Merge tag 'ceph-for-4.9-rc1' of git://github.com/ceph/ceph-client
[cascardo/linux.git] / arch / arm / kvm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/virt.h>
32
33 #include "trace.h"
34
35 static pgd_t *boot_hyp_pgd;
36 static pgd_t *hyp_pgd;
37 static pgd_t *merged_hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
40 static unsigned long hyp_idmap_start;
41 static unsigned long hyp_idmap_end;
42 static phys_addr_t hyp_idmap_vector;
43
44 #define S2_PGD_SIZE     (PTRS_PER_S2_PGD * sizeof(pgd_t))
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
48 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
49
50 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
51 {
52         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
53 }
54
55 /**
56  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
57  * @kvm:        pointer to kvm structure.
58  *
59  * Interface to HYP function to flush all VM TLB entries
60  */
61 void kvm_flush_remote_tlbs(struct kvm *kvm)
62 {
63         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
64 }
65
66 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
67 {
68         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
69 }
70
71 /*
72  * D-Cache management functions. They take the page table entries by
73  * value, as they are flushing the cache using the kernel mapping (or
74  * kmap on 32bit).
75  */
76 static void kvm_flush_dcache_pte(pte_t pte)
77 {
78         __kvm_flush_dcache_pte(pte);
79 }
80
81 static void kvm_flush_dcache_pmd(pmd_t pmd)
82 {
83         __kvm_flush_dcache_pmd(pmd);
84 }
85
86 static void kvm_flush_dcache_pud(pud_t pud)
87 {
88         __kvm_flush_dcache_pud(pud);
89 }
90
91 static bool kvm_is_device_pfn(unsigned long pfn)
92 {
93         return !pfn_valid(pfn);
94 }
95
96 /**
97  * stage2_dissolve_pmd() - clear and flush huge PMD entry
98  * @kvm:        pointer to kvm structure.
99  * @addr:       IPA
100  * @pmd:        pmd pointer for IPA
101  *
102  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
103  * pages in the range dirty.
104  */
105 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
106 {
107         if (!pmd_thp_or_huge(*pmd))
108                 return;
109
110         pmd_clear(pmd);
111         kvm_tlb_flush_vmid_ipa(kvm, addr);
112         put_page(virt_to_page(pmd));
113 }
114
115 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
116                                   int min, int max)
117 {
118         void *page;
119
120         BUG_ON(max > KVM_NR_MEM_OBJS);
121         if (cache->nobjs >= min)
122                 return 0;
123         while (cache->nobjs < max) {
124                 page = (void *)__get_free_page(PGALLOC_GFP);
125                 if (!page)
126                         return -ENOMEM;
127                 cache->objects[cache->nobjs++] = page;
128         }
129         return 0;
130 }
131
132 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
133 {
134         while (mc->nobjs)
135                 free_page((unsigned long)mc->objects[--mc->nobjs]);
136 }
137
138 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
139 {
140         void *p;
141
142         BUG_ON(!mc || !mc->nobjs);
143         p = mc->objects[--mc->nobjs];
144         return p;
145 }
146
147 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
148 {
149         pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
150         stage2_pgd_clear(pgd);
151         kvm_tlb_flush_vmid_ipa(kvm, addr);
152         stage2_pud_free(pud_table);
153         put_page(virt_to_page(pgd));
154 }
155
156 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
157 {
158         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
159         VM_BUG_ON(stage2_pud_huge(*pud));
160         stage2_pud_clear(pud);
161         kvm_tlb_flush_vmid_ipa(kvm, addr);
162         stage2_pmd_free(pmd_table);
163         put_page(virt_to_page(pud));
164 }
165
166 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
167 {
168         pte_t *pte_table = pte_offset_kernel(pmd, 0);
169         VM_BUG_ON(pmd_thp_or_huge(*pmd));
170         pmd_clear(pmd);
171         kvm_tlb_flush_vmid_ipa(kvm, addr);
172         pte_free_kernel(NULL, pte_table);
173         put_page(virt_to_page(pmd));
174 }
175
176 /*
177  * Unmapping vs dcache management:
178  *
179  * If a guest maps certain memory pages as uncached, all writes will
180  * bypass the data cache and go directly to RAM.  However, the CPUs
181  * can still speculate reads (not writes) and fill cache lines with
182  * data.
183  *
184  * Those cache lines will be *clean* cache lines though, so a
185  * clean+invalidate operation is equivalent to an invalidate
186  * operation, because no cache lines are marked dirty.
187  *
188  * Those clean cache lines could be filled prior to an uncached write
189  * by the guest, and the cache coherent IO subsystem would therefore
190  * end up writing old data to disk.
191  *
192  * This is why right after unmapping a page/section and invalidating
193  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
194  * the IO subsystem will never hit in the cache.
195  */
196 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
197                        phys_addr_t addr, phys_addr_t end)
198 {
199         phys_addr_t start_addr = addr;
200         pte_t *pte, *start_pte;
201
202         start_pte = pte = pte_offset_kernel(pmd, addr);
203         do {
204                 if (!pte_none(*pte)) {
205                         pte_t old_pte = *pte;
206
207                         kvm_set_pte(pte, __pte(0));
208                         kvm_tlb_flush_vmid_ipa(kvm, addr);
209
210                         /* No need to invalidate the cache for device mappings */
211                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
212                                 kvm_flush_dcache_pte(old_pte);
213
214                         put_page(virt_to_page(pte));
215                 }
216         } while (pte++, addr += PAGE_SIZE, addr != end);
217
218         if (stage2_pte_table_empty(start_pte))
219                 clear_stage2_pmd_entry(kvm, pmd, start_addr);
220 }
221
222 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
223                        phys_addr_t addr, phys_addr_t end)
224 {
225         phys_addr_t next, start_addr = addr;
226         pmd_t *pmd, *start_pmd;
227
228         start_pmd = pmd = stage2_pmd_offset(pud, addr);
229         do {
230                 next = stage2_pmd_addr_end(addr, end);
231                 if (!pmd_none(*pmd)) {
232                         if (pmd_thp_or_huge(*pmd)) {
233                                 pmd_t old_pmd = *pmd;
234
235                                 pmd_clear(pmd);
236                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
237
238                                 kvm_flush_dcache_pmd(old_pmd);
239
240                                 put_page(virt_to_page(pmd));
241                         } else {
242                                 unmap_stage2_ptes(kvm, pmd, addr, next);
243                         }
244                 }
245         } while (pmd++, addr = next, addr != end);
246
247         if (stage2_pmd_table_empty(start_pmd))
248                 clear_stage2_pud_entry(kvm, pud, start_addr);
249 }
250
251 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
252                        phys_addr_t addr, phys_addr_t end)
253 {
254         phys_addr_t next, start_addr = addr;
255         pud_t *pud, *start_pud;
256
257         start_pud = pud = stage2_pud_offset(pgd, addr);
258         do {
259                 next = stage2_pud_addr_end(addr, end);
260                 if (!stage2_pud_none(*pud)) {
261                         if (stage2_pud_huge(*pud)) {
262                                 pud_t old_pud = *pud;
263
264                                 stage2_pud_clear(pud);
265                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
266                                 kvm_flush_dcache_pud(old_pud);
267                                 put_page(virt_to_page(pud));
268                         } else {
269                                 unmap_stage2_pmds(kvm, pud, addr, next);
270                         }
271                 }
272         } while (pud++, addr = next, addr != end);
273
274         if (stage2_pud_table_empty(start_pud))
275                 clear_stage2_pgd_entry(kvm, pgd, start_addr);
276 }
277
278 /**
279  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
280  * @kvm:   The VM pointer
281  * @start: The intermediate physical base address of the range to unmap
282  * @size:  The size of the area to unmap
283  *
284  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
285  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
286  * destroying the VM), otherwise another faulting VCPU may come in and mess
287  * with things behind our backs.
288  */
289 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
290 {
291         pgd_t *pgd;
292         phys_addr_t addr = start, end = start + size;
293         phys_addr_t next;
294
295         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
296         do {
297                 next = stage2_pgd_addr_end(addr, end);
298                 if (!stage2_pgd_none(*pgd))
299                         unmap_stage2_puds(kvm, pgd, addr, next);
300         } while (pgd++, addr = next, addr != end);
301 }
302
303 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
304                               phys_addr_t addr, phys_addr_t end)
305 {
306         pte_t *pte;
307
308         pte = pte_offset_kernel(pmd, addr);
309         do {
310                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
311                         kvm_flush_dcache_pte(*pte);
312         } while (pte++, addr += PAGE_SIZE, addr != end);
313 }
314
315 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
316                               phys_addr_t addr, phys_addr_t end)
317 {
318         pmd_t *pmd;
319         phys_addr_t next;
320
321         pmd = stage2_pmd_offset(pud, addr);
322         do {
323                 next = stage2_pmd_addr_end(addr, end);
324                 if (!pmd_none(*pmd)) {
325                         if (pmd_thp_or_huge(*pmd))
326                                 kvm_flush_dcache_pmd(*pmd);
327                         else
328                                 stage2_flush_ptes(kvm, pmd, addr, next);
329                 }
330         } while (pmd++, addr = next, addr != end);
331 }
332
333 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
334                               phys_addr_t addr, phys_addr_t end)
335 {
336         pud_t *pud;
337         phys_addr_t next;
338
339         pud = stage2_pud_offset(pgd, addr);
340         do {
341                 next = stage2_pud_addr_end(addr, end);
342                 if (!stage2_pud_none(*pud)) {
343                         if (stage2_pud_huge(*pud))
344                                 kvm_flush_dcache_pud(*pud);
345                         else
346                                 stage2_flush_pmds(kvm, pud, addr, next);
347                 }
348         } while (pud++, addr = next, addr != end);
349 }
350
351 static void stage2_flush_memslot(struct kvm *kvm,
352                                  struct kvm_memory_slot *memslot)
353 {
354         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
355         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
356         phys_addr_t next;
357         pgd_t *pgd;
358
359         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
360         do {
361                 next = stage2_pgd_addr_end(addr, end);
362                 stage2_flush_puds(kvm, pgd, addr, next);
363         } while (pgd++, addr = next, addr != end);
364 }
365
366 /**
367  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
368  * @kvm: The struct kvm pointer
369  *
370  * Go through the stage 2 page tables and invalidate any cache lines
371  * backing memory already mapped to the VM.
372  */
373 static void stage2_flush_vm(struct kvm *kvm)
374 {
375         struct kvm_memslots *slots;
376         struct kvm_memory_slot *memslot;
377         int idx;
378
379         idx = srcu_read_lock(&kvm->srcu);
380         spin_lock(&kvm->mmu_lock);
381
382         slots = kvm_memslots(kvm);
383         kvm_for_each_memslot(memslot, slots)
384                 stage2_flush_memslot(kvm, memslot);
385
386         spin_unlock(&kvm->mmu_lock);
387         srcu_read_unlock(&kvm->srcu, idx);
388 }
389
390 static void clear_hyp_pgd_entry(pgd_t *pgd)
391 {
392         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
393         pgd_clear(pgd);
394         pud_free(NULL, pud_table);
395         put_page(virt_to_page(pgd));
396 }
397
398 static void clear_hyp_pud_entry(pud_t *pud)
399 {
400         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
401         VM_BUG_ON(pud_huge(*pud));
402         pud_clear(pud);
403         pmd_free(NULL, pmd_table);
404         put_page(virt_to_page(pud));
405 }
406
407 static void clear_hyp_pmd_entry(pmd_t *pmd)
408 {
409         pte_t *pte_table = pte_offset_kernel(pmd, 0);
410         VM_BUG_ON(pmd_thp_or_huge(*pmd));
411         pmd_clear(pmd);
412         pte_free_kernel(NULL, pte_table);
413         put_page(virt_to_page(pmd));
414 }
415
416 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
417 {
418         pte_t *pte, *start_pte;
419
420         start_pte = pte = pte_offset_kernel(pmd, addr);
421         do {
422                 if (!pte_none(*pte)) {
423                         kvm_set_pte(pte, __pte(0));
424                         put_page(virt_to_page(pte));
425                 }
426         } while (pte++, addr += PAGE_SIZE, addr != end);
427
428         if (hyp_pte_table_empty(start_pte))
429                 clear_hyp_pmd_entry(pmd);
430 }
431
432 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
433 {
434         phys_addr_t next;
435         pmd_t *pmd, *start_pmd;
436
437         start_pmd = pmd = pmd_offset(pud, addr);
438         do {
439                 next = pmd_addr_end(addr, end);
440                 /* Hyp doesn't use huge pmds */
441                 if (!pmd_none(*pmd))
442                         unmap_hyp_ptes(pmd, addr, next);
443         } while (pmd++, addr = next, addr != end);
444
445         if (hyp_pmd_table_empty(start_pmd))
446                 clear_hyp_pud_entry(pud);
447 }
448
449 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
450 {
451         phys_addr_t next;
452         pud_t *pud, *start_pud;
453
454         start_pud = pud = pud_offset(pgd, addr);
455         do {
456                 next = pud_addr_end(addr, end);
457                 /* Hyp doesn't use huge puds */
458                 if (!pud_none(*pud))
459                         unmap_hyp_pmds(pud, addr, next);
460         } while (pud++, addr = next, addr != end);
461
462         if (hyp_pud_table_empty(start_pud))
463                 clear_hyp_pgd_entry(pgd);
464 }
465
466 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
467 {
468         pgd_t *pgd;
469         phys_addr_t addr = start, end = start + size;
470         phys_addr_t next;
471
472         /*
473          * We don't unmap anything from HYP, except at the hyp tear down.
474          * Hence, we don't have to invalidate the TLBs here.
475          */
476         pgd = pgdp + pgd_index(addr);
477         do {
478                 next = pgd_addr_end(addr, end);
479                 if (!pgd_none(*pgd))
480                         unmap_hyp_puds(pgd, addr, next);
481         } while (pgd++, addr = next, addr != end);
482 }
483
484 /**
485  * free_hyp_pgds - free Hyp-mode page tables
486  *
487  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
488  * therefore contains either mappings in the kernel memory area (above
489  * PAGE_OFFSET), or device mappings in the vmalloc range (from
490  * VMALLOC_START to VMALLOC_END).
491  *
492  * boot_hyp_pgd should only map two pages for the init code.
493  */
494 void free_hyp_pgds(void)
495 {
496         unsigned long addr;
497
498         mutex_lock(&kvm_hyp_pgd_mutex);
499
500         if (boot_hyp_pgd) {
501                 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
502                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
503                 boot_hyp_pgd = NULL;
504         }
505
506         if (hyp_pgd) {
507                 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
508                 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
509                         unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
510                 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
511                         unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
512
513                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
514                 hyp_pgd = NULL;
515         }
516         if (merged_hyp_pgd) {
517                 clear_page(merged_hyp_pgd);
518                 free_page((unsigned long)merged_hyp_pgd);
519                 merged_hyp_pgd = NULL;
520         }
521
522         mutex_unlock(&kvm_hyp_pgd_mutex);
523 }
524
525 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
526                                     unsigned long end, unsigned long pfn,
527                                     pgprot_t prot)
528 {
529         pte_t *pte;
530         unsigned long addr;
531
532         addr = start;
533         do {
534                 pte = pte_offset_kernel(pmd, addr);
535                 kvm_set_pte(pte, pfn_pte(pfn, prot));
536                 get_page(virt_to_page(pte));
537                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
538                 pfn++;
539         } while (addr += PAGE_SIZE, addr != end);
540 }
541
542 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
543                                    unsigned long end, unsigned long pfn,
544                                    pgprot_t prot)
545 {
546         pmd_t *pmd;
547         pte_t *pte;
548         unsigned long addr, next;
549
550         addr = start;
551         do {
552                 pmd = pmd_offset(pud, addr);
553
554                 BUG_ON(pmd_sect(*pmd));
555
556                 if (pmd_none(*pmd)) {
557                         pte = pte_alloc_one_kernel(NULL, addr);
558                         if (!pte) {
559                                 kvm_err("Cannot allocate Hyp pte\n");
560                                 return -ENOMEM;
561                         }
562                         pmd_populate_kernel(NULL, pmd, pte);
563                         get_page(virt_to_page(pmd));
564                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
565                 }
566
567                 next = pmd_addr_end(addr, end);
568
569                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
570                 pfn += (next - addr) >> PAGE_SHIFT;
571         } while (addr = next, addr != end);
572
573         return 0;
574 }
575
576 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
577                                    unsigned long end, unsigned long pfn,
578                                    pgprot_t prot)
579 {
580         pud_t *pud;
581         pmd_t *pmd;
582         unsigned long addr, next;
583         int ret;
584
585         addr = start;
586         do {
587                 pud = pud_offset(pgd, addr);
588
589                 if (pud_none_or_clear_bad(pud)) {
590                         pmd = pmd_alloc_one(NULL, addr);
591                         if (!pmd) {
592                                 kvm_err("Cannot allocate Hyp pmd\n");
593                                 return -ENOMEM;
594                         }
595                         pud_populate(NULL, pud, pmd);
596                         get_page(virt_to_page(pud));
597                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
598                 }
599
600                 next = pud_addr_end(addr, end);
601                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
602                 if (ret)
603                         return ret;
604                 pfn += (next - addr) >> PAGE_SHIFT;
605         } while (addr = next, addr != end);
606
607         return 0;
608 }
609
610 static int __create_hyp_mappings(pgd_t *pgdp,
611                                  unsigned long start, unsigned long end,
612                                  unsigned long pfn, pgprot_t prot)
613 {
614         pgd_t *pgd;
615         pud_t *pud;
616         unsigned long addr, next;
617         int err = 0;
618
619         mutex_lock(&kvm_hyp_pgd_mutex);
620         addr = start & PAGE_MASK;
621         end = PAGE_ALIGN(end);
622         do {
623                 pgd = pgdp + pgd_index(addr);
624
625                 if (pgd_none(*pgd)) {
626                         pud = pud_alloc_one(NULL, addr);
627                         if (!pud) {
628                                 kvm_err("Cannot allocate Hyp pud\n");
629                                 err = -ENOMEM;
630                                 goto out;
631                         }
632                         pgd_populate(NULL, pgd, pud);
633                         get_page(virt_to_page(pgd));
634                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
635                 }
636
637                 next = pgd_addr_end(addr, end);
638                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
639                 if (err)
640                         goto out;
641                 pfn += (next - addr) >> PAGE_SHIFT;
642         } while (addr = next, addr != end);
643 out:
644         mutex_unlock(&kvm_hyp_pgd_mutex);
645         return err;
646 }
647
648 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
649 {
650         if (!is_vmalloc_addr(kaddr)) {
651                 BUG_ON(!virt_addr_valid(kaddr));
652                 return __pa(kaddr);
653         } else {
654                 return page_to_phys(vmalloc_to_page(kaddr)) +
655                        offset_in_page(kaddr);
656         }
657 }
658
659 /**
660  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
661  * @from:       The virtual kernel start address of the range
662  * @to:         The virtual kernel end address of the range (exclusive)
663  * @prot:       The protection to be applied to this range
664  *
665  * The same virtual address as the kernel virtual address is also used
666  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
667  * physical pages.
668  */
669 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
670 {
671         phys_addr_t phys_addr;
672         unsigned long virt_addr;
673         unsigned long start = kern_hyp_va((unsigned long)from);
674         unsigned long end = kern_hyp_va((unsigned long)to);
675
676         if (is_kernel_in_hyp_mode())
677                 return 0;
678
679         start = start & PAGE_MASK;
680         end = PAGE_ALIGN(end);
681
682         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
683                 int err;
684
685                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
686                 err = __create_hyp_mappings(hyp_pgd, virt_addr,
687                                             virt_addr + PAGE_SIZE,
688                                             __phys_to_pfn(phys_addr),
689                                             prot);
690                 if (err)
691                         return err;
692         }
693
694         return 0;
695 }
696
697 /**
698  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
699  * @from:       The kernel start VA of the range
700  * @to:         The kernel end VA of the range (exclusive)
701  * @phys_addr:  The physical start address which gets mapped
702  *
703  * The resulting HYP VA is the same as the kernel VA, modulo
704  * HYP_PAGE_OFFSET.
705  */
706 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
707 {
708         unsigned long start = kern_hyp_va((unsigned long)from);
709         unsigned long end = kern_hyp_va((unsigned long)to);
710
711         if (is_kernel_in_hyp_mode())
712                 return 0;
713
714         /* Check for a valid kernel IO mapping */
715         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
716                 return -EINVAL;
717
718         return __create_hyp_mappings(hyp_pgd, start, end,
719                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
720 }
721
722 /**
723  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
724  * @kvm:        The KVM struct pointer for the VM.
725  *
726  * Allocates only the stage-2 HW PGD level table(s) (can support either full
727  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
728  * allocated pages.
729  *
730  * Note we don't need locking here as this is only called when the VM is
731  * created, which can only be done once.
732  */
733 int kvm_alloc_stage2_pgd(struct kvm *kvm)
734 {
735         pgd_t *pgd;
736
737         if (kvm->arch.pgd != NULL) {
738                 kvm_err("kvm_arch already initialized?\n");
739                 return -EINVAL;
740         }
741
742         /* Allocate the HW PGD, making sure that each page gets its own refcount */
743         pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
744         if (!pgd)
745                 return -ENOMEM;
746
747         kvm->arch.pgd = pgd;
748         return 0;
749 }
750
751 static void stage2_unmap_memslot(struct kvm *kvm,
752                                  struct kvm_memory_slot *memslot)
753 {
754         hva_t hva = memslot->userspace_addr;
755         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
756         phys_addr_t size = PAGE_SIZE * memslot->npages;
757         hva_t reg_end = hva + size;
758
759         /*
760          * A memory region could potentially cover multiple VMAs, and any holes
761          * between them, so iterate over all of them to find out if we should
762          * unmap any of them.
763          *
764          *     +--------------------------------------------+
765          * +---------------+----------------+   +----------------+
766          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
767          * +---------------+----------------+   +----------------+
768          *     |               memory region                |
769          *     +--------------------------------------------+
770          */
771         do {
772                 struct vm_area_struct *vma = find_vma(current->mm, hva);
773                 hva_t vm_start, vm_end;
774
775                 if (!vma || vma->vm_start >= reg_end)
776                         break;
777
778                 /*
779                  * Take the intersection of this VMA with the memory region
780                  */
781                 vm_start = max(hva, vma->vm_start);
782                 vm_end = min(reg_end, vma->vm_end);
783
784                 if (!(vma->vm_flags & VM_PFNMAP)) {
785                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
786                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
787                 }
788                 hva = vm_end;
789         } while (hva < reg_end);
790 }
791
792 /**
793  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
794  * @kvm: The struct kvm pointer
795  *
796  * Go through the memregions and unmap any reguler RAM
797  * backing memory already mapped to the VM.
798  */
799 void stage2_unmap_vm(struct kvm *kvm)
800 {
801         struct kvm_memslots *slots;
802         struct kvm_memory_slot *memslot;
803         int idx;
804
805         idx = srcu_read_lock(&kvm->srcu);
806         spin_lock(&kvm->mmu_lock);
807
808         slots = kvm_memslots(kvm);
809         kvm_for_each_memslot(memslot, slots)
810                 stage2_unmap_memslot(kvm, memslot);
811
812         spin_unlock(&kvm->mmu_lock);
813         srcu_read_unlock(&kvm->srcu, idx);
814 }
815
816 /**
817  * kvm_free_stage2_pgd - free all stage-2 tables
818  * @kvm:        The KVM struct pointer for the VM.
819  *
820  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
821  * underlying level-2 and level-3 tables before freeing the actual level-1 table
822  * and setting the struct pointer to NULL.
823  *
824  * Note we don't need locking here as this is only called when the VM is
825  * destroyed, which can only be done once.
826  */
827 void kvm_free_stage2_pgd(struct kvm *kvm)
828 {
829         if (kvm->arch.pgd == NULL)
830                 return;
831
832         unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
833         /* Free the HW pgd, one page at a time */
834         free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE);
835         kvm->arch.pgd = NULL;
836 }
837
838 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
839                              phys_addr_t addr)
840 {
841         pgd_t *pgd;
842         pud_t *pud;
843
844         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
845         if (WARN_ON(stage2_pgd_none(*pgd))) {
846                 if (!cache)
847                         return NULL;
848                 pud = mmu_memory_cache_alloc(cache);
849                 stage2_pgd_populate(pgd, pud);
850                 get_page(virt_to_page(pgd));
851         }
852
853         return stage2_pud_offset(pgd, addr);
854 }
855
856 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
857                              phys_addr_t addr)
858 {
859         pud_t *pud;
860         pmd_t *pmd;
861
862         pud = stage2_get_pud(kvm, cache, addr);
863         if (stage2_pud_none(*pud)) {
864                 if (!cache)
865                         return NULL;
866                 pmd = mmu_memory_cache_alloc(cache);
867                 stage2_pud_populate(pud, pmd);
868                 get_page(virt_to_page(pud));
869         }
870
871         return stage2_pmd_offset(pud, addr);
872 }
873
874 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
875                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
876 {
877         pmd_t *pmd, old_pmd;
878
879         pmd = stage2_get_pmd(kvm, cache, addr);
880         VM_BUG_ON(!pmd);
881
882         /*
883          * Mapping in huge pages should only happen through a fault.  If a
884          * page is merged into a transparent huge page, the individual
885          * subpages of that huge page should be unmapped through MMU
886          * notifiers before we get here.
887          *
888          * Merging of CompoundPages is not supported; they should become
889          * splitting first, unmapped, merged, and mapped back in on-demand.
890          */
891         VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
892
893         old_pmd = *pmd;
894         if (pmd_present(old_pmd)) {
895                 pmd_clear(pmd);
896                 kvm_tlb_flush_vmid_ipa(kvm, addr);
897         } else {
898                 get_page(virt_to_page(pmd));
899         }
900
901         kvm_set_pmd(pmd, *new_pmd);
902         return 0;
903 }
904
905 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
906                           phys_addr_t addr, const pte_t *new_pte,
907                           unsigned long flags)
908 {
909         pmd_t *pmd;
910         pte_t *pte, old_pte;
911         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
912         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
913
914         VM_BUG_ON(logging_active && !cache);
915
916         /* Create stage-2 page table mapping - Levels 0 and 1 */
917         pmd = stage2_get_pmd(kvm, cache, addr);
918         if (!pmd) {
919                 /*
920                  * Ignore calls from kvm_set_spte_hva for unallocated
921                  * address ranges.
922                  */
923                 return 0;
924         }
925
926         /*
927          * While dirty page logging - dissolve huge PMD, then continue on to
928          * allocate page.
929          */
930         if (logging_active)
931                 stage2_dissolve_pmd(kvm, addr, pmd);
932
933         /* Create stage-2 page mappings - Level 2 */
934         if (pmd_none(*pmd)) {
935                 if (!cache)
936                         return 0; /* ignore calls from kvm_set_spte_hva */
937                 pte = mmu_memory_cache_alloc(cache);
938                 pmd_populate_kernel(NULL, pmd, pte);
939                 get_page(virt_to_page(pmd));
940         }
941
942         pte = pte_offset_kernel(pmd, addr);
943
944         if (iomap && pte_present(*pte))
945                 return -EFAULT;
946
947         /* Create 2nd stage page table mapping - Level 3 */
948         old_pte = *pte;
949         if (pte_present(old_pte)) {
950                 kvm_set_pte(pte, __pte(0));
951                 kvm_tlb_flush_vmid_ipa(kvm, addr);
952         } else {
953                 get_page(virt_to_page(pte));
954         }
955
956         kvm_set_pte(pte, *new_pte);
957         return 0;
958 }
959
960 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
961 static int stage2_ptep_test_and_clear_young(pte_t *pte)
962 {
963         if (pte_young(*pte)) {
964                 *pte = pte_mkold(*pte);
965                 return 1;
966         }
967         return 0;
968 }
969 #else
970 static int stage2_ptep_test_and_clear_young(pte_t *pte)
971 {
972         return __ptep_test_and_clear_young(pte);
973 }
974 #endif
975
976 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
977 {
978         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
979 }
980
981 /**
982  * kvm_phys_addr_ioremap - map a device range to guest IPA
983  *
984  * @kvm:        The KVM pointer
985  * @guest_ipa:  The IPA at which to insert the mapping
986  * @pa:         The physical address of the device
987  * @size:       The size of the mapping
988  */
989 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
990                           phys_addr_t pa, unsigned long size, bool writable)
991 {
992         phys_addr_t addr, end;
993         int ret = 0;
994         unsigned long pfn;
995         struct kvm_mmu_memory_cache cache = { 0, };
996
997         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
998         pfn = __phys_to_pfn(pa);
999
1000         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1001                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1002
1003                 if (writable)
1004                         pte = kvm_s2pte_mkwrite(pte);
1005
1006                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1007                                                 KVM_NR_MEM_OBJS);
1008                 if (ret)
1009                         goto out;
1010                 spin_lock(&kvm->mmu_lock);
1011                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1012                                                 KVM_S2PTE_FLAG_IS_IOMAP);
1013                 spin_unlock(&kvm->mmu_lock);
1014                 if (ret)
1015                         goto out;
1016
1017                 pfn++;
1018         }
1019
1020 out:
1021         mmu_free_memory_cache(&cache);
1022         return ret;
1023 }
1024
1025 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1026 {
1027         kvm_pfn_t pfn = *pfnp;
1028         gfn_t gfn = *ipap >> PAGE_SHIFT;
1029
1030         if (PageTransCompoundMap(pfn_to_page(pfn))) {
1031                 unsigned long mask;
1032                 /*
1033                  * The address we faulted on is backed by a transparent huge
1034                  * page.  However, because we map the compound huge page and
1035                  * not the individual tail page, we need to transfer the
1036                  * refcount to the head page.  We have to be careful that the
1037                  * THP doesn't start to split while we are adjusting the
1038                  * refcounts.
1039                  *
1040                  * We are sure this doesn't happen, because mmu_notifier_retry
1041                  * was successful and we are holding the mmu_lock, so if this
1042                  * THP is trying to split, it will be blocked in the mmu
1043                  * notifier before touching any of the pages, specifically
1044                  * before being able to call __split_huge_page_refcount().
1045                  *
1046                  * We can therefore safely transfer the refcount from PG_tail
1047                  * to PG_head and switch the pfn from a tail page to the head
1048                  * page accordingly.
1049                  */
1050                 mask = PTRS_PER_PMD - 1;
1051                 VM_BUG_ON((gfn & mask) != (pfn & mask));
1052                 if (pfn & mask) {
1053                         *ipap &= PMD_MASK;
1054                         kvm_release_pfn_clean(pfn);
1055                         pfn &= ~mask;
1056                         kvm_get_pfn(pfn);
1057                         *pfnp = pfn;
1058                 }
1059
1060                 return true;
1061         }
1062
1063         return false;
1064 }
1065
1066 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1067 {
1068         if (kvm_vcpu_trap_is_iabt(vcpu))
1069                 return false;
1070
1071         return kvm_vcpu_dabt_iswrite(vcpu);
1072 }
1073
1074 /**
1075  * stage2_wp_ptes - write protect PMD range
1076  * @pmd:        pointer to pmd entry
1077  * @addr:       range start address
1078  * @end:        range end address
1079  */
1080 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1081 {
1082         pte_t *pte;
1083
1084         pte = pte_offset_kernel(pmd, addr);
1085         do {
1086                 if (!pte_none(*pte)) {
1087                         if (!kvm_s2pte_readonly(pte))
1088                                 kvm_set_s2pte_readonly(pte);
1089                 }
1090         } while (pte++, addr += PAGE_SIZE, addr != end);
1091 }
1092
1093 /**
1094  * stage2_wp_pmds - write protect PUD range
1095  * @pud:        pointer to pud entry
1096  * @addr:       range start address
1097  * @end:        range end address
1098  */
1099 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1100 {
1101         pmd_t *pmd;
1102         phys_addr_t next;
1103
1104         pmd = stage2_pmd_offset(pud, addr);
1105
1106         do {
1107                 next = stage2_pmd_addr_end(addr, end);
1108                 if (!pmd_none(*pmd)) {
1109                         if (pmd_thp_or_huge(*pmd)) {
1110                                 if (!kvm_s2pmd_readonly(pmd))
1111                                         kvm_set_s2pmd_readonly(pmd);
1112                         } else {
1113                                 stage2_wp_ptes(pmd, addr, next);
1114                         }
1115                 }
1116         } while (pmd++, addr = next, addr != end);
1117 }
1118
1119 /**
1120   * stage2_wp_puds - write protect PGD range
1121   * @pgd:       pointer to pgd entry
1122   * @addr:      range start address
1123   * @end:       range end address
1124   *
1125   * Process PUD entries, for a huge PUD we cause a panic.
1126   */
1127 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1128 {
1129         pud_t *pud;
1130         phys_addr_t next;
1131
1132         pud = stage2_pud_offset(pgd, addr);
1133         do {
1134                 next = stage2_pud_addr_end(addr, end);
1135                 if (!stage2_pud_none(*pud)) {
1136                         /* TODO:PUD not supported, revisit later if supported */
1137                         BUG_ON(stage2_pud_huge(*pud));
1138                         stage2_wp_pmds(pud, addr, next);
1139                 }
1140         } while (pud++, addr = next, addr != end);
1141 }
1142
1143 /**
1144  * stage2_wp_range() - write protect stage2 memory region range
1145  * @kvm:        The KVM pointer
1146  * @addr:       Start address of range
1147  * @end:        End address of range
1148  */
1149 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1150 {
1151         pgd_t *pgd;
1152         phys_addr_t next;
1153
1154         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1155         do {
1156                 /*
1157                  * Release kvm_mmu_lock periodically if the memory region is
1158                  * large. Otherwise, we may see kernel panics with
1159                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1160                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1161                  * will also starve other vCPUs.
1162                  */
1163                 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1164                         cond_resched_lock(&kvm->mmu_lock);
1165
1166                 next = stage2_pgd_addr_end(addr, end);
1167                 if (stage2_pgd_present(*pgd))
1168                         stage2_wp_puds(pgd, addr, next);
1169         } while (pgd++, addr = next, addr != end);
1170 }
1171
1172 /**
1173  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1174  * @kvm:        The KVM pointer
1175  * @slot:       The memory slot to write protect
1176  *
1177  * Called to start logging dirty pages after memory region
1178  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1179  * all present PMD and PTEs are write protected in the memory region.
1180  * Afterwards read of dirty page log can be called.
1181  *
1182  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1183  * serializing operations for VM memory regions.
1184  */
1185 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1186 {
1187         struct kvm_memslots *slots = kvm_memslots(kvm);
1188         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1189         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1190         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1191
1192         spin_lock(&kvm->mmu_lock);
1193         stage2_wp_range(kvm, start, end);
1194         spin_unlock(&kvm->mmu_lock);
1195         kvm_flush_remote_tlbs(kvm);
1196 }
1197
1198 /**
1199  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1200  * @kvm:        The KVM pointer
1201  * @slot:       The memory slot associated with mask
1202  * @gfn_offset: The gfn offset in memory slot
1203  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1204  *              slot to be write protected
1205  *
1206  * Walks bits set in mask write protects the associated pte's. Caller must
1207  * acquire kvm_mmu_lock.
1208  */
1209 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1210                 struct kvm_memory_slot *slot,
1211                 gfn_t gfn_offset, unsigned long mask)
1212 {
1213         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1214         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1215         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1216
1217         stage2_wp_range(kvm, start, end);
1218 }
1219
1220 /*
1221  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1222  * dirty pages.
1223  *
1224  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1225  * enable dirty logging for them.
1226  */
1227 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1228                 struct kvm_memory_slot *slot,
1229                 gfn_t gfn_offset, unsigned long mask)
1230 {
1231         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1232 }
1233
1234 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1235                                       unsigned long size, bool uncached)
1236 {
1237         __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1238 }
1239
1240 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1241                           struct kvm_memory_slot *memslot, unsigned long hva,
1242                           unsigned long fault_status)
1243 {
1244         int ret;
1245         bool write_fault, writable, hugetlb = false, force_pte = false;
1246         unsigned long mmu_seq;
1247         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1248         struct kvm *kvm = vcpu->kvm;
1249         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1250         struct vm_area_struct *vma;
1251         kvm_pfn_t pfn;
1252         pgprot_t mem_type = PAGE_S2;
1253         bool fault_ipa_uncached;
1254         bool logging_active = memslot_is_logging(memslot);
1255         unsigned long flags = 0;
1256
1257         write_fault = kvm_is_write_fault(vcpu);
1258         if (fault_status == FSC_PERM && !write_fault) {
1259                 kvm_err("Unexpected L2 read permission error\n");
1260                 return -EFAULT;
1261         }
1262
1263         /* Let's check if we will get back a huge page backed by hugetlbfs */
1264         down_read(&current->mm->mmap_sem);
1265         vma = find_vma_intersection(current->mm, hva, hva + 1);
1266         if (unlikely(!vma)) {
1267                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1268                 up_read(&current->mm->mmap_sem);
1269                 return -EFAULT;
1270         }
1271
1272         if (is_vm_hugetlb_page(vma) && !logging_active) {
1273                 hugetlb = true;
1274                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1275         } else {
1276                 /*
1277                  * Pages belonging to memslots that don't have the same
1278                  * alignment for userspace and IPA cannot be mapped using
1279                  * block descriptors even if the pages belong to a THP for
1280                  * the process, because the stage-2 block descriptor will
1281                  * cover more than a single THP and we loose atomicity for
1282                  * unmapping, updates, and splits of the THP or other pages
1283                  * in the stage-2 block range.
1284                  */
1285                 if ((memslot->userspace_addr & ~PMD_MASK) !=
1286                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1287                         force_pte = true;
1288         }
1289         up_read(&current->mm->mmap_sem);
1290
1291         /* We need minimum second+third level pages */
1292         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1293                                      KVM_NR_MEM_OBJS);
1294         if (ret)
1295                 return ret;
1296
1297         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1298         /*
1299          * Ensure the read of mmu_notifier_seq happens before we call
1300          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1301          * the page we just got a reference to gets unmapped before we have a
1302          * chance to grab the mmu_lock, which ensure that if the page gets
1303          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1304          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1305          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1306          */
1307         smp_rmb();
1308
1309         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1310         if (is_error_noslot_pfn(pfn))
1311                 return -EFAULT;
1312
1313         if (kvm_is_device_pfn(pfn)) {
1314                 mem_type = PAGE_S2_DEVICE;
1315                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1316         } else if (logging_active) {
1317                 /*
1318                  * Faults on pages in a memslot with logging enabled
1319                  * should not be mapped with huge pages (it introduces churn
1320                  * and performance degradation), so force a pte mapping.
1321                  */
1322                 force_pte = true;
1323                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1324
1325                 /*
1326                  * Only actually map the page as writable if this was a write
1327                  * fault.
1328                  */
1329                 if (!write_fault)
1330                         writable = false;
1331         }
1332
1333         spin_lock(&kvm->mmu_lock);
1334         if (mmu_notifier_retry(kvm, mmu_seq))
1335                 goto out_unlock;
1336
1337         if (!hugetlb && !force_pte)
1338                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1339
1340         fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1341
1342         if (hugetlb) {
1343                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1344                 new_pmd = pmd_mkhuge(new_pmd);
1345                 if (writable) {
1346                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1347                         kvm_set_pfn_dirty(pfn);
1348                 }
1349                 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1350                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1351         } else {
1352                 pte_t new_pte = pfn_pte(pfn, mem_type);
1353
1354                 if (writable) {
1355                         new_pte = kvm_s2pte_mkwrite(new_pte);
1356                         kvm_set_pfn_dirty(pfn);
1357                         mark_page_dirty(kvm, gfn);
1358                 }
1359                 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1360                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1361         }
1362
1363 out_unlock:
1364         spin_unlock(&kvm->mmu_lock);
1365         kvm_set_pfn_accessed(pfn);
1366         kvm_release_pfn_clean(pfn);
1367         return ret;
1368 }
1369
1370 /*
1371  * Resolve the access fault by making the page young again.
1372  * Note that because the faulting entry is guaranteed not to be
1373  * cached in the TLB, we don't need to invalidate anything.
1374  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1375  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1376  */
1377 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1378 {
1379         pmd_t *pmd;
1380         pte_t *pte;
1381         kvm_pfn_t pfn;
1382         bool pfn_valid = false;
1383
1384         trace_kvm_access_fault(fault_ipa);
1385
1386         spin_lock(&vcpu->kvm->mmu_lock);
1387
1388         pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1389         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1390                 goto out;
1391
1392         if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
1393                 *pmd = pmd_mkyoung(*pmd);
1394                 pfn = pmd_pfn(*pmd);
1395                 pfn_valid = true;
1396                 goto out;
1397         }
1398
1399         pte = pte_offset_kernel(pmd, fault_ipa);
1400         if (pte_none(*pte))             /* Nothing there either */
1401                 goto out;
1402
1403         *pte = pte_mkyoung(*pte);       /* Just a page... */
1404         pfn = pte_pfn(*pte);
1405         pfn_valid = true;
1406 out:
1407         spin_unlock(&vcpu->kvm->mmu_lock);
1408         if (pfn_valid)
1409                 kvm_set_pfn_accessed(pfn);
1410 }
1411
1412 /**
1413  * kvm_handle_guest_abort - handles all 2nd stage aborts
1414  * @vcpu:       the VCPU pointer
1415  * @run:        the kvm_run structure
1416  *
1417  * Any abort that gets to the host is almost guaranteed to be caused by a
1418  * missing second stage translation table entry, which can mean that either the
1419  * guest simply needs more memory and we must allocate an appropriate page or it
1420  * can mean that the guest tried to access I/O memory, which is emulated by user
1421  * space. The distinction is based on the IPA causing the fault and whether this
1422  * memory region has been registered as standard RAM by user space.
1423  */
1424 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1425 {
1426         unsigned long fault_status;
1427         phys_addr_t fault_ipa;
1428         struct kvm_memory_slot *memslot;
1429         unsigned long hva;
1430         bool is_iabt, write_fault, writable;
1431         gfn_t gfn;
1432         int ret, idx;
1433
1434         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1435         if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) {
1436                 kvm_inject_vabt(vcpu);
1437                 return 1;
1438         }
1439
1440         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1441
1442         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1443                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1444
1445         /* Check the stage-2 fault is trans. fault or write fault */
1446         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1447         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1448             fault_status != FSC_ACCESS) {
1449                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1450                         kvm_vcpu_trap_get_class(vcpu),
1451                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1452                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1453                 return -EFAULT;
1454         }
1455
1456         idx = srcu_read_lock(&vcpu->kvm->srcu);
1457
1458         gfn = fault_ipa >> PAGE_SHIFT;
1459         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1460         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1461         write_fault = kvm_is_write_fault(vcpu);
1462         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1463                 if (is_iabt) {
1464                         /* Prefetch Abort on I/O address */
1465                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1466                         ret = 1;
1467                         goto out_unlock;
1468                 }
1469
1470                 /*
1471                  * Check for a cache maintenance operation. Since we
1472                  * ended-up here, we know it is outside of any memory
1473                  * slot. But we can't find out if that is for a device,
1474                  * or if the guest is just being stupid. The only thing
1475                  * we know for sure is that this range cannot be cached.
1476                  *
1477                  * So let's assume that the guest is just being
1478                  * cautious, and skip the instruction.
1479                  */
1480                 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1481                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1482                         ret = 1;
1483                         goto out_unlock;
1484                 }
1485
1486                 /*
1487                  * The IPA is reported as [MAX:12], so we need to
1488                  * complement it with the bottom 12 bits from the
1489                  * faulting VA. This is always 12 bits, irrespective
1490                  * of the page size.
1491                  */
1492                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1493                 ret = io_mem_abort(vcpu, run, fault_ipa);
1494                 goto out_unlock;
1495         }
1496
1497         /* Userspace should not be able to register out-of-bounds IPAs */
1498         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1499
1500         if (fault_status == FSC_ACCESS) {
1501                 handle_access_fault(vcpu, fault_ipa);
1502                 ret = 1;
1503                 goto out_unlock;
1504         }
1505
1506         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1507         if (ret == 0)
1508                 ret = 1;
1509 out_unlock:
1510         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1511         return ret;
1512 }
1513
1514 static int handle_hva_to_gpa(struct kvm *kvm,
1515                              unsigned long start,
1516                              unsigned long end,
1517                              int (*handler)(struct kvm *kvm,
1518                                             gpa_t gpa, void *data),
1519                              void *data)
1520 {
1521         struct kvm_memslots *slots;
1522         struct kvm_memory_slot *memslot;
1523         int ret = 0;
1524
1525         slots = kvm_memslots(kvm);
1526
1527         /* we only care about the pages that the guest sees */
1528         kvm_for_each_memslot(memslot, slots) {
1529                 unsigned long hva_start, hva_end;
1530                 gfn_t gfn, gfn_end;
1531
1532                 hva_start = max(start, memslot->userspace_addr);
1533                 hva_end = min(end, memslot->userspace_addr +
1534                                         (memslot->npages << PAGE_SHIFT));
1535                 if (hva_start >= hva_end)
1536                         continue;
1537
1538                 /*
1539                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1540                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1541                  */
1542                 gfn = hva_to_gfn_memslot(hva_start, memslot);
1543                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1544
1545                 for (; gfn < gfn_end; ++gfn) {
1546                         gpa_t gpa = gfn << PAGE_SHIFT;
1547                         ret |= handler(kvm, gpa, data);
1548                 }
1549         }
1550
1551         return ret;
1552 }
1553
1554 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1555 {
1556         unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1557         return 0;
1558 }
1559
1560 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1561 {
1562         unsigned long end = hva + PAGE_SIZE;
1563
1564         if (!kvm->arch.pgd)
1565                 return 0;
1566
1567         trace_kvm_unmap_hva(hva);
1568         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1569         return 0;
1570 }
1571
1572 int kvm_unmap_hva_range(struct kvm *kvm,
1573                         unsigned long start, unsigned long end)
1574 {
1575         if (!kvm->arch.pgd)
1576                 return 0;
1577
1578         trace_kvm_unmap_hva_range(start, end);
1579         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1580         return 0;
1581 }
1582
1583 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1584 {
1585         pte_t *pte = (pte_t *)data;
1586
1587         /*
1588          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1589          * flag clear because MMU notifiers will have unmapped a huge PMD before
1590          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1591          * therefore stage2_set_pte() never needs to clear out a huge PMD
1592          * through this calling path.
1593          */
1594         stage2_set_pte(kvm, NULL, gpa, pte, 0);
1595         return 0;
1596 }
1597
1598
1599 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1600 {
1601         unsigned long end = hva + PAGE_SIZE;
1602         pte_t stage2_pte;
1603
1604         if (!kvm->arch.pgd)
1605                 return;
1606
1607         trace_kvm_set_spte_hva(hva);
1608         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1609         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1610 }
1611
1612 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1613 {
1614         pmd_t *pmd;
1615         pte_t *pte;
1616
1617         pmd = stage2_get_pmd(kvm, NULL, gpa);
1618         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1619                 return 0;
1620
1621         if (pmd_thp_or_huge(*pmd))      /* THP, HugeTLB */
1622                 return stage2_pmdp_test_and_clear_young(pmd);
1623
1624         pte = pte_offset_kernel(pmd, gpa);
1625         if (pte_none(*pte))
1626                 return 0;
1627
1628         return stage2_ptep_test_and_clear_young(pte);
1629 }
1630
1631 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1632 {
1633         pmd_t *pmd;
1634         pte_t *pte;
1635
1636         pmd = stage2_get_pmd(kvm, NULL, gpa);
1637         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1638                 return 0;
1639
1640         if (pmd_thp_or_huge(*pmd))              /* THP, HugeTLB */
1641                 return pmd_young(*pmd);
1642
1643         pte = pte_offset_kernel(pmd, gpa);
1644         if (!pte_none(*pte))            /* Just a page... */
1645                 return pte_young(*pte);
1646
1647         return 0;
1648 }
1649
1650 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1651 {
1652         trace_kvm_age_hva(start, end);
1653         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1654 }
1655
1656 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1657 {
1658         trace_kvm_test_age_hva(hva);
1659         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1660 }
1661
1662 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1663 {
1664         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1665 }
1666
1667 phys_addr_t kvm_mmu_get_httbr(void)
1668 {
1669         if (__kvm_cpu_uses_extended_idmap())
1670                 return virt_to_phys(merged_hyp_pgd);
1671         else
1672                 return virt_to_phys(hyp_pgd);
1673 }
1674
1675 phys_addr_t kvm_get_idmap_vector(void)
1676 {
1677         return hyp_idmap_vector;
1678 }
1679
1680 phys_addr_t kvm_get_idmap_start(void)
1681 {
1682         return hyp_idmap_start;
1683 }
1684
1685 static int kvm_map_idmap_text(pgd_t *pgd)
1686 {
1687         int err;
1688
1689         /* Create the idmap in the boot page tables */
1690         err =   __create_hyp_mappings(pgd,
1691                                       hyp_idmap_start, hyp_idmap_end,
1692                                       __phys_to_pfn(hyp_idmap_start),
1693                                       PAGE_HYP_EXEC);
1694         if (err)
1695                 kvm_err("Failed to idmap %lx-%lx\n",
1696                         hyp_idmap_start, hyp_idmap_end);
1697
1698         return err;
1699 }
1700
1701 int kvm_mmu_init(void)
1702 {
1703         int err;
1704
1705         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1706         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1707         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1708
1709         /*
1710          * We rely on the linker script to ensure at build time that the HYP
1711          * init code does not cross a page boundary.
1712          */
1713         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1714
1715         kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
1716         kvm_info("HYP VA range: %lx:%lx\n",
1717                  kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1718
1719         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1720             hyp_idmap_start <  kern_hyp_va(~0UL) &&
1721             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1722                 /*
1723                  * The idmap page is intersecting with the VA space,
1724                  * it is not safe to continue further.
1725                  */
1726                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1727                 err = -EINVAL;
1728                 goto out;
1729         }
1730
1731         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1732         if (!hyp_pgd) {
1733                 kvm_err("Hyp mode PGD not allocated\n");
1734                 err = -ENOMEM;
1735                 goto out;
1736         }
1737
1738         if (__kvm_cpu_uses_extended_idmap()) {
1739                 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1740                                                          hyp_pgd_order);
1741                 if (!boot_hyp_pgd) {
1742                         kvm_err("Hyp boot PGD not allocated\n");
1743                         err = -ENOMEM;
1744                         goto out;
1745                 }
1746
1747                 err = kvm_map_idmap_text(boot_hyp_pgd);
1748                 if (err)
1749                         goto out;
1750
1751                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1752                 if (!merged_hyp_pgd) {
1753                         kvm_err("Failed to allocate extra HYP pgd\n");
1754                         goto out;
1755                 }
1756                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1757                                     hyp_idmap_start);
1758         } else {
1759                 err = kvm_map_idmap_text(hyp_pgd);
1760                 if (err)
1761                         goto out;
1762         }
1763
1764         return 0;
1765 out:
1766         free_hyp_pgds();
1767         return err;
1768 }
1769
1770 void kvm_arch_commit_memory_region(struct kvm *kvm,
1771                                    const struct kvm_userspace_memory_region *mem,
1772                                    const struct kvm_memory_slot *old,
1773                                    const struct kvm_memory_slot *new,
1774                                    enum kvm_mr_change change)
1775 {
1776         /*
1777          * At this point memslot has been committed and there is an
1778          * allocated dirty_bitmap[], dirty pages will be be tracked while the
1779          * memory slot is write protected.
1780          */
1781         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1782                 kvm_mmu_wp_memory_region(kvm, mem->slot);
1783 }
1784
1785 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1786                                    struct kvm_memory_slot *memslot,
1787                                    const struct kvm_userspace_memory_region *mem,
1788                                    enum kvm_mr_change change)
1789 {
1790         hva_t hva = mem->userspace_addr;
1791         hva_t reg_end = hva + mem->memory_size;
1792         bool writable = !(mem->flags & KVM_MEM_READONLY);
1793         int ret = 0;
1794
1795         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1796                         change != KVM_MR_FLAGS_ONLY)
1797                 return 0;
1798
1799         /*
1800          * Prevent userspace from creating a memory region outside of the IPA
1801          * space addressable by the KVM guest IPA space.
1802          */
1803         if (memslot->base_gfn + memslot->npages >=
1804             (KVM_PHYS_SIZE >> PAGE_SHIFT))
1805                 return -EFAULT;
1806
1807         /*
1808          * A memory region could potentially cover multiple VMAs, and any holes
1809          * between them, so iterate over all of them to find out if we can map
1810          * any of them right now.
1811          *
1812          *     +--------------------------------------------+
1813          * +---------------+----------------+   +----------------+
1814          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1815          * +---------------+----------------+   +----------------+
1816          *     |               memory region                |
1817          *     +--------------------------------------------+
1818          */
1819         do {
1820                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1821                 hva_t vm_start, vm_end;
1822
1823                 if (!vma || vma->vm_start >= reg_end)
1824                         break;
1825
1826                 /*
1827                  * Mapping a read-only VMA is only allowed if the
1828                  * memory region is configured as read-only.
1829                  */
1830                 if (writable && !(vma->vm_flags & VM_WRITE)) {
1831                         ret = -EPERM;
1832                         break;
1833                 }
1834
1835                 /*
1836                  * Take the intersection of this VMA with the memory region
1837                  */
1838                 vm_start = max(hva, vma->vm_start);
1839                 vm_end = min(reg_end, vma->vm_end);
1840
1841                 if (vma->vm_flags & VM_PFNMAP) {
1842                         gpa_t gpa = mem->guest_phys_addr +
1843                                     (vm_start - mem->userspace_addr);
1844                         phys_addr_t pa;
1845
1846                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1847                         pa += vm_start - vma->vm_start;
1848
1849                         /* IO region dirty page logging not allowed */
1850                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1851                                 return -EINVAL;
1852
1853                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1854                                                     vm_end - vm_start,
1855                                                     writable);
1856                         if (ret)
1857                                 break;
1858                 }
1859                 hva = vm_end;
1860         } while (hva < reg_end);
1861
1862         if (change == KVM_MR_FLAGS_ONLY)
1863                 return ret;
1864
1865         spin_lock(&kvm->mmu_lock);
1866         if (ret)
1867                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1868         else
1869                 stage2_flush_memslot(kvm, memslot);
1870         spin_unlock(&kvm->mmu_lock);
1871         return ret;
1872 }
1873
1874 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1875                            struct kvm_memory_slot *dont)
1876 {
1877 }
1878
1879 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1880                             unsigned long npages)
1881 {
1882         /*
1883          * Readonly memslots are not incoherent with the caches by definition,
1884          * but in practice, they are used mostly to emulate ROMs or NOR flashes
1885          * that the guest may consider devices and hence map as uncached.
1886          * To prevent incoherency issues in these cases, tag all readonly
1887          * regions as incoherent.
1888          */
1889         if (slot->flags & KVM_MEM_READONLY)
1890                 slot->flags |= KVM_MEMSLOT_INCOHERENT;
1891         return 0;
1892 }
1893
1894 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1895 {
1896 }
1897
1898 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1899 {
1900         kvm_free_stage2_pgd(kvm);
1901 }
1902
1903 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1904                                    struct kvm_memory_slot *slot)
1905 {
1906         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1907         phys_addr_t size = slot->npages << PAGE_SHIFT;
1908
1909         spin_lock(&kvm->mmu_lock);
1910         unmap_stage2_range(kvm, gpa, size);
1911         spin_unlock(&kvm->mmu_lock);
1912 }
1913
1914 /*
1915  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1916  *
1917  * Main problems:
1918  * - S/W ops are local to a CPU (not broadcast)
1919  * - We have line migration behind our back (speculation)
1920  * - System caches don't support S/W at all (damn!)
1921  *
1922  * In the face of the above, the best we can do is to try and convert
1923  * S/W ops to VA ops. Because the guest is not allowed to infer the
1924  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1925  * which is a rather good thing for us.
1926  *
1927  * Also, it is only used when turning caches on/off ("The expected
1928  * usage of the cache maintenance instructions that operate by set/way
1929  * is associated with the cache maintenance instructions associated
1930  * with the powerdown and powerup of caches, if this is required by
1931  * the implementation.").
1932  *
1933  * We use the following policy:
1934  *
1935  * - If we trap a S/W operation, we enable VM trapping to detect
1936  *   caches being turned on/off, and do a full clean.
1937  *
1938  * - We flush the caches on both caches being turned on and off.
1939  *
1940  * - Once the caches are enabled, we stop trapping VM ops.
1941  */
1942 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1943 {
1944         unsigned long hcr = vcpu_get_hcr(vcpu);
1945
1946         /*
1947          * If this is the first time we do a S/W operation
1948          * (i.e. HCR_TVM not set) flush the whole memory, and set the
1949          * VM trapping.
1950          *
1951          * Otherwise, rely on the VM trapping to wait for the MMU +
1952          * Caches to be turned off. At that point, we'll be able to
1953          * clean the caches again.
1954          */
1955         if (!(hcr & HCR_TVM)) {
1956                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1957                                         vcpu_has_cache_enabled(vcpu));
1958                 stage2_flush_vm(vcpu->kvm);
1959                 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1960         }
1961 }
1962
1963 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1964 {
1965         bool now_enabled = vcpu_has_cache_enabled(vcpu);
1966
1967         /*
1968          * If switching the MMU+caches on, need to invalidate the caches.
1969          * If switching it off, need to clean the caches.
1970          * Clean + invalidate does the trick always.
1971          */
1972         if (now_enabled != was_enabled)
1973                 stage2_flush_vm(vcpu->kvm);
1974
1975         /* Caches are now on, stop trapping VM ops (until a S/W op) */
1976         if (now_enabled)
1977                 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1978
1979         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1980 }