X-Git-Url: http://git.cascardo.info/?a=blobdiff_plain;f=lib%2Fbitmap.c;h=8acab0e176ef5b7bcbe5b7c8748fcf5705668e52;hb=4bbf7bc4c7bf1c80ec3c942fa5f1b6e6fa67dd99;hp=fb9371fdd44a43c4e8e4fc9304f0ee00d3b4df8c;hpb=f45727d52d1581e9ff4df9d1a12a60789ad2d1eb;p=cascardo%2Flinux.git diff --git a/lib/bitmap.c b/lib/bitmap.c index fb9371fdd44a..8acab0e176ef 100644 --- a/lib/bitmap.c +++ b/lib/bitmap.c @@ -511,84 +511,308 @@ int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) } EXPORT_SYMBOL(bitmap_parselist); +/* + * bitmap_pos_to_ord(buf, pos, bits) + * @buf: pointer to a bitmap + * @pos: a bit position in @buf (0 <= @pos < @bits) + * @bits: number of valid bit positions in @buf + * + * Map the bit at position @pos in @buf (of length @bits) to the + * ordinal of which set bit it is. If it is not set or if @pos + * is not a valid bit position, map to -1. + * + * If for example, just bits 4 through 7 are set in @buf, then @pos + * values 4 through 7 will get mapped to 0 through 3, respectively, + * and other @pos values will get mapped to 0. When @pos value 7 + * gets mapped to (returns) @ord value 3 in this example, that means + * that bit 7 is the 3rd (starting with 0th) set bit in @buf. + * + * The bit positions 0 through @bits are valid positions in @buf. + */ +static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits) +{ + int i, ord; + + if (pos < 0 || pos >= bits || !test_bit(pos, buf)) + return -1; + + i = find_first_bit(buf, bits); + ord = 0; + while (i < pos) { + i = find_next_bit(buf, bits, i + 1); + ord++; + } + BUG_ON(i != pos); + + return ord; +} + /** - * bitmap_find_free_region - find a contiguous aligned mem region - * @bitmap: an array of unsigned longs corresponding to the bitmap - * @bits: number of bits in the bitmap - * @order: region size to find (size is actually 1<= 0) + * @bits: number of valid bit positions in @buf * - * This is used to allocate a memory region from a bitmap. The idea is - * that the region has to be 1<= 0 && ord < bits) { + int i; + + for (i = find_first_bit(buf, bits); + i < bits && ord > 0; + i = find_next_bit(buf, bits, i + 1)) + ord--; + if (i < bits && ord == 0) + pos = i; + } + + return pos; +} + +/** + * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap + * @dst: remapped result + * @src: subset to be remapped + * @old: defines domain of map + * @new: defines range of map + * @bits: number of bits in each of these bitmaps + * + * Let @old and @new define a mapping of bit positions, such that + * whatever position is held by the n-th set bit in @old is mapped + * to the n-th set bit in @new. In the more general case, allowing + * for the possibility that the weight 'w' of @new is less than the + * weight of @old, map the position of the n-th set bit in @old to + * the position of the m-th set bit in @new, where m == n % w. + * + * If either of the @old and @new bitmaps are empty, or if @src and + * @dst point to the same location, then this routine copies @src + * to @dst. + * + * The positions of unset bits in @old are mapped to themselves + * (the identify map). + * + * Apply the above specified mapping to @src, placing the result in + * @dst, clearing any bits previously set in @dst. + * + * For example, lets say that @old has bits 4 through 7 set, and + * @new has bits 12 through 15 set. This defines the mapping of bit + * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other + * bit positions unchanged. So if say @src comes into this routine + * with bits 1, 5 and 7 set, then @dst should leave with bits 1, + * 13 and 15 set. + */ +void bitmap_remap(unsigned long *dst, const unsigned long *src, + const unsigned long *old, const unsigned long *new, + int bits) +{ + int oldbit, w; + + if (dst == src) /* following doesn't handle inplace remaps */ + return; + bitmap_zero(dst, bits); + + w = bitmap_weight(new, bits); + for (oldbit = find_first_bit(src, bits); + oldbit < bits; + oldbit = find_next_bit(src, bits, oldbit + 1)) { + int n = bitmap_pos_to_ord(old, oldbit, bits); + if (n < 0 || w == 0) + set_bit(oldbit, dst); /* identity map */ + else + set_bit(bitmap_ord_to_pos(new, n % w, bits), dst); + } +} +EXPORT_SYMBOL(bitmap_remap); + +/** + * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit + * @oldbit - bit position to be mapped + * @old: defines domain of map + * @new: defines range of map + * @bits: number of bits in each of these bitmaps + * + * Let @old and @new define a mapping of bit positions, such that + * whatever position is held by the n-th set bit in @old is mapped + * to the n-th set bit in @new. In the more general case, allowing + * for the possibility that the weight 'w' of @new is less than the + * weight of @old, map the position of the n-th set bit in @old to + * the position of the m-th set bit in @new, where m == n % w. + * + * The positions of unset bits in @old are mapped to themselves + * (the identify map). + * + * Apply the above specified mapping to bit position @oldbit, returning + * the new bit position. + * + * For example, lets say that @old has bits 4 through 7 set, and + * @new has bits 12 through 15 set. This defines the mapping of bit + * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other + * bit positions unchanged. So if say @oldbit is 5, then this routine + * returns 13. + */ +int bitmap_bitremap(int oldbit, const unsigned long *old, + const unsigned long *new, int bits) { - unsigned long mask; - int pages = 1 << order; - int i; + int w = bitmap_weight(new, bits); + int n = bitmap_pos_to_ord(old, oldbit, bits); + if (n < 0 || w == 0) + return oldbit; + else + return bitmap_ord_to_pos(new, n % w, bits); +} +EXPORT_SYMBOL(bitmap_bitremap); + +/* + * Common code for bitmap_*_region() routines. + * bitmap: array of unsigned longs corresponding to the bitmap + * pos: the beginning of the region + * order: region size (log base 2 of number of bits) + * reg_op: operation(s) to perform on that region of bitmap + * + * Can set, verify and/or release a region of bits in a bitmap, + * depending on which combination of REG_OP_* flag bits is set. + * + * A region of a bitmap is a sequence of bits in the bitmap, of + * some size '1 << order' (a power of two), aligned to that same + * '1 << order' power of two. + * + * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). + * Returns 0 in all other cases and reg_ops. + */ - if(pages > BITS_PER_LONG) - return -EINVAL; +enum { + REG_OP_ISFREE, /* true if region is all zero bits */ + REG_OP_ALLOC, /* set all bits in region */ + REG_OP_RELEASE, /* clear all bits in region */ +}; - /* make a mask of the order */ - mask = (1ul << (pages - 1)); +static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op) +{ + int nbits_reg; /* number of bits in region */ + int index; /* index first long of region in bitmap */ + int offset; /* bit offset region in bitmap[index] */ + int nlongs_reg; /* num longs spanned by region in bitmap */ + int nbitsinlong; /* num bits of region in each spanned long */ + unsigned long mask; /* bitmask for one long of region */ + int i; /* scans bitmap by longs */ + int ret = 0; /* return value */ + + /* + * Either nlongs_reg == 1 (for small orders that fit in one long) + * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) + */ + nbits_reg = 1 << order; + index = pos / BITS_PER_LONG; + offset = pos - (index * BITS_PER_LONG); + nlongs_reg = BITS_TO_LONGS(nbits_reg); + nbitsinlong = min(nbits_reg, BITS_PER_LONG); + + /* + * Can't do "mask = (1UL << nbitsinlong) - 1", as that + * overflows if nbitsinlong == BITS_PER_LONG. + */ + mask = (1UL << (nbitsinlong - 1)); mask += mask - 1; + mask <<= offset; - /* run up the bitmap pages bits at a time */ - for (i = 0; i < bits; i += pages) { - int index = i/BITS_PER_LONG; - int offset = i - (index * BITS_PER_LONG); - if((bitmap[index] & (mask << offset)) == 0) { - /* set region in bimap */ - bitmap[index] |= (mask << offset); - return i; + switch (reg_op) { + case REG_OP_ISFREE: + for (i = 0; i < nlongs_reg; i++) { + if (bitmap[index + i] & mask) + goto done; } + ret = 1; /* all bits in region free (zero) */ + break; + + case REG_OP_ALLOC: + for (i = 0; i < nlongs_reg; i++) + bitmap[index + i] |= mask; + break; + + case REG_OP_RELEASE: + for (i = 0; i < nlongs_reg; i++) + bitmap[index + i] &= ~mask; + break; } - return -ENOMEM; +done: + return ret; +} + +/** + * bitmap_find_free_region - find a contiguous aligned mem region + * @bitmap: array of unsigned longs corresponding to the bitmap + * @bits: number of bits in the bitmap + * @order: region size (log base 2 of number of bits) to find + * + * Find a region of free (zero) bits in a @bitmap of @bits bits and + * allocate them (set them to one). Only consider regions of length + * a power (@order) of two, aligned to that power of two, which + * makes the search algorithm much faster. + * + * Return the bit offset in bitmap of the allocated region, + * or -errno on failure. + */ +int bitmap_find_free_region(unsigned long *bitmap, int bits, int order) +{ + int pos; /* scans bitmap by regions of size order */ + + for (pos = 0; pos < bits; pos += (1 << order)) + if (__reg_op(bitmap, pos, order, REG_OP_ISFREE)) + break; + if (pos == bits) + return -ENOMEM; + __reg_op(bitmap, pos, order, REG_OP_ALLOC); + return pos; } EXPORT_SYMBOL(bitmap_find_free_region); /** - * bitmap_release_region - release allocated bitmap region - * @bitmap: a pointer to the bitmap - * @pos: the beginning of the region - * @order: the order of the bits to release (number is 1< BITS_PER_LONG. The - * algorithm would be a simple look for multiple zeros in the - * array, but there's no driver today that needs this. If you - * trip this BUG(), you get to code it... */ - BUG_ON(pages > BITS_PER_LONG); - mask += mask - 1; - if (bitmap[index] & (mask << offset)) + if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) return -EBUSY; - bitmap[index] |= (mask << offset); + __reg_op(bitmap, pos, order, REG_OP_ALLOC); return 0; } EXPORT_SYMBOL(bitmap_allocate_region);