Merge tag 'ceph-for-4.9-rc1' of git://github.com/ceph/ceph-client
[cascardo/linux.git] / arch / arc / kernel / perf_event.c
1 /*
2  * Linux performance counter support for ARC700 series
3  *
4  * Copyright (C) 2013-2015 Synopsys, Inc. (www.synopsys.com)
5  *
6  * This code is inspired by the perf support of various other architectures.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  */
13 #include <linux/errno.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/perf_event.h>
18 #include <linux/platform_device.h>
19 #include <asm/arcregs.h>
20 #include <asm/stacktrace.h>
21
22 struct arc_pmu {
23         struct pmu      pmu;
24         unsigned int    irq;
25         int             n_counters;
26         u64             max_period;
27         int             ev_hw_idx[PERF_COUNT_ARC_HW_MAX];
28 };
29
30 struct arc_pmu_cpu {
31         /*
32          * A 1 bit for an index indicates that the counter is being used for
33          * an event. A 0 means that the counter can be used.
34          */
35         unsigned long   used_mask[BITS_TO_LONGS(ARC_PERF_MAX_COUNTERS)];
36
37         /*
38          * The events that are active on the PMU for the given index.
39          */
40         struct perf_event *act_counter[ARC_PERF_MAX_COUNTERS];
41 };
42
43 struct arc_callchain_trace {
44         int depth;
45         void *perf_stuff;
46 };
47
48 static int callchain_trace(unsigned int addr, void *data)
49 {
50         struct arc_callchain_trace *ctrl = data;
51         struct perf_callchain_entry_ctx *entry = ctrl->perf_stuff;
52         perf_callchain_store(entry, addr);
53
54         if (ctrl->depth++ < 3)
55                 return 0;
56
57         return -1;
58 }
59
60 void
61 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
62 {
63         struct arc_callchain_trace ctrl = {
64                 .depth = 0,
65                 .perf_stuff = entry,
66         };
67
68         arc_unwind_core(NULL, regs, callchain_trace, &ctrl);
69 }
70
71 void
72 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
73 {
74         /*
75          * User stack can't be unwound trivially with kernel dwarf unwinder
76          * So for now just record the user PC
77          */
78         perf_callchain_store(entry, instruction_pointer(regs));
79 }
80
81 static struct arc_pmu *arc_pmu;
82 static DEFINE_PER_CPU(struct arc_pmu_cpu, arc_pmu_cpu);
83
84 /* read counter #idx; note that counter# != event# on ARC! */
85 static uint64_t arc_pmu_read_counter(int idx)
86 {
87         uint32_t tmp;
88         uint64_t result;
89
90         /*
91          * ARC supports making 'snapshots' of the counters, so we don't
92          * need to care about counters wrapping to 0 underneath our feet
93          */
94         write_aux_reg(ARC_REG_PCT_INDEX, idx);
95         tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
96         write_aux_reg(ARC_REG_PCT_CONTROL, tmp | ARC_REG_PCT_CONTROL_SN);
97         result = (uint64_t) (read_aux_reg(ARC_REG_PCT_SNAPH)) << 32;
98         result |= read_aux_reg(ARC_REG_PCT_SNAPL);
99
100         return result;
101 }
102
103 static void arc_perf_event_update(struct perf_event *event,
104                                   struct hw_perf_event *hwc, int idx)
105 {
106         uint64_t prev_raw_count = local64_read(&hwc->prev_count);
107         uint64_t new_raw_count = arc_pmu_read_counter(idx);
108         int64_t delta = new_raw_count - prev_raw_count;
109
110         /*
111          * We aren't afraid of hwc->prev_count changing beneath our feet
112          * because there's no way for us to re-enter this function anytime.
113          */
114         local64_set(&hwc->prev_count, new_raw_count);
115         local64_add(delta, &event->count);
116         local64_sub(delta, &hwc->period_left);
117 }
118
119 static void arc_pmu_read(struct perf_event *event)
120 {
121         arc_perf_event_update(event, &event->hw, event->hw.idx);
122 }
123
124 static int arc_pmu_cache_event(u64 config)
125 {
126         unsigned int cache_type, cache_op, cache_result;
127         int ret;
128
129         cache_type      = (config >>  0) & 0xff;
130         cache_op        = (config >>  8) & 0xff;
131         cache_result    = (config >> 16) & 0xff;
132         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
133                 return -EINVAL;
134         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135                 return -EINVAL;
136         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
137                 return -EINVAL;
138
139         ret = arc_pmu_cache_map[cache_type][cache_op][cache_result];
140
141         if (ret == CACHE_OP_UNSUPPORTED)
142                 return -ENOENT;
143
144         pr_debug("init cache event: type/op/result %d/%d/%d with h/w %d \'%s\'\n",
145                  cache_type, cache_op, cache_result, ret,
146                  arc_pmu_ev_hw_map[ret]);
147
148         return ret;
149 }
150
151 /* initializes hw_perf_event structure if event is supported */
152 static int arc_pmu_event_init(struct perf_event *event)
153 {
154         struct hw_perf_event *hwc = &event->hw;
155         int ret;
156
157         if (!is_sampling_event(event)) {
158                 hwc->sample_period  = arc_pmu->max_period;
159                 hwc->last_period = hwc->sample_period;
160                 local64_set(&hwc->period_left, hwc->sample_period);
161         }
162
163         hwc->config = 0;
164
165         if (is_isa_arcv2()) {
166                 /* "exclude user" means "count only kernel" */
167                 if (event->attr.exclude_user)
168                         hwc->config |= ARC_REG_PCT_CONFIG_KERN;
169
170                 /* "exclude kernel" means "count only user" */
171                 if (event->attr.exclude_kernel)
172                         hwc->config |= ARC_REG_PCT_CONFIG_USER;
173         }
174
175         switch (event->attr.type) {
176         case PERF_TYPE_HARDWARE:
177                 if (event->attr.config >= PERF_COUNT_HW_MAX)
178                         return -ENOENT;
179                 if (arc_pmu->ev_hw_idx[event->attr.config] < 0)
180                         return -ENOENT;
181                 hwc->config |= arc_pmu->ev_hw_idx[event->attr.config];
182                 pr_debug("init event %d with h/w %08x \'%s\'\n",
183                          (int)event->attr.config, (int)hwc->config,
184                          arc_pmu_ev_hw_map[event->attr.config]);
185                 return 0;
186
187         case PERF_TYPE_HW_CACHE:
188                 ret = arc_pmu_cache_event(event->attr.config);
189                 if (ret < 0)
190                         return ret;
191                 hwc->config |= arc_pmu->ev_hw_idx[ret];
192                 pr_debug("init cache event with h/w %08x \'%s\'\n",
193                          (int)hwc->config, arc_pmu_ev_hw_map[ret]);
194                 return 0;
195         default:
196                 return -ENOENT;
197         }
198 }
199
200 /* starts all counters */
201 static void arc_pmu_enable(struct pmu *pmu)
202 {
203         uint32_t tmp;
204         tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
205         write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x1);
206 }
207
208 /* stops all counters */
209 static void arc_pmu_disable(struct pmu *pmu)
210 {
211         uint32_t tmp;
212         tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
213         write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x0);
214 }
215
216 static int arc_pmu_event_set_period(struct perf_event *event)
217 {
218         struct hw_perf_event *hwc = &event->hw;
219         s64 left = local64_read(&hwc->period_left);
220         s64 period = hwc->sample_period;
221         int idx = hwc->idx;
222         int overflow = 0;
223         u64 value;
224
225         if (unlikely(left <= -period)) {
226                 /* left underflowed by more than period. */
227                 left = period;
228                 local64_set(&hwc->period_left, left);
229                 hwc->last_period = period;
230                 overflow = 1;
231         } else  if (unlikely(left <= 0)) {
232                 /* left underflowed by less than period. */
233                 left += period;
234                 local64_set(&hwc->period_left, left);
235                 hwc->last_period = period;
236                 overflow = 1;
237         }
238
239         if (left > arc_pmu->max_period)
240                 left = arc_pmu->max_period;
241
242         value = arc_pmu->max_period - left;
243         local64_set(&hwc->prev_count, value);
244
245         /* Select counter */
246         write_aux_reg(ARC_REG_PCT_INDEX, idx);
247
248         /* Write value */
249         write_aux_reg(ARC_REG_PCT_COUNTL, (u32)value);
250         write_aux_reg(ARC_REG_PCT_COUNTH, (value >> 32));
251
252         perf_event_update_userpage(event);
253
254         return overflow;
255 }
256
257 /*
258  * Assigns hardware counter to hardware condition.
259  * Note that there is no separate start/stop mechanism;
260  * stopping is achieved by assigning the 'never' condition
261  */
262 static void arc_pmu_start(struct perf_event *event, int flags)
263 {
264         struct hw_perf_event *hwc = &event->hw;
265         int idx = hwc->idx;
266
267         if (WARN_ON_ONCE(idx == -1))
268                 return;
269
270         if (flags & PERF_EF_RELOAD)
271                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
272
273         hwc->state = 0;
274
275         arc_pmu_event_set_period(event);
276
277         /* Enable interrupt for this counter */
278         if (is_sampling_event(event))
279                 write_aux_reg(ARC_REG_PCT_INT_CTRL,
280                               read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx));
281
282         /* enable ARC pmu here */
283         write_aux_reg(ARC_REG_PCT_INDEX, idx);          /* counter # */
284         write_aux_reg(ARC_REG_PCT_CONFIG, hwc->config); /* condition */
285 }
286
287 static void arc_pmu_stop(struct perf_event *event, int flags)
288 {
289         struct hw_perf_event *hwc = &event->hw;
290         int idx = hwc->idx;
291
292         /* Disable interrupt for this counter */
293         if (is_sampling_event(event)) {
294                 /*
295                  * Reset interrupt flag by writing of 1. This is required
296                  * to make sure pending interrupt was not left.
297                  */
298                 write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx);
299                 write_aux_reg(ARC_REG_PCT_INT_CTRL,
300                               read_aux_reg(ARC_REG_PCT_INT_CTRL) & ~(1 << idx));
301         }
302
303         if (!(event->hw.state & PERF_HES_STOPPED)) {
304                 /* stop ARC pmu here */
305                 write_aux_reg(ARC_REG_PCT_INDEX, idx);
306
307                 /* condition code #0 is always "never" */
308                 write_aux_reg(ARC_REG_PCT_CONFIG, 0);
309
310                 event->hw.state |= PERF_HES_STOPPED;
311         }
312
313         if ((flags & PERF_EF_UPDATE) &&
314             !(event->hw.state & PERF_HES_UPTODATE)) {
315                 arc_perf_event_update(event, &event->hw, idx);
316                 event->hw.state |= PERF_HES_UPTODATE;
317         }
318 }
319
320 static void arc_pmu_del(struct perf_event *event, int flags)
321 {
322         struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
323
324         arc_pmu_stop(event, PERF_EF_UPDATE);
325         __clear_bit(event->hw.idx, pmu_cpu->used_mask);
326
327         pmu_cpu->act_counter[event->hw.idx] = 0;
328
329         perf_event_update_userpage(event);
330 }
331
332 /* allocate hardware counter and optionally start counting */
333 static int arc_pmu_add(struct perf_event *event, int flags)
334 {
335         struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
336         struct hw_perf_event *hwc = &event->hw;
337         int idx = hwc->idx;
338
339         if (__test_and_set_bit(idx, pmu_cpu->used_mask)) {
340                 idx = find_first_zero_bit(pmu_cpu->used_mask,
341                                           arc_pmu->n_counters);
342                 if (idx == arc_pmu->n_counters)
343                         return -EAGAIN;
344
345                 __set_bit(idx, pmu_cpu->used_mask);
346                 hwc->idx = idx;
347         }
348
349         write_aux_reg(ARC_REG_PCT_INDEX, idx);
350
351         pmu_cpu->act_counter[idx] = event;
352
353         if (is_sampling_event(event)) {
354                 /* Mimic full counter overflow as other arches do */
355                 write_aux_reg(ARC_REG_PCT_INT_CNTL, (u32)arc_pmu->max_period);
356                 write_aux_reg(ARC_REG_PCT_INT_CNTH,
357                               (arc_pmu->max_period >> 32));
358         }
359
360         write_aux_reg(ARC_REG_PCT_CONFIG, 0);
361         write_aux_reg(ARC_REG_PCT_COUNTL, 0);
362         write_aux_reg(ARC_REG_PCT_COUNTH, 0);
363         local64_set(&hwc->prev_count, 0);
364
365         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
366         if (flags & PERF_EF_START)
367                 arc_pmu_start(event, PERF_EF_RELOAD);
368
369         perf_event_update_userpage(event);
370
371         return 0;
372 }
373
374 #ifdef CONFIG_ISA_ARCV2
375 static irqreturn_t arc_pmu_intr(int irq, void *dev)
376 {
377         struct perf_sample_data data;
378         struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
379         struct pt_regs *regs;
380         int active_ints;
381         int idx;
382
383         arc_pmu_disable(&arc_pmu->pmu);
384
385         active_ints = read_aux_reg(ARC_REG_PCT_INT_ACT);
386
387         regs = get_irq_regs();
388
389         for (idx = 0; idx < arc_pmu->n_counters; idx++) {
390                 struct perf_event *event = pmu_cpu->act_counter[idx];
391                 struct hw_perf_event *hwc;
392
393                 if (!(active_ints & (1 << idx)))
394                         continue;
395
396                 /* Reset interrupt flag by writing of 1 */
397                 write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx);
398
399                 /*
400                  * On reset of "interrupt active" bit corresponding
401                  * "interrupt enable" bit gets automatically reset as well.
402                  * Now we need to re-enable interrupt for the counter.
403                  */
404                 write_aux_reg(ARC_REG_PCT_INT_CTRL,
405                         read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx));
406
407                 hwc = &event->hw;
408
409                 WARN_ON_ONCE(hwc->idx != idx);
410
411                 arc_perf_event_update(event, &event->hw, event->hw.idx);
412                 perf_sample_data_init(&data, 0, hwc->last_period);
413                 if (!arc_pmu_event_set_period(event))
414                         continue;
415
416                 if (perf_event_overflow(event, &data, regs))
417                         arc_pmu_stop(event, 0);
418         }
419
420         arc_pmu_enable(&arc_pmu->pmu);
421
422         return IRQ_HANDLED;
423 }
424 #else
425
426 static irqreturn_t arc_pmu_intr(int irq, void *dev)
427 {
428         return IRQ_NONE;
429 }
430
431 #endif /* CONFIG_ISA_ARCV2 */
432
433 static void arc_cpu_pmu_irq_init(void *data)
434 {
435         int irq = *(int *)data;
436
437         enable_percpu_irq(irq, IRQ_TYPE_NONE);
438
439         /* Clear all pending interrupt flags */
440         write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff);
441 }
442
443 static int arc_pmu_device_probe(struct platform_device *pdev)
444 {
445         struct arc_reg_pct_build pct_bcr;
446         struct arc_reg_cc_build cc_bcr;
447         int i, j, has_interrupts;
448         int counter_size;       /* in bits */
449
450         union cc_name {
451                 struct {
452                         uint32_t word0, word1;
453                         char sentinel;
454                 } indiv;
455                 char str[9];
456         } cc_name;
457
458
459         READ_BCR(ARC_REG_PCT_BUILD, pct_bcr);
460         if (!pct_bcr.v) {
461                 pr_err("This core does not have performance counters!\n");
462                 return -ENODEV;
463         }
464         BUG_ON(pct_bcr.c > ARC_PERF_MAX_COUNTERS);
465
466         READ_BCR(ARC_REG_CC_BUILD, cc_bcr);
467         BUG_ON(!cc_bcr.v); /* Counters exist but No countable conditions ? */
468
469         arc_pmu = devm_kzalloc(&pdev->dev, sizeof(struct arc_pmu), GFP_KERNEL);
470         if (!arc_pmu)
471                 return -ENOMEM;
472
473         has_interrupts = is_isa_arcv2() ? pct_bcr.i : 0;
474
475         arc_pmu->n_counters = pct_bcr.c;
476         counter_size = 32 + (pct_bcr.s << 4);
477
478         arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL;
479
480         pr_info("ARC perf\t: %d counters (%d bits), %d conditions%s\n",
481                 arc_pmu->n_counters, counter_size, cc_bcr.c,
482                 has_interrupts ? ", [overflow IRQ support]":"");
483
484         cc_name.str[8] = 0;
485         for (i = 0; i < PERF_COUNT_ARC_HW_MAX; i++)
486                 arc_pmu->ev_hw_idx[i] = -1;
487
488         /* loop thru all available h/w condition indexes */
489         for (j = 0; j < cc_bcr.c; j++) {
490                 write_aux_reg(ARC_REG_CC_INDEX, j);
491                 cc_name.indiv.word0 = read_aux_reg(ARC_REG_CC_NAME0);
492                 cc_name.indiv.word1 = read_aux_reg(ARC_REG_CC_NAME1);
493
494                 /* See if it has been mapped to a perf event_id */
495                 for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) {
496                         if (arc_pmu_ev_hw_map[i] &&
497                             !strcmp(arc_pmu_ev_hw_map[i], cc_name.str) &&
498                             strlen(arc_pmu_ev_hw_map[i])) {
499                                 pr_debug("mapping perf event %2d to h/w event \'%8s\' (idx %d)\n",
500                                          i, cc_name.str, j);
501                                 arc_pmu->ev_hw_idx[i] = j;
502                         }
503                 }
504         }
505
506         arc_pmu->pmu = (struct pmu) {
507                 .pmu_enable     = arc_pmu_enable,
508                 .pmu_disable    = arc_pmu_disable,
509                 .event_init     = arc_pmu_event_init,
510                 .add            = arc_pmu_add,
511                 .del            = arc_pmu_del,
512                 .start          = arc_pmu_start,
513                 .stop           = arc_pmu_stop,
514                 .read           = arc_pmu_read,
515         };
516
517         if (has_interrupts) {
518                 int irq = platform_get_irq(pdev, 0);
519
520                 if (irq < 0) {
521                         pr_err("Cannot get IRQ number for the platform\n");
522                         return -ENODEV;
523                 }
524
525                 arc_pmu->irq = irq;
526
527                 /* intc map function ensures irq_set_percpu_devid() called */
528                 request_percpu_irq(irq, arc_pmu_intr, "ARC perf counters",
529                                    this_cpu_ptr(&arc_pmu_cpu));
530
531                 on_each_cpu(arc_cpu_pmu_irq_init, &irq, 1);
532
533         } else
534                 arc_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
535
536         return perf_pmu_register(&arc_pmu->pmu, pdev->name, PERF_TYPE_RAW);
537 }
538
539 #ifdef CONFIG_OF
540 static const struct of_device_id arc_pmu_match[] = {
541         { .compatible = "snps,arc700-pct" },
542         { .compatible = "snps,archs-pct" },
543         {},
544 };
545 MODULE_DEVICE_TABLE(of, arc_pmu_match);
546 #endif
547
548 static struct platform_driver arc_pmu_driver = {
549         .driver = {
550                 .name           = "arc-pct",
551                 .of_match_table = of_match_ptr(arc_pmu_match),
552         },
553         .probe          = arc_pmu_device_probe,
554 };
555
556 module_platform_driver(arc_pmu_driver);
557
558 MODULE_LICENSE("GPL");
559 MODULE_AUTHOR("Mischa Jonker <mjonker@synopsys.com>");
560 MODULE_DESCRIPTION("ARC PMU driver");