Clean up duplicate includes in fs/ecryptfs/
[cascardo/linux.git] / kernel / sched_fair.c
index b9e426a..a17b785 100644 (file)
  * (default: 20ms, units: nanoseconds)
  *
  * NOTE: this latency value is not the same as the concept of
- * 'timeslice length' - timeslices in CFS are of variable length.
- * (to see the precise effective timeslice length of your workload,
- *  run vmstat and monitor the context-switches field)
+ * 'timeslice length' - timeslices in CFS are of variable length
+ * and have no persistent notion like in traditional, time-slice
+ * based scheduling concepts.
  *
- * On SMP systems the value of this is multiplied by the log2 of the
- * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
- * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
- * Targeted preemption latency for CPU-bound tasks:
+ * (to see the precise effective timeslice length of your workload,
+ *  run vmstat and monitor the context-switches (cs) field)
  */
 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
 
@@ -46,7 +44,7 @@ const_debug unsigned int sysctl_sched_child_runs_first = 1;
  * Minimal preemption granularity for CPU-bound tasks:
  * (default: 2 msec, units: nanoseconds)
  */
-unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
+const_debug unsigned int sysctl_sched_nr_latency = 20;
 
 /*
  * sys_sched_yield() compat mode
@@ -58,27 +56,25 @@ unsigned int __read_mostly sysctl_sched_compat_yield;
 
 /*
  * SCHED_BATCH wake-up granularity.
- * (default: 25 msec, units: nanoseconds)
+ * (default: 10 msec, units: nanoseconds)
  *
  * This option delays the preemption effects of decoupled workloads
  * and reduces their over-scheduling. Synchronous workloads will still
  * have immediate wakeup/sleep latencies.
  */
-const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
+const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
 
 /*
  * SCHED_OTHER wake-up granularity.
- * (default: 1 msec, units: nanoseconds)
+ * (default: 10 msec, units: nanoseconds)
  *
  * This option delays the preemption effects of decoupled workloads
  * and reduces their over-scheduling. Synchronous workloads will still
  * have immediate wakeup/sleep latencies.
  */
-const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
+const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
 
-unsigned int sysctl_sched_runtime_limit __read_mostly;
-
-extern struct sched_class fair_sched_class;
+const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
 
 /**************************************************************
  * CFS operations on generic schedulable entities:
@@ -116,28 +112,25 @@ static inline struct task_struct *task_of(struct sched_entity *se)
  * Scheduling class tree data structure manipulation methods:
  */
 
-static inline u64
-max_vruntime(u64 min_vruntime, u64 vruntime)
+static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
 {
-       if ((vruntime > min_vruntime) ||
-           (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
+       s64 delta = (s64)(vruntime - min_vruntime);
+       if (delta > 0)
                min_vruntime = vruntime;
 
        return min_vruntime;
 }
 
-static inline void
-set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
+static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 {
-       struct sched_entity *se;
+       s64 delta = (s64)(vruntime - min_vruntime);
+       if (delta < 0)
+               min_vruntime = vruntime;
 
-       cfs_rq->rb_leftmost = leftmost;
-       if (leftmost)
-               se = rb_entry(leftmost, struct sched_entity, run_node);
+       return min_vruntime;
 }
 
-static inline s64
-entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
+static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
        return se->vruntime - cfs_rq->min_vruntime;
 }
@@ -145,8 +138,7 @@ entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
 /*
  * Enqueue an entity into the rb-tree:
  */
-static void
-__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
+static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
        struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
        struct rb_node *parent = NULL;
@@ -177,17 +169,16 @@ __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
         * used):
         */
        if (leftmost)
-               set_leftmost(cfs_rq, &se->run_node);
+               cfs_rq->rb_leftmost = &se->run_node;
 
        rb_link_node(&se->run_node, parent, link);
        rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 }
 
-static void
-__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
+static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
        if (cfs_rq->rb_leftmost == &se->run_node)
-               set_leftmost(cfs_rq, rb_next(&se->run_node));
+               cfs_rq->rb_leftmost = rb_next(&se->run_node);
 
        rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 }
@@ -221,11 +212,19 @@ static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  * Scheduling class statistics methods:
  */
 
+
+/*
+ * The idea is to set a period in which each task runs once.
+ *
+ * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
+ * this period because otherwise the slices get too small.
+ *
+ * p = (nr <= nl) ? l : l*nr/nl
+ */
 static u64 __sched_period(unsigned long nr_running)
 {
        u64 period = sysctl_sched_latency;
-       unsigned long nr_latency =
-               sysctl_sched_latency / sysctl_sched_min_granularity;
+       unsigned long nr_latency = sysctl_sched_nr_latency;
 
        if (unlikely(nr_running > nr_latency)) {
                period *= nr_running;
@@ -235,14 +234,45 @@ static u64 __sched_period(unsigned long nr_running)
        return period;
 }
 
+/*
+ * We calculate the wall-time slice from the period by taking a part
+ * proportional to the weight.
+ *
+ * s = p*w/rw
+ */
 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       u64 period = __sched_period(cfs_rq->nr_running);
+       u64 slice = __sched_period(cfs_rq->nr_running);
 
-       period *= se->load.weight;
-       do_div(period, cfs_rq->load.weight);
+       slice *= se->load.weight;
+       do_div(slice, cfs_rq->load.weight);
 
-       return period;
+       return slice;
+}
+
+/*
+ * We calculate the vruntime slice.
+ *
+ * vs = s/w = p/rw
+ */
+static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
+{
+       u64 vslice = __sched_period(nr_running);
+
+       do_div(vslice, rq_weight);
+
+       return vslice;
+}
+
+static u64 sched_vslice(struct cfs_rq *cfs_rq)
+{
+       return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
+}
+
+static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       return __sched_vslice(cfs_rq->load.weight + se->load.weight,
+                       cfs_rq->nr_running + 1);
 }
 
 /*
@@ -254,7 +284,7 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
              unsigned long delta_exec)
 {
        unsigned long delta_exec_weighted;
-       u64 next_vruntime, min_vruntime;
+       u64 vruntime;
 
        schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
 
@@ -272,19 +302,13 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
         * value tracking the leftmost vruntime in the tree.
         */
        if (first_fair(cfs_rq)) {
-               next_vruntime = __pick_next_entity(cfs_rq)->vruntime;
-
-               /* min_vruntime() := !max_vruntime() */
-               min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
-               if (min_vruntime == next_vruntime)
-                       min_vruntime = curr->vruntime;
-               else
-                       min_vruntime = next_vruntime;
+               vruntime = min_vruntime(curr->vruntime,
+                               __pick_next_entity(cfs_rq)->vruntime);
        } else
-               min_vruntime = curr->vruntime;
+               vruntime = curr->vruntime;
 
        cfs_rq->min_vruntime =
-               max_vruntime(cfs_rq->min_vruntime, min_vruntime);
+               max_vruntime(cfs_rq->min_vruntime, vruntime);
 }
 
 static void update_curr(struct cfs_rq *cfs_rq)
@@ -313,17 +337,6 @@ update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
        schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
 }
 
-static inline unsigned long
-calc_weighted(unsigned long delta, struct sched_entity *se)
-{
-       unsigned long weight = se->load.weight;
-
-       if (unlikely(weight != NICE_0_LOAD))
-               return (u64)delta * se->load.weight >> NICE_0_SHIFT;
-       else
-               return delta;
-}
-
 /*
  * Task is being enqueued - update stats:
  */
@@ -348,7 +361,6 @@ update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 static inline void
 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       update_curr(cfs_rq);
        /*
         * Mark the end of the wait period if dequeueing a
         * waiting task:
@@ -369,15 +381,6 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
        se->exec_start = rq_of(cfs_rq)->clock;
 }
 
-/*
- * We are descheduling a task - update its stats:
- */
-static inline void
-update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       se->exec_start = 0;
-}
-
 /**************************************************
  * Scheduling class queueing methods:
  */
@@ -440,42 +443,55 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 #endif
 }
 
+static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+#ifdef CONFIG_SCHED_DEBUG
+       s64 d = se->vruntime - cfs_rq->min_vruntime;
+
+       if (d < 0)
+               d = -d;
+
+       if (d > 3*sysctl_sched_latency)
+               schedstat_inc(cfs_rq, nr_spread_over);
+#endif
+}
+
 static void
 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
 {
-       u64 min_runtime, latency;
+       u64 vruntime;
 
-       min_runtime = cfs_rq->min_vruntime;
+       vruntime = cfs_rq->min_vruntime;
 
-       if (sched_feat(USE_TREE_AVG)) {
+       if (sched_feat(TREE_AVG)) {
                struct sched_entity *last = __pick_last_entity(cfs_rq);
                if (last) {
-                       min_runtime = __pick_next_entity(cfs_rq)->vruntime;
-                       min_runtime += last->vruntime;
-                       min_runtime >>= 1;
+                       vruntime += last->vruntime;
+                       vruntime >>= 1;
                }
-       } else if (sched_feat(APPROX_AVG))
-               min_runtime += sysctl_sched_latency/2;
+       } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
+               vruntime += sched_vslice(cfs_rq)/2;
 
        if (initial && sched_feat(START_DEBIT))
-               min_runtime += sched_slice(cfs_rq, se);
-
-       if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
-               latency = sysctl_sched_latency;
-               if (min_runtime > latency)
-                       min_runtime -= latency;
-               else
-                       min_runtime = 0;
+               vruntime += sched_vslice_add(cfs_rq, se);
+
+       if (!initial) {
+               if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
+                               task_of(se)->policy != SCHED_BATCH)
+                       vruntime -= sysctl_sched_latency;
+
+               vruntime = max_t(s64, vruntime, se->vruntime);
        }
 
-       se->vruntime = max(se->vruntime, min_runtime);
+       se->vruntime = vruntime;
+
 }
 
 static void
 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
 {
        /*
-        * Update the fair clock.
+        * Update run-time statistics of the 'current'.
         */
        update_curr(cfs_rq);
 
@@ -485,6 +501,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
        }
 
        update_stats_enqueue(cfs_rq, se);
+       check_spread(cfs_rq, se);
        if (se != cfs_rq->curr)
                __enqueue_entity(cfs_rq, se);
        account_entity_enqueue(cfs_rq, se);
@@ -493,9 +510,15 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
 static void
 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
 {
+       /*
+        * Update run-time statistics of the 'current'.
+        */
+       update_curr(cfs_rq);
+
        update_stats_dequeue(cfs_rq, se);
-#ifdef CONFIG_SCHEDSTATS
        if (sleep) {
+               se->peer_preempt = 0;
+#ifdef CONFIG_SCHEDSTATS
                if (entity_is_task(se)) {
                        struct task_struct *tsk = task_of(se);
 
@@ -504,8 +527,9 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
                        if (tsk->state & TASK_UNINTERRUPTIBLE)
                                se->block_start = rq_of(cfs_rq)->clock;
                }
-       }
 #endif
+       }
+
        if (se != cfs_rq->curr)
                __dequeue_entity(cfs_rq, se);
        account_entity_dequeue(cfs_rq, se);
@@ -521,19 +545,26 @@ check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 
        ideal_runtime = sched_slice(cfs_rq, curr);
        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
-       if (delta_exec > ideal_runtime)
+       if (delta_exec > ideal_runtime ||
+                       (sched_feat(PREEMPT_RESTRICT) && curr->peer_preempt))
                resched_task(rq_of(cfs_rq)->curr);
+       curr->peer_preempt = 0;
 }
 
-static inline void
+static void
 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       /*
-        * Any task has to be enqueued before it get to execute on
-        * a CPU. So account for the time it spent waiting on the
-        * runqueue.
-        */
-       update_stats_wait_end(cfs_rq, se);
+       /* 'current' is not kept within the tree. */
+       if (se->on_rq) {
+               /*
+                * Any task has to be enqueued before it get to execute on
+                * a CPU. So account for the time it spent waiting on the
+                * runqueue.
+                */
+               update_stats_wait_end(cfs_rq, se);
+               __dequeue_entity(cfs_rq, se);
+       }
+
        update_stats_curr_start(cfs_rq, se);
        cfs_rq->curr = se;
 #ifdef CONFIG_SCHEDSTATS
@@ -552,13 +583,12 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 
 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
 {
-       struct sched_entity *se = __pick_next_entity(cfs_rq);
-
-       /* 'current' is not kept within the tree. */
-       if (se)
-               __dequeue_entity(cfs_rq, se);
+       struct sched_entity *se = NULL;
 
-       set_next_entity(cfs_rq, se);
+       if (first_fair(cfs_rq)) {
+               se = __pick_next_entity(cfs_rq);
+               set_next_entity(cfs_rq, se);
+       }
 
        return se;
 }
@@ -572,8 +602,7 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
        if (prev->on_rq)
                update_curr(cfs_rq);
 
-       update_stats_curr_end(cfs_rq, prev);
-
+       check_spread(cfs_rq, prev);
        if (prev->on_rq) {
                update_stats_wait_start(cfs_rq, prev);
                /* Put 'current' back into the tree. */
@@ -589,7 +618,7 @@ static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
         */
        update_curr(cfs_rq);
 
-       if (cfs_rq->nr_running > 1)
+       if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
                check_preempt_tick(cfs_rq, curr);
 }
 
@@ -632,15 +661,21 @@ static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
        list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 
-/* Do the two (enqueued) tasks belong to the same group ? */
-static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
+/* Do the two (enqueued) entities belong to the same group ? */
+static inline int
+is_same_group(struct sched_entity *se, struct sched_entity *pse)
 {
-       if (curr->se.cfs_rq == p->se.cfs_rq)
+       if (se->cfs_rq == pse->cfs_rq)
                return 1;
 
        return 0;
 }
 
+static inline struct sched_entity *parent_entity(struct sched_entity *se)
+{
+       return se->parent;
+}
+
 #else  /* CONFIG_FAIR_GROUP_SCHED */
 
 #define for_each_sched_entity(se) \
@@ -673,11 +708,17 @@ static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
                for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 
-static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
+static inline int
+is_same_group(struct sched_entity *se, struct sched_entity *pse)
 {
        return 1;
 }
 
+static inline struct sched_entity *parent_entity(struct sched_entity *se)
+{
+       return NULL;
+}
+
 #endif /* CONFIG_FAIR_GROUP_SCHED */
 
 /*
@@ -695,6 +736,7 @@ static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
                        break;
                cfs_rq = cfs_rq_of(se);
                enqueue_entity(cfs_rq, se, wakeup);
+               wakeup = 1;
        }
 }
 
@@ -714,6 +756,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
                /* Don't dequeue parent if it has other entities besides us */
                if (cfs_rq->load.weight)
                        break;
+               sleep = 1;
        }
 }
 
@@ -722,12 +765,10 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  *
  * If compat_yield is turned on then we requeue to the end of the tree.
  */
-static void yield_task_fair(struct rq *rq, struct task_struct *p)
+static void yield_task_fair(struct rq *rq)
 {
-       struct cfs_rq *cfs_rq = task_cfs_rq(p);
-       struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
-       struct sched_entity *rightmost, *se = &p->se;
-       struct rb_node *parent;
+       struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
+       struct sched_entity *rightmost, *se = &rq->curr->se;
 
        /*
         * Are we the only task in the tree?
@@ -738,42 +779,28 @@ static void yield_task_fair(struct rq *rq, struct task_struct *p)
        if (likely(!sysctl_sched_compat_yield)) {
                __update_rq_clock(rq);
                /*
-                * Dequeue and enqueue the task to update its
-                * position within the tree:
+                * Update run-time statistics of the 'current'.
                 */
-               dequeue_entity(cfs_rq, &p->se, 0);
-               enqueue_entity(cfs_rq, &p->se, 0);
+               update_curr(cfs_rq);
 
                return;
        }
        /*
         * Find the rightmost entry in the rbtree:
         */
-       do {
-               parent = *link;
-               link = &parent->rb_right;
-       } while (*link);
-
-       rightmost = rb_entry(parent, struct sched_entity, run_node);
+       rightmost = __pick_last_entity(cfs_rq);
        /*
         * Already in the rightmost position?
         */
-       if (unlikely(rightmost == se))
+       if (unlikely(rightmost->vruntime < se->vruntime))
                return;
 
        /*
         * Minimally necessary key value to be last in the tree:
+        * Upon rescheduling, sched_class::put_prev_task() will place
+        * 'current' within the tree based on its new key value.
         */
        se->vruntime = rightmost->vruntime + 1;
-
-       if (cfs_rq->rb_leftmost == &se->run_node)
-               cfs_rq->rb_leftmost = rb_next(&se->run_node);
-       /*
-        * Relink the task to the rightmost position:
-        */
-       rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
-       rb_link_node(&se->run_node, parent, link);
-       rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 }
 
 /*
@@ -783,6 +810,8 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
 {
        struct task_struct *curr = rq->curr;
        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
+       struct sched_entity *se = &curr->se, *pse = &p->se;
+       s64 delta, gran;
 
        if (unlikely(rt_prio(p->prio))) {
                update_rq_clock(rq);
@@ -790,11 +819,30 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
                resched_task(curr);
                return;
        }
-       if (is_same_group(curr, p)) {
-               s64 delta = curr->se.vruntime - p->se.vruntime;
+       /*
+        * Batch tasks do not preempt (their preemption is driven by
+        * the tick):
+        */
+       if (unlikely(p->policy == SCHED_BATCH))
+               return;
+
+       if (sched_feat(WAKEUP_PREEMPT)) {
+               while (!is_same_group(se, pse)) {
+                       se = parent_entity(se);
+                       pse = parent_entity(pse);
+               }
+
+               delta = se->vruntime - pse->vruntime;
+               gran = sysctl_sched_wakeup_granularity;
+               if (unlikely(se->load.weight != NICE_0_LOAD))
+                       gran = calc_delta_fair(gran, &se->load);
 
-               if (delta > (s64)sysctl_sched_wakeup_granularity)
-                       resched_task(curr);
+               if (delta > gran) {
+                       int now = !sched_feat(PREEMPT_RESTRICT);
+
+                       if (now || p->prio < curr->prio || !se->peer_preempt++)
+                               resched_task(curr);
+               }
        }
 }
 
@@ -839,7 +887,7 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  * achieve that by always pre-iterating before returning
  * the current task:
  */
-static inline struct task_struct *
+static struct task_struct *
 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
 {
        struct task_struct *p;
@@ -876,7 +924,10 @@ static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
        if (!cfs_rq->nr_running)
                return MAX_PRIO;
 
-       curr = __pick_next_entity(cfs_rq);
+       curr = cfs_rq->curr;
+       if (!curr)
+               curr = __pick_next_entity(cfs_rq);
+
        p = task_of(curr);
 
        return p->prio;
@@ -964,27 +1015,31 @@ static void task_new_fair(struct rq *rq, struct task_struct *p)
 {
        struct cfs_rq *cfs_rq = task_cfs_rq(p);
        struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
+       int this_cpu = smp_processor_id();
 
        sched_info_queued(p);
 
        update_curr(cfs_rq);
        place_entity(cfs_rq, se, 1);
 
-       if (sysctl_sched_child_runs_first &&
+       if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
                        curr->vruntime < se->vruntime) {
-
-               dequeue_entity(cfs_rq, curr, 0);
+               /*
+                * Upon rescheduling, sched_class::put_prev_task() will place
+                * 'current' within the tree based on its new key value.
+                */
                swap(curr->vruntime, se->vruntime);
-               enqueue_entity(cfs_rq, curr, 0);
        }
 
        update_stats_enqueue(cfs_rq, se);
+       check_spread(cfs_rq, se);
+       check_spread(cfs_rq, curr);
        __enqueue_entity(cfs_rq, se);
        account_entity_enqueue(cfs_rq, se);
+       se->peer_preempt = 0;
        resched_task(rq->curr);
 }
 
-#ifdef CONFIG_FAIR_GROUP_SCHED
 /* Account for a task changing its policy or group.
  *
  * This routine is mostly called to set cfs_rq->curr field when a task
@@ -997,20 +1052,12 @@ static void set_curr_task_fair(struct rq *rq)
        for_each_sched_entity(se)
                set_next_entity(cfs_rq_of(se), se);
 }
-#else
-static void set_curr_task_fair(struct rq *rq)
-{
-       struct sched_entity *se = &rq->curr->se;
-       struct cfs_rq *cfs_rq = cfs_rq_of(se);
-
-       cfs_rq->curr = se;
-}
-#endif
 
 /*
  * All the scheduling class methods:
  */
-struct sched_class fair_sched_class __read_mostly = {
+static const struct sched_class fair_sched_class = {
+       .next                   = &idle_sched_class,
        .enqueue_task           = enqueue_task_fair,
        .dequeue_task           = dequeue_task_fair,
        .yield_task             = yield_task_fair,
@@ -1032,6 +1079,9 @@ static void print_cfs_stats(struct seq_file *m, int cpu)
 {
        struct cfs_rq *cfs_rq;
 
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
+#endif
        for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
                print_cfs_rq(m, cpu, cfs_rq);
 }