Merge branch 'work.splice_read' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/mmu_context.h>
28 #include <asm/processor.h>
29 #include <asm/sysreg.h>
30 #include <asm/virt.h>
31
32 unsigned long elf_hwcap __read_mostly;
33 EXPORT_SYMBOL_GPL(elf_hwcap);
34
35 #ifdef CONFIG_COMPAT
36 #define COMPAT_ELF_HWCAP_DEFAULT        \
37                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
38                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
39                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
40                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
41                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
42                                  COMPAT_HWCAP_LPAE)
43 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
44 unsigned int compat_elf_hwcap2 __read_mostly;
45 #endif
46
47 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
48
49 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
50 EXPORT_SYMBOL(cpu_hwcap_keys);
51
52 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
53         {                                               \
54                 .sign = SIGNED,                         \
55                 .strict = STRICT,                       \
56                 .type = TYPE,                           \
57                 .shift = SHIFT,                         \
58                 .width = WIDTH,                         \
59                 .safe_val = SAFE_VAL,                   \
60         }
61
62 /* Define a feature with unsigned values */
63 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
64         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
65
66 /* Define a feature with a signed value */
67 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
68         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
69
70 #define ARM64_FTR_END                                   \
71         {                                               \
72                 .width = 0,                             \
73         }
74
75 /* meta feature for alternatives */
76 static bool __maybe_unused
77 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
78
79
80 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
81         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
82         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
83         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
84         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
85         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
86         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
87         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
88         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
89         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
90         ARM64_FTR_END,
91 };
92
93 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
94         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
95         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
96         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
97         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
98         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
99         /* Linux doesn't care about the EL3 */
100         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
101         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
102         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
103         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
104         ARM64_FTR_END,
105 };
106
107 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
108         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
109         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
110         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
111         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
112         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
113         /* Linux shouldn't care about secure memory */
114         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
115         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
116         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
117         /*
118          * Differing PARange is fine as long as all peripherals and memory are mapped
119          * within the minimum PARange of all CPUs
120          */
121         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
122         ARM64_FTR_END,
123 };
124
125 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
126         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
127         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
129         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
130         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
131         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
132         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
133         ARM64_FTR_END,
134 };
135
136 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
137         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
138         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
139         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
140         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
141         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
142         ARM64_FTR_END,
143 };
144
145 static const struct arm64_ftr_bits ftr_ctr[] = {
146         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),        /* RAO */
147         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
148         ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),  /* CWG */
149         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),   /* ERG */
150         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),   /* DminLine */
151         /*
152          * Linux can handle differing I-cache policies. Userspace JITs will
153          * make use of *minLine.
154          * If we have differing I-cache policies, report it as the weakest - AIVIVT.
155          */
156         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_AIVIVT),  /* L1Ip */
157         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
158         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* IminLine */
159         ARM64_FTR_END,
160 };
161
162 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
163         .name           = "SYS_CTR_EL0",
164         .ftr_bits       = ftr_ctr
165 };
166
167 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
168         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf),    /* InnerShr */
169         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
170         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
171         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
172         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
173         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf),     /* OuterShr */
174         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
175         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
176         ARM64_FTR_END,
177 };
178
179 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
180         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
181         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
182         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
183         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
184         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
185         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
187         ARM64_FTR_END,
188 };
189
190 static const struct arm64_ftr_bits ftr_mvfr2[] = {
191         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
192         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
193         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
194         ARM64_FTR_END,
195 };
196
197 static const struct arm64_ftr_bits ftr_dczid[] = {
198         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
199         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
200         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
201         ARM64_FTR_END,
202 };
203
204
205 static const struct arm64_ftr_bits ftr_id_isar5[] = {
206         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
207         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
208         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
210         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
213         ARM64_FTR_END,
214 };
215
216 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
217         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
218         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
219         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
220         ARM64_FTR_END,
221 };
222
223 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
224         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
225         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
226         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
227         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
228         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
229         ARM64_FTR_END,
230 };
231
232 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
233         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
234         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),       /* PerfMon */
235         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
236         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
237         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
238         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
239         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
240         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
241         ARM64_FTR_END,
242 };
243
244 /*
245  * Common ftr bits for a 32bit register with all hidden, strict
246  * attributes, with 4bit feature fields and a default safe value of
247  * 0. Covers the following 32bit registers:
248  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
249  */
250 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
251         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
252         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
253         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
254         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
255         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
256         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
257         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
258         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
259         ARM64_FTR_END,
260 };
261
262 static const struct arm64_ftr_bits ftr_generic[] = {
263         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
264         ARM64_FTR_END,
265 };
266
267 static const struct arm64_ftr_bits ftr_generic32[] = {
268         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
269         ARM64_FTR_END,
270 };
271
272 static const struct arm64_ftr_bits ftr_aa64raz[] = {
273         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
274         ARM64_FTR_END,
275 };
276
277 #define ARM64_FTR_REG(id, table) {              \
278         .sys_id = id,                           \
279         .reg =  &(struct arm64_ftr_reg){        \
280                 .name = #id,                    \
281                 .ftr_bits = &((table)[0]),      \
282         }}
283
284 static const struct __ftr_reg_entry {
285         u32                     sys_id;
286         struct arm64_ftr_reg    *reg;
287 } arm64_ftr_regs[] = {
288
289         /* Op1 = 0, CRn = 0, CRm = 1 */
290         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
291         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
292         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
293         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
294         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
295         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
296         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
297
298         /* Op1 = 0, CRn = 0, CRm = 2 */
299         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
300         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
301         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
302         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
303         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
304         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
305         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
306
307         /* Op1 = 0, CRn = 0, CRm = 3 */
308         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
309         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
310         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
311
312         /* Op1 = 0, CRn = 0, CRm = 4 */
313         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
314         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
315
316         /* Op1 = 0, CRn = 0, CRm = 5 */
317         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
318         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
319
320         /* Op1 = 0, CRn = 0, CRm = 6 */
321         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
322         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
323
324         /* Op1 = 0, CRn = 0, CRm = 7 */
325         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
326         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
327         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
328
329         /* Op1 = 3, CRn = 0, CRm = 0 */
330         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
331         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
332
333         /* Op1 = 3, CRn = 14, CRm = 0 */
334         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
335 };
336
337 static int search_cmp_ftr_reg(const void *id, const void *regp)
338 {
339         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
340 }
341
342 /*
343  * get_arm64_ftr_reg - Lookup a feature register entry using its
344  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
345  * ascending order of sys_id , we use binary search to find a matching
346  * entry.
347  *
348  * returns - Upon success,  matching ftr_reg entry for id.
349  *         - NULL on failure. It is upto the caller to decide
350  *           the impact of a failure.
351  */
352 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
353 {
354         const struct __ftr_reg_entry *ret;
355
356         ret = bsearch((const void *)(unsigned long)sys_id,
357                         arm64_ftr_regs,
358                         ARRAY_SIZE(arm64_ftr_regs),
359                         sizeof(arm64_ftr_regs[0]),
360                         search_cmp_ftr_reg);
361         if (ret)
362                 return ret->reg;
363         return NULL;
364 }
365
366 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
367                                s64 ftr_val)
368 {
369         u64 mask = arm64_ftr_mask(ftrp);
370
371         reg &= ~mask;
372         reg |= (ftr_val << ftrp->shift) & mask;
373         return reg;
374 }
375
376 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
377                                 s64 cur)
378 {
379         s64 ret = 0;
380
381         switch (ftrp->type) {
382         case FTR_EXACT:
383                 ret = ftrp->safe_val;
384                 break;
385         case FTR_LOWER_SAFE:
386                 ret = new < cur ? new : cur;
387                 break;
388         case FTR_HIGHER_SAFE:
389                 ret = new > cur ? new : cur;
390                 break;
391         default:
392                 BUG();
393         }
394
395         return ret;
396 }
397
398 static void __init sort_ftr_regs(void)
399 {
400         int i;
401
402         /* Check that the array is sorted so that we can do the binary search */
403         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
404                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
405 }
406
407 /*
408  * Initialise the CPU feature register from Boot CPU values.
409  * Also initiliases the strict_mask for the register.
410  */
411 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
412 {
413         u64 val = 0;
414         u64 strict_mask = ~0x0ULL;
415         const struct arm64_ftr_bits *ftrp;
416         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
417
418         BUG_ON(!reg);
419
420         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
421                 s64 ftr_new = arm64_ftr_value(ftrp, new);
422
423                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
424                 if (!ftrp->strict)
425                         strict_mask &= ~arm64_ftr_mask(ftrp);
426         }
427         reg->sys_val = val;
428         reg->strict_mask = strict_mask;
429 }
430
431 void __init init_cpu_features(struct cpuinfo_arm64 *info)
432 {
433         /* Before we start using the tables, make sure it is sorted */
434         sort_ftr_regs();
435
436         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
437         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
438         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
439         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
440         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
441         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
442         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
443         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
444         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
445         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
446         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
447         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
448
449         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
450                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
451                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
452                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
453                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
454                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
455                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
456                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
457                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
458                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
459                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
460                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
461                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
462                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
463                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
464                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
465                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
466         }
467
468 }
469
470 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
471 {
472         const struct arm64_ftr_bits *ftrp;
473
474         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
475                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
476                 s64 ftr_new = arm64_ftr_value(ftrp, new);
477
478                 if (ftr_cur == ftr_new)
479                         continue;
480                 /* Find a safe value */
481                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
482                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
483         }
484
485 }
486
487 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
488 {
489         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
490
491         BUG_ON(!regp);
492         update_cpu_ftr_reg(regp, val);
493         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
494                 return 0;
495         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
496                         regp->name, boot, cpu, val);
497         return 1;
498 }
499
500 /*
501  * Update system wide CPU feature registers with the values from a
502  * non-boot CPU. Also performs SANITY checks to make sure that there
503  * aren't any insane variations from that of the boot CPU.
504  */
505 void update_cpu_features(int cpu,
506                          struct cpuinfo_arm64 *info,
507                          struct cpuinfo_arm64 *boot)
508 {
509         int taint = 0;
510
511         /*
512          * The kernel can handle differing I-cache policies, but otherwise
513          * caches should look identical. Userspace JITs will make use of
514          * *minLine.
515          */
516         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
517                                       info->reg_ctr, boot->reg_ctr);
518
519         /*
520          * Userspace may perform DC ZVA instructions. Mismatched block sizes
521          * could result in too much or too little memory being zeroed if a
522          * process is preempted and migrated between CPUs.
523          */
524         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
525                                       info->reg_dczid, boot->reg_dczid);
526
527         /* If different, timekeeping will be broken (especially with KVM) */
528         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
529                                       info->reg_cntfrq, boot->reg_cntfrq);
530
531         /*
532          * The kernel uses self-hosted debug features and expects CPUs to
533          * support identical debug features. We presently need CTX_CMPs, WRPs,
534          * and BRPs to be identical.
535          * ID_AA64DFR1 is currently RES0.
536          */
537         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
538                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
539         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
540                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
541         /*
542          * Even in big.LITTLE, processors should be identical instruction-set
543          * wise.
544          */
545         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
546                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
547         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
548                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
549
550         /*
551          * Differing PARange support is fine as long as all peripherals and
552          * memory are mapped within the minimum PARange of all CPUs.
553          * Linux should not care about secure memory.
554          */
555         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
556                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
557         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
558                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
559         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
560                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
561
562         /*
563          * EL3 is not our concern.
564          * ID_AA64PFR1 is currently RES0.
565          */
566         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
567                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
568         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
569                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
570
571         /*
572          * If we have AArch32, we care about 32-bit features for compat.
573          * If the system doesn't support AArch32, don't update them.
574          */
575         if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
576                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
577
578                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
579                                         info->reg_id_dfr0, boot->reg_id_dfr0);
580                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
581                                         info->reg_id_isar0, boot->reg_id_isar0);
582                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
583                                         info->reg_id_isar1, boot->reg_id_isar1);
584                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
585                                         info->reg_id_isar2, boot->reg_id_isar2);
586                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
587                                         info->reg_id_isar3, boot->reg_id_isar3);
588                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
589                                         info->reg_id_isar4, boot->reg_id_isar4);
590                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
591                                         info->reg_id_isar5, boot->reg_id_isar5);
592
593                 /*
594                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
595                  * ACTLR formats could differ across CPUs and therefore would have to
596                  * be trapped for virtualization anyway.
597                  */
598                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
599                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
600                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
601                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
602                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
603                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
604                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
605                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
606                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
607                                         info->reg_id_pfr0, boot->reg_id_pfr0);
608                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
609                                         info->reg_id_pfr1, boot->reg_id_pfr1);
610                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
611                                         info->reg_mvfr0, boot->reg_mvfr0);
612                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
613                                         info->reg_mvfr1, boot->reg_mvfr1);
614                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
615                                         info->reg_mvfr2, boot->reg_mvfr2);
616         }
617
618         /*
619          * Mismatched CPU features are a recipe for disaster. Don't even
620          * pretend to support them.
621          */
622         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
623                         "Unsupported CPU feature variation.\n");
624 }
625
626 u64 read_system_reg(u32 id)
627 {
628         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
629
630         /* We shouldn't get a request for an unsupported register */
631         BUG_ON(!regp);
632         return regp->sys_val;
633 }
634
635 /*
636  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
637  * Read the system register on the current CPU
638  */
639 static u64 __raw_read_system_reg(u32 sys_id)
640 {
641         switch (sys_id) {
642         case SYS_ID_PFR0_EL1:           return read_cpuid(ID_PFR0_EL1);
643         case SYS_ID_PFR1_EL1:           return read_cpuid(ID_PFR1_EL1);
644         case SYS_ID_DFR0_EL1:           return read_cpuid(ID_DFR0_EL1);
645         case SYS_ID_MMFR0_EL1:          return read_cpuid(ID_MMFR0_EL1);
646         case SYS_ID_MMFR1_EL1:          return read_cpuid(ID_MMFR1_EL1);
647         case SYS_ID_MMFR2_EL1:          return read_cpuid(ID_MMFR2_EL1);
648         case SYS_ID_MMFR3_EL1:          return read_cpuid(ID_MMFR3_EL1);
649         case SYS_ID_ISAR0_EL1:          return read_cpuid(ID_ISAR0_EL1);
650         case SYS_ID_ISAR1_EL1:          return read_cpuid(ID_ISAR1_EL1);
651         case SYS_ID_ISAR2_EL1:          return read_cpuid(ID_ISAR2_EL1);
652         case SYS_ID_ISAR3_EL1:          return read_cpuid(ID_ISAR3_EL1);
653         case SYS_ID_ISAR4_EL1:          return read_cpuid(ID_ISAR4_EL1);
654         case SYS_ID_ISAR5_EL1:          return read_cpuid(ID_ISAR4_EL1);
655         case SYS_MVFR0_EL1:             return read_cpuid(MVFR0_EL1);
656         case SYS_MVFR1_EL1:             return read_cpuid(MVFR1_EL1);
657         case SYS_MVFR2_EL1:             return read_cpuid(MVFR2_EL1);
658
659         case SYS_ID_AA64PFR0_EL1:       return read_cpuid(ID_AA64PFR0_EL1);
660         case SYS_ID_AA64PFR1_EL1:       return read_cpuid(ID_AA64PFR0_EL1);
661         case SYS_ID_AA64DFR0_EL1:       return read_cpuid(ID_AA64DFR0_EL1);
662         case SYS_ID_AA64DFR1_EL1:       return read_cpuid(ID_AA64DFR0_EL1);
663         case SYS_ID_AA64MMFR0_EL1:      return read_cpuid(ID_AA64MMFR0_EL1);
664         case SYS_ID_AA64MMFR1_EL1:      return read_cpuid(ID_AA64MMFR1_EL1);
665         case SYS_ID_AA64MMFR2_EL1:      return read_cpuid(ID_AA64MMFR2_EL1);
666         case SYS_ID_AA64ISAR0_EL1:      return read_cpuid(ID_AA64ISAR0_EL1);
667         case SYS_ID_AA64ISAR1_EL1:      return read_cpuid(ID_AA64ISAR1_EL1);
668
669         case SYS_CNTFRQ_EL0:            return read_cpuid(CNTFRQ_EL0);
670         case SYS_CTR_EL0:               return read_cpuid(CTR_EL0);
671         case SYS_DCZID_EL0:             return read_cpuid(DCZID_EL0);
672         default:
673                 BUG();
674                 return 0;
675         }
676 }
677
678 #include <linux/irqchip/arm-gic-v3.h>
679
680 static bool
681 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
682 {
683         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
684
685         return val >= entry->min_field_value;
686 }
687
688 static bool
689 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
690 {
691         u64 val;
692
693         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
694         if (scope == SCOPE_SYSTEM)
695                 val = read_system_reg(entry->sys_reg);
696         else
697                 val = __raw_read_system_reg(entry->sys_reg);
698
699         return feature_matches(val, entry);
700 }
701
702 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
703 {
704         bool has_sre;
705
706         if (!has_cpuid_feature(entry, scope))
707                 return false;
708
709         has_sre = gic_enable_sre();
710         if (!has_sre)
711                 pr_warn_once("%s present but disabled by higher exception level\n",
712                              entry->desc);
713
714         return has_sre;
715 }
716
717 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
718 {
719         u32 midr = read_cpuid_id();
720         u32 rv_min, rv_max;
721
722         /* Cavium ThunderX pass 1.x and 2.x */
723         rv_min = 0;
724         rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
725
726         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
727 }
728
729 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
730 {
731         return is_kernel_in_hyp_mode();
732 }
733
734 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
735                            int __unused)
736 {
737         phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);
738
739         /*
740          * Activate the lower HYP offset only if:
741          * - the idmap doesn't clash with it,
742          * - the kernel is not running at EL2.
743          */
744         return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
745 }
746
747 static const struct arm64_cpu_capabilities arm64_features[] = {
748         {
749                 .desc = "GIC system register CPU interface",
750                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
751                 .def_scope = SCOPE_SYSTEM,
752                 .matches = has_useable_gicv3_cpuif,
753                 .sys_reg = SYS_ID_AA64PFR0_EL1,
754                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
755                 .sign = FTR_UNSIGNED,
756                 .min_field_value = 1,
757         },
758 #ifdef CONFIG_ARM64_PAN
759         {
760                 .desc = "Privileged Access Never",
761                 .capability = ARM64_HAS_PAN,
762                 .def_scope = SCOPE_SYSTEM,
763                 .matches = has_cpuid_feature,
764                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
765                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
766                 .sign = FTR_UNSIGNED,
767                 .min_field_value = 1,
768                 .enable = cpu_enable_pan,
769         },
770 #endif /* CONFIG_ARM64_PAN */
771 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
772         {
773                 .desc = "LSE atomic instructions",
774                 .capability = ARM64_HAS_LSE_ATOMICS,
775                 .def_scope = SCOPE_SYSTEM,
776                 .matches = has_cpuid_feature,
777                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
778                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
779                 .sign = FTR_UNSIGNED,
780                 .min_field_value = 2,
781         },
782 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
783         {
784                 .desc = "Software prefetching using PRFM",
785                 .capability = ARM64_HAS_NO_HW_PREFETCH,
786                 .def_scope = SCOPE_SYSTEM,
787                 .matches = has_no_hw_prefetch,
788         },
789 #ifdef CONFIG_ARM64_UAO
790         {
791                 .desc = "User Access Override",
792                 .capability = ARM64_HAS_UAO,
793                 .def_scope = SCOPE_SYSTEM,
794                 .matches = has_cpuid_feature,
795                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
796                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
797                 .min_field_value = 1,
798                 .enable = cpu_enable_uao,
799         },
800 #endif /* CONFIG_ARM64_UAO */
801 #ifdef CONFIG_ARM64_PAN
802         {
803                 .capability = ARM64_ALT_PAN_NOT_UAO,
804                 .def_scope = SCOPE_SYSTEM,
805                 .matches = cpufeature_pan_not_uao,
806         },
807 #endif /* CONFIG_ARM64_PAN */
808         {
809                 .desc = "Virtualization Host Extensions",
810                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
811                 .def_scope = SCOPE_SYSTEM,
812                 .matches = runs_at_el2,
813         },
814         {
815                 .desc = "32-bit EL0 Support",
816                 .capability = ARM64_HAS_32BIT_EL0,
817                 .def_scope = SCOPE_SYSTEM,
818                 .matches = has_cpuid_feature,
819                 .sys_reg = SYS_ID_AA64PFR0_EL1,
820                 .sign = FTR_UNSIGNED,
821                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
822                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
823         },
824         {
825                 .desc = "Reduced HYP mapping offset",
826                 .capability = ARM64_HYP_OFFSET_LOW,
827                 .def_scope = SCOPE_SYSTEM,
828                 .matches = hyp_offset_low,
829         },
830         {},
831 };
832
833 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
834         {                                                       \
835                 .desc = #cap,                                   \
836                 .def_scope = SCOPE_SYSTEM,                      \
837                 .matches = has_cpuid_feature,                   \
838                 .sys_reg = reg,                                 \
839                 .field_pos = field,                             \
840                 .sign = s,                                      \
841                 .min_field_value = min_value,                   \
842                 .hwcap_type = type,                             \
843                 .hwcap = cap,                                   \
844         }
845
846 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
847         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
848         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
849         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
850         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
851         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
852         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
853         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
854         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
855         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
856         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
857         {},
858 };
859
860 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
861 #ifdef CONFIG_COMPAT
862         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
863         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
864         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
865         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
866         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
867 #endif
868         {},
869 };
870
871 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
872 {
873         switch (cap->hwcap_type) {
874         case CAP_HWCAP:
875                 elf_hwcap |= cap->hwcap;
876                 break;
877 #ifdef CONFIG_COMPAT
878         case CAP_COMPAT_HWCAP:
879                 compat_elf_hwcap |= (u32)cap->hwcap;
880                 break;
881         case CAP_COMPAT_HWCAP2:
882                 compat_elf_hwcap2 |= (u32)cap->hwcap;
883                 break;
884 #endif
885         default:
886                 WARN_ON(1);
887                 break;
888         }
889 }
890
891 /* Check if we have a particular HWCAP enabled */
892 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
893 {
894         bool rc;
895
896         switch (cap->hwcap_type) {
897         case CAP_HWCAP:
898                 rc = (elf_hwcap & cap->hwcap) != 0;
899                 break;
900 #ifdef CONFIG_COMPAT
901         case CAP_COMPAT_HWCAP:
902                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
903                 break;
904         case CAP_COMPAT_HWCAP2:
905                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
906                 break;
907 #endif
908         default:
909                 WARN_ON(1);
910                 rc = false;
911         }
912
913         return rc;
914 }
915
916 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
917 {
918         for (; hwcaps->matches; hwcaps++)
919                 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
920                         cap_set_elf_hwcap(hwcaps);
921 }
922
923 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
924                             const char *info)
925 {
926         for (; caps->matches; caps++) {
927                 if (!caps->matches(caps, caps->def_scope))
928                         continue;
929
930                 if (!cpus_have_cap(caps->capability) && caps->desc)
931                         pr_info("%s %s\n", info, caps->desc);
932                 cpus_set_cap(caps->capability);
933         }
934 }
935
936 /*
937  * Run through the enabled capabilities and enable() it on all active
938  * CPUs
939  */
940 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
941 {
942         for (; caps->matches; caps++)
943                 if (caps->enable && cpus_have_cap(caps->capability))
944                         on_each_cpu(caps->enable, NULL, true);
945 }
946
947 /*
948  * Flag to indicate if we have computed the system wide
949  * capabilities based on the boot time active CPUs. This
950  * will be used to determine if a new booting CPU should
951  * go through the verification process to make sure that it
952  * supports the system capabilities, without using a hotplug
953  * notifier.
954  */
955 static bool sys_caps_initialised;
956
957 static inline void set_sys_caps_initialised(void)
958 {
959         sys_caps_initialised = true;
960 }
961
962 /*
963  * Check for CPU features that are used in early boot
964  * based on the Boot CPU value.
965  */
966 static void check_early_cpu_features(void)
967 {
968         verify_cpu_run_el();
969         verify_cpu_asid_bits();
970 }
971
972 static void
973 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
974 {
975
976         for (; caps->matches; caps++)
977                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
978                         pr_crit("CPU%d: missing HWCAP: %s\n",
979                                         smp_processor_id(), caps->desc);
980                         cpu_die_early();
981                 }
982 }
983
984 static void
985 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
986 {
987         for (; caps->matches; caps++) {
988                 if (!cpus_have_cap(caps->capability))
989                         continue;
990                 /*
991                  * If the new CPU misses an advertised feature, we cannot proceed
992                  * further, park the cpu.
993                  */
994                 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
995                         pr_crit("CPU%d: missing feature: %s\n",
996                                         smp_processor_id(), caps->desc);
997                         cpu_die_early();
998                 }
999                 if (caps->enable)
1000                         caps->enable(NULL);
1001         }
1002 }
1003
1004 /*
1005  * Run through the enabled system capabilities and enable() it on this CPU.
1006  * The capabilities were decided based on the available CPUs at the boot time.
1007  * Any new CPU should match the system wide status of the capability. If the
1008  * new CPU doesn't have a capability which the system now has enabled, we
1009  * cannot do anything to fix it up and could cause unexpected failures. So
1010  * we park the CPU.
1011  */
1012 static void verify_local_cpu_capabilities(void)
1013 {
1014         verify_local_cpu_errata_workarounds();
1015         verify_local_cpu_features(arm64_features);
1016         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1017         if (system_supports_32bit_el0())
1018                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1019 }
1020
1021 void check_local_cpu_capabilities(void)
1022 {
1023         /*
1024          * All secondary CPUs should conform to the early CPU features
1025          * in use by the kernel based on boot CPU.
1026          */
1027         check_early_cpu_features();
1028
1029         /*
1030          * If we haven't finalised the system capabilities, this CPU gets
1031          * a chance to update the errata work arounds.
1032          * Otherwise, this CPU should verify that it has all the system
1033          * advertised capabilities.
1034          */
1035         if (!sys_caps_initialised)
1036                 update_cpu_errata_workarounds();
1037         else
1038                 verify_local_cpu_capabilities();
1039 }
1040
1041 static void __init setup_feature_capabilities(void)
1042 {
1043         update_cpu_capabilities(arm64_features, "detected feature:");
1044         enable_cpu_capabilities(arm64_features);
1045 }
1046
1047 /*
1048  * Check if the current CPU has a given feature capability.
1049  * Should be called from non-preemptible context.
1050  */
1051 bool this_cpu_has_cap(unsigned int cap)
1052 {
1053         const struct arm64_cpu_capabilities *caps;
1054
1055         if (WARN_ON(preemptible()))
1056                 return false;
1057
1058         for (caps = arm64_features; caps->desc; caps++)
1059                 if (caps->capability == cap && caps->matches)
1060                         return caps->matches(caps, SCOPE_LOCAL_CPU);
1061
1062         return false;
1063 }
1064
1065 void __init setup_cpu_features(void)
1066 {
1067         u32 cwg;
1068         int cls;
1069
1070         /* Set the CPU feature capabilies */
1071         setup_feature_capabilities();
1072         enable_errata_workarounds();
1073         setup_elf_hwcaps(arm64_elf_hwcaps);
1074
1075         if (system_supports_32bit_el0())
1076                 setup_elf_hwcaps(compat_elf_hwcaps);
1077
1078         /* Advertise that we have computed the system capabilities */
1079         set_sys_caps_initialised();
1080
1081         /*
1082          * Check for sane CTR_EL0.CWG value.
1083          */
1084         cwg = cache_type_cwg();
1085         cls = cache_line_size();
1086         if (!cwg)
1087                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1088                         cls);
1089         if (L1_CACHE_BYTES < cls)
1090                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1091                         L1_CACHE_BYTES, cls);
1092 }
1093
1094 static bool __maybe_unused
1095 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1096 {
1097         return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
1098 }