Merge tag 'md/4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[cascardo/linux.git] / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/nmi.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 #include <linux/cpufreq.h>
29 #include <linux/irq_work.h>
30
31 #include <linux/atomic.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53
54 /*
55  * as from 2.5, kernels no longer have an init_tasks structure
56  * so we need some other way of telling a new secondary core
57  * where to place its SVC stack
58  */
59 struct secondary_data secondary_data;
60
61 /*
62  * control for which core is the next to come out of the secondary
63  * boot "holding pen"
64  */
65 volatile int pen_release = -1;
66
67 enum ipi_msg_type {
68         IPI_WAKEUP,
69         IPI_TIMER,
70         IPI_RESCHEDULE,
71         IPI_CALL_FUNC,
72         IPI_CPU_STOP,
73         IPI_IRQ_WORK,
74         IPI_COMPLETION,
75         IPI_CPU_BACKTRACE,
76         /*
77          * SGI8-15 can be reserved by secure firmware, and thus may
78          * not be usable by the kernel. Please keep the above limited
79          * to at most 8 entries.
80          */
81 };
82
83 static DECLARE_COMPLETION(cpu_running);
84
85 static struct smp_operations smp_ops __ro_after_init;
86
87 void __init smp_set_ops(const struct smp_operations *ops)
88 {
89         if (ops)
90                 smp_ops = *ops;
91 };
92
93 static unsigned long get_arch_pgd(pgd_t *pgd)
94 {
95 #ifdef CONFIG_ARM_LPAE
96         return __phys_to_pfn(virt_to_phys(pgd));
97 #else
98         return virt_to_phys(pgd);
99 #endif
100 }
101
102 int __cpu_up(unsigned int cpu, struct task_struct *idle)
103 {
104         int ret;
105
106         if (!smp_ops.smp_boot_secondary)
107                 return -ENOSYS;
108
109         /*
110          * We need to tell the secondary core where to find
111          * its stack and the page tables.
112          */
113         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
114 #ifdef CONFIG_ARM_MPU
115         secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
116 #endif
117
118 #ifdef CONFIG_MMU
119         secondary_data.pgdir = virt_to_phys(idmap_pgd);
120         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
121 #endif
122         sync_cache_w(&secondary_data);
123
124         /*
125          * Now bring the CPU into our world.
126          */
127         ret = smp_ops.smp_boot_secondary(cpu, idle);
128         if (ret == 0) {
129                 /*
130                  * CPU was successfully started, wait for it
131                  * to come online or time out.
132                  */
133                 wait_for_completion_timeout(&cpu_running,
134                                                  msecs_to_jiffies(1000));
135
136                 if (!cpu_online(cpu)) {
137                         pr_crit("CPU%u: failed to come online\n", cpu);
138                         ret = -EIO;
139                 }
140         } else {
141                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
142         }
143
144
145         memset(&secondary_data, 0, sizeof(secondary_data));
146         return ret;
147 }
148
149 /* platform specific SMP operations */
150 void __init smp_init_cpus(void)
151 {
152         if (smp_ops.smp_init_cpus)
153                 smp_ops.smp_init_cpus();
154 }
155
156 int platform_can_secondary_boot(void)
157 {
158         return !!smp_ops.smp_boot_secondary;
159 }
160
161 int platform_can_cpu_hotplug(void)
162 {
163 #ifdef CONFIG_HOTPLUG_CPU
164         if (smp_ops.cpu_kill)
165                 return 1;
166 #endif
167
168         return 0;
169 }
170
171 #ifdef CONFIG_HOTPLUG_CPU
172 static int platform_cpu_kill(unsigned int cpu)
173 {
174         if (smp_ops.cpu_kill)
175                 return smp_ops.cpu_kill(cpu);
176         return 1;
177 }
178
179 static int platform_cpu_disable(unsigned int cpu)
180 {
181         if (smp_ops.cpu_disable)
182                 return smp_ops.cpu_disable(cpu);
183
184         return 0;
185 }
186
187 int platform_can_hotplug_cpu(unsigned int cpu)
188 {
189         /* cpu_die must be specified to support hotplug */
190         if (!smp_ops.cpu_die)
191                 return 0;
192
193         if (smp_ops.cpu_can_disable)
194                 return smp_ops.cpu_can_disable(cpu);
195
196         /*
197          * By default, allow disabling all CPUs except the first one,
198          * since this is special on a lot of platforms, e.g. because
199          * of clock tick interrupts.
200          */
201         return cpu != 0;
202 }
203
204 /*
205  * __cpu_disable runs on the processor to be shutdown.
206  */
207 int __cpu_disable(void)
208 {
209         unsigned int cpu = smp_processor_id();
210         int ret;
211
212         ret = platform_cpu_disable(cpu);
213         if (ret)
214                 return ret;
215
216         /*
217          * Take this CPU offline.  Once we clear this, we can't return,
218          * and we must not schedule until we're ready to give up the cpu.
219          */
220         set_cpu_online(cpu, false);
221
222         /*
223          * OK - migrate IRQs away from this CPU
224          */
225         migrate_irqs();
226
227         /*
228          * Flush user cache and TLB mappings, and then remove this CPU
229          * from the vm mask set of all processes.
230          *
231          * Caches are flushed to the Level of Unification Inner Shareable
232          * to write-back dirty lines to unified caches shared by all CPUs.
233          */
234         flush_cache_louis();
235         local_flush_tlb_all();
236
237         clear_tasks_mm_cpumask(cpu);
238
239         return 0;
240 }
241
242 static DECLARE_COMPLETION(cpu_died);
243
244 /*
245  * called on the thread which is asking for a CPU to be shutdown -
246  * waits until shutdown has completed, or it is timed out.
247  */
248 void __cpu_die(unsigned int cpu)
249 {
250         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
251                 pr_err("CPU%u: cpu didn't die\n", cpu);
252                 return;
253         }
254         pr_notice("CPU%u: shutdown\n", cpu);
255
256         /*
257          * platform_cpu_kill() is generally expected to do the powering off
258          * and/or cutting of clocks to the dying CPU.  Optionally, this may
259          * be done by the CPU which is dying in preference to supporting
260          * this call, but that means there is _no_ synchronisation between
261          * the requesting CPU and the dying CPU actually losing power.
262          */
263         if (!platform_cpu_kill(cpu))
264                 pr_err("CPU%u: unable to kill\n", cpu);
265 }
266
267 /*
268  * Called from the idle thread for the CPU which has been shutdown.
269  *
270  * Note that we disable IRQs here, but do not re-enable them
271  * before returning to the caller. This is also the behaviour
272  * of the other hotplug-cpu capable cores, so presumably coming
273  * out of idle fixes this.
274  */
275 void arch_cpu_idle_dead(void)
276 {
277         unsigned int cpu = smp_processor_id();
278
279         idle_task_exit();
280
281         local_irq_disable();
282
283         /*
284          * Flush the data out of the L1 cache for this CPU.  This must be
285          * before the completion to ensure that data is safely written out
286          * before platform_cpu_kill() gets called - which may disable
287          * *this* CPU and power down its cache.
288          */
289         flush_cache_louis();
290
291         /*
292          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
293          * this returns, power and/or clocks can be removed at any point
294          * from this CPU and its cache by platform_cpu_kill().
295          */
296         complete(&cpu_died);
297
298         /*
299          * Ensure that the cache lines associated with that completion are
300          * written out.  This covers the case where _this_ CPU is doing the
301          * powering down, to ensure that the completion is visible to the
302          * CPU waiting for this one.
303          */
304         flush_cache_louis();
305
306         /*
307          * The actual CPU shutdown procedure is at least platform (if not
308          * CPU) specific.  This may remove power, or it may simply spin.
309          *
310          * Platforms are generally expected *NOT* to return from this call,
311          * although there are some which do because they have no way to
312          * power down the CPU.  These platforms are the _only_ reason we
313          * have a return path which uses the fragment of assembly below.
314          *
315          * The return path should not be used for platforms which can
316          * power off the CPU.
317          */
318         if (smp_ops.cpu_die)
319                 smp_ops.cpu_die(cpu);
320
321         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
322                 cpu);
323
324         /*
325          * Do not return to the idle loop - jump back to the secondary
326          * cpu initialisation.  There's some initialisation which needs
327          * to be repeated to undo the effects of taking the CPU offline.
328          */
329         __asm__("mov    sp, %0\n"
330         "       mov     fp, #0\n"
331         "       b       secondary_start_kernel"
332                 :
333                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
334 }
335 #endif /* CONFIG_HOTPLUG_CPU */
336
337 /*
338  * Called by both boot and secondaries to move global data into
339  * per-processor storage.
340  */
341 static void smp_store_cpu_info(unsigned int cpuid)
342 {
343         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
344
345         cpu_info->loops_per_jiffy = loops_per_jiffy;
346         cpu_info->cpuid = read_cpuid_id();
347
348         store_cpu_topology(cpuid);
349 }
350
351 /*
352  * This is the secondary CPU boot entry.  We're using this CPUs
353  * idle thread stack, but a set of temporary page tables.
354  */
355 asmlinkage void secondary_start_kernel(void)
356 {
357         struct mm_struct *mm = &init_mm;
358         unsigned int cpu;
359
360         /*
361          * The identity mapping is uncached (strongly ordered), so
362          * switch away from it before attempting any exclusive accesses.
363          */
364         cpu_switch_mm(mm->pgd, mm);
365         local_flush_bp_all();
366         enter_lazy_tlb(mm, current);
367         local_flush_tlb_all();
368
369         /*
370          * All kernel threads share the same mm context; grab a
371          * reference and switch to it.
372          */
373         cpu = smp_processor_id();
374         atomic_inc(&mm->mm_count);
375         current->active_mm = mm;
376         cpumask_set_cpu(cpu, mm_cpumask(mm));
377
378         cpu_init();
379
380         pr_debug("CPU%u: Booted secondary processor\n", cpu);
381
382         preempt_disable();
383         trace_hardirqs_off();
384
385         /*
386          * Give the platform a chance to do its own initialisation.
387          */
388         if (smp_ops.smp_secondary_init)
389                 smp_ops.smp_secondary_init(cpu);
390
391         notify_cpu_starting(cpu);
392
393         calibrate_delay();
394
395         smp_store_cpu_info(cpu);
396
397         /*
398          * OK, now it's safe to let the boot CPU continue.  Wait for
399          * the CPU migration code to notice that the CPU is online
400          * before we continue - which happens after __cpu_up returns.
401          */
402         set_cpu_online(cpu, true);
403         complete(&cpu_running);
404
405         local_irq_enable();
406         local_fiq_enable();
407         local_abt_enable();
408
409         /*
410          * OK, it's off to the idle thread for us
411          */
412         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
413 }
414
415 void __init smp_cpus_done(unsigned int max_cpus)
416 {
417         int cpu;
418         unsigned long bogosum = 0;
419
420         for_each_online_cpu(cpu)
421                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
422
423         printk(KERN_INFO "SMP: Total of %d processors activated "
424                "(%lu.%02lu BogoMIPS).\n",
425                num_online_cpus(),
426                bogosum / (500000/HZ),
427                (bogosum / (5000/HZ)) % 100);
428
429         hyp_mode_check();
430 }
431
432 void __init smp_prepare_boot_cpu(void)
433 {
434         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
435 }
436
437 void __init smp_prepare_cpus(unsigned int max_cpus)
438 {
439         unsigned int ncores = num_possible_cpus();
440
441         init_cpu_topology();
442
443         smp_store_cpu_info(smp_processor_id());
444
445         /*
446          * are we trying to boot more cores than exist?
447          */
448         if (max_cpus > ncores)
449                 max_cpus = ncores;
450         if (ncores > 1 && max_cpus) {
451                 /*
452                  * Initialise the present map, which describes the set of CPUs
453                  * actually populated at the present time. A platform should
454                  * re-initialize the map in the platforms smp_prepare_cpus()
455                  * if present != possible (e.g. physical hotplug).
456                  */
457                 init_cpu_present(cpu_possible_mask);
458
459                 /*
460                  * Initialise the SCU if there are more than one CPU
461                  * and let them know where to start.
462                  */
463                 if (smp_ops.smp_prepare_cpus)
464                         smp_ops.smp_prepare_cpus(max_cpus);
465         }
466 }
467
468 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
469
470 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
471 {
472         if (!__smp_cross_call)
473                 __smp_cross_call = fn;
474 }
475
476 static const char *ipi_types[NR_IPI] __tracepoint_string = {
477 #define S(x,s)  [x] = s
478         S(IPI_WAKEUP, "CPU wakeup interrupts"),
479         S(IPI_TIMER, "Timer broadcast interrupts"),
480         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
481         S(IPI_CALL_FUNC, "Function call interrupts"),
482         S(IPI_CPU_STOP, "CPU stop interrupts"),
483         S(IPI_IRQ_WORK, "IRQ work interrupts"),
484         S(IPI_COMPLETION, "completion interrupts"),
485 };
486
487 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
488 {
489         trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
490         __smp_cross_call(target, ipinr);
491 }
492
493 void show_ipi_list(struct seq_file *p, int prec)
494 {
495         unsigned int cpu, i;
496
497         for (i = 0; i < NR_IPI; i++) {
498                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
499
500                 for_each_online_cpu(cpu)
501                         seq_printf(p, "%10u ",
502                                    __get_irq_stat(cpu, ipi_irqs[i]));
503
504                 seq_printf(p, " %s\n", ipi_types[i]);
505         }
506 }
507
508 u64 smp_irq_stat_cpu(unsigned int cpu)
509 {
510         u64 sum = 0;
511         int i;
512
513         for (i = 0; i < NR_IPI; i++)
514                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
515
516         return sum;
517 }
518
519 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
520 {
521         smp_cross_call(mask, IPI_CALL_FUNC);
522 }
523
524 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
525 {
526         smp_cross_call(mask, IPI_WAKEUP);
527 }
528
529 void arch_send_call_function_single_ipi(int cpu)
530 {
531         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
532 }
533
534 #ifdef CONFIG_IRQ_WORK
535 void arch_irq_work_raise(void)
536 {
537         if (arch_irq_work_has_interrupt())
538                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
539 }
540 #endif
541
542 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
543 void tick_broadcast(const struct cpumask *mask)
544 {
545         smp_cross_call(mask, IPI_TIMER);
546 }
547 #endif
548
549 static DEFINE_RAW_SPINLOCK(stop_lock);
550
551 /*
552  * ipi_cpu_stop - handle IPI from smp_send_stop()
553  */
554 static void ipi_cpu_stop(unsigned int cpu)
555 {
556         if (system_state == SYSTEM_BOOTING ||
557             system_state == SYSTEM_RUNNING) {
558                 raw_spin_lock(&stop_lock);
559                 pr_crit("CPU%u: stopping\n", cpu);
560                 dump_stack();
561                 raw_spin_unlock(&stop_lock);
562         }
563
564         set_cpu_online(cpu, false);
565
566         local_fiq_disable();
567         local_irq_disable();
568
569         while (1)
570                 cpu_relax();
571 }
572
573 static DEFINE_PER_CPU(struct completion *, cpu_completion);
574
575 int register_ipi_completion(struct completion *completion, int cpu)
576 {
577         per_cpu(cpu_completion, cpu) = completion;
578         return IPI_COMPLETION;
579 }
580
581 static void ipi_complete(unsigned int cpu)
582 {
583         complete(per_cpu(cpu_completion, cpu));
584 }
585
586 /*
587  * Main handler for inter-processor interrupts
588  */
589 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
590 {
591         handle_IPI(ipinr, regs);
592 }
593
594 void handle_IPI(int ipinr, struct pt_regs *regs)
595 {
596         unsigned int cpu = smp_processor_id();
597         struct pt_regs *old_regs = set_irq_regs(regs);
598
599         if ((unsigned)ipinr < NR_IPI) {
600                 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
601                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
602         }
603
604         switch (ipinr) {
605         case IPI_WAKEUP:
606                 break;
607
608 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
609         case IPI_TIMER:
610                 irq_enter();
611                 tick_receive_broadcast();
612                 irq_exit();
613                 break;
614 #endif
615
616         case IPI_RESCHEDULE:
617                 scheduler_ipi();
618                 break;
619
620         case IPI_CALL_FUNC:
621                 irq_enter();
622                 generic_smp_call_function_interrupt();
623                 irq_exit();
624                 break;
625
626         case IPI_CPU_STOP:
627                 irq_enter();
628                 ipi_cpu_stop(cpu);
629                 irq_exit();
630                 break;
631
632 #ifdef CONFIG_IRQ_WORK
633         case IPI_IRQ_WORK:
634                 irq_enter();
635                 irq_work_run();
636                 irq_exit();
637                 break;
638 #endif
639
640         case IPI_COMPLETION:
641                 irq_enter();
642                 ipi_complete(cpu);
643                 irq_exit();
644                 break;
645
646         case IPI_CPU_BACKTRACE:
647                 printk_nmi_enter();
648                 irq_enter();
649                 nmi_cpu_backtrace(regs);
650                 irq_exit();
651                 printk_nmi_exit();
652                 break;
653
654         default:
655                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
656                         cpu, ipinr);
657                 break;
658         }
659
660         if ((unsigned)ipinr < NR_IPI)
661                 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
662         set_irq_regs(old_regs);
663 }
664
665 void smp_send_reschedule(int cpu)
666 {
667         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
668 }
669
670 void smp_send_stop(void)
671 {
672         unsigned long timeout;
673         struct cpumask mask;
674
675         cpumask_copy(&mask, cpu_online_mask);
676         cpumask_clear_cpu(smp_processor_id(), &mask);
677         if (!cpumask_empty(&mask))
678                 smp_cross_call(&mask, IPI_CPU_STOP);
679
680         /* Wait up to one second for other CPUs to stop */
681         timeout = USEC_PER_SEC;
682         while (num_online_cpus() > 1 && timeout--)
683                 udelay(1);
684
685         if (num_online_cpus() > 1)
686                 pr_warn("SMP: failed to stop secondary CPUs\n");
687 }
688
689 /*
690  * not supported here
691  */
692 int setup_profiling_timer(unsigned int multiplier)
693 {
694         return -EINVAL;
695 }
696
697 #ifdef CONFIG_CPU_FREQ
698
699 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
700 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
701 static unsigned long global_l_p_j_ref;
702 static unsigned long global_l_p_j_ref_freq;
703
704 static int cpufreq_callback(struct notifier_block *nb,
705                                         unsigned long val, void *data)
706 {
707         struct cpufreq_freqs *freq = data;
708         int cpu = freq->cpu;
709
710         if (freq->flags & CPUFREQ_CONST_LOOPS)
711                 return NOTIFY_OK;
712
713         if (!per_cpu(l_p_j_ref, cpu)) {
714                 per_cpu(l_p_j_ref, cpu) =
715                         per_cpu(cpu_data, cpu).loops_per_jiffy;
716                 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
717                 if (!global_l_p_j_ref) {
718                         global_l_p_j_ref = loops_per_jiffy;
719                         global_l_p_j_ref_freq = freq->old;
720                 }
721         }
722
723         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
724             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
725                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
726                                                 global_l_p_j_ref_freq,
727                                                 freq->new);
728                 per_cpu(cpu_data, cpu).loops_per_jiffy =
729                         cpufreq_scale(per_cpu(l_p_j_ref, cpu),
730                                         per_cpu(l_p_j_ref_freq, cpu),
731                                         freq->new);
732         }
733         return NOTIFY_OK;
734 }
735
736 static struct notifier_block cpufreq_notifier = {
737         .notifier_call  = cpufreq_callback,
738 };
739
740 static int __init register_cpufreq_notifier(void)
741 {
742         return cpufreq_register_notifier(&cpufreq_notifier,
743                                                 CPUFREQ_TRANSITION_NOTIFIER);
744 }
745 core_initcall(register_cpufreq_notifier);
746
747 #endif
748
749 static void raise_nmi(cpumask_t *mask)
750 {
751         /*
752          * Generate the backtrace directly if we are running in a calling
753          * context that is not preemptible by the backtrace IPI. Note
754          * that nmi_cpu_backtrace() automatically removes the current cpu
755          * from mask.
756          */
757         if (cpumask_test_cpu(smp_processor_id(), mask) && irqs_disabled())
758                 nmi_cpu_backtrace(NULL);
759
760         smp_cross_call(mask, IPI_CPU_BACKTRACE);
761 }
762
763 void arch_trigger_all_cpu_backtrace(bool include_self)
764 {
765         nmi_trigger_all_cpu_backtrace(include_self, raise_nmi);
766 }