Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / powerpc / kernel / rtas-proc.c
1 /*
2  *   Copyright (C) 2000 Tilmann Bitterberg
3  *   (tilmann@bitterberg.de)
4  *
5  *   RTAS (Runtime Abstraction Services) stuff
6  *   Intention is to provide a clean user interface
7  *   to use the RTAS.
8  *
9  *   TODO:
10  *   Split off a header file and maybe move it to a different
11  *   location. Write Documentation on what the /proc/rtas/ entries
12  *   actually do.
13  */
14
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/proc_fs.h>
18 #include <linux/stat.h>
19 #include <linux/ctype.h>
20 #include <linux/time.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/seq_file.h>
24 #include <linux/bitops.h>
25 #include <linux/rtc.h>
26
27 #include <asm/uaccess.h>
28 #include <asm/processor.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/rtas.h>
32 #include <asm/machdep.h> /* for ppc_md */
33 #include <asm/time.h>
34
35 /* Token for Sensors */
36 #define KEY_SWITCH              0x0001
37 #define ENCLOSURE_SWITCH        0x0002
38 #define THERMAL_SENSOR          0x0003
39 #define LID_STATUS              0x0004
40 #define POWER_SOURCE            0x0005
41 #define BATTERY_VOLTAGE         0x0006
42 #define BATTERY_REMAINING       0x0007
43 #define BATTERY_PERCENTAGE      0x0008
44 #define EPOW_SENSOR             0x0009
45 #define BATTERY_CYCLESTATE      0x000a
46 #define BATTERY_CHARGING        0x000b
47
48 /* IBM specific sensors */
49 #define IBM_SURVEILLANCE        0x2328 /* 9000 */
50 #define IBM_FANRPM              0x2329 /* 9001 */
51 #define IBM_VOLTAGE             0x232a /* 9002 */
52 #define IBM_DRCONNECTOR         0x232b /* 9003 */
53 #define IBM_POWERSUPPLY         0x232c /* 9004 */
54
55 /* Status return values */
56 #define SENSOR_CRITICAL_HIGH    13
57 #define SENSOR_WARNING_HIGH     12
58 #define SENSOR_NORMAL           11
59 #define SENSOR_WARNING_LOW      10
60 #define SENSOR_CRITICAL_LOW      9
61 #define SENSOR_SUCCESS           0
62 #define SENSOR_HW_ERROR         -1
63 #define SENSOR_BUSY             -2
64 #define SENSOR_NOT_EXIST        -3
65 #define SENSOR_DR_ENTITY        -9000
66
67 /* Location Codes */
68 #define LOC_SCSI_DEV_ADDR       'A'
69 #define LOC_SCSI_DEV_LOC        'B'
70 #define LOC_CPU                 'C'
71 #define LOC_DISKETTE            'D'
72 #define LOC_ETHERNET            'E'
73 #define LOC_FAN                 'F'
74 #define LOC_GRAPHICS            'G'
75 /* reserved / not used          'H' */
76 #define LOC_IO_ADAPTER          'I'
77 /* reserved / not used          'J' */
78 #define LOC_KEYBOARD            'K'
79 #define LOC_LCD                 'L'
80 #define LOC_MEMORY              'M'
81 #define LOC_NV_MEMORY           'N'
82 #define LOC_MOUSE               'O'
83 #define LOC_PLANAR              'P'
84 #define LOC_OTHER_IO            'Q'
85 #define LOC_PARALLEL            'R'
86 #define LOC_SERIAL              'S'
87 #define LOC_DEAD_RING           'T'
88 #define LOC_RACKMOUNTED         'U' /* for _u_nit is rack mounted */
89 #define LOC_VOLTAGE             'V'
90 #define LOC_SWITCH_ADAPTER      'W'
91 #define LOC_OTHER               'X'
92 #define LOC_FIRMWARE            'Y'
93 #define LOC_SCSI                'Z'
94
95 /* Tokens for indicators */
96 #define TONE_FREQUENCY          0x0001 /* 0 - 1000 (HZ)*/
97 #define TONE_VOLUME             0x0002 /* 0 - 100 (%) */
98 #define SYSTEM_POWER_STATE      0x0003 
99 #define WARNING_LIGHT           0x0004
100 #define DISK_ACTIVITY_LIGHT     0x0005
101 #define HEX_DISPLAY_UNIT        0x0006
102 #define BATTERY_WARNING_TIME    0x0007
103 #define CONDITION_CYCLE_REQUEST 0x0008
104 #define SURVEILLANCE_INDICATOR  0x2328 /* 9000 */
105 #define DR_ACTION               0x2329 /* 9001 */
106 #define DR_INDICATOR            0x232a /* 9002 */
107 /* 9003 - 9004: Vendor specific */
108 /* 9006 - 9999: Vendor specific */
109
110 /* other */
111 #define MAX_SENSORS              17  /* I only know of 17 sensors */    
112 #define MAX_LINELENGTH          256
113 #define SENSOR_PREFIX           "ibm,sensor-"
114 #define cel_to_fahr(x)          ((x*9/5)+32)
115
116 struct individual_sensor {
117         unsigned int token;
118         unsigned int quant;
119 };
120
121 struct rtas_sensors {
122         struct individual_sensor sensor[MAX_SENSORS];
123         unsigned int quant;
124 };
125
126 /* Globals */
127 static struct rtas_sensors sensors;
128 static struct device_node *rtas_node = NULL;
129 static unsigned long power_on_time = 0; /* Save the time the user set */
130 static char progress_led[MAX_LINELENGTH];
131
132 static unsigned long rtas_tone_frequency = 1000;
133 static unsigned long rtas_tone_volume = 0;
134
135 /* ****************************************************************** */
136 /* Declarations */
137 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
138 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
139 static ssize_t ppc_rtas_clock_write(struct file *file,
140                 const char __user *buf, size_t count, loff_t *ppos);
141 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
142 static ssize_t ppc_rtas_progress_write(struct file *file,
143                 const char __user *buf, size_t count, loff_t *ppos);
144 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
145 static ssize_t ppc_rtas_poweron_write(struct file *file,
146                 const char __user *buf, size_t count, loff_t *ppos);
147
148 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
149                 const char __user *buf, size_t count, loff_t *ppos);
150 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
151 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
152                 const char __user *buf, size_t count, loff_t *ppos);
153 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
154 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
155
156 static int sensors_open(struct inode *inode, struct file *file)
157 {
158         return single_open(file, ppc_rtas_sensors_show, NULL);
159 }
160
161 static const struct file_operations ppc_rtas_sensors_operations = {
162         .open           = sensors_open,
163         .read           = seq_read,
164         .llseek         = seq_lseek,
165         .release        = single_release,
166 };
167
168 static int poweron_open(struct inode *inode, struct file *file)
169 {
170         return single_open(file, ppc_rtas_poweron_show, NULL);
171 }
172
173 static const struct file_operations ppc_rtas_poweron_operations = {
174         .open           = poweron_open,
175         .read           = seq_read,
176         .llseek         = seq_lseek,
177         .write          = ppc_rtas_poweron_write,
178         .release        = single_release,
179 };
180
181 static int progress_open(struct inode *inode, struct file *file)
182 {
183         return single_open(file, ppc_rtas_progress_show, NULL);
184 }
185
186 static const struct file_operations ppc_rtas_progress_operations = {
187         .open           = progress_open,
188         .read           = seq_read,
189         .llseek         = seq_lseek,
190         .write          = ppc_rtas_progress_write,
191         .release        = single_release,
192 };
193
194 static int clock_open(struct inode *inode, struct file *file)
195 {
196         return single_open(file, ppc_rtas_clock_show, NULL);
197 }
198
199 static const struct file_operations ppc_rtas_clock_operations = {
200         .open           = clock_open,
201         .read           = seq_read,
202         .llseek         = seq_lseek,
203         .write          = ppc_rtas_clock_write,
204         .release        = single_release,
205 };
206
207 static int tone_freq_open(struct inode *inode, struct file *file)
208 {
209         return single_open(file, ppc_rtas_tone_freq_show, NULL);
210 }
211
212 static const struct file_operations ppc_rtas_tone_freq_operations = {
213         .open           = tone_freq_open,
214         .read           = seq_read,
215         .llseek         = seq_lseek,
216         .write          = ppc_rtas_tone_freq_write,
217         .release        = single_release,
218 };
219
220 static int tone_volume_open(struct inode *inode, struct file *file)
221 {
222         return single_open(file, ppc_rtas_tone_volume_show, NULL);
223 }
224
225 static const struct file_operations ppc_rtas_tone_volume_operations = {
226         .open           = tone_volume_open,
227         .read           = seq_read,
228         .llseek         = seq_lseek,
229         .write          = ppc_rtas_tone_volume_write,
230         .release        = single_release,
231 };
232
233 static int rmo_buf_open(struct inode *inode, struct file *file)
234 {
235         return single_open(file, ppc_rtas_rmo_buf_show, NULL);
236 }
237
238 static const struct file_operations ppc_rtas_rmo_buf_ops = {
239         .open           = rmo_buf_open,
240         .read           = seq_read,
241         .llseek         = seq_lseek,
242         .release        = single_release,
243 };
244
245 static int ppc_rtas_find_all_sensors(void);
246 static void ppc_rtas_process_sensor(struct seq_file *m,
247         struct individual_sensor *s, int state, int error, const char *loc);
248 static char *ppc_rtas_process_error(int error);
249 static void get_location_code(struct seq_file *m,
250         struct individual_sensor *s, const char *loc);
251 static void check_location_string(struct seq_file *m, const char *c);
252 static void check_location(struct seq_file *m, const char *c);
253
254 static int __init proc_rtas_init(void)
255 {
256         if (!machine_is(pseries))
257                 return -ENODEV;
258
259         rtas_node = of_find_node_by_name(NULL, "rtas");
260         if (rtas_node == NULL)
261                 return -ENODEV;
262
263         proc_create("powerpc/rtas/progress", S_IRUGO|S_IWUSR, NULL,
264                     &ppc_rtas_progress_operations);
265         proc_create("powerpc/rtas/clock", S_IRUGO|S_IWUSR, NULL,
266                     &ppc_rtas_clock_operations);
267         proc_create("powerpc/rtas/poweron", S_IWUSR|S_IRUGO, NULL,
268                     &ppc_rtas_poweron_operations);
269         proc_create("powerpc/rtas/sensors", S_IRUGO, NULL,
270                     &ppc_rtas_sensors_operations);
271         proc_create("powerpc/rtas/frequency", S_IWUSR|S_IRUGO, NULL,
272                     &ppc_rtas_tone_freq_operations);
273         proc_create("powerpc/rtas/volume", S_IWUSR|S_IRUGO, NULL,
274                     &ppc_rtas_tone_volume_operations);
275         proc_create("powerpc/rtas/rmo_buffer", S_IRUSR, NULL,
276                     &ppc_rtas_rmo_buf_ops);
277         return 0;
278 }
279
280 __initcall(proc_rtas_init);
281
282 static int parse_number(const char __user *p, size_t count, unsigned long *val)
283 {
284         char buf[40];
285         char *end;
286
287         if (count > 39)
288                 return -EINVAL;
289
290         if (copy_from_user(buf, p, count))
291                 return -EFAULT;
292
293         buf[count] = 0;
294
295         *val = simple_strtoul(buf, &end, 10);
296         if (*end && *end != '\n')
297                 return -EINVAL;
298
299         return 0;
300 }
301
302 /* ****************************************************************** */
303 /* POWER-ON-TIME                                                      */
304 /* ****************************************************************** */
305 static ssize_t ppc_rtas_poweron_write(struct file *file,
306                 const char __user *buf, size_t count, loff_t *ppos)
307 {
308         struct rtc_time tm;
309         unsigned long nowtime;
310         int error = parse_number(buf, count, &nowtime);
311         if (error)
312                 return error;
313
314         power_on_time = nowtime; /* save the time */
315
316         to_tm(nowtime, &tm);
317
318         error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 
319                         tm.tm_year, tm.tm_mon, tm.tm_mday, 
320                         tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
321         if (error)
322                 printk(KERN_WARNING "error: setting poweron time returned: %s\n", 
323                                 ppc_rtas_process_error(error));
324         return count;
325 }
326 /* ****************************************************************** */
327 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
328 {
329         if (power_on_time == 0)
330                 seq_printf(m, "Power on time not set\n");
331         else
332                 seq_printf(m, "%lu\n",power_on_time);
333         return 0;
334 }
335
336 /* ****************************************************************** */
337 /* PROGRESS                                                           */
338 /* ****************************************************************** */
339 static ssize_t ppc_rtas_progress_write(struct file *file,
340                 const char __user *buf, size_t count, loff_t *ppos)
341 {
342         unsigned long hex;
343
344         if (count >= MAX_LINELENGTH)
345                 count = MAX_LINELENGTH -1;
346         if (copy_from_user(progress_led, buf, count)) { /* save the string */
347                 return -EFAULT;
348         }
349         progress_led[count] = 0;
350
351         /* Lets see if the user passed hexdigits */
352         hex = simple_strtoul(progress_led, NULL, 10);
353
354         rtas_progress ((char *)progress_led, hex);
355         return count;
356
357         /* clear the line */
358         /* rtas_progress("                   ", 0xffff);*/
359 }
360 /* ****************************************************************** */
361 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
362 {
363         if (progress_led[0])
364                 seq_printf(m, "%s\n", progress_led);
365         return 0;
366 }
367
368 /* ****************************************************************** */
369 /* CLOCK                                                              */
370 /* ****************************************************************** */
371 static ssize_t ppc_rtas_clock_write(struct file *file,
372                 const char __user *buf, size_t count, loff_t *ppos)
373 {
374         struct rtc_time tm;
375         unsigned long nowtime;
376         int error = parse_number(buf, count, &nowtime);
377         if (error)
378                 return error;
379
380         to_tm(nowtime, &tm);
381         error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 
382                         tm.tm_year, tm.tm_mon, tm.tm_mday, 
383                         tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
384         if (error)
385                 printk(KERN_WARNING "error: setting the clock returned: %s\n", 
386                                 ppc_rtas_process_error(error));
387         return count;
388 }
389 /* ****************************************************************** */
390 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
391 {
392         int ret[8];
393         int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
394
395         if (error) {
396                 printk(KERN_WARNING "error: reading the clock returned: %s\n", 
397                                 ppc_rtas_process_error(error));
398                 seq_printf(m, "0");
399         } else { 
400                 unsigned int year, mon, day, hour, min, sec;
401                 year = ret[0]; mon  = ret[1]; day  = ret[2];
402                 hour = ret[3]; min  = ret[4]; sec  = ret[5];
403                 seq_printf(m, "%lu\n",
404                                 mktime(year, mon, day, hour, min, sec));
405         }
406         return 0;
407 }
408
409 /* ****************************************************************** */
410 /* SENSOR STUFF                                                       */
411 /* ****************************************************************** */
412 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
413 {
414         int i,j;
415         int state, error;
416         int get_sensor_state = rtas_token("get-sensor-state");
417
418         seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
419         seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
420         seq_printf(m, "********************************************************\n");
421
422         if (ppc_rtas_find_all_sensors() != 0) {
423                 seq_printf(m, "\nNo sensors are available\n");
424                 return 0;
425         }
426
427         for (i=0; i<sensors.quant; i++) {
428                 struct individual_sensor *p = &sensors.sensor[i];
429                 char rstr[64];
430                 const char *loc;
431                 int llen, offs;
432
433                 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
434                 loc = of_get_property(rtas_node, rstr, &llen);
435
436                 /* A sensor may have multiple instances */
437                 for (j = 0, offs = 0; j <= p->quant; j++) {
438                         error = rtas_call(get_sensor_state, 2, 2, &state, 
439                                           p->token, j);
440
441                         ppc_rtas_process_sensor(m, p, state, error, loc);
442                         seq_putc(m, '\n');
443                         if (loc) {
444                                 offs += strlen(loc) + 1;
445                                 loc += strlen(loc) + 1;
446                                 if (offs >= llen)
447                                         loc = NULL;
448                         }
449                 }
450         }
451         return 0;
452 }
453
454 /* ****************************************************************** */
455
456 static int ppc_rtas_find_all_sensors(void)
457 {
458         const unsigned int *utmp;
459         int len, i;
460
461         utmp = of_get_property(rtas_node, "rtas-sensors", &len);
462         if (utmp == NULL) {
463                 printk (KERN_ERR "error: could not get rtas-sensors\n");
464                 return 1;
465         }
466
467         sensors.quant = len / 8;      /* int + int */
468
469         for (i=0; i<sensors.quant; i++) {
470                 sensors.sensor[i].token = *utmp++;
471                 sensors.sensor[i].quant = *utmp++;
472         }
473         return 0;
474 }
475
476 /* ****************************************************************** */
477 /*
478  * Builds a string of what rtas returned
479  */
480 static char *ppc_rtas_process_error(int error)
481 {
482         switch (error) {
483                 case SENSOR_CRITICAL_HIGH:
484                         return "(critical high)";
485                 case SENSOR_WARNING_HIGH:
486                         return "(warning high)";
487                 case SENSOR_NORMAL:
488                         return "(normal)";
489                 case SENSOR_WARNING_LOW:
490                         return "(warning low)";
491                 case SENSOR_CRITICAL_LOW:
492                         return "(critical low)";
493                 case SENSOR_SUCCESS:
494                         return "(read ok)";
495                 case SENSOR_HW_ERROR:
496                         return "(hardware error)";
497                 case SENSOR_BUSY:
498                         return "(busy)";
499                 case SENSOR_NOT_EXIST:
500                         return "(non existent)";
501                 case SENSOR_DR_ENTITY:
502                         return "(dr entity removed)";
503                 default:
504                         return "(UNKNOWN)";
505         }
506 }
507
508 /* ****************************************************************** */
509 /*
510  * Builds a string out of what the sensor said
511  */
512
513 static void ppc_rtas_process_sensor(struct seq_file *m,
514         struct individual_sensor *s, int state, int error, const char *loc)
515 {
516         /* Defined return vales */
517         const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t", 
518                                                 "Maintenance" };
519         const char * enclosure_switch[]  = { "Closed", "Open" };
520         const char * lid_status[]        = { " ", "Open", "Closed" };
521         const char * power_source[]      = { "AC\t", "Battery", 
522                                                 "AC & Battery" };
523         const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
524         const char * epow_sensor[]       = { 
525                 "EPOW Reset", "Cooling warning", "Power warning",
526                 "System shutdown", "System halt", "EPOW main enclosure",
527                 "EPOW power off" };
528         const char * battery_cyclestate[]  = { "None", "In progress", 
529                                                 "Requested" };
530         const char * battery_charging[]    = { "Charging", "Discharching", 
531                                                 "No current flow" };
532         const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable", 
533                                                 "Exchange" };
534
535         int have_strings = 0;
536         int num_states = 0;
537         int temperature = 0;
538         int unknown = 0;
539
540         /* What kind of sensor do we have here? */
541         
542         switch (s->token) {
543                 case KEY_SWITCH:
544                         seq_printf(m, "Key switch:\t");
545                         num_states = sizeof(key_switch) / sizeof(char *);
546                         if (state < num_states) {
547                                 seq_printf(m, "%s\t", key_switch[state]);
548                                 have_strings = 1;
549                         }
550                         break;
551                 case ENCLOSURE_SWITCH:
552                         seq_printf(m, "Enclosure switch:\t");
553                         num_states = sizeof(enclosure_switch) / sizeof(char *);
554                         if (state < num_states) {
555                                 seq_printf(m, "%s\t", 
556                                                 enclosure_switch[state]);
557                                 have_strings = 1;
558                         }
559                         break;
560                 case THERMAL_SENSOR:
561                         seq_printf(m, "Temp. (C/F):\t");
562                         temperature = 1;
563                         break;
564                 case LID_STATUS:
565                         seq_printf(m, "Lid status:\t");
566                         num_states = sizeof(lid_status) / sizeof(char *);
567                         if (state < num_states) {
568                                 seq_printf(m, "%s\t", lid_status[state]);
569                                 have_strings = 1;
570                         }
571                         break;
572                 case POWER_SOURCE:
573                         seq_printf(m, "Power source:\t");
574                         num_states = sizeof(power_source) / sizeof(char *);
575                         if (state < num_states) {
576                                 seq_printf(m, "%s\t", 
577                                                 power_source[state]);
578                                 have_strings = 1;
579                         }
580                         break;
581                 case BATTERY_VOLTAGE:
582                         seq_printf(m, "Battery voltage:\t");
583                         break;
584                 case BATTERY_REMAINING:
585                         seq_printf(m, "Battery remaining:\t");
586                         num_states = sizeof(battery_remaining) / sizeof(char *);
587                         if (state < num_states)
588                         {
589                                 seq_printf(m, "%s\t", 
590                                                 battery_remaining[state]);
591                                 have_strings = 1;
592                         }
593                         break;
594                 case BATTERY_PERCENTAGE:
595                         seq_printf(m, "Battery percentage:\t");
596                         break;
597                 case EPOW_SENSOR:
598                         seq_printf(m, "EPOW Sensor:\t");
599                         num_states = sizeof(epow_sensor) / sizeof(char *);
600                         if (state < num_states) {
601                                 seq_printf(m, "%s\t", epow_sensor[state]);
602                                 have_strings = 1;
603                         }
604                         break;
605                 case BATTERY_CYCLESTATE:
606                         seq_printf(m, "Battery cyclestate:\t");
607                         num_states = sizeof(battery_cyclestate) / 
608                                         sizeof(char *);
609                         if (state < num_states) {
610                                 seq_printf(m, "%s\t", 
611                                                 battery_cyclestate[state]);
612                                 have_strings = 1;
613                         }
614                         break;
615                 case BATTERY_CHARGING:
616                         seq_printf(m, "Battery Charging:\t");
617                         num_states = sizeof(battery_charging) / sizeof(char *);
618                         if (state < num_states) {
619                                 seq_printf(m, "%s\t", 
620                                                 battery_charging[state]);
621                                 have_strings = 1;
622                         }
623                         break;
624                 case IBM_SURVEILLANCE:
625                         seq_printf(m, "Surveillance:\t");
626                         break;
627                 case IBM_FANRPM:
628                         seq_printf(m, "Fan (rpm):\t");
629                         break;
630                 case IBM_VOLTAGE:
631                         seq_printf(m, "Voltage (mv):\t");
632                         break;
633                 case IBM_DRCONNECTOR:
634                         seq_printf(m, "DR connector:\t");
635                         num_states = sizeof(ibm_drconnector) / sizeof(char *);
636                         if (state < num_states) {
637                                 seq_printf(m, "%s\t", 
638                                                 ibm_drconnector[state]);
639                                 have_strings = 1;
640                         }
641                         break;
642                 case IBM_POWERSUPPLY:
643                         seq_printf(m, "Powersupply:\t");
644                         break;
645                 default:
646                         seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
647                                         s->token);
648                         unknown = 1;
649                         have_strings = 1;
650                         break;
651         }
652         if (have_strings == 0) {
653                 if (temperature) {
654                         seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
655                 } else
656                         seq_printf(m, "%10d\t", state);
657         }
658         if (unknown == 0) {
659                 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
660                 get_location_code(m, s, loc);
661         }
662 }
663
664 /* ****************************************************************** */
665
666 static void check_location(struct seq_file *m, const char *c)
667 {
668         switch (c[0]) {
669                 case LOC_PLANAR:
670                         seq_printf(m, "Planar #%c", c[1]);
671                         break;
672                 case LOC_CPU:
673                         seq_printf(m, "CPU #%c", c[1]);
674                         break;
675                 case LOC_FAN:
676                         seq_printf(m, "Fan #%c", c[1]);
677                         break;
678                 case LOC_RACKMOUNTED:
679                         seq_printf(m, "Rack #%c", c[1]);
680                         break;
681                 case LOC_VOLTAGE:
682                         seq_printf(m, "Voltage #%c", c[1]);
683                         break;
684                 case LOC_LCD:
685                         seq_printf(m, "LCD #%c", c[1]);
686                         break;
687                 case '.':
688                         seq_printf(m, "- %c", c[1]);
689                         break;
690                 default:
691                         seq_printf(m, "Unknown location");
692                         break;
693         }
694 }
695
696
697 /* ****************************************************************** */
698 /* 
699  * Format: 
700  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
701  * the '.' may be an abbrevation
702  */
703 static void check_location_string(struct seq_file *m, const char *c)
704 {
705         while (*c) {
706                 if (isalpha(*c) || *c == '.')
707                         check_location(m, c);
708                 else if (*c == '/' || *c == '-')
709                         seq_printf(m, " at ");
710                 c++;
711         }
712 }
713
714
715 /* ****************************************************************** */
716
717 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
718                 const char *loc)
719 {
720         if (!loc || !*loc) {
721                 seq_printf(m, "---");/* does not have a location */
722         } else {
723                 check_location_string(m, loc);
724         }
725         seq_putc(m, ' ');
726 }
727 /* ****************************************************************** */
728 /* INDICATORS - Tone Frequency                                        */
729 /* ****************************************************************** */
730 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
731                 const char __user *buf, size_t count, loff_t *ppos)
732 {
733         unsigned long freq;
734         int error = parse_number(buf, count, &freq);
735         if (error)
736                 return error;
737
738         rtas_tone_frequency = freq; /* save it for later */
739         error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
740                         TONE_FREQUENCY, 0, freq);
741         if (error)
742                 printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 
743                                 ppc_rtas_process_error(error));
744         return count;
745 }
746 /* ****************************************************************** */
747 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
748 {
749         seq_printf(m, "%lu\n", rtas_tone_frequency);
750         return 0;
751 }
752 /* ****************************************************************** */
753 /* INDICATORS - Tone Volume                                           */
754 /* ****************************************************************** */
755 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
756                 const char __user *buf, size_t count, loff_t *ppos)
757 {
758         unsigned long volume;
759         int error = parse_number(buf, count, &volume);
760         if (error)
761                 return error;
762
763         if (volume > 100)
764                 volume = 100;
765         
766         rtas_tone_volume = volume; /* save it for later */
767         error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
768                         TONE_VOLUME, 0, volume);
769         if (error)
770                 printk(KERN_WARNING "error: setting tone volume returned: %s\n", 
771                                 ppc_rtas_process_error(error));
772         return count;
773 }
774 /* ****************************************************************** */
775 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
776 {
777         seq_printf(m, "%lu\n", rtas_tone_volume);
778         return 0;
779 }
780
781 #define RMO_READ_BUF_MAX 30
782
783 /* RTAS Userspace access */
784 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
785 {
786         seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
787         return 0;
788 }