Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / s390 / kernel / ptrace.c
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 void update_cr_regs(struct task_struct *task)
42 {
43         struct pt_regs *regs = task_pt_regs(task);
44         struct thread_struct *thread = &task->thread;
45         struct per_regs old, new;
46
47 #ifdef CONFIG_64BIT
48         /* Take care of the enable/disable of transactional execution. */
49         if (MACHINE_HAS_TE || MACHINE_HAS_VX) {
50                 unsigned long cr, cr_new;
51
52                 __ctl_store(cr, 0, 0);
53                 cr_new = cr;
54                 if (MACHINE_HAS_TE) {
55                         /* Set or clear transaction execution TXC bit 8. */
56                         cr_new |= (1UL << 55);
57                         if (task->thread.per_flags & PER_FLAG_NO_TE)
58                                 cr_new &= ~(1UL << 55);
59                 }
60                 if (MACHINE_HAS_VX) {
61                         /* Enable/disable of vector extension */
62                         cr_new &= ~(1UL << 17);
63                         if (task->thread.vxrs)
64                                 cr_new |= (1UL << 17);
65                 }
66                 if (cr_new != cr)
67                         __ctl_load(cr_new, 0, 0);
68                 if (MACHINE_HAS_TE) {
69                         /* Set/clear transaction execution TDC bits 62/63. */
70                         __ctl_store(cr, 2, 2);
71                         cr_new = cr & ~3UL;
72                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
73                                 if (task->thread.per_flags &
74                                     PER_FLAG_TE_ABORT_RAND_TEND)
75                                         cr_new |= 1UL;
76                                 else
77                                         cr_new |= 2UL;
78                         }
79                         if (cr_new != cr)
80                                 __ctl_load(cr_new, 2, 2);
81                 }
82         }
83 #endif
84         /* Copy user specified PER registers */
85         new.control = thread->per_user.control;
86         new.start = thread->per_user.start;
87         new.end = thread->per_user.end;
88
89         /* merge TIF_SINGLE_STEP into user specified PER registers. */
90         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
91             test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
92                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
93                         new.control |= PER_EVENT_BRANCH;
94                 else
95                         new.control |= PER_EVENT_IFETCH;
96 #ifdef CONFIG_64BIT
97                 new.control |= PER_CONTROL_SUSPENSION;
98                 new.control |= PER_EVENT_TRANSACTION_END;
99 #endif
100                 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
101                         new.control |= PER_EVENT_IFETCH;
102                 new.start = 0;
103                 new.end = PSW_ADDR_INSN;
104         }
105
106         /* Take care of the PER enablement bit in the PSW. */
107         if (!(new.control & PER_EVENT_MASK)) {
108                 regs->psw.mask &= ~PSW_MASK_PER;
109                 return;
110         }
111         regs->psw.mask |= PSW_MASK_PER;
112         __ctl_store(old, 9, 11);
113         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
114                 __ctl_load(new, 9, 11);
115 }
116
117 void user_enable_single_step(struct task_struct *task)
118 {
119         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
121 }
122
123 void user_disable_single_step(struct task_struct *task)
124 {
125         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
126         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
127 }
128
129 void user_enable_block_step(struct task_struct *task)
130 {
131         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
132         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
133 }
134
135 /*
136  * Called by kernel/ptrace.c when detaching..
137  *
138  * Clear all debugging related fields.
139  */
140 void ptrace_disable(struct task_struct *task)
141 {
142         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
143         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
144         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
145         clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
146         task->thread.per_flags = 0;
147 }
148
149 #ifndef CONFIG_64BIT
150 # define __ADDR_MASK 3
151 #else
152 # define __ADDR_MASK 7
153 #endif
154
155 static inline unsigned long __peek_user_per(struct task_struct *child,
156                                             addr_t addr)
157 {
158         struct per_struct_kernel *dummy = NULL;
159
160         if (addr == (addr_t) &dummy->cr9)
161                 /* Control bits of the active per set. */
162                 return test_thread_flag(TIF_SINGLE_STEP) ?
163                         PER_EVENT_IFETCH : child->thread.per_user.control;
164         else if (addr == (addr_t) &dummy->cr10)
165                 /* Start address of the active per set. */
166                 return test_thread_flag(TIF_SINGLE_STEP) ?
167                         0 : child->thread.per_user.start;
168         else if (addr == (addr_t) &dummy->cr11)
169                 /* End address of the active per set. */
170                 return test_thread_flag(TIF_SINGLE_STEP) ?
171                         PSW_ADDR_INSN : child->thread.per_user.end;
172         else if (addr == (addr_t) &dummy->bits)
173                 /* Single-step bit. */
174                 return test_thread_flag(TIF_SINGLE_STEP) ?
175                         (1UL << (BITS_PER_LONG - 1)) : 0;
176         else if (addr == (addr_t) &dummy->starting_addr)
177                 /* Start address of the user specified per set. */
178                 return child->thread.per_user.start;
179         else if (addr == (addr_t) &dummy->ending_addr)
180                 /* End address of the user specified per set. */
181                 return child->thread.per_user.end;
182         else if (addr == (addr_t) &dummy->perc_atmid)
183                 /* PER code, ATMID and AI of the last PER trap */
184                 return (unsigned long)
185                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
186         else if (addr == (addr_t) &dummy->address)
187                 /* Address of the last PER trap */
188                 return child->thread.per_event.address;
189         else if (addr == (addr_t) &dummy->access_id)
190                 /* Access id of the last PER trap */
191                 return (unsigned long)
192                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
193         return 0;
194 }
195
196 /*
197  * Read the word at offset addr from the user area of a process. The
198  * trouble here is that the information is littered over different
199  * locations. The process registers are found on the kernel stack,
200  * the floating point stuff and the trace settings are stored in
201  * the task structure. In addition the different structures in
202  * struct user contain pad bytes that should be read as zeroes.
203  * Lovely...
204  */
205 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
206 {
207         struct user *dummy = NULL;
208         addr_t offset, tmp;
209
210         if (addr < (addr_t) &dummy->regs.acrs) {
211                 /*
212                  * psw and gprs are stored on the stack
213                  */
214                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
215                 if (addr == (addr_t) &dummy->regs.psw.mask) {
216                         /* Return a clean psw mask. */
217                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
218                         tmp |= PSW_USER_BITS;
219                 }
220
221         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
222                 /*
223                  * access registers are stored in the thread structure
224                  */
225                 offset = addr - (addr_t) &dummy->regs.acrs;
226 #ifdef CONFIG_64BIT
227                 /*
228                  * Very special case: old & broken 64 bit gdb reading
229                  * from acrs[15]. Result is a 64 bit value. Read the
230                  * 32 bit acrs[15] value and shift it by 32. Sick...
231                  */
232                 if (addr == (addr_t) &dummy->regs.acrs[15])
233                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
234                 else
235 #endif
236                 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
237
238         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
239                 /*
240                  * orig_gpr2 is stored on the kernel stack
241                  */
242                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
243
244         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
245                 /*
246                  * prevent reads of padding hole between
247                  * orig_gpr2 and fp_regs on s390.
248                  */
249                 tmp = 0;
250
251         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
252                 /*
253                  * floating point control reg. is in the thread structure
254                  */
255                 tmp = child->thread.fp_regs.fpc;
256                 tmp <<= BITS_PER_LONG - 32;
257
258         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
259                 /*
260                  * floating point regs. are either in child->thread.fp_regs
261                  * or the child->thread.vxrs array
262                  */
263                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
264 #ifdef CONFIG_64BIT
265                 if (child->thread.vxrs)
266                         tmp = *(addr_t *)
267                                ((addr_t) child->thread.vxrs + 2*offset);
268                 else
269 #endif
270                         tmp = *(addr_t *)
271                                ((addr_t) &child->thread.fp_regs.fprs + offset);
272
273         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
274                 /*
275                  * Handle access to the per_info structure.
276                  */
277                 addr -= (addr_t) &dummy->regs.per_info;
278                 tmp = __peek_user_per(child, addr);
279
280         } else
281                 tmp = 0;
282
283         return tmp;
284 }
285
286 static int
287 peek_user(struct task_struct *child, addr_t addr, addr_t data)
288 {
289         addr_t tmp, mask;
290
291         /*
292          * Stupid gdb peeks/pokes the access registers in 64 bit with
293          * an alignment of 4. Programmers from hell...
294          */
295         mask = __ADDR_MASK;
296 #ifdef CONFIG_64BIT
297         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
298             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
299                 mask = 3;
300 #endif
301         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
302                 return -EIO;
303
304         tmp = __peek_user(child, addr);
305         return put_user(tmp, (addr_t __user *) data);
306 }
307
308 static inline void __poke_user_per(struct task_struct *child,
309                                    addr_t addr, addr_t data)
310 {
311         struct per_struct_kernel *dummy = NULL;
312
313         /*
314          * There are only three fields in the per_info struct that the
315          * debugger user can write to.
316          * 1) cr9: the debugger wants to set a new PER event mask
317          * 2) starting_addr: the debugger wants to set a new starting
318          *    address to use with the PER event mask.
319          * 3) ending_addr: the debugger wants to set a new ending
320          *    address to use with the PER event mask.
321          * The user specified PER event mask and the start and end
322          * addresses are used only if single stepping is not in effect.
323          * Writes to any other field in per_info are ignored.
324          */
325         if (addr == (addr_t) &dummy->cr9)
326                 /* PER event mask of the user specified per set. */
327                 child->thread.per_user.control =
328                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
329         else if (addr == (addr_t) &dummy->starting_addr)
330                 /* Starting address of the user specified per set. */
331                 child->thread.per_user.start = data;
332         else if (addr == (addr_t) &dummy->ending_addr)
333                 /* Ending address of the user specified per set. */
334                 child->thread.per_user.end = data;
335 }
336
337 /*
338  * Write a word to the user area of a process at location addr. This
339  * operation does have an additional problem compared to peek_user.
340  * Stores to the program status word and on the floating point
341  * control register needs to get checked for validity.
342  */
343 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
344 {
345         struct user *dummy = NULL;
346         addr_t offset;
347
348         if (addr < (addr_t) &dummy->regs.acrs) {
349                 /*
350                  * psw and gprs are stored on the stack
351                  */
352                 if (addr == (addr_t) &dummy->regs.psw.mask) {
353                         unsigned long mask = PSW_MASK_USER;
354
355                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
356                         if ((data ^ PSW_USER_BITS) & ~mask)
357                                 /* Invalid psw mask. */
358                                 return -EINVAL;
359                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
360                                 /* Invalid address-space-control bits */
361                                 return -EINVAL;
362                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
363                                 /* Invalid addressing mode bits */
364                                 return -EINVAL;
365                 }
366                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
367
368         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
369                 /*
370                  * access registers are stored in the thread structure
371                  */
372                 offset = addr - (addr_t) &dummy->regs.acrs;
373 #ifdef CONFIG_64BIT
374                 /*
375                  * Very special case: old & broken 64 bit gdb writing
376                  * to acrs[15] with a 64 bit value. Ignore the lower
377                  * half of the value and write the upper 32 bit to
378                  * acrs[15]. Sick...
379                  */
380                 if (addr == (addr_t) &dummy->regs.acrs[15])
381                         child->thread.acrs[15] = (unsigned int) (data >> 32);
382                 else
383 #endif
384                 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
385
386         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
387                 /*
388                  * orig_gpr2 is stored on the kernel stack
389                  */
390                 task_pt_regs(child)->orig_gpr2 = data;
391
392         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
393                 /*
394                  * prevent writes of padding hole between
395                  * orig_gpr2 and fp_regs on s390.
396                  */
397                 return 0;
398
399         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
400                 /*
401                  * floating point control reg. is in the thread structure
402                  */
403                 if ((unsigned int) data != 0 ||
404                     test_fp_ctl(data >> (BITS_PER_LONG - 32)))
405                         return -EINVAL;
406                 child->thread.fp_regs.fpc = data >> (BITS_PER_LONG - 32);
407
408         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
409                 /*
410                  * floating point regs. are either in child->thread.fp_regs
411                  * or the child->thread.vxrs array
412                  */
413                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
414 #ifdef CONFIG_64BIT
415                 if (child->thread.vxrs)
416                         *(addr_t *)((addr_t)
417                                 child->thread.vxrs + 2*offset) = data;
418                 else
419 #endif
420                         *(addr_t *)((addr_t)
421                                 &child->thread.fp_regs.fprs + offset) = data;
422
423         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
424                 /*
425                  * Handle access to the per_info structure.
426                  */
427                 addr -= (addr_t) &dummy->regs.per_info;
428                 __poke_user_per(child, addr, data);
429
430         }
431
432         return 0;
433 }
434
435 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
436 {
437         addr_t mask;
438
439         /*
440          * Stupid gdb peeks/pokes the access registers in 64 bit with
441          * an alignment of 4. Programmers from hell indeed...
442          */
443         mask = __ADDR_MASK;
444 #ifdef CONFIG_64BIT
445         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
446             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
447                 mask = 3;
448 #endif
449         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
450                 return -EIO;
451
452         return __poke_user(child, addr, data);
453 }
454
455 long arch_ptrace(struct task_struct *child, long request,
456                  unsigned long addr, unsigned long data)
457 {
458         ptrace_area parea; 
459         int copied, ret;
460
461         switch (request) {
462         case PTRACE_PEEKUSR:
463                 /* read the word at location addr in the USER area. */
464                 return peek_user(child, addr, data);
465
466         case PTRACE_POKEUSR:
467                 /* write the word at location addr in the USER area */
468                 return poke_user(child, addr, data);
469
470         case PTRACE_PEEKUSR_AREA:
471         case PTRACE_POKEUSR_AREA:
472                 if (copy_from_user(&parea, (void __force __user *) addr,
473                                                         sizeof(parea)))
474                         return -EFAULT;
475                 addr = parea.kernel_addr;
476                 data = parea.process_addr;
477                 copied = 0;
478                 while (copied < parea.len) {
479                         if (request == PTRACE_PEEKUSR_AREA)
480                                 ret = peek_user(child, addr, data);
481                         else {
482                                 addr_t utmp;
483                                 if (get_user(utmp,
484                                              (addr_t __force __user *) data))
485                                         return -EFAULT;
486                                 ret = poke_user(child, addr, utmp);
487                         }
488                         if (ret)
489                                 return ret;
490                         addr += sizeof(unsigned long);
491                         data += sizeof(unsigned long);
492                         copied += sizeof(unsigned long);
493                 }
494                 return 0;
495         case PTRACE_GET_LAST_BREAK:
496                 put_user(task_thread_info(child)->last_break,
497                          (unsigned long __user *) data);
498                 return 0;
499         case PTRACE_ENABLE_TE:
500                 if (!MACHINE_HAS_TE)
501                         return -EIO;
502                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
503                 return 0;
504         case PTRACE_DISABLE_TE:
505                 if (!MACHINE_HAS_TE)
506                         return -EIO;
507                 child->thread.per_flags |= PER_FLAG_NO_TE;
508                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
509                 return 0;
510         case PTRACE_TE_ABORT_RAND:
511                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
512                         return -EIO;
513                 switch (data) {
514                 case 0UL:
515                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
516                         break;
517                 case 1UL:
518                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
519                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
520                         break;
521                 case 2UL:
522                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
523                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
524                         break;
525                 default:
526                         return -EINVAL;
527                 }
528                 return 0;
529         default:
530                 /* Removing high order bit from addr (only for 31 bit). */
531                 addr &= PSW_ADDR_INSN;
532                 return ptrace_request(child, request, addr, data);
533         }
534 }
535
536 #ifdef CONFIG_COMPAT
537 /*
538  * Now the fun part starts... a 31 bit program running in the
539  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
540  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
541  * to handle, the difference to the 64 bit versions of the requests
542  * is that the access is done in multiples of 4 byte instead of
543  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
544  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
545  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
546  * is a 31 bit program too, the content of struct user can be
547  * emulated. A 31 bit program peeking into the struct user of
548  * a 64 bit program is a no-no.
549  */
550
551 /*
552  * Same as peek_user_per but for a 31 bit program.
553  */
554 static inline __u32 __peek_user_per_compat(struct task_struct *child,
555                                            addr_t addr)
556 {
557         struct compat_per_struct_kernel *dummy32 = NULL;
558
559         if (addr == (addr_t) &dummy32->cr9)
560                 /* Control bits of the active per set. */
561                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
562                         PER_EVENT_IFETCH : child->thread.per_user.control;
563         else if (addr == (addr_t) &dummy32->cr10)
564                 /* Start address of the active per set. */
565                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
566                         0 : child->thread.per_user.start;
567         else if (addr == (addr_t) &dummy32->cr11)
568                 /* End address of the active per set. */
569                 return test_thread_flag(TIF_SINGLE_STEP) ?
570                         PSW32_ADDR_INSN : child->thread.per_user.end;
571         else if (addr == (addr_t) &dummy32->bits)
572                 /* Single-step bit. */
573                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
574                         0x80000000 : 0;
575         else if (addr == (addr_t) &dummy32->starting_addr)
576                 /* Start address of the user specified per set. */
577                 return (__u32) child->thread.per_user.start;
578         else if (addr == (addr_t) &dummy32->ending_addr)
579                 /* End address of the user specified per set. */
580                 return (__u32) child->thread.per_user.end;
581         else if (addr == (addr_t) &dummy32->perc_atmid)
582                 /* PER code, ATMID and AI of the last PER trap */
583                 return (__u32) child->thread.per_event.cause << 16;
584         else if (addr == (addr_t) &dummy32->address)
585                 /* Address of the last PER trap */
586                 return (__u32) child->thread.per_event.address;
587         else if (addr == (addr_t) &dummy32->access_id)
588                 /* Access id of the last PER trap */
589                 return (__u32) child->thread.per_event.paid << 24;
590         return 0;
591 }
592
593 /*
594  * Same as peek_user but for a 31 bit program.
595  */
596 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
597 {
598         struct compat_user *dummy32 = NULL;
599         addr_t offset;
600         __u32 tmp;
601
602         if (addr < (addr_t) &dummy32->regs.acrs) {
603                 struct pt_regs *regs = task_pt_regs(child);
604                 /*
605                  * psw and gprs are stored on the stack
606                  */
607                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
608                         /* Fake a 31 bit psw mask. */
609                         tmp = (__u32)(regs->psw.mask >> 32);
610                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
611                         tmp |= PSW32_USER_BITS;
612                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
613                         /* Fake a 31 bit psw address. */
614                         tmp = (__u32) regs->psw.addr |
615                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
616                 } else {
617                         /* gpr 0-15 */
618                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
619                 }
620         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
621                 /*
622                  * access registers are stored in the thread structure
623                  */
624                 offset = addr - (addr_t) &dummy32->regs.acrs;
625                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
626
627         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
628                 /*
629                  * orig_gpr2 is stored on the kernel stack
630                  */
631                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
632
633         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
634                 /*
635                  * prevent reads of padding hole between
636                  * orig_gpr2 and fp_regs on s390.
637                  */
638                 tmp = 0;
639
640         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
641                 /*
642                  * floating point control reg. is in the thread structure
643                  */
644                 tmp = child->thread.fp_regs.fpc;
645
646         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
647                 /*
648                  * floating point regs. are either in child->thread.fp_regs
649                  * or the child->thread.vxrs array
650                  */
651                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
652 #ifdef CONFIG_64BIT
653                 if (child->thread.vxrs)
654                         tmp = *(__u32 *)
655                                ((addr_t) child->thread.vxrs + 2*offset);
656                 else
657 #endif
658                         tmp = *(__u32 *)
659                                ((addr_t) &child->thread.fp_regs.fprs + offset);
660
661         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
662                 /*
663                  * Handle access to the per_info structure.
664                  */
665                 addr -= (addr_t) &dummy32->regs.per_info;
666                 tmp = __peek_user_per_compat(child, addr);
667
668         } else
669                 tmp = 0;
670
671         return tmp;
672 }
673
674 static int peek_user_compat(struct task_struct *child,
675                             addr_t addr, addr_t data)
676 {
677         __u32 tmp;
678
679         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
680                 return -EIO;
681
682         tmp = __peek_user_compat(child, addr);
683         return put_user(tmp, (__u32 __user *) data);
684 }
685
686 /*
687  * Same as poke_user_per but for a 31 bit program.
688  */
689 static inline void __poke_user_per_compat(struct task_struct *child,
690                                           addr_t addr, __u32 data)
691 {
692         struct compat_per_struct_kernel *dummy32 = NULL;
693
694         if (addr == (addr_t) &dummy32->cr9)
695                 /* PER event mask of the user specified per set. */
696                 child->thread.per_user.control =
697                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
698         else if (addr == (addr_t) &dummy32->starting_addr)
699                 /* Starting address of the user specified per set. */
700                 child->thread.per_user.start = data;
701         else if (addr == (addr_t) &dummy32->ending_addr)
702                 /* Ending address of the user specified per set. */
703                 child->thread.per_user.end = data;
704 }
705
706 /*
707  * Same as poke_user but for a 31 bit program.
708  */
709 static int __poke_user_compat(struct task_struct *child,
710                               addr_t addr, addr_t data)
711 {
712         struct compat_user *dummy32 = NULL;
713         __u32 tmp = (__u32) data;
714         addr_t offset;
715
716         if (addr < (addr_t) &dummy32->regs.acrs) {
717                 struct pt_regs *regs = task_pt_regs(child);
718                 /*
719                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
720                  */
721                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
722                         __u32 mask = PSW32_MASK_USER;
723
724                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
725                         /* Build a 64 bit psw mask from 31 bit mask. */
726                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
727                                 /* Invalid psw mask. */
728                                 return -EINVAL;
729                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
730                                 /* Invalid address-space-control bits */
731                                 return -EINVAL;
732                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
733                                 (regs->psw.mask & PSW_MASK_BA) |
734                                 (__u64)(tmp & mask) << 32;
735                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
736                         /* Build a 64 bit psw address from 31 bit address. */
737                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
738                         /* Transfer 31 bit amode bit to psw mask. */
739                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
740                                 (__u64)(tmp & PSW32_ADDR_AMODE);
741                 } else {
742                         /* gpr 0-15 */
743                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
744                 }
745         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
746                 /*
747                  * access registers are stored in the thread structure
748                  */
749                 offset = addr - (addr_t) &dummy32->regs.acrs;
750                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
751
752         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
753                 /*
754                  * orig_gpr2 is stored on the kernel stack
755                  */
756                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
757
758         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
759                 /*
760                  * prevent writess of padding hole between
761                  * orig_gpr2 and fp_regs on s390.
762                  */
763                 return 0;
764
765         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
766                 /*
767                  * floating point control reg. is in the thread structure
768                  */
769                 if (test_fp_ctl(tmp))
770                         return -EINVAL;
771                 child->thread.fp_regs.fpc = data;
772
773         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
774                 /*
775                  * floating point regs. are either in child->thread.fp_regs
776                  * or the child->thread.vxrs array
777                  */
778                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
779 #ifdef CONFIG_64BIT
780                 if (child->thread.vxrs)
781                         *(__u32 *)((addr_t)
782                                 child->thread.vxrs + 2*offset) = tmp;
783                 else
784 #endif
785                         *(__u32 *)((addr_t)
786                                 &child->thread.fp_regs.fprs + offset) = tmp;
787
788         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
789                 /*
790                  * Handle access to the per_info structure.
791                  */
792                 addr -= (addr_t) &dummy32->regs.per_info;
793                 __poke_user_per_compat(child, addr, data);
794         }
795
796         return 0;
797 }
798
799 static int poke_user_compat(struct task_struct *child,
800                             addr_t addr, addr_t data)
801 {
802         if (!is_compat_task() || (addr & 3) ||
803             addr > sizeof(struct compat_user) - 3)
804                 return -EIO;
805
806         return __poke_user_compat(child, addr, data);
807 }
808
809 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
810                         compat_ulong_t caddr, compat_ulong_t cdata)
811 {
812         unsigned long addr = caddr;
813         unsigned long data = cdata;
814         compat_ptrace_area parea;
815         int copied, ret;
816
817         switch (request) {
818         case PTRACE_PEEKUSR:
819                 /* read the word at location addr in the USER area. */
820                 return peek_user_compat(child, addr, data);
821
822         case PTRACE_POKEUSR:
823                 /* write the word at location addr in the USER area */
824                 return poke_user_compat(child, addr, data);
825
826         case PTRACE_PEEKUSR_AREA:
827         case PTRACE_POKEUSR_AREA:
828                 if (copy_from_user(&parea, (void __force __user *) addr,
829                                                         sizeof(parea)))
830                         return -EFAULT;
831                 addr = parea.kernel_addr;
832                 data = parea.process_addr;
833                 copied = 0;
834                 while (copied < parea.len) {
835                         if (request == PTRACE_PEEKUSR_AREA)
836                                 ret = peek_user_compat(child, addr, data);
837                         else {
838                                 __u32 utmp;
839                                 if (get_user(utmp,
840                                              (__u32 __force __user *) data))
841                                         return -EFAULT;
842                                 ret = poke_user_compat(child, addr, utmp);
843                         }
844                         if (ret)
845                                 return ret;
846                         addr += sizeof(unsigned int);
847                         data += sizeof(unsigned int);
848                         copied += sizeof(unsigned int);
849                 }
850                 return 0;
851         case PTRACE_GET_LAST_BREAK:
852                 put_user(task_thread_info(child)->last_break,
853                          (unsigned int __user *) data);
854                 return 0;
855         }
856         return compat_ptrace_request(child, request, addr, data);
857 }
858 #endif
859
860 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
861 {
862         long ret = 0;
863
864         /* Do the secure computing check first. */
865         if (secure_computing()) {
866                 /* seccomp failures shouldn't expose any additional code. */
867                 ret = -1;
868                 goto out;
869         }
870
871         /*
872          * The sysc_tracesys code in entry.S stored the system
873          * call number to gprs[2].
874          */
875         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
876             (tracehook_report_syscall_entry(regs) ||
877              regs->gprs[2] >= NR_syscalls)) {
878                 /*
879                  * Tracing decided this syscall should not happen or the
880                  * debugger stored an invalid system call number. Skip
881                  * the system call and the system call restart handling.
882                  */
883                 clear_pt_regs_flag(regs, PIF_SYSCALL);
884                 ret = -1;
885         }
886
887         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
888                 trace_sys_enter(regs, regs->gprs[2]);
889
890         audit_syscall_entry(regs->gprs[2], regs->orig_gpr2,
891                             regs->gprs[3], regs->gprs[4],
892                             regs->gprs[5]);
893 out:
894         return ret ?: regs->gprs[2];
895 }
896
897 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
898 {
899         audit_syscall_exit(regs);
900
901         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
902                 trace_sys_exit(regs, regs->gprs[2]);
903
904         if (test_thread_flag(TIF_SYSCALL_TRACE))
905                 tracehook_report_syscall_exit(regs, 0);
906 }
907
908 /*
909  * user_regset definitions.
910  */
911
912 static int s390_regs_get(struct task_struct *target,
913                          const struct user_regset *regset,
914                          unsigned int pos, unsigned int count,
915                          void *kbuf, void __user *ubuf)
916 {
917         if (target == current)
918                 save_access_regs(target->thread.acrs);
919
920         if (kbuf) {
921                 unsigned long *k = kbuf;
922                 while (count > 0) {
923                         *k++ = __peek_user(target, pos);
924                         count -= sizeof(*k);
925                         pos += sizeof(*k);
926                 }
927         } else {
928                 unsigned long __user *u = ubuf;
929                 while (count > 0) {
930                         if (__put_user(__peek_user(target, pos), u++))
931                                 return -EFAULT;
932                         count -= sizeof(*u);
933                         pos += sizeof(*u);
934                 }
935         }
936         return 0;
937 }
938
939 static int s390_regs_set(struct task_struct *target,
940                          const struct user_regset *regset,
941                          unsigned int pos, unsigned int count,
942                          const void *kbuf, const void __user *ubuf)
943 {
944         int rc = 0;
945
946         if (target == current)
947                 save_access_regs(target->thread.acrs);
948
949         if (kbuf) {
950                 const unsigned long *k = kbuf;
951                 while (count > 0 && !rc) {
952                         rc = __poke_user(target, pos, *k++);
953                         count -= sizeof(*k);
954                         pos += sizeof(*k);
955                 }
956         } else {
957                 const unsigned long  __user *u = ubuf;
958                 while (count > 0 && !rc) {
959                         unsigned long word;
960                         rc = __get_user(word, u++);
961                         if (rc)
962                                 break;
963                         rc = __poke_user(target, pos, word);
964                         count -= sizeof(*u);
965                         pos += sizeof(*u);
966                 }
967         }
968
969         if (rc == 0 && target == current)
970                 restore_access_regs(target->thread.acrs);
971
972         return rc;
973 }
974
975 static int s390_fpregs_get(struct task_struct *target,
976                            const struct user_regset *regset, unsigned int pos,
977                            unsigned int count, void *kbuf, void __user *ubuf)
978 {
979         if (target == current) {
980                 save_fp_ctl(&target->thread.fp_regs.fpc);
981                 save_fp_regs(target->thread.fp_regs.fprs);
982         }
983 #ifdef CONFIG_64BIT
984         else if (target->thread.vxrs) {
985                 int i;
986
987                 for (i = 0; i < __NUM_VXRS_LOW; i++)
988                         target->thread.fp_regs.fprs[i] =
989                                 *(freg_t *)(target->thread.vxrs + i);
990         }
991 #endif
992         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
993                                    &target->thread.fp_regs, 0, -1);
994 }
995
996 static int s390_fpregs_set(struct task_struct *target,
997                            const struct user_regset *regset, unsigned int pos,
998                            unsigned int count, const void *kbuf,
999                            const void __user *ubuf)
1000 {
1001         int rc = 0;
1002
1003         if (target == current) {
1004                 save_fp_ctl(&target->thread.fp_regs.fpc);
1005                 save_fp_regs(target->thread.fp_regs.fprs);
1006         }
1007
1008         /* If setting FPC, must validate it first. */
1009         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
1010                 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
1011                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
1012                                         0, offsetof(s390_fp_regs, fprs));
1013                 if (rc)
1014                         return rc;
1015                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
1016                         return -EINVAL;
1017                 target->thread.fp_regs.fpc = ufpc[0];
1018         }
1019
1020         if (rc == 0 && count > 0)
1021                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1022                                         target->thread.fp_regs.fprs,
1023                                         offsetof(s390_fp_regs, fprs), -1);
1024
1025         if (rc == 0) {
1026                 if (target == current) {
1027                         restore_fp_ctl(&target->thread.fp_regs.fpc);
1028                         restore_fp_regs(target->thread.fp_regs.fprs);
1029                 }
1030 #ifdef CONFIG_64BIT
1031                 else if (target->thread.vxrs) {
1032                         int i;
1033
1034                         for (i = 0; i < __NUM_VXRS_LOW; i++)
1035                                 *(freg_t *)(target->thread.vxrs + i) =
1036                                         target->thread.fp_regs.fprs[i];
1037                 }
1038 #endif
1039         }
1040
1041         return rc;
1042 }
1043
1044 #ifdef CONFIG_64BIT
1045
1046 static int s390_last_break_get(struct task_struct *target,
1047                                const struct user_regset *regset,
1048                                unsigned int pos, unsigned int count,
1049                                void *kbuf, void __user *ubuf)
1050 {
1051         if (count > 0) {
1052                 if (kbuf) {
1053                         unsigned long *k = kbuf;
1054                         *k = task_thread_info(target)->last_break;
1055                 } else {
1056                         unsigned long  __user *u = ubuf;
1057                         if (__put_user(task_thread_info(target)->last_break, u))
1058                                 return -EFAULT;
1059                 }
1060         }
1061         return 0;
1062 }
1063
1064 static int s390_last_break_set(struct task_struct *target,
1065                                const struct user_regset *regset,
1066                                unsigned int pos, unsigned int count,
1067                                const void *kbuf, const void __user *ubuf)
1068 {
1069         return 0;
1070 }
1071
1072 static int s390_tdb_get(struct task_struct *target,
1073                         const struct user_regset *regset,
1074                         unsigned int pos, unsigned int count,
1075                         void *kbuf, void __user *ubuf)
1076 {
1077         struct pt_regs *regs = task_pt_regs(target);
1078         unsigned char *data;
1079
1080         if (!(regs->int_code & 0x200))
1081                 return -ENODATA;
1082         data = target->thread.trap_tdb;
1083         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1084 }
1085
1086 static int s390_tdb_set(struct task_struct *target,
1087                         const struct user_regset *regset,
1088                         unsigned int pos, unsigned int count,
1089                         const void *kbuf, const void __user *ubuf)
1090 {
1091         return 0;
1092 }
1093
1094 static int s390_vxrs_low_get(struct task_struct *target,
1095                              const struct user_regset *regset,
1096                              unsigned int pos, unsigned int count,
1097                              void *kbuf, void __user *ubuf)
1098 {
1099         __u64 vxrs[__NUM_VXRS_LOW];
1100         int i;
1101
1102         if (!MACHINE_HAS_VX)
1103                 return -ENODEV;
1104         if (target->thread.vxrs) {
1105                 if (target == current)
1106                         save_vx_regs(target->thread.vxrs);
1107                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1108                         vxrs[i] = *((__u64 *)(target->thread.vxrs + i) + 1);
1109         } else
1110                 memset(vxrs, 0, sizeof(vxrs));
1111         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1112 }
1113
1114 static int s390_vxrs_low_set(struct task_struct *target,
1115                              const struct user_regset *regset,
1116                              unsigned int pos, unsigned int count,
1117                              const void *kbuf, const void __user *ubuf)
1118 {
1119         __u64 vxrs[__NUM_VXRS_LOW];
1120         int i, rc;
1121
1122         if (!MACHINE_HAS_VX)
1123                 return -ENODEV;
1124         if (!target->thread.vxrs) {
1125                 rc = alloc_vector_registers(target);
1126                 if (rc)
1127                         return rc;
1128         } else if (target == current)
1129                 save_vx_regs(target->thread.vxrs);
1130
1131         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1132         if (rc == 0) {
1133                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1134                         *((__u64 *)(target->thread.vxrs + i) + 1) = vxrs[i];
1135                 if (target == current)
1136                         restore_vx_regs(target->thread.vxrs);
1137         }
1138
1139         return rc;
1140 }
1141
1142 static int s390_vxrs_high_get(struct task_struct *target,
1143                               const struct user_regset *regset,
1144                               unsigned int pos, unsigned int count,
1145                               void *kbuf, void __user *ubuf)
1146 {
1147         __vector128 vxrs[__NUM_VXRS_HIGH];
1148
1149         if (!MACHINE_HAS_VX)
1150                 return -ENODEV;
1151         if (target->thread.vxrs) {
1152                 if (target == current)
1153                         save_vx_regs(target->thread.vxrs);
1154                 memcpy(vxrs, target->thread.vxrs + __NUM_VXRS_LOW,
1155                        sizeof(vxrs));
1156         } else
1157                 memset(vxrs, 0, sizeof(vxrs));
1158         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1159 }
1160
1161 static int s390_vxrs_high_set(struct task_struct *target,
1162                               const struct user_regset *regset,
1163                               unsigned int pos, unsigned int count,
1164                               const void *kbuf, const void __user *ubuf)
1165 {
1166         int rc;
1167
1168         if (!MACHINE_HAS_VX)
1169                 return -ENODEV;
1170         if (!target->thread.vxrs) {
1171                 rc = alloc_vector_registers(target);
1172                 if (rc)
1173                         return rc;
1174         } else if (target == current)
1175                 save_vx_regs(target->thread.vxrs);
1176
1177         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1178                                 target->thread.vxrs + __NUM_VXRS_LOW, 0, -1);
1179         if (rc == 0 && target == current)
1180                 restore_vx_regs(target->thread.vxrs);
1181
1182         return rc;
1183 }
1184
1185 #endif
1186
1187 static int s390_system_call_get(struct task_struct *target,
1188                                 const struct user_regset *regset,
1189                                 unsigned int pos, unsigned int count,
1190                                 void *kbuf, void __user *ubuf)
1191 {
1192         unsigned int *data = &task_thread_info(target)->system_call;
1193         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1194                                    data, 0, sizeof(unsigned int));
1195 }
1196
1197 static int s390_system_call_set(struct task_struct *target,
1198                                 const struct user_regset *regset,
1199                                 unsigned int pos, unsigned int count,
1200                                 const void *kbuf, const void __user *ubuf)
1201 {
1202         unsigned int *data = &task_thread_info(target)->system_call;
1203         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1204                                   data, 0, sizeof(unsigned int));
1205 }
1206
1207 static const struct user_regset s390_regsets[] = {
1208         {
1209                 .core_note_type = NT_PRSTATUS,
1210                 .n = sizeof(s390_regs) / sizeof(long),
1211                 .size = sizeof(long),
1212                 .align = sizeof(long),
1213                 .get = s390_regs_get,
1214                 .set = s390_regs_set,
1215         },
1216         {
1217                 .core_note_type = NT_PRFPREG,
1218                 .n = sizeof(s390_fp_regs) / sizeof(long),
1219                 .size = sizeof(long),
1220                 .align = sizeof(long),
1221                 .get = s390_fpregs_get,
1222                 .set = s390_fpregs_set,
1223         },
1224         {
1225                 .core_note_type = NT_S390_SYSTEM_CALL,
1226                 .n = 1,
1227                 .size = sizeof(unsigned int),
1228                 .align = sizeof(unsigned int),
1229                 .get = s390_system_call_get,
1230                 .set = s390_system_call_set,
1231         },
1232 #ifdef CONFIG_64BIT
1233         {
1234                 .core_note_type = NT_S390_LAST_BREAK,
1235                 .n = 1,
1236                 .size = sizeof(long),
1237                 .align = sizeof(long),
1238                 .get = s390_last_break_get,
1239                 .set = s390_last_break_set,
1240         },
1241         {
1242                 .core_note_type = NT_S390_TDB,
1243                 .n = 1,
1244                 .size = 256,
1245                 .align = 1,
1246                 .get = s390_tdb_get,
1247                 .set = s390_tdb_set,
1248         },
1249         {
1250                 .core_note_type = NT_S390_VXRS_LOW,
1251                 .n = __NUM_VXRS_LOW,
1252                 .size = sizeof(__u64),
1253                 .align = sizeof(__u64),
1254                 .get = s390_vxrs_low_get,
1255                 .set = s390_vxrs_low_set,
1256         },
1257         {
1258                 .core_note_type = NT_S390_VXRS_HIGH,
1259                 .n = __NUM_VXRS_HIGH,
1260                 .size = sizeof(__vector128),
1261                 .align = sizeof(__vector128),
1262                 .get = s390_vxrs_high_get,
1263                 .set = s390_vxrs_high_set,
1264         },
1265 #endif
1266 };
1267
1268 static const struct user_regset_view user_s390_view = {
1269         .name = UTS_MACHINE,
1270         .e_machine = EM_S390,
1271         .regsets = s390_regsets,
1272         .n = ARRAY_SIZE(s390_regsets)
1273 };
1274
1275 #ifdef CONFIG_COMPAT
1276 static int s390_compat_regs_get(struct task_struct *target,
1277                                 const struct user_regset *regset,
1278                                 unsigned int pos, unsigned int count,
1279                                 void *kbuf, void __user *ubuf)
1280 {
1281         if (target == current)
1282                 save_access_regs(target->thread.acrs);
1283
1284         if (kbuf) {
1285                 compat_ulong_t *k = kbuf;
1286                 while (count > 0) {
1287                         *k++ = __peek_user_compat(target, pos);
1288                         count -= sizeof(*k);
1289                         pos += sizeof(*k);
1290                 }
1291         } else {
1292                 compat_ulong_t __user *u = ubuf;
1293                 while (count > 0) {
1294                         if (__put_user(__peek_user_compat(target, pos), u++))
1295                                 return -EFAULT;
1296                         count -= sizeof(*u);
1297                         pos += sizeof(*u);
1298                 }
1299         }
1300         return 0;
1301 }
1302
1303 static int s390_compat_regs_set(struct task_struct *target,
1304                                 const struct user_regset *regset,
1305                                 unsigned int pos, unsigned int count,
1306                                 const void *kbuf, const void __user *ubuf)
1307 {
1308         int rc = 0;
1309
1310         if (target == current)
1311                 save_access_regs(target->thread.acrs);
1312
1313         if (kbuf) {
1314                 const compat_ulong_t *k = kbuf;
1315                 while (count > 0 && !rc) {
1316                         rc = __poke_user_compat(target, pos, *k++);
1317                         count -= sizeof(*k);
1318                         pos += sizeof(*k);
1319                 }
1320         } else {
1321                 const compat_ulong_t  __user *u = ubuf;
1322                 while (count > 0 && !rc) {
1323                         compat_ulong_t word;
1324                         rc = __get_user(word, u++);
1325                         if (rc)
1326                                 break;
1327                         rc = __poke_user_compat(target, pos, word);
1328                         count -= sizeof(*u);
1329                         pos += sizeof(*u);
1330                 }
1331         }
1332
1333         if (rc == 0 && target == current)
1334                 restore_access_regs(target->thread.acrs);
1335
1336         return rc;
1337 }
1338
1339 static int s390_compat_regs_high_get(struct task_struct *target,
1340                                      const struct user_regset *regset,
1341                                      unsigned int pos, unsigned int count,
1342                                      void *kbuf, void __user *ubuf)
1343 {
1344         compat_ulong_t *gprs_high;
1345
1346         gprs_high = (compat_ulong_t *)
1347                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1348         if (kbuf) {
1349                 compat_ulong_t *k = kbuf;
1350                 while (count > 0) {
1351                         *k++ = *gprs_high;
1352                         gprs_high += 2;
1353                         count -= sizeof(*k);
1354                 }
1355         } else {
1356                 compat_ulong_t __user *u = ubuf;
1357                 while (count > 0) {
1358                         if (__put_user(*gprs_high, u++))
1359                                 return -EFAULT;
1360                         gprs_high += 2;
1361                         count -= sizeof(*u);
1362                 }
1363         }
1364         return 0;
1365 }
1366
1367 static int s390_compat_regs_high_set(struct task_struct *target,
1368                                      const struct user_regset *regset,
1369                                      unsigned int pos, unsigned int count,
1370                                      const void *kbuf, const void __user *ubuf)
1371 {
1372         compat_ulong_t *gprs_high;
1373         int rc = 0;
1374
1375         gprs_high = (compat_ulong_t *)
1376                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1377         if (kbuf) {
1378                 const compat_ulong_t *k = kbuf;
1379                 while (count > 0) {
1380                         *gprs_high = *k++;
1381                         *gprs_high += 2;
1382                         count -= sizeof(*k);
1383                 }
1384         } else {
1385                 const compat_ulong_t  __user *u = ubuf;
1386                 while (count > 0 && !rc) {
1387                         unsigned long word;
1388                         rc = __get_user(word, u++);
1389                         if (rc)
1390                                 break;
1391                         *gprs_high = word;
1392                         *gprs_high += 2;
1393                         count -= sizeof(*u);
1394                 }
1395         }
1396
1397         return rc;
1398 }
1399
1400 static int s390_compat_last_break_get(struct task_struct *target,
1401                                       const struct user_regset *regset,
1402                                       unsigned int pos, unsigned int count,
1403                                       void *kbuf, void __user *ubuf)
1404 {
1405         compat_ulong_t last_break;
1406
1407         if (count > 0) {
1408                 last_break = task_thread_info(target)->last_break;
1409                 if (kbuf) {
1410                         unsigned long *k = kbuf;
1411                         *k = last_break;
1412                 } else {
1413                         unsigned long  __user *u = ubuf;
1414                         if (__put_user(last_break, u))
1415                                 return -EFAULT;
1416                 }
1417         }
1418         return 0;
1419 }
1420
1421 static int s390_compat_last_break_set(struct task_struct *target,
1422                                       const struct user_regset *regset,
1423                                       unsigned int pos, unsigned int count,
1424                                       const void *kbuf, const void __user *ubuf)
1425 {
1426         return 0;
1427 }
1428
1429 static const struct user_regset s390_compat_regsets[] = {
1430         {
1431                 .core_note_type = NT_PRSTATUS,
1432                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1433                 .size = sizeof(compat_long_t),
1434                 .align = sizeof(compat_long_t),
1435                 .get = s390_compat_regs_get,
1436                 .set = s390_compat_regs_set,
1437         },
1438         {
1439                 .core_note_type = NT_PRFPREG,
1440                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1441                 .size = sizeof(compat_long_t),
1442                 .align = sizeof(compat_long_t),
1443                 .get = s390_fpregs_get,
1444                 .set = s390_fpregs_set,
1445         },
1446         {
1447                 .core_note_type = NT_S390_SYSTEM_CALL,
1448                 .n = 1,
1449                 .size = sizeof(compat_uint_t),
1450                 .align = sizeof(compat_uint_t),
1451                 .get = s390_system_call_get,
1452                 .set = s390_system_call_set,
1453         },
1454         {
1455                 .core_note_type = NT_S390_LAST_BREAK,
1456                 .n = 1,
1457                 .size = sizeof(long),
1458                 .align = sizeof(long),
1459                 .get = s390_compat_last_break_get,
1460                 .set = s390_compat_last_break_set,
1461         },
1462         {
1463                 .core_note_type = NT_S390_TDB,
1464                 .n = 1,
1465                 .size = 256,
1466                 .align = 1,
1467                 .get = s390_tdb_get,
1468                 .set = s390_tdb_set,
1469         },
1470         {
1471                 .core_note_type = NT_S390_VXRS_LOW,
1472                 .n = __NUM_VXRS_LOW,
1473                 .size = sizeof(__u64),
1474                 .align = sizeof(__u64),
1475                 .get = s390_vxrs_low_get,
1476                 .set = s390_vxrs_low_set,
1477         },
1478         {
1479                 .core_note_type = NT_S390_VXRS_HIGH,
1480                 .n = __NUM_VXRS_HIGH,
1481                 .size = sizeof(__vector128),
1482                 .align = sizeof(__vector128),
1483                 .get = s390_vxrs_high_get,
1484                 .set = s390_vxrs_high_set,
1485         },
1486         {
1487                 .core_note_type = NT_S390_HIGH_GPRS,
1488                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1489                 .size = sizeof(compat_long_t),
1490                 .align = sizeof(compat_long_t),
1491                 .get = s390_compat_regs_high_get,
1492                 .set = s390_compat_regs_high_set,
1493         },
1494 };
1495
1496 static const struct user_regset_view user_s390_compat_view = {
1497         .name = "s390",
1498         .e_machine = EM_S390,
1499         .regsets = s390_compat_regsets,
1500         .n = ARRAY_SIZE(s390_compat_regsets)
1501 };
1502 #endif
1503
1504 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1505 {
1506 #ifdef CONFIG_COMPAT
1507         if (test_tsk_thread_flag(task, TIF_31BIT))
1508                 return &user_s390_compat_view;
1509 #endif
1510         return &user_s390_view;
1511 }
1512
1513 static const char *gpr_names[NUM_GPRS] = {
1514         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1515         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1516 };
1517
1518 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1519 {
1520         if (offset >= NUM_GPRS)
1521                 return 0;
1522         return regs->gprs[offset];
1523 }
1524
1525 int regs_query_register_offset(const char *name)
1526 {
1527         unsigned long offset;
1528
1529         if (!name || *name != 'r')
1530                 return -EINVAL;
1531         if (kstrtoul(name + 1, 10, &offset))
1532                 return -EINVAL;
1533         if (offset >= NUM_GPRS)
1534                 return -EINVAL;
1535         return offset;
1536 }
1537
1538 const char *regs_query_register_name(unsigned int offset)
1539 {
1540         if (offset >= NUM_GPRS)
1541                 return NULL;
1542         return gpr_names[offset];
1543 }
1544
1545 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1546 {
1547         unsigned long ksp = kernel_stack_pointer(regs);
1548
1549         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1550 }
1551
1552 /**
1553  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1554  * @regs:pt_regs which contains kernel stack pointer.
1555  * @n:stack entry number.
1556  *
1557  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1558  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1559  * this returns 0.
1560  */
1561 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1562 {
1563         unsigned long addr;
1564
1565         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1566         if (!regs_within_kernel_stack(regs, addr))
1567                 return 0;
1568         return *(unsigned long *)addr;
1569 }