Merge branch 'work.splice_read' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
52 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
54
55 #define POWERNV_IOMMU_DEFAULT_LEVELS    1
56 #define POWERNV_IOMMU_MAX_LEVELS        5
57
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
60
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62                             const char *fmt, ...)
63 {
64         struct va_format vaf;
65         va_list args;
66         char pfix[32];
67
68         va_start(args, fmt);
69
70         vaf.fmt = fmt;
71         vaf.va = &args;
72
73         if (pe->flags & PNV_IODA_PE_DEV)
74                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76                 sprintf(pfix, "%04x:%02x     ",
77                         pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79         else if (pe->flags & PNV_IODA_PE_VF)
80                 sprintf(pfix, "%04x:%02x:%2x.%d",
81                         pci_domain_nr(pe->parent_dev->bus),
82                         (pe->rid & 0xff00) >> 8,
83                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
85
86         printk("%spci %s: [PE# %.3d] %pV",
87                level, pfix, pe->pe_number, &vaf);
88
89         va_end(args);
90 }
91
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93
94 static int __init iommu_setup(char *str)
95 {
96         if (!str)
97                 return -EINVAL;
98
99         while (*str) {
100                 if (!strncmp(str, "nobypass", 8)) {
101                         pnv_iommu_bypass_disabled = true;
102                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
103                         break;
104                 }
105                 str += strcspn(str, ",");
106                 if (*str == ',')
107                         str++;
108         }
109
110         return 0;
111 }
112 early_param("iommu", iommu_setup);
113
114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115 {
116         /*
117          * WARNING: We cannot rely on the resource flags. The Linux PCI
118          * allocation code sometimes decides to put a 64-bit prefetchable
119          * BAR in the 32-bit window, so we have to compare the addresses.
120          *
121          * For simplicity we only test resource start.
122          */
123         return (r->start >= phb->ioda.m64_base &&
124                 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 }
126
127 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
128 {
129         unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
130
131         return (resource_flags & flags) == flags;
132 }
133
134 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
135 {
136         phb->ioda.pe_array[pe_no].phb = phb;
137         phb->ioda.pe_array[pe_no].pe_number = pe_no;
138
139         return &phb->ioda.pe_array[pe_no];
140 }
141
142 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
143 {
144         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
145                 pr_warn("%s: Invalid PE %d on PHB#%x\n",
146                         __func__, pe_no, phb->hose->global_number);
147                 return;
148         }
149
150         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
151                 pr_debug("%s: PE %d was reserved on PHB#%x\n",
152                          __func__, pe_no, phb->hose->global_number);
153
154         pnv_ioda_init_pe(phb, pe_no);
155 }
156
157 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
158 {
159         long pe;
160
161         for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
162                 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
163                         return pnv_ioda_init_pe(phb, pe);
164         }
165
166         return NULL;
167 }
168
169 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
170 {
171         struct pnv_phb *phb = pe->phb;
172         unsigned int pe_num = pe->pe_number;
173
174         WARN_ON(pe->pdev);
175
176         memset(pe, 0, sizeof(struct pnv_ioda_pe));
177         clear_bit(pe_num, phb->ioda.pe_alloc);
178 }
179
180 /* The default M64 BAR is shared by all PEs */
181 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
182 {
183         const char *desc;
184         struct resource *r;
185         s64 rc;
186
187         /* Configure the default M64 BAR */
188         rc = opal_pci_set_phb_mem_window(phb->opal_id,
189                                          OPAL_M64_WINDOW_TYPE,
190                                          phb->ioda.m64_bar_idx,
191                                          phb->ioda.m64_base,
192                                          0, /* unused */
193                                          phb->ioda.m64_size);
194         if (rc != OPAL_SUCCESS) {
195                 desc = "configuring";
196                 goto fail;
197         }
198
199         /* Enable the default M64 BAR */
200         rc = opal_pci_phb_mmio_enable(phb->opal_id,
201                                       OPAL_M64_WINDOW_TYPE,
202                                       phb->ioda.m64_bar_idx,
203                                       OPAL_ENABLE_M64_SPLIT);
204         if (rc != OPAL_SUCCESS) {
205                 desc = "enabling";
206                 goto fail;
207         }
208
209         /*
210          * Exclude the segments for reserved and root bus PE, which
211          * are first or last two PEs.
212          */
213         r = &phb->hose->mem_resources[1];
214         if (phb->ioda.reserved_pe_idx == 0)
215                 r->start += (2 * phb->ioda.m64_segsize);
216         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
217                 r->end -= (2 * phb->ioda.m64_segsize);
218         else
219                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
220                         phb->ioda.reserved_pe_idx);
221
222         return 0;
223
224 fail:
225         pr_warn("  Failure %lld %s M64 BAR#%d\n",
226                 rc, desc, phb->ioda.m64_bar_idx);
227         opal_pci_phb_mmio_enable(phb->opal_id,
228                                  OPAL_M64_WINDOW_TYPE,
229                                  phb->ioda.m64_bar_idx,
230                                  OPAL_DISABLE_M64);
231         return -EIO;
232 }
233
234 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
235                                          unsigned long *pe_bitmap)
236 {
237         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
238         struct pnv_phb *phb = hose->private_data;
239         struct resource *r;
240         resource_size_t base, sgsz, start, end;
241         int segno, i;
242
243         base = phb->ioda.m64_base;
244         sgsz = phb->ioda.m64_segsize;
245         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
246                 r = &pdev->resource[i];
247                 if (!r->parent || !pnv_pci_is_m64(phb, r))
248                         continue;
249
250                 start = _ALIGN_DOWN(r->start - base, sgsz);
251                 end = _ALIGN_UP(r->end - base, sgsz);
252                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
253                         if (pe_bitmap)
254                                 set_bit(segno, pe_bitmap);
255                         else
256                                 pnv_ioda_reserve_pe(phb, segno);
257                 }
258         }
259 }
260
261 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
262 {
263         struct resource *r;
264         int index;
265
266         /*
267          * There are 16 M64 BARs, each of which has 8 segments. So
268          * there are as many M64 segments as the maximum number of
269          * PEs, which is 128.
270          */
271         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
272                 unsigned long base, segsz = phb->ioda.m64_segsize;
273                 int64_t rc;
274
275                 base = phb->ioda.m64_base +
276                        index * PNV_IODA1_M64_SEGS * segsz;
277                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
278                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
279                                 PNV_IODA1_M64_SEGS * segsz);
280                 if (rc != OPAL_SUCCESS) {
281                         pr_warn("  Error %lld setting M64 PHB#%d-BAR#%d\n",
282                                 rc, phb->hose->global_number, index);
283                         goto fail;
284                 }
285
286                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
287                                 OPAL_M64_WINDOW_TYPE, index,
288                                 OPAL_ENABLE_M64_SPLIT);
289                 if (rc != OPAL_SUCCESS) {
290                         pr_warn("  Error %lld enabling M64 PHB#%d-BAR#%d\n",
291                                 rc, phb->hose->global_number, index);
292                         goto fail;
293                 }
294         }
295
296         /*
297          * Exclude the segments for reserved and root bus PE, which
298          * are first or last two PEs.
299          */
300         r = &phb->hose->mem_resources[1];
301         if (phb->ioda.reserved_pe_idx == 0)
302                 r->start += (2 * phb->ioda.m64_segsize);
303         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
304                 r->end -= (2 * phb->ioda.m64_segsize);
305         else
306                 WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
307                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
308
309         return 0;
310
311 fail:
312         for ( ; index >= 0; index--)
313                 opal_pci_phb_mmio_enable(phb->opal_id,
314                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
315
316         return -EIO;
317 }
318
319 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
320                                     unsigned long *pe_bitmap,
321                                     bool all)
322 {
323         struct pci_dev *pdev;
324
325         list_for_each_entry(pdev, &bus->devices, bus_list) {
326                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
327
328                 if (all && pdev->subordinate)
329                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
330                                                 pe_bitmap, all);
331         }
332 }
333
334 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
335 {
336         struct pci_controller *hose = pci_bus_to_host(bus);
337         struct pnv_phb *phb = hose->private_data;
338         struct pnv_ioda_pe *master_pe, *pe;
339         unsigned long size, *pe_alloc;
340         int i;
341
342         /* Root bus shouldn't use M64 */
343         if (pci_is_root_bus(bus))
344                 return NULL;
345
346         /* Allocate bitmap */
347         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
348         pe_alloc = kzalloc(size, GFP_KERNEL);
349         if (!pe_alloc) {
350                 pr_warn("%s: Out of memory !\n",
351                         __func__);
352                 return NULL;
353         }
354
355         /* Figure out reserved PE numbers by the PE */
356         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
357
358         /*
359          * the current bus might not own M64 window and that's all
360          * contributed by its child buses. For the case, we needn't
361          * pick M64 dependent PE#.
362          */
363         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
364                 kfree(pe_alloc);
365                 return NULL;
366         }
367
368         /*
369          * Figure out the master PE and put all slave PEs to master
370          * PE's list to form compound PE.
371          */
372         master_pe = NULL;
373         i = -1;
374         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
375                 phb->ioda.total_pe_num) {
376                 pe = &phb->ioda.pe_array[i];
377
378                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
379                 if (!master_pe) {
380                         pe->flags |= PNV_IODA_PE_MASTER;
381                         INIT_LIST_HEAD(&pe->slaves);
382                         master_pe = pe;
383                 } else {
384                         pe->flags |= PNV_IODA_PE_SLAVE;
385                         pe->master = master_pe;
386                         list_add_tail(&pe->list, &master_pe->slaves);
387                 }
388
389                 /*
390                  * P7IOC supports M64DT, which helps mapping M64 segment
391                  * to one particular PE#. However, PHB3 has fixed mapping
392                  * between M64 segment and PE#. In order to have same logic
393                  * for P7IOC and PHB3, we enforce fixed mapping between M64
394                  * segment and PE# on P7IOC.
395                  */
396                 if (phb->type == PNV_PHB_IODA1) {
397                         int64_t rc;
398
399                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
400                                         pe->pe_number, OPAL_M64_WINDOW_TYPE,
401                                         pe->pe_number / PNV_IODA1_M64_SEGS,
402                                         pe->pe_number % PNV_IODA1_M64_SEGS);
403                         if (rc != OPAL_SUCCESS)
404                                 pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
405                                         __func__, rc, phb->hose->global_number,
406                                         pe->pe_number);
407                 }
408         }
409
410         kfree(pe_alloc);
411         return master_pe;
412 }
413
414 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
415 {
416         struct pci_controller *hose = phb->hose;
417         struct device_node *dn = hose->dn;
418         struct resource *res;
419         u32 m64_range[2], i;
420         const u32 *r;
421         u64 pci_addr;
422
423         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
424                 pr_info("  Not support M64 window\n");
425                 return;
426         }
427
428         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
429                 pr_info("  Firmware too old to support M64 window\n");
430                 return;
431         }
432
433         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
434         if (!r) {
435                 pr_info("  No <ibm,opal-m64-window> on %s\n",
436                         dn->full_name);
437                 return;
438         }
439
440         /*
441          * Find the available M64 BAR range and pickup the last one for
442          * covering the whole 64-bits space. We support only one range.
443          */
444         if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
445                                        m64_range, 2)) {
446                 /* In absence of the property, assume 0..15 */
447                 m64_range[0] = 0;
448                 m64_range[1] = 16;
449         }
450         /* We only support 64 bits in our allocator */
451         if (m64_range[1] > 63) {
452                 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
453                         __func__, m64_range[1], phb->hose->global_number);
454                 m64_range[1] = 63;
455         }
456         /* Empty range, no m64 */
457         if (m64_range[1] <= m64_range[0]) {
458                 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
459                         __func__, phb->hose->global_number);
460                 return;
461         }
462
463         /* Configure M64 informations */
464         res = &hose->mem_resources[1];
465         res->name = dn->full_name;
466         res->start = of_translate_address(dn, r + 2);
467         res->end = res->start + of_read_number(r + 4, 2) - 1;
468         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
469         pci_addr = of_read_number(r, 2);
470         hose->mem_offset[1] = res->start - pci_addr;
471
472         phb->ioda.m64_size = resource_size(res);
473         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
474         phb->ioda.m64_base = pci_addr;
475
476         /* This lines up nicely with the display from processing OF ranges */
477         pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
478                 res->start, res->end, pci_addr, m64_range[0],
479                 m64_range[0] + m64_range[1] - 1);
480
481         /* Mark all M64 used up by default */
482         phb->ioda.m64_bar_alloc = (unsigned long)-1;
483
484         /* Use last M64 BAR to cover M64 window */
485         m64_range[1]--;
486         phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
487
488         pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
489
490         /* Mark remaining ones free */
491         for (i = m64_range[0]; i < m64_range[1]; i++)
492                 clear_bit(i, &phb->ioda.m64_bar_alloc);
493
494         /*
495          * Setup init functions for M64 based on IODA version, IODA3 uses
496          * the IODA2 code.
497          */
498         if (phb->type == PNV_PHB_IODA1)
499                 phb->init_m64 = pnv_ioda1_init_m64;
500         else
501                 phb->init_m64 = pnv_ioda2_init_m64;
502         phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
503         phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
504 }
505
506 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
507 {
508         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
509         struct pnv_ioda_pe *slave;
510         s64 rc;
511
512         /* Fetch master PE */
513         if (pe->flags & PNV_IODA_PE_SLAVE) {
514                 pe = pe->master;
515                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
516                         return;
517
518                 pe_no = pe->pe_number;
519         }
520
521         /* Freeze master PE */
522         rc = opal_pci_eeh_freeze_set(phb->opal_id,
523                                      pe_no,
524                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
525         if (rc != OPAL_SUCCESS) {
526                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
527                         __func__, rc, phb->hose->global_number, pe_no);
528                 return;
529         }
530
531         /* Freeze slave PEs */
532         if (!(pe->flags & PNV_IODA_PE_MASTER))
533                 return;
534
535         list_for_each_entry(slave, &pe->slaves, list) {
536                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
537                                              slave->pe_number,
538                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
539                 if (rc != OPAL_SUCCESS)
540                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
541                                 __func__, rc, phb->hose->global_number,
542                                 slave->pe_number);
543         }
544 }
545
546 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
547 {
548         struct pnv_ioda_pe *pe, *slave;
549         s64 rc;
550
551         /* Find master PE */
552         pe = &phb->ioda.pe_array[pe_no];
553         if (pe->flags & PNV_IODA_PE_SLAVE) {
554                 pe = pe->master;
555                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
556                 pe_no = pe->pe_number;
557         }
558
559         /* Clear frozen state for master PE */
560         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
561         if (rc != OPAL_SUCCESS) {
562                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
563                         __func__, rc, opt, phb->hose->global_number, pe_no);
564                 return -EIO;
565         }
566
567         if (!(pe->flags & PNV_IODA_PE_MASTER))
568                 return 0;
569
570         /* Clear frozen state for slave PEs */
571         list_for_each_entry(slave, &pe->slaves, list) {
572                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
573                                              slave->pe_number,
574                                              opt);
575                 if (rc != OPAL_SUCCESS) {
576                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
577                                 __func__, rc, opt, phb->hose->global_number,
578                                 slave->pe_number);
579                         return -EIO;
580                 }
581         }
582
583         return 0;
584 }
585
586 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
587 {
588         struct pnv_ioda_pe *slave, *pe;
589         u8 fstate, state;
590         __be16 pcierr;
591         s64 rc;
592
593         /* Sanity check on PE number */
594         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
595                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
596
597         /*
598          * Fetch the master PE and the PE instance might be
599          * not initialized yet.
600          */
601         pe = &phb->ioda.pe_array[pe_no];
602         if (pe->flags & PNV_IODA_PE_SLAVE) {
603                 pe = pe->master;
604                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
605                 pe_no = pe->pe_number;
606         }
607
608         /* Check the master PE */
609         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
610                                         &state, &pcierr, NULL);
611         if (rc != OPAL_SUCCESS) {
612                 pr_warn("%s: Failure %lld getting "
613                         "PHB#%x-PE#%x state\n",
614                         __func__, rc,
615                         phb->hose->global_number, pe_no);
616                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
617         }
618
619         /* Check the slave PE */
620         if (!(pe->flags & PNV_IODA_PE_MASTER))
621                 return state;
622
623         list_for_each_entry(slave, &pe->slaves, list) {
624                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
625                                                 slave->pe_number,
626                                                 &fstate,
627                                                 &pcierr,
628                                                 NULL);
629                 if (rc != OPAL_SUCCESS) {
630                         pr_warn("%s: Failure %lld getting "
631                                 "PHB#%x-PE#%x state\n",
632                                 __func__, rc,
633                                 phb->hose->global_number, slave->pe_number);
634                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
635                 }
636
637                 /*
638                  * Override the result based on the ascending
639                  * priority.
640                  */
641                 if (fstate > state)
642                         state = fstate;
643         }
644
645         return state;
646 }
647
648 /* Currently those 2 are only used when MSIs are enabled, this will change
649  * but in the meantime, we need to protect them to avoid warnings
650  */
651 #ifdef CONFIG_PCI_MSI
652 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
653 {
654         struct pci_controller *hose = pci_bus_to_host(dev->bus);
655         struct pnv_phb *phb = hose->private_data;
656         struct pci_dn *pdn = pci_get_pdn(dev);
657
658         if (!pdn)
659                 return NULL;
660         if (pdn->pe_number == IODA_INVALID_PE)
661                 return NULL;
662         return &phb->ioda.pe_array[pdn->pe_number];
663 }
664 #endif /* CONFIG_PCI_MSI */
665
666 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
667                                   struct pnv_ioda_pe *parent,
668                                   struct pnv_ioda_pe *child,
669                                   bool is_add)
670 {
671         const char *desc = is_add ? "adding" : "removing";
672         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
673                               OPAL_REMOVE_PE_FROM_DOMAIN;
674         struct pnv_ioda_pe *slave;
675         long rc;
676
677         /* Parent PE affects child PE */
678         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
679                                 child->pe_number, op);
680         if (rc != OPAL_SUCCESS) {
681                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
682                         rc, desc);
683                 return -ENXIO;
684         }
685
686         if (!(child->flags & PNV_IODA_PE_MASTER))
687                 return 0;
688
689         /* Compound case: parent PE affects slave PEs */
690         list_for_each_entry(slave, &child->slaves, list) {
691                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
692                                         slave->pe_number, op);
693                 if (rc != OPAL_SUCCESS) {
694                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
695                                 rc, desc);
696                         return -ENXIO;
697                 }
698         }
699
700         return 0;
701 }
702
703 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
704                               struct pnv_ioda_pe *pe,
705                               bool is_add)
706 {
707         struct pnv_ioda_pe *slave;
708         struct pci_dev *pdev = NULL;
709         int ret;
710
711         /*
712          * Clear PE frozen state. If it's master PE, we need
713          * clear slave PE frozen state as well.
714          */
715         if (is_add) {
716                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
717                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
718                 if (pe->flags & PNV_IODA_PE_MASTER) {
719                         list_for_each_entry(slave, &pe->slaves, list)
720                                 opal_pci_eeh_freeze_clear(phb->opal_id,
721                                                           slave->pe_number,
722                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
723                 }
724         }
725
726         /*
727          * Associate PE in PELT. We need add the PE into the
728          * corresponding PELT-V as well. Otherwise, the error
729          * originated from the PE might contribute to other
730          * PEs.
731          */
732         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
733         if (ret)
734                 return ret;
735
736         /* For compound PEs, any one affects all of them */
737         if (pe->flags & PNV_IODA_PE_MASTER) {
738                 list_for_each_entry(slave, &pe->slaves, list) {
739                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
740                         if (ret)
741                                 return ret;
742                 }
743         }
744
745         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
746                 pdev = pe->pbus->self;
747         else if (pe->flags & PNV_IODA_PE_DEV)
748                 pdev = pe->pdev->bus->self;
749 #ifdef CONFIG_PCI_IOV
750         else if (pe->flags & PNV_IODA_PE_VF)
751                 pdev = pe->parent_dev;
752 #endif /* CONFIG_PCI_IOV */
753         while (pdev) {
754                 struct pci_dn *pdn = pci_get_pdn(pdev);
755                 struct pnv_ioda_pe *parent;
756
757                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
758                         parent = &phb->ioda.pe_array[pdn->pe_number];
759                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
760                         if (ret)
761                                 return ret;
762                 }
763
764                 pdev = pdev->bus->self;
765         }
766
767         return 0;
768 }
769
770 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
771 {
772         struct pci_dev *parent;
773         uint8_t bcomp, dcomp, fcomp;
774         int64_t rc;
775         long rid_end, rid;
776
777         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
778         if (pe->pbus) {
779                 int count;
780
781                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
782                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
783                 parent = pe->pbus->self;
784                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
785                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
786                 else
787                         count = 1;
788
789                 switch(count) {
790                 case  1: bcomp = OpalPciBusAll;         break;
791                 case  2: bcomp = OpalPciBus7Bits;       break;
792                 case  4: bcomp = OpalPciBus6Bits;       break;
793                 case  8: bcomp = OpalPciBus5Bits;       break;
794                 case 16: bcomp = OpalPciBus4Bits;       break;
795                 case 32: bcomp = OpalPciBus3Bits;       break;
796                 default:
797                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
798                                 count);
799                         /* Do an exact match only */
800                         bcomp = OpalPciBusAll;
801                 }
802                 rid_end = pe->rid + (count << 8);
803         } else {
804 #ifdef CONFIG_PCI_IOV
805                 if (pe->flags & PNV_IODA_PE_VF)
806                         parent = pe->parent_dev;
807                 else
808 #endif
809                         parent = pe->pdev->bus->self;
810                 bcomp = OpalPciBusAll;
811                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
812                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
813                 rid_end = pe->rid + 1;
814         }
815
816         /* Clear the reverse map */
817         for (rid = pe->rid; rid < rid_end; rid++)
818                 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
819
820         /* Release from all parents PELT-V */
821         while (parent) {
822                 struct pci_dn *pdn = pci_get_pdn(parent);
823                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
824                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
825                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
826                         /* XXX What to do in case of error ? */
827                 }
828                 parent = parent->bus->self;
829         }
830
831         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
832                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
833
834         /* Disassociate PE in PELT */
835         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
836                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
837         if (rc)
838                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
839         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
840                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
841         if (rc)
842                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
843
844         pe->pbus = NULL;
845         pe->pdev = NULL;
846 #ifdef CONFIG_PCI_IOV
847         pe->parent_dev = NULL;
848 #endif
849
850         return 0;
851 }
852
853 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
854 {
855         struct pci_dev *parent;
856         uint8_t bcomp, dcomp, fcomp;
857         long rc, rid_end, rid;
858
859         /* Bus validation ? */
860         if (pe->pbus) {
861                 int count;
862
863                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
864                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
865                 parent = pe->pbus->self;
866                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
867                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
868                 else
869                         count = 1;
870
871                 switch(count) {
872                 case  1: bcomp = OpalPciBusAll;         break;
873                 case  2: bcomp = OpalPciBus7Bits;       break;
874                 case  4: bcomp = OpalPciBus6Bits;       break;
875                 case  8: bcomp = OpalPciBus5Bits;       break;
876                 case 16: bcomp = OpalPciBus4Bits;       break;
877                 case 32: bcomp = OpalPciBus3Bits;       break;
878                 default:
879                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
880                                 count);
881                         /* Do an exact match only */
882                         bcomp = OpalPciBusAll;
883                 }
884                 rid_end = pe->rid + (count << 8);
885         } else {
886 #ifdef CONFIG_PCI_IOV
887                 if (pe->flags & PNV_IODA_PE_VF)
888                         parent = pe->parent_dev;
889                 else
890 #endif /* CONFIG_PCI_IOV */
891                         parent = pe->pdev->bus->self;
892                 bcomp = OpalPciBusAll;
893                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
894                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
895                 rid_end = pe->rid + 1;
896         }
897
898         /*
899          * Associate PE in PELT. We need add the PE into the
900          * corresponding PELT-V as well. Otherwise, the error
901          * originated from the PE might contribute to other
902          * PEs.
903          */
904         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
905                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
906         if (rc) {
907                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
908                 return -ENXIO;
909         }
910
911         /*
912          * Configure PELTV. NPUs don't have a PELTV table so skip
913          * configuration on them.
914          */
915         if (phb->type != PNV_PHB_NPU)
916                 pnv_ioda_set_peltv(phb, pe, true);
917
918         /* Setup reverse map */
919         for (rid = pe->rid; rid < rid_end; rid++)
920                 phb->ioda.pe_rmap[rid] = pe->pe_number;
921
922         /* Setup one MVTs on IODA1 */
923         if (phb->type != PNV_PHB_IODA1) {
924                 pe->mve_number = 0;
925                 goto out;
926         }
927
928         pe->mve_number = pe->pe_number;
929         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
930         if (rc != OPAL_SUCCESS) {
931                 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
932                        rc, pe->mve_number);
933                 pe->mve_number = -1;
934         } else {
935                 rc = opal_pci_set_mve_enable(phb->opal_id,
936                                              pe->mve_number, OPAL_ENABLE_MVE);
937                 if (rc) {
938                         pe_err(pe, "OPAL error %ld enabling MVE %d\n",
939                                rc, pe->mve_number);
940                         pe->mve_number = -1;
941                 }
942         }
943
944 out:
945         return 0;
946 }
947
948 #ifdef CONFIG_PCI_IOV
949 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
950 {
951         struct pci_dn *pdn = pci_get_pdn(dev);
952         int i;
953         struct resource *res, res2;
954         resource_size_t size;
955         u16 num_vfs;
956
957         if (!dev->is_physfn)
958                 return -EINVAL;
959
960         /*
961          * "offset" is in VFs.  The M64 windows are sized so that when they
962          * are segmented, each segment is the same size as the IOV BAR.
963          * Each segment is in a separate PE, and the high order bits of the
964          * address are the PE number.  Therefore, each VF's BAR is in a
965          * separate PE, and changing the IOV BAR start address changes the
966          * range of PEs the VFs are in.
967          */
968         num_vfs = pdn->num_vfs;
969         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
970                 res = &dev->resource[i + PCI_IOV_RESOURCES];
971                 if (!res->flags || !res->parent)
972                         continue;
973
974                 /*
975                  * The actual IOV BAR range is determined by the start address
976                  * and the actual size for num_vfs VFs BAR.  This check is to
977                  * make sure that after shifting, the range will not overlap
978                  * with another device.
979                  */
980                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
981                 res2.flags = res->flags;
982                 res2.start = res->start + (size * offset);
983                 res2.end = res2.start + (size * num_vfs) - 1;
984
985                 if (res2.end > res->end) {
986                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
987                                 i, &res2, res, num_vfs, offset);
988                         return -EBUSY;
989                 }
990         }
991
992         /*
993          * After doing so, there would be a "hole" in the /proc/iomem when
994          * offset is a positive value. It looks like the device return some
995          * mmio back to the system, which actually no one could use it.
996          */
997         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
998                 res = &dev->resource[i + PCI_IOV_RESOURCES];
999                 if (!res->flags || !res->parent)
1000                         continue;
1001
1002                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1003                 res2 = *res;
1004                 res->start += size * offset;
1005
1006                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1007                          i, &res2, res, (offset > 0) ? "En" : "Dis",
1008                          num_vfs, offset);
1009                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1010         }
1011         return 0;
1012 }
1013 #endif /* CONFIG_PCI_IOV */
1014
1015 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1016 {
1017         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1018         struct pnv_phb *phb = hose->private_data;
1019         struct pci_dn *pdn = pci_get_pdn(dev);
1020         struct pnv_ioda_pe *pe;
1021
1022         if (!pdn) {
1023                 pr_err("%s: Device tree node not associated properly\n",
1024                            pci_name(dev));
1025                 return NULL;
1026         }
1027         if (pdn->pe_number != IODA_INVALID_PE)
1028                 return NULL;
1029
1030         pe = pnv_ioda_alloc_pe(phb);
1031         if (!pe) {
1032                 pr_warning("%s: Not enough PE# available, disabling device\n",
1033                            pci_name(dev));
1034                 return NULL;
1035         }
1036
1037         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1038          * pointer in the PE data structure, both should be destroyed at the
1039          * same time. However, this needs to be looked at more closely again
1040          * once we actually start removing things (Hotplug, SR-IOV, ...)
1041          *
1042          * At some point we want to remove the PDN completely anyways
1043          */
1044         pci_dev_get(dev);
1045         pdn->pcidev = dev;
1046         pdn->pe_number = pe->pe_number;
1047         pe->flags = PNV_IODA_PE_DEV;
1048         pe->pdev = dev;
1049         pe->pbus = NULL;
1050         pe->mve_number = -1;
1051         pe->rid = dev->bus->number << 8 | pdn->devfn;
1052
1053         pe_info(pe, "Associated device to PE\n");
1054
1055         if (pnv_ioda_configure_pe(phb, pe)) {
1056                 /* XXX What do we do here ? */
1057                 pnv_ioda_free_pe(pe);
1058                 pdn->pe_number = IODA_INVALID_PE;
1059                 pe->pdev = NULL;
1060                 pci_dev_put(dev);
1061                 return NULL;
1062         }
1063
1064         /* Put PE to the list */
1065         list_add_tail(&pe->list, &phb->ioda.pe_list);
1066
1067         return pe;
1068 }
1069
1070 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1071 {
1072         struct pci_dev *dev;
1073
1074         list_for_each_entry(dev, &bus->devices, bus_list) {
1075                 struct pci_dn *pdn = pci_get_pdn(dev);
1076
1077                 if (pdn == NULL) {
1078                         pr_warn("%s: No device node associated with device !\n",
1079                                 pci_name(dev));
1080                         continue;
1081                 }
1082
1083                 /*
1084                  * In partial hotplug case, the PCI device might be still
1085                  * associated with the PE and needn't attach it to the PE
1086                  * again.
1087                  */
1088                 if (pdn->pe_number != IODA_INVALID_PE)
1089                         continue;
1090
1091                 pe->device_count++;
1092                 pdn->pcidev = dev;
1093                 pdn->pe_number = pe->pe_number;
1094                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1095                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1096         }
1097 }
1098
1099 /*
1100  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1101  * single PCI bus. Another one that contains the primary PCI bus and its
1102  * subordinate PCI devices and buses. The second type of PE is normally
1103  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1104  */
1105 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1106 {
1107         struct pci_controller *hose = pci_bus_to_host(bus);
1108         struct pnv_phb *phb = hose->private_data;
1109         struct pnv_ioda_pe *pe = NULL;
1110         unsigned int pe_num;
1111
1112         /*
1113          * In partial hotplug case, the PE instance might be still alive.
1114          * We should reuse it instead of allocating a new one.
1115          */
1116         pe_num = phb->ioda.pe_rmap[bus->number << 8];
1117         if (pe_num != IODA_INVALID_PE) {
1118                 pe = &phb->ioda.pe_array[pe_num];
1119                 pnv_ioda_setup_same_PE(bus, pe);
1120                 return NULL;
1121         }
1122
1123         /* PE number for root bus should have been reserved */
1124         if (pci_is_root_bus(bus) &&
1125             phb->ioda.root_pe_idx != IODA_INVALID_PE)
1126                 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1127
1128         /* Check if PE is determined by M64 */
1129         if (!pe && phb->pick_m64_pe)
1130                 pe = phb->pick_m64_pe(bus, all);
1131
1132         /* The PE number isn't pinned by M64 */
1133         if (!pe)
1134                 pe = pnv_ioda_alloc_pe(phb);
1135
1136         if (!pe) {
1137                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1138                         __func__, pci_domain_nr(bus), bus->number);
1139                 return NULL;
1140         }
1141
1142         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1143         pe->pbus = bus;
1144         pe->pdev = NULL;
1145         pe->mve_number = -1;
1146         pe->rid = bus->busn_res.start << 8;
1147
1148         if (all)
1149                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1150                         bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1151         else
1152                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1153                         bus->busn_res.start, pe->pe_number);
1154
1155         if (pnv_ioda_configure_pe(phb, pe)) {
1156                 /* XXX What do we do here ? */
1157                 pnv_ioda_free_pe(pe);
1158                 pe->pbus = NULL;
1159                 return NULL;
1160         }
1161
1162         /* Associate it with all child devices */
1163         pnv_ioda_setup_same_PE(bus, pe);
1164
1165         /* Put PE to the list */
1166         list_add_tail(&pe->list, &phb->ioda.pe_list);
1167
1168         return pe;
1169 }
1170
1171 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1172 {
1173         int pe_num, found_pe = false, rc;
1174         long rid;
1175         struct pnv_ioda_pe *pe;
1176         struct pci_dev *gpu_pdev;
1177         struct pci_dn *npu_pdn;
1178         struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1179         struct pnv_phb *phb = hose->private_data;
1180
1181         /*
1182          * Due to a hardware errata PE#0 on the NPU is reserved for
1183          * error handling. This means we only have three PEs remaining
1184          * which need to be assigned to four links, implying some
1185          * links must share PEs.
1186          *
1187          * To achieve this we assign PEs such that NPUs linking the
1188          * same GPU get assigned the same PE.
1189          */
1190         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1191         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1192                 pe = &phb->ioda.pe_array[pe_num];
1193                 if (!pe->pdev)
1194                         continue;
1195
1196                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1197                         /*
1198                          * This device has the same peer GPU so should
1199                          * be assigned the same PE as the existing
1200                          * peer NPU.
1201                          */
1202                         dev_info(&npu_pdev->dev,
1203                                 "Associating to existing PE %d\n", pe_num);
1204                         pci_dev_get(npu_pdev);
1205                         npu_pdn = pci_get_pdn(npu_pdev);
1206                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1207                         npu_pdn->pcidev = npu_pdev;
1208                         npu_pdn->pe_number = pe_num;
1209                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1210
1211                         /* Map the PE to this link */
1212                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1213                                         OpalPciBusAll,
1214                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1215                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1216                                         OPAL_MAP_PE);
1217                         WARN_ON(rc != OPAL_SUCCESS);
1218                         found_pe = true;
1219                         break;
1220                 }
1221         }
1222
1223         if (!found_pe)
1224                 /*
1225                  * Could not find an existing PE so allocate a new
1226                  * one.
1227                  */
1228                 return pnv_ioda_setup_dev_PE(npu_pdev);
1229         else
1230                 return pe;
1231 }
1232
1233 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1234 {
1235         struct pci_dev *pdev;
1236
1237         list_for_each_entry(pdev, &bus->devices, bus_list)
1238                 pnv_ioda_setup_npu_PE(pdev);
1239 }
1240
1241 static void pnv_pci_ioda_setup_PEs(void)
1242 {
1243         struct pci_controller *hose, *tmp;
1244         struct pnv_phb *phb;
1245
1246         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1247                 phb = hose->private_data;
1248                 if (phb->type == PNV_PHB_NPU) {
1249                         /* PE#0 is needed for error reporting */
1250                         pnv_ioda_reserve_pe(phb, 0);
1251                         pnv_ioda_setup_npu_PEs(hose->bus);
1252                 }
1253         }
1254 }
1255
1256 #ifdef CONFIG_PCI_IOV
1257 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1258 {
1259         struct pci_bus        *bus;
1260         struct pci_controller *hose;
1261         struct pnv_phb        *phb;
1262         struct pci_dn         *pdn;
1263         int                    i, j;
1264         int                    m64_bars;
1265
1266         bus = pdev->bus;
1267         hose = pci_bus_to_host(bus);
1268         phb = hose->private_data;
1269         pdn = pci_get_pdn(pdev);
1270
1271         if (pdn->m64_single_mode)
1272                 m64_bars = num_vfs;
1273         else
1274                 m64_bars = 1;
1275
1276         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1277                 for (j = 0; j < m64_bars; j++) {
1278                         if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1279                                 continue;
1280                         opal_pci_phb_mmio_enable(phb->opal_id,
1281                                 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1282                         clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1283                         pdn->m64_map[j][i] = IODA_INVALID_M64;
1284                 }
1285
1286         kfree(pdn->m64_map);
1287         return 0;
1288 }
1289
1290 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1291 {
1292         struct pci_bus        *bus;
1293         struct pci_controller *hose;
1294         struct pnv_phb        *phb;
1295         struct pci_dn         *pdn;
1296         unsigned int           win;
1297         struct resource       *res;
1298         int                    i, j;
1299         int64_t                rc;
1300         int                    total_vfs;
1301         resource_size_t        size, start;
1302         int                    pe_num;
1303         int                    m64_bars;
1304
1305         bus = pdev->bus;
1306         hose = pci_bus_to_host(bus);
1307         phb = hose->private_data;
1308         pdn = pci_get_pdn(pdev);
1309         total_vfs = pci_sriov_get_totalvfs(pdev);
1310
1311         if (pdn->m64_single_mode)
1312                 m64_bars = num_vfs;
1313         else
1314                 m64_bars = 1;
1315
1316         pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1317         if (!pdn->m64_map)
1318                 return -ENOMEM;
1319         /* Initialize the m64_map to IODA_INVALID_M64 */
1320         for (i = 0; i < m64_bars ; i++)
1321                 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1322                         pdn->m64_map[i][j] = IODA_INVALID_M64;
1323
1324
1325         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1326                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1327                 if (!res->flags || !res->parent)
1328                         continue;
1329
1330                 for (j = 0; j < m64_bars; j++) {
1331                         do {
1332                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1333                                                 phb->ioda.m64_bar_idx + 1, 0);
1334
1335                                 if (win >= phb->ioda.m64_bar_idx + 1)
1336                                         goto m64_failed;
1337                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1338
1339                         pdn->m64_map[j][i] = win;
1340
1341                         if (pdn->m64_single_mode) {
1342                                 size = pci_iov_resource_size(pdev,
1343                                                         PCI_IOV_RESOURCES + i);
1344                                 start = res->start + size * j;
1345                         } else {
1346                                 size = resource_size(res);
1347                                 start = res->start;
1348                         }
1349
1350                         /* Map the M64 here */
1351                         if (pdn->m64_single_mode) {
1352                                 pe_num = pdn->pe_num_map[j];
1353                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1354                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1355                                                 pdn->m64_map[j][i], 0);
1356                         }
1357
1358                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1359                                                  OPAL_M64_WINDOW_TYPE,
1360                                                  pdn->m64_map[j][i],
1361                                                  start,
1362                                                  0, /* unused */
1363                                                  size);
1364
1365
1366                         if (rc != OPAL_SUCCESS) {
1367                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1368                                         win, rc);
1369                                 goto m64_failed;
1370                         }
1371
1372                         if (pdn->m64_single_mode)
1373                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1374                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1375                         else
1376                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1377                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1378
1379                         if (rc != OPAL_SUCCESS) {
1380                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1381                                         win, rc);
1382                                 goto m64_failed;
1383                         }
1384                 }
1385         }
1386         return 0;
1387
1388 m64_failed:
1389         pnv_pci_vf_release_m64(pdev, num_vfs);
1390         return -EBUSY;
1391 }
1392
1393 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1394                 int num);
1395 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1396
1397 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1398 {
1399         struct iommu_table    *tbl;
1400         int64_t               rc;
1401
1402         tbl = pe->table_group.tables[0];
1403         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1404         if (rc)
1405                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1406
1407         pnv_pci_ioda2_set_bypass(pe, false);
1408         if (pe->table_group.group) {
1409                 iommu_group_put(pe->table_group.group);
1410                 BUG_ON(pe->table_group.group);
1411         }
1412         pnv_pci_ioda2_table_free_pages(tbl);
1413         iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1414 }
1415
1416 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1417 {
1418         struct pci_bus        *bus;
1419         struct pci_controller *hose;
1420         struct pnv_phb        *phb;
1421         struct pnv_ioda_pe    *pe, *pe_n;
1422         struct pci_dn         *pdn;
1423
1424         bus = pdev->bus;
1425         hose = pci_bus_to_host(bus);
1426         phb = hose->private_data;
1427         pdn = pci_get_pdn(pdev);
1428
1429         if (!pdev->is_physfn)
1430                 return;
1431
1432         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1433                 if (pe->parent_dev != pdev)
1434                         continue;
1435
1436                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1437
1438                 /* Remove from list */
1439                 mutex_lock(&phb->ioda.pe_list_mutex);
1440                 list_del(&pe->list);
1441                 mutex_unlock(&phb->ioda.pe_list_mutex);
1442
1443                 pnv_ioda_deconfigure_pe(phb, pe);
1444
1445                 pnv_ioda_free_pe(pe);
1446         }
1447 }
1448
1449 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1450 {
1451         struct pci_bus        *bus;
1452         struct pci_controller *hose;
1453         struct pnv_phb        *phb;
1454         struct pnv_ioda_pe    *pe;
1455         struct pci_dn         *pdn;
1456         struct pci_sriov      *iov;
1457         u16                    num_vfs, i;
1458
1459         bus = pdev->bus;
1460         hose = pci_bus_to_host(bus);
1461         phb = hose->private_data;
1462         pdn = pci_get_pdn(pdev);
1463         iov = pdev->sriov;
1464         num_vfs = pdn->num_vfs;
1465
1466         /* Release VF PEs */
1467         pnv_ioda_release_vf_PE(pdev);
1468
1469         if (phb->type == PNV_PHB_IODA2) {
1470                 if (!pdn->m64_single_mode)
1471                         pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1472
1473                 /* Release M64 windows */
1474                 pnv_pci_vf_release_m64(pdev, num_vfs);
1475
1476                 /* Release PE numbers */
1477                 if (pdn->m64_single_mode) {
1478                         for (i = 0; i < num_vfs; i++) {
1479                                 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1480                                         continue;
1481
1482                                 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1483                                 pnv_ioda_free_pe(pe);
1484                         }
1485                 } else
1486                         bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1487                 /* Releasing pe_num_map */
1488                 kfree(pdn->pe_num_map);
1489         }
1490 }
1491
1492 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1493                                        struct pnv_ioda_pe *pe);
1494 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1495 {
1496         struct pci_bus        *bus;
1497         struct pci_controller *hose;
1498         struct pnv_phb        *phb;
1499         struct pnv_ioda_pe    *pe;
1500         int                    pe_num;
1501         u16                    vf_index;
1502         struct pci_dn         *pdn;
1503
1504         bus = pdev->bus;
1505         hose = pci_bus_to_host(bus);
1506         phb = hose->private_data;
1507         pdn = pci_get_pdn(pdev);
1508
1509         if (!pdev->is_physfn)
1510                 return;
1511
1512         /* Reserve PE for each VF */
1513         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1514                 if (pdn->m64_single_mode)
1515                         pe_num = pdn->pe_num_map[vf_index];
1516                 else
1517                         pe_num = *pdn->pe_num_map + vf_index;
1518
1519                 pe = &phb->ioda.pe_array[pe_num];
1520                 pe->pe_number = pe_num;
1521                 pe->phb = phb;
1522                 pe->flags = PNV_IODA_PE_VF;
1523                 pe->pbus = NULL;
1524                 pe->parent_dev = pdev;
1525                 pe->mve_number = -1;
1526                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1527                            pci_iov_virtfn_devfn(pdev, vf_index);
1528
1529                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1530                         hose->global_number, pdev->bus->number,
1531                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1532                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1533
1534                 if (pnv_ioda_configure_pe(phb, pe)) {
1535                         /* XXX What do we do here ? */
1536                         pnv_ioda_free_pe(pe);
1537                         pe->pdev = NULL;
1538                         continue;
1539                 }
1540
1541                 /* Put PE to the list */
1542                 mutex_lock(&phb->ioda.pe_list_mutex);
1543                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1544                 mutex_unlock(&phb->ioda.pe_list_mutex);
1545
1546                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1547         }
1548 }
1549
1550 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1551 {
1552         struct pci_bus        *bus;
1553         struct pci_controller *hose;
1554         struct pnv_phb        *phb;
1555         struct pnv_ioda_pe    *pe;
1556         struct pci_dn         *pdn;
1557         int                    ret;
1558         u16                    i;
1559
1560         bus = pdev->bus;
1561         hose = pci_bus_to_host(bus);
1562         phb = hose->private_data;
1563         pdn = pci_get_pdn(pdev);
1564
1565         if (phb->type == PNV_PHB_IODA2) {
1566                 if (!pdn->vfs_expanded) {
1567                         dev_info(&pdev->dev, "don't support this SRIOV device"
1568                                 " with non 64bit-prefetchable IOV BAR\n");
1569                         return -ENOSPC;
1570                 }
1571
1572                 /*
1573                  * When M64 BARs functions in Single PE mode, the number of VFs
1574                  * could be enabled must be less than the number of M64 BARs.
1575                  */
1576                 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1577                         dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1578                         return -EBUSY;
1579                 }
1580
1581                 /* Allocating pe_num_map */
1582                 if (pdn->m64_single_mode)
1583                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1584                                         GFP_KERNEL);
1585                 else
1586                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1587
1588                 if (!pdn->pe_num_map)
1589                         return -ENOMEM;
1590
1591                 if (pdn->m64_single_mode)
1592                         for (i = 0; i < num_vfs; i++)
1593                                 pdn->pe_num_map[i] = IODA_INVALID_PE;
1594
1595                 /* Calculate available PE for required VFs */
1596                 if (pdn->m64_single_mode) {
1597                         for (i = 0; i < num_vfs; i++) {
1598                                 pe = pnv_ioda_alloc_pe(phb);
1599                                 if (!pe) {
1600                                         ret = -EBUSY;
1601                                         goto m64_failed;
1602                                 }
1603
1604                                 pdn->pe_num_map[i] = pe->pe_number;
1605                         }
1606                 } else {
1607                         mutex_lock(&phb->ioda.pe_alloc_mutex);
1608                         *pdn->pe_num_map = bitmap_find_next_zero_area(
1609                                 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1610                                 0, num_vfs, 0);
1611                         if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1612                                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1613                                 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1614                                 kfree(pdn->pe_num_map);
1615                                 return -EBUSY;
1616                         }
1617                         bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1618                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1619                 }
1620                 pdn->num_vfs = num_vfs;
1621
1622                 /* Assign M64 window accordingly */
1623                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1624                 if (ret) {
1625                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1626                         goto m64_failed;
1627                 }
1628
1629                 /*
1630                  * When using one M64 BAR to map one IOV BAR, we need to shift
1631                  * the IOV BAR according to the PE# allocated to the VFs.
1632                  * Otherwise, the PE# for the VF will conflict with others.
1633                  */
1634                 if (!pdn->m64_single_mode) {
1635                         ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1636                         if (ret)
1637                                 goto m64_failed;
1638                 }
1639         }
1640
1641         /* Setup VF PEs */
1642         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1643
1644         return 0;
1645
1646 m64_failed:
1647         if (pdn->m64_single_mode) {
1648                 for (i = 0; i < num_vfs; i++) {
1649                         if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1650                                 continue;
1651
1652                         pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1653                         pnv_ioda_free_pe(pe);
1654                 }
1655         } else
1656                 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1657
1658         /* Releasing pe_num_map */
1659         kfree(pdn->pe_num_map);
1660
1661         return ret;
1662 }
1663
1664 int pcibios_sriov_disable(struct pci_dev *pdev)
1665 {
1666         pnv_pci_sriov_disable(pdev);
1667
1668         /* Release PCI data */
1669         remove_dev_pci_data(pdev);
1670         return 0;
1671 }
1672
1673 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1674 {
1675         /* Allocate PCI data */
1676         add_dev_pci_data(pdev);
1677
1678         return pnv_pci_sriov_enable(pdev, num_vfs);
1679 }
1680 #endif /* CONFIG_PCI_IOV */
1681
1682 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1683 {
1684         struct pci_dn *pdn = pci_get_pdn(pdev);
1685         struct pnv_ioda_pe *pe;
1686
1687         /*
1688          * The function can be called while the PE#
1689          * hasn't been assigned. Do nothing for the
1690          * case.
1691          */
1692         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1693                 return;
1694
1695         pe = &phb->ioda.pe_array[pdn->pe_number];
1696         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1697         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1698         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1699         /*
1700          * Note: iommu_add_device() will fail here as
1701          * for physical PE: the device is already added by now;
1702          * for virtual PE: sysfs entries are not ready yet and
1703          * tce_iommu_bus_notifier will add the device to a group later.
1704          */
1705 }
1706
1707 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1708 {
1709         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1710         struct pnv_phb *phb = hose->private_data;
1711         struct pci_dn *pdn = pci_get_pdn(pdev);
1712         struct pnv_ioda_pe *pe;
1713         uint64_t top;
1714         bool bypass = false;
1715
1716         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1717                 return -ENODEV;;
1718
1719         pe = &phb->ioda.pe_array[pdn->pe_number];
1720         if (pe->tce_bypass_enabled) {
1721                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1722                 bypass = (dma_mask >= top);
1723         }
1724
1725         if (bypass) {
1726                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1727                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1728         } else {
1729                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1730                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1731         }
1732         *pdev->dev.dma_mask = dma_mask;
1733
1734         /* Update peer npu devices */
1735         pnv_npu_try_dma_set_bypass(pdev, bypass);
1736
1737         return 0;
1738 }
1739
1740 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1741 {
1742         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1743         struct pnv_phb *phb = hose->private_data;
1744         struct pci_dn *pdn = pci_get_pdn(pdev);
1745         struct pnv_ioda_pe *pe;
1746         u64 end, mask;
1747
1748         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1749                 return 0;
1750
1751         pe = &phb->ioda.pe_array[pdn->pe_number];
1752         if (!pe->tce_bypass_enabled)
1753                 return __dma_get_required_mask(&pdev->dev);
1754
1755
1756         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1757         mask = 1ULL << (fls64(end) - 1);
1758         mask += mask - 1;
1759
1760         return mask;
1761 }
1762
1763 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1764                                    struct pci_bus *bus)
1765 {
1766         struct pci_dev *dev;
1767
1768         list_for_each_entry(dev, &bus->devices, bus_list) {
1769                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1770                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1771                 iommu_add_device(&dev->dev);
1772
1773                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1774                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1775         }
1776 }
1777
1778 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1779                                                      bool real_mode)
1780 {
1781         return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1782                 (phb->regs + 0x210);
1783 }
1784
1785 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1786                 unsigned long index, unsigned long npages, bool rm)
1787 {
1788         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1789                         &tbl->it_group_list, struct iommu_table_group_link,
1790                         next);
1791         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1792                         struct pnv_ioda_pe, table_group);
1793         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1794         unsigned long start, end, inc;
1795
1796         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1797         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1798                         npages - 1);
1799
1800         /* p7ioc-style invalidation, 2 TCEs per write */
1801         start |= (1ull << 63);
1802         end |= (1ull << 63);
1803         inc = 16;
1804         end |= inc - 1; /* round up end to be different than start */
1805
1806         mb(); /* Ensure above stores are visible */
1807         while (start <= end) {
1808                 if (rm)
1809                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1810                 else
1811                         __raw_writeq(cpu_to_be64(start), invalidate);
1812                 start += inc;
1813         }
1814
1815         /*
1816          * The iommu layer will do another mb() for us on build()
1817          * and we don't care on free()
1818          */
1819 }
1820
1821 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1822                 long npages, unsigned long uaddr,
1823                 enum dma_data_direction direction,
1824                 unsigned long attrs)
1825 {
1826         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1827                         attrs);
1828
1829         if (!ret)
1830                 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1831
1832         return ret;
1833 }
1834
1835 #ifdef CONFIG_IOMMU_API
1836 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1837                 unsigned long *hpa, enum dma_data_direction *direction)
1838 {
1839         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1840
1841         if (!ret)
1842                 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1843
1844         return ret;
1845 }
1846 #endif
1847
1848 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1849                 long npages)
1850 {
1851         pnv_tce_free(tbl, index, npages);
1852
1853         pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1854 }
1855
1856 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1857         .set = pnv_ioda1_tce_build,
1858 #ifdef CONFIG_IOMMU_API
1859         .exchange = pnv_ioda1_tce_xchg,
1860 #endif
1861         .clear = pnv_ioda1_tce_free,
1862         .get = pnv_tce_get,
1863 };
1864
1865 #define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
1866 #define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
1867 #define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
1868
1869 void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1870 {
1871         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1872         const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1873
1874         mb(); /* Ensure previous TCE table stores are visible */
1875         if (rm)
1876                 __raw_rm_writeq(cpu_to_be64(val), invalidate);
1877         else
1878                 __raw_writeq(cpu_to_be64(val), invalidate);
1879 }
1880
1881 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1882 {
1883         /* 01xb - invalidate TCEs that match the specified PE# */
1884         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1885         unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1886
1887         mb(); /* Ensure above stores are visible */
1888         __raw_writeq(cpu_to_be64(val), invalidate);
1889 }
1890
1891 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1892                                         unsigned shift, unsigned long index,
1893                                         unsigned long npages)
1894 {
1895         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1896         unsigned long start, end, inc;
1897
1898         /* We'll invalidate DMA address in PE scope */
1899         start = PHB3_TCE_KILL_INVAL_ONE;
1900         start |= (pe->pe_number & 0xFF);
1901         end = start;
1902
1903         /* Figure out the start, end and step */
1904         start |= (index << shift);
1905         end |= ((index + npages - 1) << shift);
1906         inc = (0x1ull << shift);
1907         mb();
1908
1909         while (start <= end) {
1910                 if (rm)
1911                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1912                 else
1913                         __raw_writeq(cpu_to_be64(start), invalidate);
1914                 start += inc;
1915         }
1916 }
1917
1918 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1919 {
1920         struct pnv_phb *phb = pe->phb;
1921
1922         if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1923                 pnv_pci_phb3_tce_invalidate_pe(pe);
1924         else
1925                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1926                                   pe->pe_number, 0, 0, 0);
1927 }
1928
1929 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1930                 unsigned long index, unsigned long npages, bool rm)
1931 {
1932         struct iommu_table_group_link *tgl;
1933
1934         list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1935                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1936                                 struct pnv_ioda_pe, table_group);
1937                 struct pnv_phb *phb = pe->phb;
1938                 unsigned int shift = tbl->it_page_shift;
1939
1940                 if (phb->type == PNV_PHB_NPU) {
1941                         /*
1942                          * The NVLink hardware does not support TCE kill
1943                          * per TCE entry so we have to invalidate
1944                          * the entire cache for it.
1945                          */
1946                         pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1947                         continue;
1948                 }
1949                 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1950                         pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1951                                                     index, npages);
1952                 else if (rm)
1953                         opal_rm_pci_tce_kill(phb->opal_id,
1954                                              OPAL_PCI_TCE_KILL_PAGES,
1955                                              pe->pe_number, 1u << shift,
1956                                              index << shift, npages);
1957                 else
1958                         opal_pci_tce_kill(phb->opal_id,
1959                                           OPAL_PCI_TCE_KILL_PAGES,
1960                                           pe->pe_number, 1u << shift,
1961                                           index << shift, npages);
1962         }
1963 }
1964
1965 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1966                 long npages, unsigned long uaddr,
1967                 enum dma_data_direction direction,
1968                 unsigned long attrs)
1969 {
1970         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1971                         attrs);
1972
1973         if (!ret)
1974                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1975
1976         return ret;
1977 }
1978
1979 #ifdef CONFIG_IOMMU_API
1980 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1981                 unsigned long *hpa, enum dma_data_direction *direction)
1982 {
1983         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1984
1985         if (!ret)
1986                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1987
1988         return ret;
1989 }
1990 #endif
1991
1992 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1993                 long npages)
1994 {
1995         pnv_tce_free(tbl, index, npages);
1996
1997         pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1998 }
1999
2000 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2001 {
2002         pnv_pci_ioda2_table_free_pages(tbl);
2003         iommu_free_table(tbl, "pnv");
2004 }
2005
2006 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2007         .set = pnv_ioda2_tce_build,
2008 #ifdef CONFIG_IOMMU_API
2009         .exchange = pnv_ioda2_tce_xchg,
2010 #endif
2011         .clear = pnv_ioda2_tce_free,
2012         .get = pnv_tce_get,
2013         .free = pnv_ioda2_table_free,
2014 };
2015
2016 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2017 {
2018         unsigned int *weight = (unsigned int *)data;
2019
2020         /* This is quite simplistic. The "base" weight of a device
2021          * is 10. 0 means no DMA is to be accounted for it.
2022          */
2023         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2024                 return 0;
2025
2026         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2027             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2028             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2029                 *weight += 3;
2030         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2031                 *weight += 15;
2032         else
2033                 *weight += 10;
2034
2035         return 0;
2036 }
2037
2038 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2039 {
2040         unsigned int weight = 0;
2041
2042         /* SRIOV VF has same DMA32 weight as its PF */
2043 #ifdef CONFIG_PCI_IOV
2044         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2045                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2046                 return weight;
2047         }
2048 #endif
2049
2050         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2051                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2052         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2053                 struct pci_dev *pdev;
2054
2055                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2056                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2057         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2058                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2059         }
2060
2061         return weight;
2062 }
2063
2064 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2065                                        struct pnv_ioda_pe *pe)
2066 {
2067
2068         struct page *tce_mem = NULL;
2069         struct iommu_table *tbl;
2070         unsigned int weight, total_weight = 0;
2071         unsigned int tce32_segsz, base, segs, avail, i;
2072         int64_t rc;
2073         void *addr;
2074
2075         /* XXX FIXME: Handle 64-bit only DMA devices */
2076         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2077         /* XXX FIXME: Allocate multi-level tables on PHB3 */
2078         weight = pnv_pci_ioda_pe_dma_weight(pe);
2079         if (!weight)
2080                 return;
2081
2082         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2083                      &total_weight);
2084         segs = (weight * phb->ioda.dma32_count) / total_weight;
2085         if (!segs)
2086                 segs = 1;
2087
2088         /*
2089          * Allocate contiguous DMA32 segments. We begin with the expected
2090          * number of segments. With one more attempt, the number of DMA32
2091          * segments to be allocated is decreased by one until one segment
2092          * is allocated successfully.
2093          */
2094         do {
2095                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2096                         for (avail = 0, i = base; i < base + segs; i++) {
2097                                 if (phb->ioda.dma32_segmap[i] ==
2098                                     IODA_INVALID_PE)
2099                                         avail++;
2100                         }
2101
2102                         if (avail == segs)
2103                                 goto found;
2104                 }
2105         } while (--segs);
2106
2107         if (!segs) {
2108                 pe_warn(pe, "No available DMA32 segments\n");
2109                 return;
2110         }
2111
2112 found:
2113         tbl = pnv_pci_table_alloc(phb->hose->node);
2114         iommu_register_group(&pe->table_group, phb->hose->global_number,
2115                         pe->pe_number);
2116         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2117
2118         /* Grab a 32-bit TCE table */
2119         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2120                 weight, total_weight, base, segs);
2121         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2122                 base * PNV_IODA1_DMA32_SEGSIZE,
2123                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2124
2125         /* XXX Currently, we allocate one big contiguous table for the
2126          * TCEs. We only really need one chunk per 256M of TCE space
2127          * (ie per segment) but that's an optimization for later, it
2128          * requires some added smarts with our get/put_tce implementation
2129          *
2130          * Each TCE page is 4KB in size and each TCE entry occupies 8
2131          * bytes
2132          */
2133         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2134         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2135                                    get_order(tce32_segsz * segs));
2136         if (!tce_mem) {
2137                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2138                 goto fail;
2139         }
2140         addr = page_address(tce_mem);
2141         memset(addr, 0, tce32_segsz * segs);
2142
2143         /* Configure HW */
2144         for (i = 0; i < segs; i++) {
2145                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2146                                               pe->pe_number,
2147                                               base + i, 1,
2148                                               __pa(addr) + tce32_segsz * i,
2149                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
2150                 if (rc) {
2151                         pe_err(pe, " Failed to configure 32-bit TCE table,"
2152                                " err %ld\n", rc);
2153                         goto fail;
2154                 }
2155         }
2156
2157         /* Setup DMA32 segment mapping */
2158         for (i = base; i < base + segs; i++)
2159                 phb->ioda.dma32_segmap[i] = pe->pe_number;
2160
2161         /* Setup linux iommu table */
2162         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2163                                   base * PNV_IODA1_DMA32_SEGSIZE,
2164                                   IOMMU_PAGE_SHIFT_4K);
2165
2166         tbl->it_ops = &pnv_ioda1_iommu_ops;
2167         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2168         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2169         iommu_init_table(tbl, phb->hose->node);
2170
2171         if (pe->flags & PNV_IODA_PE_DEV) {
2172                 /*
2173                  * Setting table base here only for carrying iommu_group
2174                  * further down to let iommu_add_device() do the job.
2175                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2176                  */
2177                 set_iommu_table_base(&pe->pdev->dev, tbl);
2178                 iommu_add_device(&pe->pdev->dev);
2179         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2180                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2181
2182         return;
2183  fail:
2184         /* XXX Failure: Try to fallback to 64-bit only ? */
2185         if (tce_mem)
2186                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2187         if (tbl) {
2188                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2189                 iommu_free_table(tbl, "pnv");
2190         }
2191 }
2192
2193 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2194                 int num, struct iommu_table *tbl)
2195 {
2196         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2197                         table_group);
2198         struct pnv_phb *phb = pe->phb;
2199         int64_t rc;
2200         const unsigned long size = tbl->it_indirect_levels ?
2201                         tbl->it_level_size : tbl->it_size;
2202         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2203         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2204
2205         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2206                         start_addr, start_addr + win_size - 1,
2207                         IOMMU_PAGE_SIZE(tbl));
2208
2209         /*
2210          * Map TCE table through TVT. The TVE index is the PE number
2211          * shifted by 1 bit for 32-bits DMA space.
2212          */
2213         rc = opal_pci_map_pe_dma_window(phb->opal_id,
2214                         pe->pe_number,
2215                         (pe->pe_number << 1) + num,
2216                         tbl->it_indirect_levels + 1,
2217                         __pa(tbl->it_base),
2218                         size << 3,
2219                         IOMMU_PAGE_SIZE(tbl));
2220         if (rc) {
2221                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2222                 return rc;
2223         }
2224
2225         pnv_pci_link_table_and_group(phb->hose->node, num,
2226                         tbl, &pe->table_group);
2227         pnv_pci_ioda2_tce_invalidate_pe(pe);
2228
2229         return 0;
2230 }
2231
2232 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2233 {
2234         uint16_t window_id = (pe->pe_number << 1 ) + 1;
2235         int64_t rc;
2236
2237         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2238         if (enable) {
2239                 phys_addr_t top = memblock_end_of_DRAM();
2240
2241                 top = roundup_pow_of_two(top);
2242                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2243                                                      pe->pe_number,
2244                                                      window_id,
2245                                                      pe->tce_bypass_base,
2246                                                      top);
2247         } else {
2248                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2249                                                      pe->pe_number,
2250                                                      window_id,
2251                                                      pe->tce_bypass_base,
2252                                                      0);
2253         }
2254         if (rc)
2255                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2256         else
2257                 pe->tce_bypass_enabled = enable;
2258 }
2259
2260 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2261                 __u32 page_shift, __u64 window_size, __u32 levels,
2262                 struct iommu_table *tbl);
2263
2264 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2265                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2266                 struct iommu_table **ptbl)
2267 {
2268         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2269                         table_group);
2270         int nid = pe->phb->hose->node;
2271         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2272         long ret;
2273         struct iommu_table *tbl;
2274
2275         tbl = pnv_pci_table_alloc(nid);
2276         if (!tbl)
2277                 return -ENOMEM;
2278
2279         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2280                         bus_offset, page_shift, window_size,
2281                         levels, tbl);
2282         if (ret) {
2283                 iommu_free_table(tbl, "pnv");
2284                 return ret;
2285         }
2286
2287         tbl->it_ops = &pnv_ioda2_iommu_ops;
2288
2289         *ptbl = tbl;
2290
2291         return 0;
2292 }
2293
2294 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2295 {
2296         struct iommu_table *tbl = NULL;
2297         long rc;
2298
2299         /*
2300          * crashkernel= specifies the kdump kernel's maximum memory at
2301          * some offset and there is no guaranteed the result is a power
2302          * of 2, which will cause errors later.
2303          */
2304         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2305
2306         /*
2307          * In memory constrained environments, e.g. kdump kernel, the
2308          * DMA window can be larger than available memory, which will
2309          * cause errors later.
2310          */
2311         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2312
2313         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2314                         IOMMU_PAGE_SHIFT_4K,
2315                         window_size,
2316                         POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2317         if (rc) {
2318                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2319                                 rc);
2320                 return rc;
2321         }
2322
2323         iommu_init_table(tbl, pe->phb->hose->node);
2324
2325         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2326         if (rc) {
2327                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2328                                 rc);
2329                 pnv_ioda2_table_free(tbl);
2330                 return rc;
2331         }
2332
2333         if (!pnv_iommu_bypass_disabled)
2334                 pnv_pci_ioda2_set_bypass(pe, true);
2335
2336         /*
2337          * Setting table base here only for carrying iommu_group
2338          * further down to let iommu_add_device() do the job.
2339          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2340          */
2341         if (pe->flags & PNV_IODA_PE_DEV)
2342                 set_iommu_table_base(&pe->pdev->dev, tbl);
2343
2344         return 0;
2345 }
2346
2347 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2348 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2349                 int num)
2350 {
2351         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2352                         table_group);
2353         struct pnv_phb *phb = pe->phb;
2354         long ret;
2355
2356         pe_info(pe, "Removing DMA window #%d\n", num);
2357
2358         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2359                         (pe->pe_number << 1) + num,
2360                         0/* levels */, 0/* table address */,
2361                         0/* table size */, 0/* page size */);
2362         if (ret)
2363                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2364         else
2365                 pnv_pci_ioda2_tce_invalidate_pe(pe);
2366
2367         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2368
2369         return ret;
2370 }
2371 #endif
2372
2373 #ifdef CONFIG_IOMMU_API
2374 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2375                 __u64 window_size, __u32 levels)
2376 {
2377         unsigned long bytes = 0;
2378         const unsigned window_shift = ilog2(window_size);
2379         unsigned entries_shift = window_shift - page_shift;
2380         unsigned table_shift = entries_shift + 3;
2381         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2382         unsigned long direct_table_size;
2383
2384         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2385                         (window_size > memory_hotplug_max()) ||
2386                         !is_power_of_2(window_size))
2387                 return 0;
2388
2389         /* Calculate a direct table size from window_size and levels */
2390         entries_shift = (entries_shift + levels - 1) / levels;
2391         table_shift = entries_shift + 3;
2392         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2393         direct_table_size =  1UL << table_shift;
2394
2395         for ( ; levels; --levels) {
2396                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2397
2398                 tce_table_size /= direct_table_size;
2399                 tce_table_size <<= 3;
2400                 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2401         }
2402
2403         return bytes;
2404 }
2405
2406 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2407 {
2408         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2409                                                 table_group);
2410         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2411         struct iommu_table *tbl = pe->table_group.tables[0];
2412
2413         pnv_pci_ioda2_set_bypass(pe, false);
2414         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2415         pnv_ioda2_table_free(tbl);
2416 }
2417
2418 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2419 {
2420         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2421                                                 table_group);
2422
2423         pnv_pci_ioda2_setup_default_config(pe);
2424 }
2425
2426 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2427         .get_table_size = pnv_pci_ioda2_get_table_size,
2428         .create_table = pnv_pci_ioda2_create_table,
2429         .set_window = pnv_pci_ioda2_set_window,
2430         .unset_window = pnv_pci_ioda2_unset_window,
2431         .take_ownership = pnv_ioda2_take_ownership,
2432         .release_ownership = pnv_ioda2_release_ownership,
2433 };
2434
2435 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2436 {
2437         struct pci_controller *hose;
2438         struct pnv_phb *phb;
2439         struct pnv_ioda_pe **ptmppe = opaque;
2440         struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2441         struct pci_dn *pdn = pci_get_pdn(pdev);
2442
2443         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2444                 return 0;
2445
2446         hose = pci_bus_to_host(pdev->bus);
2447         phb = hose->private_data;
2448         if (phb->type != PNV_PHB_NPU)
2449                 return 0;
2450
2451         *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2452
2453         return 1;
2454 }
2455
2456 /*
2457  * This returns PE of associated NPU.
2458  * This assumes that NPU is in the same IOMMU group with GPU and there is
2459  * no other PEs.
2460  */
2461 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2462                 struct iommu_table_group *table_group)
2463 {
2464         struct pnv_ioda_pe *npe = NULL;
2465         int ret = iommu_group_for_each_dev(table_group->group, &npe,
2466                         gpe_table_group_to_npe_cb);
2467
2468         BUG_ON(!ret || !npe);
2469
2470         return npe;
2471 }
2472
2473 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2474                 int num, struct iommu_table *tbl)
2475 {
2476         long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2477
2478         if (ret)
2479                 return ret;
2480
2481         ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2482         if (ret)
2483                 pnv_pci_ioda2_unset_window(table_group, num);
2484
2485         return ret;
2486 }
2487
2488 static long pnv_pci_ioda2_npu_unset_window(
2489                 struct iommu_table_group *table_group,
2490                 int num)
2491 {
2492         long ret = pnv_pci_ioda2_unset_window(table_group, num);
2493
2494         if (ret)
2495                 return ret;
2496
2497         return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2498 }
2499
2500 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2501 {
2502         /*
2503          * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2504          * the iommu_table if 32bit DMA is enabled.
2505          */
2506         pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2507         pnv_ioda2_take_ownership(table_group);
2508 }
2509
2510 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2511         .get_table_size = pnv_pci_ioda2_get_table_size,
2512         .create_table = pnv_pci_ioda2_create_table,
2513         .set_window = pnv_pci_ioda2_npu_set_window,
2514         .unset_window = pnv_pci_ioda2_npu_unset_window,
2515         .take_ownership = pnv_ioda2_npu_take_ownership,
2516         .release_ownership = pnv_ioda2_release_ownership,
2517 };
2518
2519 static void pnv_pci_ioda_setup_iommu_api(void)
2520 {
2521         struct pci_controller *hose, *tmp;
2522         struct pnv_phb *phb;
2523         struct pnv_ioda_pe *pe, *gpe;
2524
2525         /*
2526          * Now we have all PHBs discovered, time to add NPU devices to
2527          * the corresponding IOMMU groups.
2528          */
2529         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2530                 phb = hose->private_data;
2531
2532                 if (phb->type != PNV_PHB_NPU)
2533                         continue;
2534
2535                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2536                         gpe = pnv_pci_npu_setup_iommu(pe);
2537                         if (gpe)
2538                                 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2539                 }
2540         }
2541 }
2542 #else /* !CONFIG_IOMMU_API */
2543 static void pnv_pci_ioda_setup_iommu_api(void) { };
2544 #endif
2545
2546 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2547                 unsigned levels, unsigned long limit,
2548                 unsigned long *current_offset, unsigned long *total_allocated)
2549 {
2550         struct page *tce_mem = NULL;
2551         __be64 *addr, *tmp;
2552         unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2553         unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2554         unsigned entries = 1UL << (shift - 3);
2555         long i;
2556
2557         tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2558         if (!tce_mem) {
2559                 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2560                 return NULL;
2561         }
2562         addr = page_address(tce_mem);
2563         memset(addr, 0, allocated);
2564         *total_allocated += allocated;
2565
2566         --levels;
2567         if (!levels) {
2568                 *current_offset += allocated;
2569                 return addr;
2570         }
2571
2572         for (i = 0; i < entries; ++i) {
2573                 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2574                                 levels, limit, current_offset, total_allocated);
2575                 if (!tmp)
2576                         break;
2577
2578                 addr[i] = cpu_to_be64(__pa(tmp) |
2579                                 TCE_PCI_READ | TCE_PCI_WRITE);
2580
2581                 if (*current_offset >= limit)
2582                         break;
2583         }
2584
2585         return addr;
2586 }
2587
2588 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2589                 unsigned long size, unsigned level);
2590
2591 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2592                 __u32 page_shift, __u64 window_size, __u32 levels,
2593                 struct iommu_table *tbl)
2594 {
2595         void *addr;
2596         unsigned long offset = 0, level_shift, total_allocated = 0;
2597         const unsigned window_shift = ilog2(window_size);
2598         unsigned entries_shift = window_shift - page_shift;
2599         unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2600         const unsigned long tce_table_size = 1UL << table_shift;
2601
2602         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2603                 return -EINVAL;
2604
2605         if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2606                 return -EINVAL;
2607
2608         /* Adjust direct table size from window_size and levels */
2609         entries_shift = (entries_shift + levels - 1) / levels;
2610         level_shift = entries_shift + 3;
2611         level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2612
2613         /* Allocate TCE table */
2614         addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2615                         levels, tce_table_size, &offset, &total_allocated);
2616
2617         /* addr==NULL means that the first level allocation failed */
2618         if (!addr)
2619                 return -ENOMEM;
2620
2621         /*
2622          * First level was allocated but some lower level failed as
2623          * we did not allocate as much as we wanted,
2624          * release partially allocated table.
2625          */
2626         if (offset < tce_table_size) {
2627                 pnv_pci_ioda2_table_do_free_pages(addr,
2628                                 1ULL << (level_shift - 3), levels - 1);
2629                 return -ENOMEM;
2630         }
2631
2632         /* Setup linux iommu table */
2633         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2634                         page_shift);
2635         tbl->it_level_size = 1ULL << (level_shift - 3);
2636         tbl->it_indirect_levels = levels - 1;
2637         tbl->it_allocated_size = total_allocated;
2638
2639         pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2640                         window_size, tce_table_size, bus_offset);
2641
2642         return 0;
2643 }
2644
2645 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2646                 unsigned long size, unsigned level)
2647 {
2648         const unsigned long addr_ul = (unsigned long) addr &
2649                         ~(TCE_PCI_READ | TCE_PCI_WRITE);
2650
2651         if (level) {
2652                 long i;
2653                 u64 *tmp = (u64 *) addr_ul;
2654
2655                 for (i = 0; i < size; ++i) {
2656                         unsigned long hpa = be64_to_cpu(tmp[i]);
2657
2658                         if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2659                                 continue;
2660
2661                         pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2662                                         level - 1);
2663                 }
2664         }
2665
2666         free_pages(addr_ul, get_order(size << 3));
2667 }
2668
2669 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2670 {
2671         const unsigned long size = tbl->it_indirect_levels ?
2672                         tbl->it_level_size : tbl->it_size;
2673
2674         if (!tbl->it_size)
2675                 return;
2676
2677         pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2678                         tbl->it_indirect_levels);
2679 }
2680
2681 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2682                                        struct pnv_ioda_pe *pe)
2683 {
2684         int64_t rc;
2685
2686         if (!pnv_pci_ioda_pe_dma_weight(pe))
2687                 return;
2688
2689         /* TVE #1 is selected by PCI address bit 59 */
2690         pe->tce_bypass_base = 1ull << 59;
2691
2692         iommu_register_group(&pe->table_group, phb->hose->global_number,
2693                         pe->pe_number);
2694
2695         /* The PE will reserve all possible 32-bits space */
2696         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2697                 phb->ioda.m32_pci_base);
2698
2699         /* Setup linux iommu table */
2700         pe->table_group.tce32_start = 0;
2701         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2702         pe->table_group.max_dynamic_windows_supported =
2703                         IOMMU_TABLE_GROUP_MAX_TABLES;
2704         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2705         pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2706 #ifdef CONFIG_IOMMU_API
2707         pe->table_group.ops = &pnv_pci_ioda2_ops;
2708 #endif
2709
2710         rc = pnv_pci_ioda2_setup_default_config(pe);
2711         if (rc)
2712                 return;
2713
2714         if (pe->flags & PNV_IODA_PE_DEV)
2715                 iommu_add_device(&pe->pdev->dev);
2716         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2717                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2718 }
2719
2720 #ifdef CONFIG_PCI_MSI
2721 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2722 {
2723         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2724                                            ioda.irq_chip);
2725
2726         return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2727 }
2728
2729 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2730 {
2731         int64_t rc;
2732         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2733         struct irq_chip *chip = irq_data_get_irq_chip(d);
2734
2735         rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2736         WARN_ON_ONCE(rc);
2737
2738         icp_native_eoi(d);
2739 }
2740
2741
2742 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2743 {
2744         struct irq_data *idata;
2745         struct irq_chip *ichip;
2746
2747         /* The MSI EOI OPAL call is only needed on PHB3 */
2748         if (phb->model != PNV_PHB_MODEL_PHB3)
2749                 return;
2750
2751         if (!phb->ioda.irq_chip_init) {
2752                 /*
2753                  * First time we setup an MSI IRQ, we need to setup the
2754                  * corresponding IRQ chip to route correctly.
2755                  */
2756                 idata = irq_get_irq_data(virq);
2757                 ichip = irq_data_get_irq_chip(idata);
2758                 phb->ioda.irq_chip_init = 1;
2759                 phb->ioda.irq_chip = *ichip;
2760                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2761         }
2762         irq_set_chip(virq, &phb->ioda.irq_chip);
2763 }
2764
2765 /*
2766  * Returns true iff chip is something that we could call
2767  * pnv_opal_pci_msi_eoi for.
2768  */
2769 bool is_pnv_opal_msi(struct irq_chip *chip)
2770 {
2771         return chip->irq_eoi == pnv_ioda2_msi_eoi;
2772 }
2773 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2774
2775 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2776                                   unsigned int hwirq, unsigned int virq,
2777                                   unsigned int is_64, struct msi_msg *msg)
2778 {
2779         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2780         unsigned int xive_num = hwirq - phb->msi_base;
2781         __be32 data;
2782         int rc;
2783
2784         /* No PE assigned ? bail out ... no MSI for you ! */
2785         if (pe == NULL)
2786                 return -ENXIO;
2787
2788         /* Check if we have an MVE */
2789         if (pe->mve_number < 0)
2790                 return -ENXIO;
2791
2792         /* Force 32-bit MSI on some broken devices */
2793         if (dev->no_64bit_msi)
2794                 is_64 = 0;
2795
2796         /* Assign XIVE to PE */
2797         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2798         if (rc) {
2799                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2800                         pci_name(dev), rc, xive_num);
2801                 return -EIO;
2802         }
2803
2804         if (is_64) {
2805                 __be64 addr64;
2806
2807                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2808                                      &addr64, &data);
2809                 if (rc) {
2810                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2811                                 pci_name(dev), rc);
2812                         return -EIO;
2813                 }
2814                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2815                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2816         } else {
2817                 __be32 addr32;
2818
2819                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2820                                      &addr32, &data);
2821                 if (rc) {
2822                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2823                                 pci_name(dev), rc);
2824                         return -EIO;
2825                 }
2826                 msg->address_hi = 0;
2827                 msg->address_lo = be32_to_cpu(addr32);
2828         }
2829         msg->data = be32_to_cpu(data);
2830
2831         pnv_set_msi_irq_chip(phb, virq);
2832
2833         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2834                  " address=%x_%08x data=%x PE# %d\n",
2835                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2836                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2837
2838         return 0;
2839 }
2840
2841 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2842 {
2843         unsigned int count;
2844         const __be32 *prop = of_get_property(phb->hose->dn,
2845                                              "ibm,opal-msi-ranges", NULL);
2846         if (!prop) {
2847                 /* BML Fallback */
2848                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2849         }
2850         if (!prop)
2851                 return;
2852
2853         phb->msi_base = be32_to_cpup(prop);
2854         count = be32_to_cpup(prop + 1);
2855         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2856                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2857                        phb->hose->global_number);
2858                 return;
2859         }
2860
2861         phb->msi_setup = pnv_pci_ioda_msi_setup;
2862         phb->msi32_support = 1;
2863         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2864                 count, phb->msi_base);
2865 }
2866 #else
2867 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2868 #endif /* CONFIG_PCI_MSI */
2869
2870 #ifdef CONFIG_PCI_IOV
2871 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2872 {
2873         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2874         struct pnv_phb *phb = hose->private_data;
2875         const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2876         struct resource *res;
2877         int i;
2878         resource_size_t size, total_vf_bar_sz;
2879         struct pci_dn *pdn;
2880         int mul, total_vfs;
2881
2882         if (!pdev->is_physfn || pdev->is_added)
2883                 return;
2884
2885         pdn = pci_get_pdn(pdev);
2886         pdn->vfs_expanded = 0;
2887         pdn->m64_single_mode = false;
2888
2889         total_vfs = pci_sriov_get_totalvfs(pdev);
2890         mul = phb->ioda.total_pe_num;
2891         total_vf_bar_sz = 0;
2892
2893         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2894                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2895                 if (!res->flags || res->parent)
2896                         continue;
2897                 if (!pnv_pci_is_m64_flags(res->flags)) {
2898                         dev_warn(&pdev->dev, "Don't support SR-IOV with"
2899                                         " non M64 VF BAR%d: %pR. \n",
2900                                  i, res);
2901                         goto truncate_iov;
2902                 }
2903
2904                 total_vf_bar_sz += pci_iov_resource_size(pdev,
2905                                 i + PCI_IOV_RESOURCES);
2906
2907                 /*
2908                  * If bigger than quarter of M64 segment size, just round up
2909                  * power of two.
2910                  *
2911                  * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2912                  * with other devices, IOV BAR size is expanded to be
2913                  * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2914                  * segment size , the expanded size would equal to half of the
2915                  * whole M64 space size, which will exhaust the M64 Space and
2916                  * limit the system flexibility.  This is a design decision to
2917                  * set the boundary to quarter of the M64 segment size.
2918                  */
2919                 if (total_vf_bar_sz > gate) {
2920                         mul = roundup_pow_of_two(total_vfs);
2921                         dev_info(&pdev->dev,
2922                                 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2923                                 total_vf_bar_sz, gate, mul);
2924                         pdn->m64_single_mode = true;
2925                         break;
2926                 }
2927         }
2928
2929         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2930                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2931                 if (!res->flags || res->parent)
2932                         continue;
2933
2934                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2935                 /*
2936                  * On PHB3, the minimum size alignment of M64 BAR in single
2937                  * mode is 32MB.
2938                  */
2939                 if (pdn->m64_single_mode && (size < SZ_32M))
2940                         goto truncate_iov;
2941                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2942                 res->end = res->start + size * mul - 1;
2943                 dev_dbg(&pdev->dev, "                       %pR\n", res);
2944                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2945                          i, res, mul);
2946         }
2947         pdn->vfs_expanded = mul;
2948
2949         return;
2950
2951 truncate_iov:
2952         /* To save MMIO space, IOV BAR is truncated. */
2953         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2954                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2955                 res->flags = 0;
2956                 res->end = res->start - 1;
2957         }
2958 }
2959 #endif /* CONFIG_PCI_IOV */
2960
2961 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2962                                   struct resource *res)
2963 {
2964         struct pnv_phb *phb = pe->phb;
2965         struct pci_bus_region region;
2966         int index;
2967         int64_t rc;
2968
2969         if (!res || !res->flags || res->start > res->end)
2970                 return;
2971
2972         if (res->flags & IORESOURCE_IO) {
2973                 region.start = res->start - phb->ioda.io_pci_base;
2974                 region.end   = res->end - phb->ioda.io_pci_base;
2975                 index = region.start / phb->ioda.io_segsize;
2976
2977                 while (index < phb->ioda.total_pe_num &&
2978                        region.start <= region.end) {
2979                         phb->ioda.io_segmap[index] = pe->pe_number;
2980                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2981                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2982                         if (rc != OPAL_SUCCESS) {
2983                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
2984                                        __func__, rc, index, pe->pe_number);
2985                                 break;
2986                         }
2987
2988                         region.start += phb->ioda.io_segsize;
2989                         index++;
2990                 }
2991         } else if ((res->flags & IORESOURCE_MEM) &&
2992                    !pnv_pci_is_m64(phb, res)) {
2993                 region.start = res->start -
2994                                phb->hose->mem_offset[0] -
2995                                phb->ioda.m32_pci_base;
2996                 region.end   = res->end -
2997                                phb->hose->mem_offset[0] -
2998                                phb->ioda.m32_pci_base;
2999                 index = region.start / phb->ioda.m32_segsize;
3000
3001                 while (index < phb->ioda.total_pe_num &&
3002                        region.start <= region.end) {
3003                         phb->ioda.m32_segmap[index] = pe->pe_number;
3004                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3005                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3006                         if (rc != OPAL_SUCCESS) {
3007                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
3008                                        __func__, rc, index, pe->pe_number);
3009                                 break;
3010                         }
3011
3012                         region.start += phb->ioda.m32_segsize;
3013                         index++;
3014                 }
3015         }
3016 }
3017
3018 /*
3019  * This function is supposed to be called on basis of PE from top
3020  * to bottom style. So the the I/O or MMIO segment assigned to
3021  * parent PE could be overrided by its child PEs if necessary.
3022  */
3023 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3024 {
3025         struct pci_dev *pdev;
3026         int i;
3027
3028         /*
3029          * NOTE: We only care PCI bus based PE for now. For PCI
3030          * device based PE, for example SRIOV sensitive VF should
3031          * be figured out later.
3032          */
3033         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3034
3035         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3036                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3037                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3038
3039                 /*
3040                  * If the PE contains all subordinate PCI buses, the
3041                  * windows of the child bridges should be mapped to
3042                  * the PE as well.
3043                  */
3044                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3045                         continue;
3046                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3047                         pnv_ioda_setup_pe_res(pe,
3048                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3049         }
3050 }
3051
3052 static void pnv_pci_ioda_create_dbgfs(void)
3053 {
3054 #ifdef CONFIG_DEBUG_FS
3055         struct pci_controller *hose, *tmp;
3056         struct pnv_phb *phb;
3057         char name[16];
3058
3059         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3060                 phb = hose->private_data;
3061
3062                 /* Notify initialization of PHB done */
3063                 phb->initialized = 1;
3064
3065                 sprintf(name, "PCI%04x", hose->global_number);
3066                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3067                 if (!phb->dbgfs)
3068                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3069                                 __func__, hose->global_number);
3070         }
3071 #endif /* CONFIG_DEBUG_FS */
3072 }
3073
3074 static void pnv_pci_ioda_fixup(void)
3075 {
3076         pnv_pci_ioda_setup_PEs();
3077         pnv_pci_ioda_setup_iommu_api();
3078         pnv_pci_ioda_create_dbgfs();
3079
3080 #ifdef CONFIG_EEH
3081         eeh_init();
3082         eeh_addr_cache_build();
3083 #endif
3084 }
3085
3086 /*
3087  * Returns the alignment for I/O or memory windows for P2P
3088  * bridges. That actually depends on how PEs are segmented.
3089  * For now, we return I/O or M32 segment size for PE sensitive
3090  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3091  * 1MiB for memory) will be returned.
3092  *
3093  * The current PCI bus might be put into one PE, which was
3094  * create against the parent PCI bridge. For that case, we
3095  * needn't enlarge the alignment so that we can save some
3096  * resources.
3097  */
3098 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3099                                                 unsigned long type)
3100 {
3101         struct pci_dev *bridge;
3102         struct pci_controller *hose = pci_bus_to_host(bus);
3103         struct pnv_phb *phb = hose->private_data;
3104         int num_pci_bridges = 0;
3105
3106         bridge = bus->self;
3107         while (bridge) {
3108                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3109                         num_pci_bridges++;
3110                         if (num_pci_bridges >= 2)
3111                                 return 1;
3112                 }
3113
3114                 bridge = bridge->bus->self;
3115         }
3116
3117         /*
3118          * We fall back to M32 if M64 isn't supported. We enforce the M64
3119          * alignment for any 64-bit resource, PCIe doesn't care and
3120          * bridges only do 64-bit prefetchable anyway.
3121          */
3122         if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3123                 return phb->ioda.m64_segsize;
3124         if (type & IORESOURCE_MEM)
3125                 return phb->ioda.m32_segsize;
3126
3127         return phb->ioda.io_segsize;
3128 }
3129
3130 /*
3131  * We are updating root port or the upstream port of the
3132  * bridge behind the root port with PHB's windows in order
3133  * to accommodate the changes on required resources during
3134  * PCI (slot) hotplug, which is connected to either root
3135  * port or the downstream ports of PCIe switch behind the
3136  * root port.
3137  */
3138 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3139                                            unsigned long type)
3140 {
3141         struct pci_controller *hose = pci_bus_to_host(bus);
3142         struct pnv_phb *phb = hose->private_data;
3143         struct pci_dev *bridge = bus->self;
3144         struct resource *r, *w;
3145         bool msi_region = false;
3146         int i;
3147
3148         /* Check if we need apply fixup to the bridge's windows */
3149         if (!pci_is_root_bus(bridge->bus) &&
3150             !pci_is_root_bus(bridge->bus->self->bus))
3151                 return;
3152
3153         /* Fixup the resources */
3154         for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3155                 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3156                 if (!r->flags || !r->parent)
3157                         continue;
3158
3159                 w = NULL;
3160                 if (r->flags & type & IORESOURCE_IO)
3161                         w = &hose->io_resource;
3162                 else if (pnv_pci_is_m64(phb, r) &&
3163                          (type & IORESOURCE_PREFETCH) &&
3164                          phb->ioda.m64_segsize)
3165                         w = &hose->mem_resources[1];
3166                 else if (r->flags & type & IORESOURCE_MEM) {
3167                         w = &hose->mem_resources[0];
3168                         msi_region = true;
3169                 }
3170
3171                 r->start = w->start;
3172                 r->end = w->end;
3173
3174                 /* The 64KB 32-bits MSI region shouldn't be included in
3175                  * the 32-bits bridge window. Otherwise, we can see strange
3176                  * issues. One of them is EEH error observed on Garrison.
3177                  *
3178                  * Exclude top 1MB region which is the minimal alignment of
3179                  * 32-bits bridge window.
3180                  */
3181                 if (msi_region) {
3182                         r->end += 0x10000;
3183                         r->end -= 0x100000;
3184                 }
3185         }
3186 }
3187
3188 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3189 {
3190         struct pci_controller *hose = pci_bus_to_host(bus);
3191         struct pnv_phb *phb = hose->private_data;
3192         struct pci_dev *bridge = bus->self;
3193         struct pnv_ioda_pe *pe;
3194         bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3195
3196         /* Extend bridge's windows if necessary */
3197         pnv_pci_fixup_bridge_resources(bus, type);
3198
3199         /* The PE for root bus should be realized before any one else */
3200         if (!phb->ioda.root_pe_populated) {
3201                 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3202                 if (pe) {
3203                         phb->ioda.root_pe_idx = pe->pe_number;
3204                         phb->ioda.root_pe_populated = true;
3205                 }
3206         }
3207
3208         /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3209         if (list_empty(&bus->devices))
3210                 return;
3211
3212         /* Reserve PEs according to used M64 resources */
3213         if (phb->reserve_m64_pe)
3214                 phb->reserve_m64_pe(bus, NULL, all);
3215
3216         /*
3217          * Assign PE. We might run here because of partial hotplug.
3218          * For the case, we just pick up the existing PE and should
3219          * not allocate resources again.
3220          */
3221         pe = pnv_ioda_setup_bus_PE(bus, all);
3222         if (!pe)
3223                 return;
3224
3225         pnv_ioda_setup_pe_seg(pe);
3226         switch (phb->type) {
3227         case PNV_PHB_IODA1:
3228                 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3229                 break;
3230         case PNV_PHB_IODA2:
3231                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3232                 break;
3233         default:
3234                 pr_warn("%s: No DMA for PHB#%d (type %d)\n",
3235                         __func__, phb->hose->global_number, phb->type);
3236         }
3237 }
3238
3239 #ifdef CONFIG_PCI_IOV
3240 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3241                                                       int resno)
3242 {
3243         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3244         struct pnv_phb *phb = hose->private_data;
3245         struct pci_dn *pdn = pci_get_pdn(pdev);
3246         resource_size_t align;
3247
3248         /*
3249          * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3250          * SR-IOV. While from hardware perspective, the range mapped by M64
3251          * BAR should be size aligned.
3252          *
3253          * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3254          * powernv-specific hardware restriction is gone. But if just use the
3255          * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3256          * in one segment of M64 #15, which introduces the PE conflict between
3257          * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3258          * m64_segsize.
3259          *
3260          * This function returns the total IOV BAR size if M64 BAR is in
3261          * Shared PE mode or just VF BAR size if not.
3262          * If the M64 BAR is in Single PE mode, return the VF BAR size or
3263          * M64 segment size if IOV BAR size is less.
3264          */
3265         align = pci_iov_resource_size(pdev, resno);
3266         if (!pdn->vfs_expanded)
3267                 return align;
3268         if (pdn->m64_single_mode)
3269                 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3270
3271         return pdn->vfs_expanded * align;
3272 }
3273 #endif /* CONFIG_PCI_IOV */
3274
3275 /* Prevent enabling devices for which we couldn't properly
3276  * assign a PE
3277  */
3278 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3279 {
3280         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3281         struct pnv_phb *phb = hose->private_data;
3282         struct pci_dn *pdn;
3283
3284         /* The function is probably called while the PEs have
3285          * not be created yet. For example, resource reassignment
3286          * during PCI probe period. We just skip the check if
3287          * PEs isn't ready.
3288          */
3289         if (!phb->initialized)
3290                 return true;
3291
3292         pdn = pci_get_pdn(dev);
3293         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3294                 return false;
3295
3296         return true;
3297 }
3298
3299 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3300                                        int num)
3301 {
3302         struct pnv_ioda_pe *pe = container_of(table_group,
3303                                               struct pnv_ioda_pe, table_group);
3304         struct pnv_phb *phb = pe->phb;
3305         unsigned int idx;
3306         long rc;
3307
3308         pe_info(pe, "Removing DMA window #%d\n", num);
3309         for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3310                 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3311                         continue;
3312
3313                 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3314                                                 idx, 0, 0ul, 0ul, 0ul);
3315                 if (rc != OPAL_SUCCESS) {
3316                         pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3317                                 rc, idx);
3318                         return rc;
3319                 }
3320
3321                 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3322         }
3323
3324         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3325         return OPAL_SUCCESS;
3326 }
3327
3328 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3329 {
3330         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3331         struct iommu_table *tbl = pe->table_group.tables[0];
3332         int64_t rc;
3333
3334         if (!weight)
3335                 return;
3336
3337         rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3338         if (rc != OPAL_SUCCESS)
3339                 return;
3340
3341         pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3342         if (pe->table_group.group) {
3343                 iommu_group_put(pe->table_group.group);
3344                 WARN_ON(pe->table_group.group);
3345         }
3346
3347         free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3348         iommu_free_table(tbl, "pnv");
3349 }
3350
3351 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3352 {
3353         struct iommu_table *tbl = pe->table_group.tables[0];
3354         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3355 #ifdef CONFIG_IOMMU_API
3356         int64_t rc;
3357 #endif
3358
3359         if (!weight)
3360                 return;
3361
3362 #ifdef CONFIG_IOMMU_API
3363         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3364         if (rc)
3365                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3366 #endif
3367
3368         pnv_pci_ioda2_set_bypass(pe, false);
3369         if (pe->table_group.group) {
3370                 iommu_group_put(pe->table_group.group);
3371                 WARN_ON(pe->table_group.group);
3372         }
3373
3374         pnv_pci_ioda2_table_free_pages(tbl);
3375         iommu_free_table(tbl, "pnv");
3376 }
3377
3378 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3379                                  unsigned short win,
3380                                  unsigned int *map)
3381 {
3382         struct pnv_phb *phb = pe->phb;
3383         int idx;
3384         int64_t rc;
3385
3386         for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3387                 if (map[idx] != pe->pe_number)
3388                         continue;
3389
3390                 if (win == OPAL_M64_WINDOW_TYPE)
3391                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3392                                         phb->ioda.reserved_pe_idx, win,
3393                                         idx / PNV_IODA1_M64_SEGS,
3394                                         idx % PNV_IODA1_M64_SEGS);
3395                 else
3396                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3397                                         phb->ioda.reserved_pe_idx, win, 0, idx);
3398
3399                 if (rc != OPAL_SUCCESS)
3400                         pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3401                                 rc, win, idx);
3402
3403                 map[idx] = IODA_INVALID_PE;
3404         }
3405 }
3406
3407 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3408 {
3409         struct pnv_phb *phb = pe->phb;
3410
3411         if (phb->type == PNV_PHB_IODA1) {
3412                 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3413                                      phb->ioda.io_segmap);
3414                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3415                                      phb->ioda.m32_segmap);
3416                 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3417                                      phb->ioda.m64_segmap);
3418         } else if (phb->type == PNV_PHB_IODA2) {
3419                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3420                                      phb->ioda.m32_segmap);
3421         }
3422 }
3423
3424 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3425 {
3426         struct pnv_phb *phb = pe->phb;
3427         struct pnv_ioda_pe *slave, *tmp;
3428
3429         list_del(&pe->list);
3430         switch (phb->type) {
3431         case PNV_PHB_IODA1:
3432                 pnv_pci_ioda1_release_pe_dma(pe);
3433                 break;
3434         case PNV_PHB_IODA2:
3435                 pnv_pci_ioda2_release_pe_dma(pe);
3436                 break;
3437         default:
3438                 WARN_ON(1);
3439         }
3440
3441         pnv_ioda_release_pe_seg(pe);
3442         pnv_ioda_deconfigure_pe(pe->phb, pe);
3443
3444         /* Release slave PEs in the compound PE */
3445         if (pe->flags & PNV_IODA_PE_MASTER) {
3446                 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3447                         list_del(&slave->list);
3448                         pnv_ioda_free_pe(slave);
3449                 }
3450         }
3451
3452         /*
3453          * The PE for root bus can be removed because of hotplug in EEH
3454          * recovery for fenced PHB error. We need to mark the PE dead so
3455          * that it can be populated again in PCI hot add path. The PE
3456          * shouldn't be destroyed as it's the global reserved resource.
3457          */
3458         if (phb->ioda.root_pe_populated &&
3459             phb->ioda.root_pe_idx == pe->pe_number)
3460                 phb->ioda.root_pe_populated = false;
3461         else
3462                 pnv_ioda_free_pe(pe);
3463 }
3464
3465 static void pnv_pci_release_device(struct pci_dev *pdev)
3466 {
3467         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3468         struct pnv_phb *phb = hose->private_data;
3469         struct pci_dn *pdn = pci_get_pdn(pdev);
3470         struct pnv_ioda_pe *pe;
3471
3472         if (pdev->is_virtfn)
3473                 return;
3474
3475         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3476                 return;
3477
3478         /*
3479          * PCI hotplug can happen as part of EEH error recovery. The @pdn
3480          * isn't removed and added afterwards in this scenario. We should
3481          * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3482          * device count is decreased on removing devices while failing to
3483          * be increased on adding devices. It leads to unbalanced PE's device
3484          * count and eventually make normal PCI hotplug path broken.
3485          */
3486         pe = &phb->ioda.pe_array[pdn->pe_number];
3487         pdn->pe_number = IODA_INVALID_PE;
3488
3489         WARN_ON(--pe->device_count < 0);
3490         if (pe->device_count == 0)
3491                 pnv_ioda_release_pe(pe);
3492 }
3493
3494 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3495 {
3496         struct pnv_phb *phb = hose->private_data;
3497
3498         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3499                        OPAL_ASSERT_RESET);
3500 }
3501
3502 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3503         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3504         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3505 #ifdef CONFIG_PCI_MSI
3506         .setup_msi_irqs         = pnv_setup_msi_irqs,
3507         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3508 #endif
3509         .enable_device_hook     = pnv_pci_enable_device_hook,
3510         .release_device         = pnv_pci_release_device,
3511         .window_alignment       = pnv_pci_window_alignment,
3512         .setup_bridge           = pnv_pci_setup_bridge,
3513         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3514         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3515         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3516         .shutdown               = pnv_pci_ioda_shutdown,
3517 };
3518
3519 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3520 {
3521         dev_err_once(&npdev->dev,
3522                         "%s operation unsupported for NVLink devices\n",
3523                         __func__);
3524         return -EPERM;
3525 }
3526
3527 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3528         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3529 #ifdef CONFIG_PCI_MSI
3530         .setup_msi_irqs         = pnv_setup_msi_irqs,
3531         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3532 #endif
3533         .enable_device_hook     = pnv_pci_enable_device_hook,
3534         .window_alignment       = pnv_pci_window_alignment,
3535         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3536         .dma_set_mask           = pnv_npu_dma_set_mask,
3537         .shutdown               = pnv_pci_ioda_shutdown,
3538 };
3539
3540 #ifdef CONFIG_CXL_BASE
3541 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3542         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3543         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3544 #ifdef CONFIG_PCI_MSI
3545         .setup_msi_irqs         = pnv_cxl_cx4_setup_msi_irqs,
3546         .teardown_msi_irqs      = pnv_cxl_cx4_teardown_msi_irqs,
3547 #endif
3548         .enable_device_hook     = pnv_cxl_enable_device_hook,
3549         .disable_device         = pnv_cxl_disable_device,
3550         .release_device         = pnv_pci_release_device,
3551         .window_alignment       = pnv_pci_window_alignment,
3552         .setup_bridge           = pnv_pci_setup_bridge,
3553         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3554         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3555         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3556         .shutdown               = pnv_pci_ioda_shutdown,
3557 };
3558 #endif
3559
3560 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3561                                          u64 hub_id, int ioda_type)
3562 {
3563         struct pci_controller *hose;
3564         struct pnv_phb *phb;
3565         unsigned long size, m64map_off, m32map_off, pemap_off;
3566         unsigned long iomap_off = 0, dma32map_off = 0;
3567         struct resource r;
3568         const __be64 *prop64;
3569         const __be32 *prop32;
3570         int len;
3571         unsigned int segno;
3572         u64 phb_id;
3573         void *aux;
3574         long rc;
3575
3576         if (!of_device_is_available(np))
3577                 return;
3578
3579         pr_info("Initializing %s PHB (%s)\n",
3580                 pnv_phb_names[ioda_type], of_node_full_name(np));
3581
3582         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3583         if (!prop64) {
3584                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3585                 return;
3586         }
3587         phb_id = be64_to_cpup(prop64);
3588         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3589
3590         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3591
3592         /* Allocate PCI controller */
3593         phb->hose = hose = pcibios_alloc_controller(np);
3594         if (!phb->hose) {
3595                 pr_err("  Can't allocate PCI controller for %s\n",
3596                        np->full_name);
3597                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3598                 return;
3599         }
3600
3601         spin_lock_init(&phb->lock);
3602         prop32 = of_get_property(np, "bus-range", &len);
3603         if (prop32 && len == 8) {
3604                 hose->first_busno = be32_to_cpu(prop32[0]);
3605                 hose->last_busno = be32_to_cpu(prop32[1]);
3606         } else {
3607                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3608                 hose->first_busno = 0;
3609                 hose->last_busno = 0xff;
3610         }
3611         hose->private_data = phb;
3612         phb->hub_id = hub_id;
3613         phb->opal_id = phb_id;
3614         phb->type = ioda_type;
3615         mutex_init(&phb->ioda.pe_alloc_mutex);
3616
3617         /* Detect specific models for error handling */
3618         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3619                 phb->model = PNV_PHB_MODEL_P7IOC;
3620         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3621                 phb->model = PNV_PHB_MODEL_PHB3;
3622         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3623                 phb->model = PNV_PHB_MODEL_NPU;
3624         else
3625                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3626
3627         /* Parse 32-bit and IO ranges (if any) */
3628         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3629
3630         /* Get registers */
3631         if (!of_address_to_resource(np, 0, &r)) {
3632                 phb->regs_phys = r.start;
3633                 phb->regs = ioremap(r.start, resource_size(&r));
3634                 if (phb->regs == NULL)
3635                         pr_err("  Failed to map registers !\n");
3636         }
3637
3638         /* Initialize more IODA stuff */
3639         phb->ioda.total_pe_num = 1;
3640         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3641         if (prop32)
3642                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3643         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3644         if (prop32)
3645                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3646
3647         /* Invalidate RID to PE# mapping */
3648         for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3649                 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3650
3651         /* Parse 64-bit MMIO range */
3652         pnv_ioda_parse_m64_window(phb);
3653
3654         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3655         /* FW Has already off top 64k of M32 space (MSI space) */
3656         phb->ioda.m32_size += 0x10000;
3657
3658         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3659         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3660         phb->ioda.io_size = hose->pci_io_size;
3661         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3662         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3663
3664         /* Calculate how many 32-bit TCE segments we have */
3665         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3666                                 PNV_IODA1_DMA32_SEGSIZE;
3667
3668         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3669         size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3670                         sizeof(unsigned long));
3671         m64map_off = size;
3672         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3673         m32map_off = size;
3674         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3675         if (phb->type == PNV_PHB_IODA1) {
3676                 iomap_off = size;
3677                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3678                 dma32map_off = size;
3679                 size += phb->ioda.dma32_count *
3680                         sizeof(phb->ioda.dma32_segmap[0]);
3681         }
3682         pemap_off = size;
3683         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3684         aux = memblock_virt_alloc(size, 0);
3685         phb->ioda.pe_alloc = aux;
3686         phb->ioda.m64_segmap = aux + m64map_off;
3687         phb->ioda.m32_segmap = aux + m32map_off;
3688         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3689                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3690                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3691         }
3692         if (phb->type == PNV_PHB_IODA1) {
3693                 phb->ioda.io_segmap = aux + iomap_off;
3694                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3695                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3696
3697                 phb->ioda.dma32_segmap = aux + dma32map_off;
3698                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3699                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3700         }
3701         phb->ioda.pe_array = aux + pemap_off;
3702
3703         /*
3704          * Choose PE number for root bus, which shouldn't have
3705          * M64 resources consumed by its child devices. To pick
3706          * the PE number adjacent to the reserved one if possible.
3707          */
3708         pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3709         if (phb->ioda.reserved_pe_idx == 0) {
3710                 phb->ioda.root_pe_idx = 1;
3711                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3712         } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3713                 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3714                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3715         } else {
3716                 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3717         }
3718
3719         INIT_LIST_HEAD(&phb->ioda.pe_list);
3720         mutex_init(&phb->ioda.pe_list_mutex);
3721
3722         /* Calculate how many 32-bit TCE segments we have */
3723         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3724                                 PNV_IODA1_DMA32_SEGSIZE;
3725
3726 #if 0 /* We should really do that ... */
3727         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3728                                          window_type,
3729                                          window_num,
3730                                          starting_real_address,
3731                                          starting_pci_address,
3732                                          segment_size);
3733 #endif
3734
3735         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3736                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3737                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3738         if (phb->ioda.m64_size)
3739                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3740                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3741         if (phb->ioda.io_size)
3742                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3743                         phb->ioda.io_size, phb->ioda.io_segsize);
3744
3745
3746         phb->hose->ops = &pnv_pci_ops;
3747         phb->get_pe_state = pnv_ioda_get_pe_state;
3748         phb->freeze_pe = pnv_ioda_freeze_pe;
3749         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3750
3751         /* Setup MSI support */
3752         pnv_pci_init_ioda_msis(phb);
3753
3754         /*
3755          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3756          * to let the PCI core do resource assignment. It's supposed
3757          * that the PCI core will do correct I/O and MMIO alignment
3758          * for the P2P bridge bars so that each PCI bus (excluding
3759          * the child P2P bridges) can form individual PE.
3760          */
3761         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3762
3763         if (phb->type == PNV_PHB_NPU) {
3764                 hose->controller_ops = pnv_npu_ioda_controller_ops;
3765         } else {
3766                 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3767                 hose->controller_ops = pnv_pci_ioda_controller_ops;
3768         }
3769
3770 #ifdef CONFIG_PCI_IOV
3771         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3772         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3773 #endif
3774
3775         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3776
3777         /* Reset IODA tables to a clean state */
3778         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3779         if (rc)
3780                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3781
3782         /* If we're running in kdump kerenl, the previous kerenl never
3783          * shutdown PCI devices correctly. We already got IODA table
3784          * cleaned out. So we have to issue PHB reset to stop all PCI
3785          * transactions from previous kerenl.
3786          */
3787         if (is_kdump_kernel()) {
3788                 pr_info("  Issue PHB reset ...\n");
3789                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3790                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3791         }
3792
3793         /* Remove M64 resource if we can't configure it successfully */
3794         if (!phb->init_m64 || phb->init_m64(phb))
3795                 hose->mem_resources[1].flags = 0;
3796 }
3797
3798 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3799 {
3800         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3801 }
3802
3803 void __init pnv_pci_init_npu_phb(struct device_node *np)
3804 {
3805         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3806 }
3807
3808 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3809 {
3810         struct device_node *phbn;
3811         const __be64 *prop64;
3812         u64 hub_id;
3813
3814         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3815
3816         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3817         if (!prop64) {
3818                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3819                 return;
3820         }
3821         hub_id = be64_to_cpup(prop64);
3822         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3823
3824         /* Count child PHBs */
3825         for_each_child_of_node(np, phbn) {
3826                 /* Look for IODA1 PHBs */
3827                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3828                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3829         }
3830 }