arm64: topology: Add support for topology DT bindings
authorMark Brown <broonie@linaro.org>
Fri, 2 May 2014 20:38:29 +0000 (21:38 +0100)
committerCatalin Marinas <catalin.marinas@arm.com>
Fri, 16 May 2014 16:12:41 +0000 (17:12 +0100)
Add support for parsing the explicit topology bindings to discover the
topology of the system.

Since it is not currently clear how to map multi-level clusters for the
scheduler all leaf clusters are presented to the scheduler at the same
level. This should be enough to provide good support for current systems.

Signed-off-by: Mark Brown <broonie@linaro.org>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
arch/arm64/kernel/topology.c

index ff662b2..43514f9 100644 (file)
 #include <linux/percpu.h>
 #include <linux/node.h>
 #include <linux/nodemask.h>
+#include <linux/of.h>
 #include <linux/sched.h>
 
 #include <asm/topology.h>
 
+static int __init get_cpu_for_node(struct device_node *node)
+{
+       struct device_node *cpu_node;
+       int cpu;
+
+       cpu_node = of_parse_phandle(node, "cpu", 0);
+       if (!cpu_node)
+               return -1;
+
+       for_each_possible_cpu(cpu) {
+               if (of_get_cpu_node(cpu, NULL) == cpu_node) {
+                       of_node_put(cpu_node);
+                       return cpu;
+               }
+       }
+
+       pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
+
+       of_node_put(cpu_node);
+       return -1;
+}
+
+static int __init parse_core(struct device_node *core, int cluster_id,
+                            int core_id)
+{
+       char name[10];
+       bool leaf = true;
+       int i = 0;
+       int cpu;
+       struct device_node *t;
+
+       do {
+               snprintf(name, sizeof(name), "thread%d", i);
+               t = of_get_child_by_name(core, name);
+               if (t) {
+                       leaf = false;
+                       cpu = get_cpu_for_node(t);
+                       if (cpu >= 0) {
+                               cpu_topology[cpu].cluster_id = cluster_id;
+                               cpu_topology[cpu].core_id = core_id;
+                               cpu_topology[cpu].thread_id = i;
+                       } else {
+                               pr_err("%s: Can't get CPU for thread\n",
+                                      t->full_name);
+                               of_node_put(t);
+                               return -EINVAL;
+                       }
+                       of_node_put(t);
+               }
+               i++;
+       } while (t);
+
+       cpu = get_cpu_for_node(core);
+       if (cpu >= 0) {
+               if (!leaf) {
+                       pr_err("%s: Core has both threads and CPU\n",
+                              core->full_name);
+                       return -EINVAL;
+               }
+
+               cpu_topology[cpu].cluster_id = cluster_id;
+               cpu_topology[cpu].core_id = core_id;
+       } else if (leaf) {
+               pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
+               return -EINVAL;
+       }
+
+       return 0;
+}
+
+static int __init parse_cluster(struct device_node *cluster, int depth)
+{
+       char name[10];
+       bool leaf = true;
+       bool has_cores = false;
+       struct device_node *c;
+       static int cluster_id __initdata;
+       int core_id = 0;
+       int i, ret;
+
+       /*
+        * First check for child clusters; we currently ignore any
+        * information about the nesting of clusters and present the
+        * scheduler with a flat list of them.
+        */
+       i = 0;
+       do {
+               snprintf(name, sizeof(name), "cluster%d", i);
+               c = of_get_child_by_name(cluster, name);
+               if (c) {
+                       leaf = false;
+                       ret = parse_cluster(c, depth + 1);
+                       of_node_put(c);
+                       if (ret != 0)
+                               return ret;
+               }
+               i++;
+       } while (c);
+
+       /* Now check for cores */
+       i = 0;
+       do {
+               snprintf(name, sizeof(name), "core%d", i);
+               c = of_get_child_by_name(cluster, name);
+               if (c) {
+                       has_cores = true;
+
+                       if (depth == 0) {
+                               pr_err("%s: cpu-map children should be clusters\n",
+                                      c->full_name);
+                               of_node_put(c);
+                               return -EINVAL;
+                       }
+
+                       if (leaf) {
+                               ret = parse_core(c, cluster_id, core_id++);
+                       } else {
+                               pr_err("%s: Non-leaf cluster with core %s\n",
+                                      cluster->full_name, name);
+                               ret = -EINVAL;
+                       }
+
+                       of_node_put(c);
+                       if (ret != 0)
+                               return ret;
+               }
+               i++;
+       } while (c);
+
+       if (leaf && !has_cores)
+               pr_warn("%s: empty cluster\n", cluster->full_name);
+
+       if (leaf)
+               cluster_id++;
+
+       return 0;
+}
+
+static int __init parse_dt_topology(void)
+{
+       struct device_node *cn, *map;
+       int ret = 0;
+       int cpu;
+
+       cn = of_find_node_by_path("/cpus");
+       if (!cn) {
+               pr_err("No CPU information found in DT\n");
+               return 0;
+       }
+
+       /*
+        * When topology is provided cpu-map is essentially a root
+        * cluster with restricted subnodes.
+        */
+       map = of_get_child_by_name(cn, "cpu-map");
+       if (!map)
+               goto out;
+
+       ret = parse_cluster(map, 0);
+       if (ret != 0)
+               goto out_map;
+
+       /*
+        * Check that all cores are in the topology; the SMP code will
+        * only mark cores described in the DT as possible.
+        */
+       for_each_possible_cpu(cpu) {
+               if (cpu_topology[cpu].cluster_id == -1) {
+                       pr_err("CPU%d: No topology information specified\n",
+                              cpu);
+                       ret = -EINVAL;
+               }
+       }
+
+out_map:
+       of_node_put(map);
+out:
+       of_node_put(cn);
+       return ret;
+}
+
 /*
  * cpu topology table
  */
@@ -39,8 +221,7 @@ static void update_siblings_masks(unsigned int cpuid)
 
        if (cpuid_topo->cluster_id == -1) {
                /*
-                * DT does not contain topology information for this cpu
-                * reset it to default behaviour
+                * DT does not contain topology information for this cpu.
                 */
                pr_debug("CPU%u: No topology information configured\n", cpuid);
                return;
@@ -71,15 +252,10 @@ void store_cpu_topology(unsigned int cpuid)
        update_siblings_masks(cpuid);
 }
 
-/*
- * init_cpu_topology is called at boot when only one cpu is running
- * which prevent simultaneous write access to cpu_topology array
- */
-void __init init_cpu_topology(void)
+static void __init reset_cpu_topology(void)
 {
        unsigned int cpu;
 
-       /* init core mask and power*/
        for_each_possible_cpu(cpu) {
                struct cpu_topology *cpu_topo = &cpu_topology[cpu];
 
@@ -93,3 +269,15 @@ void __init init_cpu_topology(void)
                cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
        }
 }
+
+void __init init_cpu_topology(void)
+{
+       reset_cpu_topology();
+
+       /*
+        * Discard anything that was parsed if we hit an error so we
+        * don't use partial information.
+        */
+       if (parse_dt_topology())
+               reset_cpu_topology();
+}