)
2760                 hardware_enable_nolock(NULL);
2761         raw_spin_unlock(&kvm_count_lock);
2762 }
2763
2764 static void hardware_disable_nolock(void *junk)
2765 {
2766         int cpu = raw_smp_processor_id();
2767
2768         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2769                 return;
2770         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2771         kvm_arch_hardware_disable();
2772 }
2773
2774 static void hardware_disable(void)
2775 {
2776         raw_spin_lock(&kvm_count_lock);
2777         if (kvm_usage_count)
2778                 hardware_disable_nolock(NULL);
2779         raw_spin_unlock(&kvm_count_lock);
2780 }
2781
2782 static void hardware_disable_all_nolock(void)
2783 {
2784         BUG_ON(!kvm_usage_count);
2785
2786         kvm_usage_count--;
2787         if (!kvm_usage_count)
2788                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2789 }
2790
2791 static void hardware_disable_all(void)
2792 {
2793         raw_spin_lock(&kvm_count_lock);
2794         hardware_disable_all_nolock();
2795         raw_spin_unlock(&kvm_count_lock);
2796 }
2797
2798 static int hardware_enable_all(void)
2799 {
2800         int r = 0;
2801
2802         raw_spin_lock(&kvm_count_lock);
2803
2804         kvm_usage_count++;
2805         if (kvm_usage_count == 1) {
2806                 atomic_set(&hardware_enable_failed, 0);
2807                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2808
2809                 if (atomic_read(&hardware_enable_failed)) {
2810                         hardware_disable_all_nolock();
2811                         r = -EBUSY;
2812                 }
2813         }
2814
2815         raw_spin_unlock(&kvm_count_lock);
2816
2817         return r;
2818 }
2819
2820 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2821                            void *v)
2822 {
2823         int cpu = (long)v;
2824
2825         val &= ~CPU_TASKS_FROZEN;
2826         switch (val) {
2827         case CPU_DYING:
2828                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2829                        cpu);
2830                 hardware_disable();
2831                 break;
2832         case CPU_STARTING:
2833                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2834                        cpu);
2835                 hardware_enable();
2836                 break;
2837         }
2838         return NOTIFY_OK;
2839 }
2840
2841 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2842                       void *v)
2843 {
2844         /*
2845          * Some (well, at least mine) BIOSes hang on reboot if
2846          * in vmx root mode.
2847          *
2848          * And Intel TXT required VMX off for all cpu when system shutdown.
2849          */
2850         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2851         kvm_rebooting = true;
2852         on_each_cpu(hardware_disable_nolock, NULL, 1);
2853         return NOTIFY_OK;
2854 }
2855
2856 static struct notifier_block kvm_reboot_notifier = {
2857         .notifier_call = kvm_reboot,
2858         .priority = 0,
2859 };
2860
2861 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2862 {
2863         int i;
2864
2865         for (i = 0; i < bus->dev_count; i++) {
2866                 struct kvm_io_device *pos = bus->range[i].dev;
2867
2868                 kvm_iodevice_destructor(pos);
2869         }
2870         kfree(bus);
2871 }
2872
2873 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2874                                  const struct kvm_io_range *r2)
2875 {
2876         if (r1->addr < r2->addr)
2877                 return -1;
2878         if (r1->addr + r1->len > r2->addr + r2->len)
2879                 return 1;
2880         return 0;
2881 }
2882
2883 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2884 {
2885         return kvm_io_bus_cmp(p1, p2);
2886 }
2887
2888 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2889                           gpa_t addr, int len)
2890 {
2891         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2892                 .addr = addr,
2893                 .len = len,
2894                 .dev = dev,
2895         };
2896
2897         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2898                 kvm_io_bus_sort_cmp, NULL);
2899
2900         return 0;
2901 }
2902
2903 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2904                              gpa_t addr, int len)
2905 {
2906         struct kvm_io_range *range, key;
2907         int off;
2908
2909         key = (struct kvm_io_range) {
2910                 .addr = addr,
2911                 .len = len,
2912         };
2913
2914         range = bsearch(&key, bus->range, bus->dev_count,
2915                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2916         if (range == NULL)
2917                 return -ENOENT;
2918
2919         off = range - bus->range;
2920
2921         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2922                 off--;
2923
2924         return off;
2925 }
2926
2927 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2928                               struct kvm_io_range *range, const void *val)
2929 {
2930         int idx;
2931
2932         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2933         if (idx < 0)
2934                 return -EOPNOTSUPP;
2935
2936         while (idx < bus->dev_count &&
2937                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2938                 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2939                                         range->len, val))
2940                         return idx;
2941                 idx++;
2942         }
2943
2944         return -EOPNOTSUPP;
2945 }
2946
2947 /* kvm_io_bus_write - called under kvm->slots_lock */
2948 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2949                      int len, const void *val)
2950 {
2951         struct kvm_io_bus *bus;
2952         struct kvm_io_range range;
2953         int r;
2954
2955         range = (struct kvm_io_range) {
2956                 .addr = addr,
2957                 .len = len,
2958         };
2959
2960         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2961         r = __kvm_io_bus_write(bus, &range, val);
2962         return r < 0 ? r : 0;
2963 }
2964
2965 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2966 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2967                             int len, const void *val, long cookie)
2968 {
2969         struct kvm_io_bus *bus;
2970         struct kvm_io_range range;
2971
2972         range = (struct kvm_io_range) {
2973                 .addr = addr,
2974                 .len = len,
2975         };
2976
2977         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2978
2979         /* First try the device referenced by cookie. */
2980         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2981             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2982                 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2983                                         val))
2984                         return cookie;
2985
2986         /*
2987          * cookie contained garbage; fall back to search and return the
2988          * correct cookie value.
2989          */
2990         return __kvm_io_bus_write(bus, &range, val);
2991 }
2992
2993 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2994                              void *val)
2995 {
2996         int idx;
2997
2998         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2999         if (idx < 0)
3000                 return -EOPNOTSUPP;
3001
3002         while (idx < bus->dev_count &&
3003                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3004                 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
3005                                        range->len, val))
3006                         return idx;
3007                 idx++;
3008         }
3009
3010         return -EOPNOTSUPP;
3011 }
3012 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3013
3014 /* kvm_io_bus_read - called under kvm->slots_lock */
3015 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3016                     int len, void *val)
3017 {
3018         struct kvm_io_bus *bus;
3019         struct kvm_io_range range;
3020         int r;
3021
3022         range = (struct kvm_io_range) {
3023                 .addr = addr,
3024                 .len = len,
3025         };
3026
3027         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3028         r = __kvm_io_bus_read(bus, &range, val);
3029         return r < 0 ? r : 0;
3030 }
3031
3032
3033 /* Caller must hold slots_lock. */
3034 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3035                             int len, struct kvm_io_device *dev)
3036 {
3037         struct kvm_io_bus *new_bus, *bus;
3038
3039         bus = kvm->buses[bus_idx];
3040         /* exclude ioeventfd which is limited by maximum fd */
3041         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3042                 return -ENOSPC;
3043
3044         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3045                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3046         if (!new_bus)
3047                 return -ENOMEM;
3048         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3049                sizeof(struct kvm_io_range)));
3050         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3051         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3052         synchronize_srcu_expedited(&kvm->srcu);
3053         kfree(bus);
3054
3055         return 0;
3056 }
3057
3058 /* Caller must hold slots_lock. */
3059 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3060                               struct kvm_io_device *dev)
3061 {
3062         int i, r;
3063         struct kvm_io_bus *new_bus, *bus;
3064
3065         bus = kvm->buses[bus_idx];
3066         r = -ENOENT;
3067         for (i = 0; i < bus->dev_count; i++)
3068                 if (bus->range[i].dev == dev) {
3069                         r = 0;
3070                         break;
3071                 }
3072
3073         if (r)
3074                 return r;
3075
3076         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3077                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3078         if (!new_bus)
3079                 return -ENOMEM;
3080
3081         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3082         new_bus->dev_count--;
3083         memcpy(new_bus->range + i, bus->range + i + 1,
3084                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3085
3086         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3087         synchronize_srcu_expedited(&kvm->srcu);
3088         kfree(bus);
3089         return r;
3090 }
3091
3092 static struct notifier_block kvm_cpu_notifier = {
3093         .notifier_call = kvm_cpu_hotplug,
3094 };
3095
3096 static int vm_stat_get(void *_offset, u64 *val)
3097 {
3098         unsigned offset = (long)_offset;
3099         struct kvm *kvm;
3100
3101         *val = 0;
3102         spin_lock(&kvm_lock);
3103         list_for_each_entry(kvm, &vm_list, vm_list)
3104                 *val += *(u32 *)((void *)kvm + offset);
3105         spin_unlock(&kvm_lock);
3106         return 0;
3107 }
3108
3109 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3110
3111 static int vcpu_stat_get(void *_offset, u64 *val)
3112 {
3113         unsigned offset = (long)_offset;
3114         struct kvm *kvm;
3115         struct kvm_vcpu *vcpu;
3116         int i;
3117
3118         *val = 0;
3119         spin_lock(&kvm_lock);
3120         list_for_each_entry(kvm, &vm_list, vm_list)
3121                 kvm_for_each_vcpu(i, vcpu, kvm)
3122                         *val += *(u32 *)((void *)vcpu + offset);
3123
3124         spin_unlock(&kvm_lock);
3125         return 0;
3126 }
3127
3128 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3129
3130 static const struct file_operations *stat_fops[] = {
3131         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3132         [KVM_STAT_VM]   = &vm_stat_fops,
3133 };
3134
3135 static int kvm_init_debug(void)
3136 {
3137         int r = -EEXIST;
3138         struct kvm_stats_debugfs_item *p;
3139
3140         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3141         if (kvm_debugfs_dir == NULL)
3142                 goto out;
3143
3144         for (p = debugfs_entries; p->name; ++p) {
3145                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3146                                                 (void *)(long)p->offset,
3147                                                 stat_fops[p->kind]);
3148                 if (p->dentry == NULL)
3149                         goto out_dir;
3150         }
3151
3152         return 0;
3153
3154 out_dir:
3155         debugfs_remove_recursive(kvm_debugfs_dir);
3156 out:
3157         return r;
3158 }
3159
3160 static void kvm_exit_debug(void)
3161 {
3162         struct kvm_stats_debugfs_item *p;
3163
3164         for (p = debugfs_entries; p->name; ++p)
3165                 debugfs_remove(p->dentry);
3166         debugfs_remove(kvm_debugfs_dir);
3167 }
3168
3169 static int kvm_suspend(void)
3170 {
3171         if (kvm_usage_count)
3172                 hardware_disable_nolock(NULL);
3173         return 0;
3174 }
3175
3176 static void kvm_resume(void)
3177 {
3178         if (kvm_usage_count) {
3179                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3180                 hardware_enable_nolock(NULL);
3181         }
3182 }
3183
3184 static struct syscore_ops kvm_syscore_ops = {
3185         .suspend = kvm_suspend,
3186         .resume = kvm_resume,
3187 };
3188
3189 static inline
3190 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3191 {
3192         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3193 }
3194
3195 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3196 {
3197         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3198         if (vcpu->preempted)
3199                 vcpu->preempted = false;
3200
3201         kvm_arch_sched_in(vcpu, cpu);
3202
3203         kvm_arch_vcpu_load(vcpu, cpu);
3204 }
3205
3206 static void kvm_sched_out(struct preempt_notifier *pn,
3207                           struct task_struct *next)
3208 {
3209         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3210
3211         if (current->state == TASK_RUNNING)
3212                 vcpu->preempted = true;
3213         kvm_arch_vcpu_put(vcpu);
3214 }
3215
3216 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3217                   struct module *module)
3218 {
3219         int r;
3220         int cpu;
3221
3222         r = kvm_arch_init(opaque);
3223         if (r)
3224                 goto out_fail;
3225
3226         /*
3227          * kvm_arch_init makes sure there's at most one caller
3228          * for architectures that support multiple implementations,
3229          * like intel and amd on x86.
3230          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3231          * conflicts in case kvm is already setup for another implementation.
3232          */
3233         r = kvm_irqfd_init();
3234         if (r)
3235                 goto out_irqfd;
3236
3237         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3238                 r = -ENOMEM;
3239                 goto out_free_0;
3240         }
3241
3242         r = kvm_arch_hardware_setup();
3243         if (r < 0)
3244                 goto out_free_0a;
3245
3246         for_each_online_cpu(cpu) {
3247                 smp_call_function_single(cpu,
3248                                 kvm_arch_check_processor_compat,
3249                                 &r, 1);
3250                 if (r < 0)
3251                         goto out_free_1;
3252         }
3253
3254         r = register_cpu_notifier(&kvm_cpu_notifier);
3255         if (r)
3256                 goto out_free_2;
3257         register_reboot_notifier(&kvm_reboot_notifier);
3258
3259         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3260         if (!vcpu_align)
3261                 vcpu_align = __alignof__(struct kvm_vcpu);
3262         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3263                                            0, NULL);
3264         if (!kvm_vcpu_cache) {
3265                 r = -ENOMEM;
3266                 goto out_free_3;
3267         }
3268
3269         r = kvm_async_pf_init();
3270         if (r)
3271                 goto out_free;
3272
3273         kvm_chardev_ops.owner = module;
3274         kvm_vm_fops.owner = module;
3275         kvm_vcpu_fops.owner = module;
3276
3277         r = misc_register(&kvm_dev);
3278         if (r) {
3279                 printk(KERN_ERR "kvm: misc device register failed\n");
3280                 goto out_unreg;
3281         }
3282
3283         register_syscore_ops(&kvm_syscore_ops);
3284
3285         kvm_preempt_ops.sched_in = kvm_sched_in;
3286         kvm_preempt_ops.sched_out = kvm_sched_out;
3287
3288         r = kvm_init_debug();
3289         if (r) {
3290                 printk(KERN_ERR "kvm: create debugfs files failed\n");
3291                 goto out_undebugfs;
3292         }
3293
3294         r = kvm_vfio_ops_init();
3295         WARN_ON(r);
3296
3297         return 0;
3298
3299 out_undebugfs:
3300         unregister_syscore_ops(&kvm_syscore_ops);
3301         misc_deregister(&kvm_dev);
3302 out_unreg:
3303         kvm_async_pf_deinit();
3304 out_free:
3305         kmem_cache_destroy(kvm_vcpu_cache);
3306 out_free_3:
3307         unregister_reboot_notifier(&kvm_reboot_notifier);
3308         unregister_cpu_notifier(&kvm_cpu_notifier);
3309 out_free_2:
3310 out_free_1:
3311         kvm_arch_hardware_unsetup();
3312 out_free_0a:
3313         free_cpumask_var(cpus_hardware_enabled);
3314 out_free_0:
3315         kvm_irqfd_exit();
3316 out_irqfd:
3317         kvm_arch_exit();
3318 out_fail:
3319         return r;
3320 }
3321 EXPORT_SYMBOL_GPL(kvm_init);
3322
3323 void kvm_exit(void)
3324 {
3325         kvm_exit_debug();
3326         misc_deregister(&kvm_dev);
3327         kmem_cache_destroy(kvm_vcpu_cache);
3328         kvm_async_pf_deinit();
3329         unregister_syscore_ops(&kvm_syscore_ops);
3330         unregister_reboot_notifier(&kvm_reboot_notifier);
3331         unregister_cpu_notifier(&kvm_cpu_notifier);
3332         on_each_cpu(hardware_disable_nolock, NULL, 1);
3333         kvm_arch_hardware_unsetup();
3334         kvm_arch_exit();
3335         kvm_irqfd_exit();
3336         free_cpumask_var(cpus_hardware_enabled);
3337         kvm_vfio_ops_exit();
3338 }
3339 EXPORT_SYMBOL_GPL(kvm_exit);