Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / powerpc / kvm / e500_mmu_host.c
1 /*
2  * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
3  *
4  * Author: Yu Liu, yu.liu@freescale.com
5  *         Scott Wood, scottwood@freescale.com
6  *         Ashish Kalra, ashish.kalra@freescale.com
7  *         Varun Sethi, varun.sethi@freescale.com
8  *         Alexander Graf, agraf@suse.de
9  *
10  * Description:
11  * This file is based on arch/powerpc/kvm/44x_tlb.c,
12  * by Hollis Blanchard <hollisb@us.ibm.com>.
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License, version 2, as
16  * published by the Free Software Foundation.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/kvm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/highmem.h>
26 #include <linux/log2.h>
27 #include <linux/uaccess.h>
28 #include <linux/sched.h>
29 #include <linux/rwsem.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hugetlb.h>
32 #include <asm/kvm_ppc.h>
33
34 #include "e500.h"
35 #include "timing.h"
36 #include "e500_mmu_host.h"
37
38 #include "trace_booke.h"
39
40 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
41
42 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
43
44 static inline unsigned int tlb1_max_shadow_size(void)
45 {
46         /* reserve one entry for magic page */
47         return host_tlb_params[1].entries - tlbcam_index - 1;
48 }
49
50 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
51 {
52         /* Mask off reserved bits. */
53         mas3 &= MAS3_ATTRIB_MASK;
54
55 #ifndef CONFIG_KVM_BOOKE_HV
56         if (!usermode) {
57                 /* Guest is in supervisor mode,
58                  * so we need to translate guest
59                  * supervisor permissions into user permissions. */
60                 mas3 &= ~E500_TLB_USER_PERM_MASK;
61                 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
62         }
63         mas3 |= E500_TLB_SUPER_PERM_MASK;
64 #endif
65         return mas3;
66 }
67
68 /*
69  * writing shadow tlb entry to host TLB
70  */
71 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
72                                      uint32_t mas0,
73                                      uint32_t lpid)
74 {
75         unsigned long flags;
76
77         local_irq_save(flags);
78         mtspr(SPRN_MAS0, mas0);
79         mtspr(SPRN_MAS1, stlbe->mas1);
80         mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
81         mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
82         mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
83 #ifdef CONFIG_KVM_BOOKE_HV
84         mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid));
85 #endif
86         asm volatile("isync; tlbwe" : : : "memory");
87
88 #ifdef CONFIG_KVM_BOOKE_HV
89         /* Must clear mas8 for other host tlbwe's */
90         mtspr(SPRN_MAS8, 0);
91         isync();
92 #endif
93         local_irq_restore(flags);
94
95         trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
96                                       stlbe->mas2, stlbe->mas7_3);
97 }
98
99 /*
100  * Acquire a mas0 with victim hint, as if we just took a TLB miss.
101  *
102  * We don't care about the address we're searching for, other than that it's
103  * in the right set and is not present in the TLB.  Using a zero PID and a
104  * userspace address means we don't have to set and then restore MAS5, or
105  * calculate a proper MAS6 value.
106  */
107 static u32 get_host_mas0(unsigned long eaddr)
108 {
109         unsigned long flags;
110         u32 mas0;
111         u32 mas4;
112
113         local_irq_save(flags);
114         mtspr(SPRN_MAS6, 0);
115         mas4 = mfspr(SPRN_MAS4);
116         mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
117         asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
118         mas0 = mfspr(SPRN_MAS0);
119         mtspr(SPRN_MAS4, mas4);
120         local_irq_restore(flags);
121
122         return mas0;
123 }
124
125 /* sesel is for tlb1 only */
126 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
127                 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
128 {
129         u32 mas0;
130
131         if (tlbsel == 0) {
132                 mas0 = get_host_mas0(stlbe->mas2);
133                 __write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid);
134         } else {
135                 __write_host_tlbe(stlbe,
136                                   MAS0_TLBSEL(1) |
137                                   MAS0_ESEL(to_htlb1_esel(sesel)),
138                                   vcpu_e500->vcpu.kvm->arch.lpid);
139         }
140 }
141
142 /* sesel is for tlb1 only */
143 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
144                         struct kvm_book3e_206_tlb_entry *gtlbe,
145                         struct kvm_book3e_206_tlb_entry *stlbe,
146                         int stlbsel, int sesel)
147 {
148         int stid;
149
150         preempt_disable();
151         stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
152
153         stlbe->mas1 |= MAS1_TID(stid);
154         write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
155         preempt_enable();
156 }
157
158 #ifdef CONFIG_KVM_E500V2
159 /* XXX should be a hook in the gva2hpa translation */
160 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
161 {
162         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
163         struct kvm_book3e_206_tlb_entry magic;
164         ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
165         unsigned int stid;
166         pfn_t pfn;
167
168         pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
169         get_page(pfn_to_page(pfn));
170
171         preempt_disable();
172         stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
173
174         magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
175                      MAS1_TSIZE(BOOK3E_PAGESZ_4K);
176         magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
177         magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
178                        MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
179         magic.mas8 = 0;
180
181         __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0);
182         preempt_enable();
183 }
184 #endif
185
186 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
187                          int esel)
188 {
189         struct kvm_book3e_206_tlb_entry *gtlbe =
190                 get_entry(vcpu_e500, tlbsel, esel);
191         struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
192
193         /* Don't bother with unmapped entries */
194         if (!(ref->flags & E500_TLB_VALID)) {
195                 WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
196                      "%s: flags %x\n", __func__, ref->flags);
197                 WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
198         }
199
200         if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
201                 u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
202                 int hw_tlb_indx;
203                 unsigned long flags;
204
205                 local_irq_save(flags);
206                 while (tmp) {
207                         hw_tlb_indx = __ilog2_u64(tmp & -tmp);
208                         mtspr(SPRN_MAS0,
209                               MAS0_TLBSEL(1) |
210                               MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
211                         mtspr(SPRN_MAS1, 0);
212                         asm volatile("tlbwe");
213                         vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
214                         tmp &= tmp - 1;
215                 }
216                 mb();
217                 vcpu_e500->g2h_tlb1_map[esel] = 0;
218                 ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
219                 local_irq_restore(flags);
220         }
221
222         if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
223                 /*
224                  * TLB1 entry is backed by 4k pages. This should happen
225                  * rarely and is not worth optimizing. Invalidate everything.
226                  */
227                 kvmppc_e500_tlbil_all(vcpu_e500);
228                 ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
229         }
230
231         /*
232          * If TLB entry is still valid then it's a TLB0 entry, and thus
233          * backed by at most one host tlbe per shadow pid
234          */
235         if (ref->flags & E500_TLB_VALID)
236                 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
237
238         /* Mark the TLB as not backed by the host anymore */
239         ref->flags = 0;
240 }
241
242 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
243 {
244         return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
245 }
246
247 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
248                                          struct kvm_book3e_206_tlb_entry *gtlbe,
249                                          pfn_t pfn, unsigned int wimg)
250 {
251         ref->pfn = pfn;
252         ref->flags = E500_TLB_VALID;
253
254         /* Use guest supplied MAS2_G and MAS2_E */
255         ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
256
257         /* Mark the page accessed */
258         kvm_set_pfn_accessed(pfn);
259
260         if (tlbe_is_writable(gtlbe))
261                 kvm_set_pfn_dirty(pfn);
262 }
263
264 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
265 {
266         if (ref->flags & E500_TLB_VALID) {
267                 /* FIXME: don't log bogus pfn for TLB1 */
268                 trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
269                 ref->flags = 0;
270         }
271 }
272
273 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
274 {
275         if (vcpu_e500->g2h_tlb1_map)
276                 memset(vcpu_e500->g2h_tlb1_map, 0,
277                        sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
278         if (vcpu_e500->h2g_tlb1_rmap)
279                 memset(vcpu_e500->h2g_tlb1_rmap, 0,
280                        sizeof(unsigned int) * host_tlb_params[1].entries);
281 }
282
283 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
284 {
285         int tlbsel;
286         int i;
287
288         for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
289                 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
290                         struct tlbe_ref *ref =
291                                 &vcpu_e500->gtlb_priv[tlbsel][i].ref;
292                         kvmppc_e500_ref_release(ref);
293                 }
294         }
295 }
296
297 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
298 {
299         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
300         kvmppc_e500_tlbil_all(vcpu_e500);
301         clear_tlb_privs(vcpu_e500);
302         clear_tlb1_bitmap(vcpu_e500);
303 }
304
305 /* TID must be supplied by the caller */
306 static void kvmppc_e500_setup_stlbe(
307         struct kvm_vcpu *vcpu,
308         struct kvm_book3e_206_tlb_entry *gtlbe,
309         int tsize, struct tlbe_ref *ref, u64 gvaddr,
310         struct kvm_book3e_206_tlb_entry *stlbe)
311 {
312         pfn_t pfn = ref->pfn;
313         u32 pr = vcpu->arch.shared->msr & MSR_PR;
314
315         BUG_ON(!(ref->flags & E500_TLB_VALID));
316
317         /* Force IPROT=0 for all guest mappings. */
318         stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
319         stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
320         stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
321                         e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
322 }
323
324 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
325         u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
326         int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
327         struct tlbe_ref *ref)
328 {
329         struct kvm_memory_slot *slot;
330         unsigned long pfn = 0; /* silence GCC warning */
331         unsigned long hva;
332         int pfnmap = 0;
333         int tsize = BOOK3E_PAGESZ_4K;
334         int ret = 0;
335         unsigned long mmu_seq;
336         struct kvm *kvm = vcpu_e500->vcpu.kvm;
337         unsigned long tsize_pages = 0;
338         pte_t *ptep;
339         unsigned int wimg = 0;
340         pgd_t *pgdir;
341
342         /* used to check for invalidations in progress */
343         mmu_seq = kvm->mmu_notifier_seq;
344         smp_rmb();
345
346         /*
347          * Translate guest physical to true physical, acquiring
348          * a page reference if it is normal, non-reserved memory.
349          *
350          * gfn_to_memslot() must succeed because otherwise we wouldn't
351          * have gotten this far.  Eventually we should just pass the slot
352          * pointer through from the first lookup.
353          */
354         slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
355         hva = gfn_to_hva_memslot(slot, gfn);
356
357         if (tlbsel == 1) {
358                 struct vm_area_struct *vma;
359                 down_read(&current->mm->mmap_sem);
360
361                 vma = find_vma(current->mm, hva);
362                 if (vma && hva >= vma->vm_start &&
363                     (vma->vm_flags & VM_PFNMAP)) {
364                         /*
365                          * This VMA is a physically contiguous region (e.g.
366                          * /dev/mem) that bypasses normal Linux page
367                          * management.  Find the overlap between the
368                          * vma and the memslot.
369                          */
370
371                         unsigned long start, end;
372                         unsigned long slot_start, slot_end;
373
374                         pfnmap = 1;
375
376                         start = vma->vm_pgoff;
377                         end = start +
378                               ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
379
380                         pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
381
382                         slot_start = pfn - (gfn - slot->base_gfn);
383                         slot_end = slot_start + slot->npages;
384
385                         if (start < slot_start)
386                                 start = slot_start;
387                         if (end > slot_end)
388                                 end = slot_end;
389
390                         tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
391                                 MAS1_TSIZE_SHIFT;
392
393                         /*
394                          * e500 doesn't implement the lowest tsize bit,
395                          * or 1K pages.
396                          */
397                         tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
398
399                         /*
400                          * Now find the largest tsize (up to what the guest
401                          * requested) that will cover gfn, stay within the
402                          * range, and for which gfn and pfn are mutually
403                          * aligned.
404                          */
405
406                         for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
407                                 unsigned long gfn_start, gfn_end;
408                                 tsize_pages = 1 << (tsize - 2);
409
410                                 gfn_start = gfn & ~(tsize_pages - 1);
411                                 gfn_end = gfn_start + tsize_pages;
412
413                                 if (gfn_start + pfn - gfn < start)
414                                         continue;
415                                 if (gfn_end + pfn - gfn > end)
416                                         continue;
417                                 if ((gfn & (tsize_pages - 1)) !=
418                                     (pfn & (tsize_pages - 1)))
419                                         continue;
420
421                                 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
422                                 pfn &= ~(tsize_pages - 1);
423                                 break;
424                         }
425                 } else if (vma && hva >= vma->vm_start &&
426                            (vma->vm_flags & VM_HUGETLB)) {
427                         unsigned long psize = vma_kernel_pagesize(vma);
428
429                         tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
430                                 MAS1_TSIZE_SHIFT;
431
432                         /*
433                          * Take the largest page size that satisfies both host
434                          * and guest mapping
435                          */
436                         tsize = min(__ilog2(psize) - 10, tsize);
437
438                         /*
439                          * e500 doesn't implement the lowest tsize bit,
440                          * or 1K pages.
441                          */
442                         tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
443                 }
444
445                 up_read(&current->mm->mmap_sem);
446         }
447
448         if (likely(!pfnmap)) {
449                 tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
450                 pfn = gfn_to_pfn_memslot(slot, gfn);
451                 if (is_error_noslot_pfn(pfn)) {
452                         if (printk_ratelimit())
453                                 pr_err("%s: real page not found for gfn %lx\n",
454                                        __func__, (long)gfn);
455                         return -EINVAL;
456                 }
457
458                 /* Align guest and physical address to page map boundaries */
459                 pfn &= ~(tsize_pages - 1);
460                 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
461         }
462
463         spin_lock(&kvm->mmu_lock);
464         if (mmu_notifier_retry(kvm, mmu_seq)) {
465                 ret = -EAGAIN;
466                 goto out;
467         }
468
469
470         pgdir = vcpu_e500->vcpu.arch.pgdir;
471         ptep = lookup_linux_ptep(pgdir, hva, &tsize_pages);
472         if (pte_present(*ptep))
473                 wimg = (*ptep >> PTE_WIMGE_SHIFT) & MAS2_WIMGE_MASK;
474         else {
475                 if (printk_ratelimit())
476                         pr_err("%s: pte not present: gfn %lx, pfn %lx\n",
477                                 __func__, (long)gfn, pfn);
478                 ret = -EINVAL;
479                 goto out;
480         }
481         kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
482
483         kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
484                                 ref, gvaddr, stlbe);
485
486         /* Clear i-cache for new pages */
487         kvmppc_mmu_flush_icache(pfn);
488
489 out:
490         spin_unlock(&kvm->mmu_lock);
491
492         /* Drop refcount on page, so that mmu notifiers can clear it */
493         kvm_release_pfn_clean(pfn);
494
495         return ret;
496 }
497
498 /* XXX only map the one-one case, for now use TLB0 */
499 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
500                                 struct kvm_book3e_206_tlb_entry *stlbe)
501 {
502         struct kvm_book3e_206_tlb_entry *gtlbe;
503         struct tlbe_ref *ref;
504         int stlbsel = 0;
505         int sesel = 0;
506         int r;
507
508         gtlbe = get_entry(vcpu_e500, 0, esel);
509         ref = &vcpu_e500->gtlb_priv[0][esel].ref;
510
511         r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
512                         get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
513                         gtlbe, 0, stlbe, ref);
514         if (r)
515                 return r;
516
517         write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
518
519         return 0;
520 }
521
522 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
523                                      struct tlbe_ref *ref,
524                                      int esel)
525 {
526         unsigned int sesel = vcpu_e500->host_tlb1_nv++;
527
528         if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
529                 vcpu_e500->host_tlb1_nv = 0;
530
531         if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
532                 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
533                 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
534         }
535
536         vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
537         vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
538         vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
539         WARN_ON(!(ref->flags & E500_TLB_VALID));
540
541         return sesel;
542 }
543
544 /* Caller must ensure that the specified guest TLB entry is safe to insert into
545  * the shadow TLB. */
546 /* For both one-one and one-to-many */
547 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
548                 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
549                 struct kvm_book3e_206_tlb_entry *stlbe, int esel)
550 {
551         struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
552         int sesel;
553         int r;
554
555         r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
556                                    ref);
557         if (r)
558                 return r;
559
560         /* Use TLB0 when we can only map a page with 4k */
561         if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
562                 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
563                 write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
564                 return 0;
565         }
566
567         /* Otherwise map into TLB1 */
568         sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
569         write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
570
571         return 0;
572 }
573
574 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
575                     unsigned int index)
576 {
577         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
578         struct tlbe_priv *priv;
579         struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
580         int tlbsel = tlbsel_of(index);
581         int esel = esel_of(index);
582
583         gtlbe = get_entry(vcpu_e500, tlbsel, esel);
584
585         switch (tlbsel) {
586         case 0:
587                 priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
588
589                 /* Triggers after clear_tlb_privs or on initial mapping */
590                 if (!(priv->ref.flags & E500_TLB_VALID)) {
591                         kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
592                 } else {
593                         kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
594                                                 &priv->ref, eaddr, &stlbe);
595                         write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
596                 }
597                 break;
598
599         case 1: {
600                 gfn_t gfn = gpaddr >> PAGE_SHIFT;
601                 kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
602                                      esel);
603                 break;
604         }
605
606         default:
607                 BUG();
608                 break;
609         }
610 }
611
612 #ifdef CONFIG_KVM_BOOKE_HV
613 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
614                           u32 *instr)
615 {
616         gva_t geaddr;
617         hpa_t addr;
618         hfn_t pfn;
619         hva_t eaddr;
620         u32 mas1, mas2, mas3;
621         u64 mas7_mas3;
622         struct page *page;
623         unsigned int addr_space, psize_shift;
624         bool pr;
625         unsigned long flags;
626
627         /* Search TLB for guest pc to get the real address */
628         geaddr = kvmppc_get_pc(vcpu);
629
630         addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;
631
632         local_irq_save(flags);
633         mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
634         mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu));
635         asm volatile("tlbsx 0, %[geaddr]\n" : :
636                      [geaddr] "r" (geaddr));
637         mtspr(SPRN_MAS5, 0);
638         mtspr(SPRN_MAS8, 0);
639         mas1 = mfspr(SPRN_MAS1);
640         mas2 = mfspr(SPRN_MAS2);
641         mas3 = mfspr(SPRN_MAS3);
642 #ifdef CONFIG_64BIT
643         mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
644 #else
645         mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
646 #endif
647         local_irq_restore(flags);
648
649         /*
650          * If the TLB entry for guest pc was evicted, return to the guest.
651          * There are high chances to find a valid TLB entry next time.
652          */
653         if (!(mas1 & MAS1_VALID))
654                 return EMULATE_AGAIN;
655
656         /*
657          * Another thread may rewrite the TLB entry in parallel, don't
658          * execute from the address if the execute permission is not set
659          */
660         pr = vcpu->arch.shared->msr & MSR_PR;
661         if (unlikely((pr && !(mas3 & MAS3_UX)) ||
662                      (!pr && !(mas3 & MAS3_SX)))) {
663                 pr_err_ratelimited(
664                         "%s: Instruction emulation from guest address %08lx without execute permission\n",
665                         __func__, geaddr);
666                 return EMULATE_AGAIN;
667         }
668
669         /*
670          * The real address will be mapped by a cacheable, memory coherent,
671          * write-back page. Check for mismatches when LRAT is used.
672          */
673         if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
674             unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
675                 pr_err_ratelimited(
676                         "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
677                         __func__, geaddr);
678                 return EMULATE_AGAIN;
679         }
680
681         /* Get pfn */
682         psize_shift = MAS1_GET_TSIZE(mas1) + 10;
683         addr = (mas7_mas3 & (~0ULL << psize_shift)) |
684                (geaddr & ((1ULL << psize_shift) - 1ULL));
685         pfn = addr >> PAGE_SHIFT;
686
687         /* Guard against emulation from devices area */
688         if (unlikely(!page_is_ram(pfn))) {
689                 pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
690                          __func__, addr);
691                 return EMULATE_AGAIN;
692         }
693
694         /* Map a page and get guest's instruction */
695         page = pfn_to_page(pfn);
696         eaddr = (unsigned long)kmap_atomic(page);
697         *instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
698         kunmap_atomic((u32 *)eaddr);
699
700         return EMULATE_DONE;
701 }
702 #else
703 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
704                           u32 *instr)
705 {
706         return EMULATE_AGAIN;
707 }
708 #endif
709
710 /************* MMU Notifiers *************/
711
712 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
713 {
714         trace_kvm_unmap_hva(hva);
715
716         /*
717          * Flush all shadow tlb entries everywhere. This is slow, but
718          * we are 100% sure that we catch the to be unmapped page
719          */
720         kvm_flush_remote_tlbs(kvm);
721
722         return 0;
723 }
724
725 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
726 {
727         /* kvm_unmap_hva flushes everything anyways */
728         kvm_unmap_hva(kvm, start);
729
730         return 0;
731 }
732
733 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
734 {
735         /* XXX could be more clever ;) */
736         return 0;
737 }
738
739 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
740 {
741         /* XXX could be more clever ;) */
742         return 0;
743 }
744
745 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
746 {
747         /* The page will get remapped properly on its next fault */
748         kvm_unmap_hva(kvm, hva);
749 }
750
751 /*****************************************/
752
753 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
754 {
755         host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
756         host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
757
758         /*
759          * This should never happen on real e500 hardware, but is
760          * architecturally possible -- e.g. in some weird nested
761          * virtualization case.
762          */
763         if (host_tlb_params[0].entries == 0 ||
764             host_tlb_params[1].entries == 0) {
765                 pr_err("%s: need to know host tlb size\n", __func__);
766                 return -ENODEV;
767         }
768
769         host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
770                                   TLBnCFG_ASSOC_SHIFT;
771         host_tlb_params[1].ways = host_tlb_params[1].entries;
772
773         if (!is_power_of_2(host_tlb_params[0].entries) ||
774             !is_power_of_2(host_tlb_params[0].ways) ||
775             host_tlb_params[0].entries < host_tlb_params[0].ways ||
776             host_tlb_params[0].ways == 0) {
777                 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
778                        __func__, host_tlb_params[0].entries,
779                        host_tlb_params[0].ways);
780                 return -ENODEV;
781         }
782
783         host_tlb_params[0].sets =
784                 host_tlb_params[0].entries / host_tlb_params[0].ways;
785         host_tlb_params[1].sets = 1;
786
787         vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
788                                            host_tlb_params[1].entries,
789                                            GFP_KERNEL);
790         if (!vcpu_e500->h2g_tlb1_rmap)
791                 return -EINVAL;
792
793         return 0;
794 }
795
796 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
797 {
798         kfree(vcpu_e500->h2g_tlb1_rmap);
799 }