Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57
58 /* A bitmap, two bits for every 256MB of physical memory.  These two
59  * bits determine what page size we use for kernel linear
60  * translations.  They form an index into kern_linear_pte_xor[].  The
61  * value in the indexed slot is XOR'd with the TLB miss virtual
62  * address to form the resulting TTE.  The mapping is:
63  *
64  *      0       ==>     4MB
65  *      1       ==>     256MB
66  *      2       ==>     2GB
67  *      3       ==>     16GB
68  *
69  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
70  * support 2GB pages, and hopefully future cpus will support the 16GB
71  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
72  * if these larger page sizes are not supported by the cpu.
73  *
74  * It would be nice to determine this from the machine description
75  * 'cpu' properties, but we need to have this table setup before the
76  * MDESC is initialized.
77  */
78
79 #ifndef CONFIG_DEBUG_PAGEALLOC
80 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
81  * Space is allocated for this right after the trap table in
82  * arch/sparc64/kernel/head.S
83  */
84 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
85 #endif
86 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
87
88 static unsigned long cpu_pgsz_mask;
89
90 #define MAX_BANKS       1024
91
92 static struct linux_prom64_registers pavail[MAX_BANKS];
93 static int pavail_ents;
94
95 static int cmp_p64(const void *a, const void *b)
96 {
97         const struct linux_prom64_registers *x = a, *y = b;
98
99         if (x->phys_addr > y->phys_addr)
100                 return 1;
101         if (x->phys_addr < y->phys_addr)
102                 return -1;
103         return 0;
104 }
105
106 static void __init read_obp_memory(const char *property,
107                                    struct linux_prom64_registers *regs,
108                                    int *num_ents)
109 {
110         phandle node = prom_finddevice("/memory");
111         int prop_size = prom_getproplen(node, property);
112         int ents, ret, i;
113
114         ents = prop_size / sizeof(struct linux_prom64_registers);
115         if (ents > MAX_BANKS) {
116                 prom_printf("The machine has more %s property entries than "
117                             "this kernel can support (%d).\n",
118                             property, MAX_BANKS);
119                 prom_halt();
120         }
121
122         ret = prom_getproperty(node, property, (char *) regs, prop_size);
123         if (ret == -1) {
124                 prom_printf("Couldn't get %s property from /memory.\n",
125                                 property);
126                 prom_halt();
127         }
128
129         /* Sanitize what we got from the firmware, by page aligning
130          * everything.
131          */
132         for (i = 0; i < ents; i++) {
133                 unsigned long base, size;
134
135                 base = regs[i].phys_addr;
136                 size = regs[i].reg_size;
137
138                 size &= PAGE_MASK;
139                 if (base & ~PAGE_MASK) {
140                         unsigned long new_base = PAGE_ALIGN(base);
141
142                         size -= new_base - base;
143                         if ((long) size < 0L)
144                                 size = 0UL;
145                         base = new_base;
146                 }
147                 if (size == 0UL) {
148                         /* If it is empty, simply get rid of it.
149                          * This simplifies the logic of the other
150                          * functions that process these arrays.
151                          */
152                         memmove(&regs[i], &regs[i + 1],
153                                 (ents - i - 1) * sizeof(regs[0]));
154                         i--;
155                         ents--;
156                         continue;
157                 }
158                 regs[i].phys_addr = base;
159                 regs[i].reg_size = size;
160         }
161
162         *num_ents = ents;
163
164         sort(regs, ents, sizeof(struct linux_prom64_registers),
165              cmp_p64, NULL);
166 }
167
168 /* Kernel physical address base and size in bytes.  */
169 unsigned long kern_base __read_mostly;
170 unsigned long kern_size __read_mostly;
171
172 /* Initial ramdisk setup */
173 extern unsigned long sparc_ramdisk_image64;
174 extern unsigned int sparc_ramdisk_image;
175 extern unsigned int sparc_ramdisk_size;
176
177 struct page *mem_map_zero __read_mostly;
178 EXPORT_SYMBOL(mem_map_zero);
179
180 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
181
182 unsigned long sparc64_kern_pri_context __read_mostly;
183 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
184 unsigned long sparc64_kern_sec_context __read_mostly;
185
186 int num_kernel_image_mappings;
187
188 #ifdef CONFIG_DEBUG_DCFLUSH
189 atomic_t dcpage_flushes = ATOMIC_INIT(0);
190 #ifdef CONFIG_SMP
191 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
192 #endif
193 #endif
194
195 inline void flush_dcache_page_impl(struct page *page)
196 {
197         BUG_ON(tlb_type == hypervisor);
198 #ifdef CONFIG_DEBUG_DCFLUSH
199         atomic_inc(&dcpage_flushes);
200 #endif
201
202 #ifdef DCACHE_ALIASING_POSSIBLE
203         __flush_dcache_page(page_address(page),
204                             ((tlb_type == spitfire) &&
205                              page_mapping(page) != NULL));
206 #else
207         if (page_mapping(page) != NULL &&
208             tlb_type == spitfire)
209                 __flush_icache_page(__pa(page_address(page)));
210 #endif
211 }
212
213 #define PG_dcache_dirty         PG_arch_1
214 #define PG_dcache_cpu_shift     32UL
215 #define PG_dcache_cpu_mask      \
216         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
217
218 #define dcache_dirty_cpu(page) \
219         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
220
221 static inline void set_dcache_dirty(struct page *page, int this_cpu)
222 {
223         unsigned long mask = this_cpu;
224         unsigned long non_cpu_bits;
225
226         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
227         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
228
229         __asm__ __volatile__("1:\n\t"
230                              "ldx       [%2], %%g7\n\t"
231                              "and       %%g7, %1, %%g1\n\t"
232                              "or        %%g1, %0, %%g1\n\t"
233                              "casx      [%2], %%g7, %%g1\n\t"
234                              "cmp       %%g7, %%g1\n\t"
235                              "bne,pn    %%xcc, 1b\n\t"
236                              " nop"
237                              : /* no outputs */
238                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
239                              : "g1", "g7");
240 }
241
242 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
243 {
244         unsigned long mask = (1UL << PG_dcache_dirty);
245
246         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
247                              "1:\n\t"
248                              "ldx       [%2], %%g7\n\t"
249                              "srlx      %%g7, %4, %%g1\n\t"
250                              "and       %%g1, %3, %%g1\n\t"
251                              "cmp       %%g1, %0\n\t"
252                              "bne,pn    %%icc, 2f\n\t"
253                              " andn     %%g7, %1, %%g1\n\t"
254                              "casx      [%2], %%g7, %%g1\n\t"
255                              "cmp       %%g7, %%g1\n\t"
256                              "bne,pn    %%xcc, 1b\n\t"
257                              " nop\n"
258                              "2:"
259                              : /* no outputs */
260                              : "r" (cpu), "r" (mask), "r" (&page->flags),
261                                "i" (PG_dcache_cpu_mask),
262                                "i" (PG_dcache_cpu_shift)
263                              : "g1", "g7");
264 }
265
266 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
267 {
268         unsigned long tsb_addr = (unsigned long) ent;
269
270         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
271                 tsb_addr = __pa(tsb_addr);
272
273         __tsb_insert(tsb_addr, tag, pte);
274 }
275
276 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
277
278 static void flush_dcache(unsigned long pfn)
279 {
280         struct page *page;
281
282         page = pfn_to_page(pfn);
283         if (page) {
284                 unsigned long pg_flags;
285
286                 pg_flags = page->flags;
287                 if (pg_flags & (1UL << PG_dcache_dirty)) {
288                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
289                                    PG_dcache_cpu_mask);
290                         int this_cpu = get_cpu();
291
292                         /* This is just to optimize away some function calls
293                          * in the SMP case.
294                          */
295                         if (cpu == this_cpu)
296                                 flush_dcache_page_impl(page);
297                         else
298                                 smp_flush_dcache_page_impl(page, cpu);
299
300                         clear_dcache_dirty_cpu(page, cpu);
301
302                         put_cpu();
303                 }
304         }
305 }
306
307 /* mm->context.lock must be held */
308 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
309                                     unsigned long tsb_hash_shift, unsigned long address,
310                                     unsigned long tte)
311 {
312         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
313         unsigned long tag;
314
315         if (unlikely(!tsb))
316                 return;
317
318         tsb += ((address >> tsb_hash_shift) &
319                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
320         tag = (address >> 22UL);
321         tsb_insert(tsb, tag, tte);
322 }
323
324 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
325 static inline bool is_hugetlb_pte(pte_t pte)
326 {
327         if ((tlb_type == hypervisor &&
328              (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
329             (tlb_type != hypervisor &&
330              (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
331                 return true;
332         return false;
333 }
334 #endif
335
336 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
337 {
338         struct mm_struct *mm;
339         unsigned long flags;
340         pte_t pte = *ptep;
341
342         if (tlb_type != hypervisor) {
343                 unsigned long pfn = pte_pfn(pte);
344
345                 if (pfn_valid(pfn))
346                         flush_dcache(pfn);
347         }
348
349         mm = vma->vm_mm;
350
351         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
352         if (!pte_accessible(mm, pte))
353                 return;
354
355         spin_lock_irqsave(&mm->context.lock, flags);
356
357 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
358         if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
359                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
360                                         address, pte_val(pte));
361         else
362 #endif
363                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
364                                         address, pte_val(pte));
365
366         spin_unlock_irqrestore(&mm->context.lock, flags);
367 }
368
369 void flush_dcache_page(struct page *page)
370 {
371         struct address_space *mapping;
372         int this_cpu;
373
374         if (tlb_type == hypervisor)
375                 return;
376
377         /* Do not bother with the expensive D-cache flush if it
378          * is merely the zero page.  The 'bigcore' testcase in GDB
379          * causes this case to run millions of times.
380          */
381         if (page == ZERO_PAGE(0))
382                 return;
383
384         this_cpu = get_cpu();
385
386         mapping = page_mapping(page);
387         if (mapping && !mapping_mapped(mapping)) {
388                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
389                 if (dirty) {
390                         int dirty_cpu = dcache_dirty_cpu(page);
391
392                         if (dirty_cpu == this_cpu)
393                                 goto out;
394                         smp_flush_dcache_page_impl(page, dirty_cpu);
395                 }
396                 set_dcache_dirty(page, this_cpu);
397         } else {
398                 /* We could delay the flush for the !page_mapping
399                  * case too.  But that case is for exec env/arg
400                  * pages and those are %99 certainly going to get
401                  * faulted into the tlb (and thus flushed) anyways.
402                  */
403                 flush_dcache_page_impl(page);
404         }
405
406 out:
407         put_cpu();
408 }
409 EXPORT_SYMBOL(flush_dcache_page);
410
411 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
412 {
413         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
414         if (tlb_type == spitfire) {
415                 unsigned long kaddr;
416
417                 /* This code only runs on Spitfire cpus so this is
418                  * why we can assume _PAGE_PADDR_4U.
419                  */
420                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
421                         unsigned long paddr, mask = _PAGE_PADDR_4U;
422
423                         if (kaddr >= PAGE_OFFSET)
424                                 paddr = kaddr & mask;
425                         else {
426                                 pgd_t *pgdp = pgd_offset_k(kaddr);
427                                 pud_t *pudp = pud_offset(pgdp, kaddr);
428                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
429                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
430
431                                 paddr = pte_val(*ptep) & mask;
432                         }
433                         __flush_icache_page(paddr);
434                 }
435         }
436 }
437 EXPORT_SYMBOL(flush_icache_range);
438
439 void mmu_info(struct seq_file *m)
440 {
441         static const char *pgsz_strings[] = {
442                 "8K", "64K", "512K", "4MB", "32MB",
443                 "256MB", "2GB", "16GB",
444         };
445         int i, printed;
446
447         if (tlb_type == cheetah)
448                 seq_printf(m, "MMU Type\t: Cheetah\n");
449         else if (tlb_type == cheetah_plus)
450                 seq_printf(m, "MMU Type\t: Cheetah+\n");
451         else if (tlb_type == spitfire)
452                 seq_printf(m, "MMU Type\t: Spitfire\n");
453         else if (tlb_type == hypervisor)
454                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
455         else
456                 seq_printf(m, "MMU Type\t: ???\n");
457
458         seq_printf(m, "MMU PGSZs\t: ");
459         printed = 0;
460         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
461                 if (cpu_pgsz_mask & (1UL << i)) {
462                         seq_printf(m, "%s%s",
463                                    printed ? "," : "", pgsz_strings[i]);
464                         printed++;
465                 }
466         }
467         seq_putc(m, '\n');
468
469 #ifdef CONFIG_DEBUG_DCFLUSH
470         seq_printf(m, "DCPageFlushes\t: %d\n",
471                    atomic_read(&dcpage_flushes));
472 #ifdef CONFIG_SMP
473         seq_printf(m, "DCPageFlushesXC\t: %d\n",
474                    atomic_read(&dcpage_flushes_xcall));
475 #endif /* CONFIG_SMP */
476 #endif /* CONFIG_DEBUG_DCFLUSH */
477 }
478
479 struct linux_prom_translation prom_trans[512] __read_mostly;
480 unsigned int prom_trans_ents __read_mostly;
481
482 unsigned long kern_locked_tte_data;
483
484 /* The obp translations are saved based on 8k pagesize, since obp can
485  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
486  * HI_OBP_ADDRESS range are handled in ktlb.S.
487  */
488 static inline int in_obp_range(unsigned long vaddr)
489 {
490         return (vaddr >= LOW_OBP_ADDRESS &&
491                 vaddr < HI_OBP_ADDRESS);
492 }
493
494 static int cmp_ptrans(const void *a, const void *b)
495 {
496         const struct linux_prom_translation *x = a, *y = b;
497
498         if (x->virt > y->virt)
499                 return 1;
500         if (x->virt < y->virt)
501                 return -1;
502         return 0;
503 }
504
505 /* Read OBP translations property into 'prom_trans[]'.  */
506 static void __init read_obp_translations(void)
507 {
508         int n, node, ents, first, last, i;
509
510         node = prom_finddevice("/virtual-memory");
511         n = prom_getproplen(node, "translations");
512         if (unlikely(n == 0 || n == -1)) {
513                 prom_printf("prom_mappings: Couldn't get size.\n");
514                 prom_halt();
515         }
516         if (unlikely(n > sizeof(prom_trans))) {
517                 prom_printf("prom_mappings: Size %d is too big.\n", n);
518                 prom_halt();
519         }
520
521         if ((n = prom_getproperty(node, "translations",
522                                   (char *)&prom_trans[0],
523                                   sizeof(prom_trans))) == -1) {
524                 prom_printf("prom_mappings: Couldn't get property.\n");
525                 prom_halt();
526         }
527
528         n = n / sizeof(struct linux_prom_translation);
529
530         ents = n;
531
532         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
533              cmp_ptrans, NULL);
534
535         /* Now kick out all the non-OBP entries.  */
536         for (i = 0; i < ents; i++) {
537                 if (in_obp_range(prom_trans[i].virt))
538                         break;
539         }
540         first = i;
541         for (; i < ents; i++) {
542                 if (!in_obp_range(prom_trans[i].virt))
543                         break;
544         }
545         last = i;
546
547         for (i = 0; i < (last - first); i++) {
548                 struct linux_prom_translation *src = &prom_trans[i + first];
549                 struct linux_prom_translation *dest = &prom_trans[i];
550
551                 *dest = *src;
552         }
553         for (; i < ents; i++) {
554                 struct linux_prom_translation *dest = &prom_trans[i];
555                 dest->virt = dest->size = dest->data = 0x0UL;
556         }
557
558         prom_trans_ents = last - first;
559
560         if (tlb_type == spitfire) {
561                 /* Clear diag TTE bits. */
562                 for (i = 0; i < prom_trans_ents; i++)
563                         prom_trans[i].data &= ~0x0003fe0000000000UL;
564         }
565
566         /* Force execute bit on.  */
567         for (i = 0; i < prom_trans_ents; i++)
568                 prom_trans[i].data |= (tlb_type == hypervisor ?
569                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
570 }
571
572 static void __init hypervisor_tlb_lock(unsigned long vaddr,
573                                        unsigned long pte,
574                                        unsigned long mmu)
575 {
576         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
577
578         if (ret != 0) {
579                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
580                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
581                 prom_halt();
582         }
583 }
584
585 static unsigned long kern_large_tte(unsigned long paddr);
586
587 static void __init remap_kernel(void)
588 {
589         unsigned long phys_page, tte_vaddr, tte_data;
590         int i, tlb_ent = sparc64_highest_locked_tlbent();
591
592         tte_vaddr = (unsigned long) KERNBASE;
593         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
594         tte_data = kern_large_tte(phys_page);
595
596         kern_locked_tte_data = tte_data;
597
598         /* Now lock us into the TLBs via Hypervisor or OBP. */
599         if (tlb_type == hypervisor) {
600                 for (i = 0; i < num_kernel_image_mappings; i++) {
601                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
602                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
603                         tte_vaddr += 0x400000;
604                         tte_data += 0x400000;
605                 }
606         } else {
607                 for (i = 0; i < num_kernel_image_mappings; i++) {
608                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
609                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
610                         tte_vaddr += 0x400000;
611                         tte_data += 0x400000;
612                 }
613                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
614         }
615         if (tlb_type == cheetah_plus) {
616                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
617                                             CTX_CHEETAH_PLUS_NUC);
618                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
619                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
620         }
621 }
622
623
624 static void __init inherit_prom_mappings(void)
625 {
626         /* Now fixup OBP's idea about where we really are mapped. */
627         printk("Remapping the kernel... ");
628         remap_kernel();
629         printk("done.\n");
630 }
631
632 void prom_world(int enter)
633 {
634         if (!enter)
635                 set_fs(get_fs());
636
637         __asm__ __volatile__("flushw");
638 }
639
640 void __flush_dcache_range(unsigned long start, unsigned long end)
641 {
642         unsigned long va;
643
644         if (tlb_type == spitfire) {
645                 int n = 0;
646
647                 for (va = start; va < end; va += 32) {
648                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
649                         if (++n >= 512)
650                                 break;
651                 }
652         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
653                 start = __pa(start);
654                 end = __pa(end);
655                 for (va = start; va < end; va += 32)
656                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
657                                              "membar #Sync"
658                                              : /* no outputs */
659                                              : "r" (va),
660                                                "i" (ASI_DCACHE_INVALIDATE));
661         }
662 }
663 EXPORT_SYMBOL(__flush_dcache_range);
664
665 /* get_new_mmu_context() uses "cache + 1".  */
666 DEFINE_SPINLOCK(ctx_alloc_lock);
667 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
668 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
669 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
670 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
671
672 /* Caller does TLB context flushing on local CPU if necessary.
673  * The caller also ensures that CTX_VALID(mm->context) is false.
674  *
675  * We must be careful about boundary cases so that we never
676  * let the user have CTX 0 (nucleus) or we ever use a CTX
677  * version of zero (and thus NO_CONTEXT would not be caught
678  * by version mis-match tests in mmu_context.h).
679  *
680  * Always invoked with interrupts disabled.
681  */
682 void get_new_mmu_context(struct mm_struct *mm)
683 {
684         unsigned long ctx, new_ctx;
685         unsigned long orig_pgsz_bits;
686         int new_version;
687
688         spin_lock(&ctx_alloc_lock);
689         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
690         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
691         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
692         new_version = 0;
693         if (new_ctx >= (1 << CTX_NR_BITS)) {
694                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
695                 if (new_ctx >= ctx) {
696                         int i;
697                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
698                                 CTX_FIRST_VERSION;
699                         if (new_ctx == 1)
700                                 new_ctx = CTX_FIRST_VERSION;
701
702                         /* Don't call memset, for 16 entries that's just
703                          * plain silly...
704                          */
705                         mmu_context_bmap[0] = 3;
706                         mmu_context_bmap[1] = 0;
707                         mmu_context_bmap[2] = 0;
708                         mmu_context_bmap[3] = 0;
709                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
710                                 mmu_context_bmap[i + 0] = 0;
711                                 mmu_context_bmap[i + 1] = 0;
712                                 mmu_context_bmap[i + 2] = 0;
713                                 mmu_context_bmap[i + 3] = 0;
714                         }
715                         new_version = 1;
716                         goto out;
717                 }
718         }
719         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
720         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
721 out:
722         tlb_context_cache = new_ctx;
723         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
724         spin_unlock(&ctx_alloc_lock);
725
726         if (unlikely(new_version))
727                 smp_new_mmu_context_version();
728 }
729
730 static int numa_enabled = 1;
731 static int numa_debug;
732
733 static int __init early_numa(char *p)
734 {
735         if (!p)
736                 return 0;
737
738         if (strstr(p, "off"))
739                 numa_enabled = 0;
740
741         if (strstr(p, "debug"))
742                 numa_debug = 1;
743
744         return 0;
745 }
746 early_param("numa", early_numa);
747
748 #define numadbg(f, a...) \
749 do {    if (numa_debug) \
750                 printk(KERN_INFO f, ## a); \
751 } while (0)
752
753 static void __init find_ramdisk(unsigned long phys_base)
754 {
755 #ifdef CONFIG_BLK_DEV_INITRD
756         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
757                 unsigned long ramdisk_image;
758
759                 /* Older versions of the bootloader only supported a
760                  * 32-bit physical address for the ramdisk image
761                  * location, stored at sparc_ramdisk_image.  Newer
762                  * SILO versions set sparc_ramdisk_image to zero and
763                  * provide a full 64-bit physical address at
764                  * sparc_ramdisk_image64.
765                  */
766                 ramdisk_image = sparc_ramdisk_image;
767                 if (!ramdisk_image)
768                         ramdisk_image = sparc_ramdisk_image64;
769
770                 /* Another bootloader quirk.  The bootloader normalizes
771                  * the physical address to KERNBASE, so we have to
772                  * factor that back out and add in the lowest valid
773                  * physical page address to get the true physical address.
774                  */
775                 ramdisk_image -= KERNBASE;
776                 ramdisk_image += phys_base;
777
778                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
779                         ramdisk_image, sparc_ramdisk_size);
780
781                 initrd_start = ramdisk_image;
782                 initrd_end = ramdisk_image + sparc_ramdisk_size;
783
784                 memblock_reserve(initrd_start, sparc_ramdisk_size);
785
786                 initrd_start += PAGE_OFFSET;
787                 initrd_end += PAGE_OFFSET;
788         }
789 #endif
790 }
791
792 struct node_mem_mask {
793         unsigned long mask;
794         unsigned long val;
795 };
796 static struct node_mem_mask node_masks[MAX_NUMNODES];
797 static int num_node_masks;
798
799 #ifdef CONFIG_NEED_MULTIPLE_NODES
800
801 int numa_cpu_lookup_table[NR_CPUS];
802 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
803
804 struct mdesc_mblock {
805         u64     base;
806         u64     size;
807         u64     offset; /* RA-to-PA */
808 };
809 static struct mdesc_mblock *mblocks;
810 static int num_mblocks;
811
812 static unsigned long ra_to_pa(unsigned long addr)
813 {
814         int i;
815
816         for (i = 0; i < num_mblocks; i++) {
817                 struct mdesc_mblock *m = &mblocks[i];
818
819                 if (addr >= m->base &&
820                     addr < (m->base + m->size)) {
821                         addr += m->offset;
822                         break;
823                 }
824         }
825         return addr;
826 }
827
828 static int find_node(unsigned long addr)
829 {
830         int i;
831
832         addr = ra_to_pa(addr);
833         for (i = 0; i < num_node_masks; i++) {
834                 struct node_mem_mask *p = &node_masks[i];
835
836                 if ((addr & p->mask) == p->val)
837                         return i;
838         }
839         /* The following condition has been observed on LDOM guests.*/
840         WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
841                 " rule. Some physical memory will be owned by node 0.");
842         return 0;
843 }
844
845 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
846 {
847         *nid = find_node(start);
848         start += PAGE_SIZE;
849         while (start < end) {
850                 int n = find_node(start);
851
852                 if (n != *nid)
853                         break;
854                 start += PAGE_SIZE;
855         }
856
857         if (start > end)
858                 start = end;
859
860         return start;
861 }
862 #endif
863
864 /* This must be invoked after performing all of the necessary
865  * memblock_set_node() calls for 'nid'.  We need to be able to get
866  * correct data from get_pfn_range_for_nid().
867  */
868 static void __init allocate_node_data(int nid)
869 {
870         struct pglist_data *p;
871         unsigned long start_pfn, end_pfn;
872 #ifdef CONFIG_NEED_MULTIPLE_NODES
873         unsigned long paddr;
874
875         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
876         if (!paddr) {
877                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
878                 prom_halt();
879         }
880         NODE_DATA(nid) = __va(paddr);
881         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
882
883         NODE_DATA(nid)->node_id = nid;
884 #endif
885
886         p = NODE_DATA(nid);
887
888         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
889         p->node_start_pfn = start_pfn;
890         p->node_spanned_pages = end_pfn - start_pfn;
891 }
892
893 static void init_node_masks_nonnuma(void)
894 {
895 #ifdef CONFIG_NEED_MULTIPLE_NODES
896         int i;
897 #endif
898
899         numadbg("Initializing tables for non-numa.\n");
900
901         node_masks[0].mask = node_masks[0].val = 0;
902         num_node_masks = 1;
903
904 #ifdef CONFIG_NEED_MULTIPLE_NODES
905         for (i = 0; i < NR_CPUS; i++)
906                 numa_cpu_lookup_table[i] = 0;
907
908         cpumask_setall(&numa_cpumask_lookup_table[0]);
909 #endif
910 }
911
912 #ifdef CONFIG_NEED_MULTIPLE_NODES
913 struct pglist_data *node_data[MAX_NUMNODES];
914
915 EXPORT_SYMBOL(numa_cpu_lookup_table);
916 EXPORT_SYMBOL(numa_cpumask_lookup_table);
917 EXPORT_SYMBOL(node_data);
918
919 struct mdesc_mlgroup {
920         u64     node;
921         u64     latency;
922         u64     match;
923         u64     mask;
924 };
925 static struct mdesc_mlgroup *mlgroups;
926 static int num_mlgroups;
927
928 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
929                                    u32 cfg_handle)
930 {
931         u64 arc;
932
933         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
934                 u64 target = mdesc_arc_target(md, arc);
935                 const u64 *val;
936
937                 val = mdesc_get_property(md, target,
938                                          "cfg-handle", NULL);
939                 if (val && *val == cfg_handle)
940                         return 0;
941         }
942         return -ENODEV;
943 }
944
945 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
946                                     u32 cfg_handle)
947 {
948         u64 arc, candidate, best_latency = ~(u64)0;
949
950         candidate = MDESC_NODE_NULL;
951         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
952                 u64 target = mdesc_arc_target(md, arc);
953                 const char *name = mdesc_node_name(md, target);
954                 const u64 *val;
955
956                 if (strcmp(name, "pio-latency-group"))
957                         continue;
958
959                 val = mdesc_get_property(md, target, "latency", NULL);
960                 if (!val)
961                         continue;
962
963                 if (*val < best_latency) {
964                         candidate = target;
965                         best_latency = *val;
966                 }
967         }
968
969         if (candidate == MDESC_NODE_NULL)
970                 return -ENODEV;
971
972         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
973 }
974
975 int of_node_to_nid(struct device_node *dp)
976 {
977         const struct linux_prom64_registers *regs;
978         struct mdesc_handle *md;
979         u32 cfg_handle;
980         int count, nid;
981         u64 grp;
982
983         /* This is the right thing to do on currently supported
984          * SUN4U NUMA platforms as well, as the PCI controller does
985          * not sit behind any particular memory controller.
986          */
987         if (!mlgroups)
988                 return -1;
989
990         regs = of_get_property(dp, "reg", NULL);
991         if (!regs)
992                 return -1;
993
994         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
995
996         md = mdesc_grab();
997
998         count = 0;
999         nid = -1;
1000         mdesc_for_each_node_by_name(md, grp, "group") {
1001                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1002                         nid = count;
1003                         break;
1004                 }
1005                 count++;
1006         }
1007
1008         mdesc_release(md);
1009
1010         return nid;
1011 }
1012
1013 static void __init add_node_ranges(void)
1014 {
1015         struct memblock_region *reg;
1016
1017         for_each_memblock(memory, reg) {
1018                 unsigned long size = reg->size;
1019                 unsigned long start, end;
1020
1021                 start = reg->base;
1022                 end = start + size;
1023                 while (start < end) {
1024                         unsigned long this_end;
1025                         int nid;
1026
1027                         this_end = memblock_nid_range(start, end, &nid);
1028
1029                         numadbg("Setting memblock NUMA node nid[%d] "
1030                                 "start[%lx] end[%lx]\n",
1031                                 nid, start, this_end);
1032
1033                         memblock_set_node(start, this_end - start,
1034                                           &memblock.memory, nid);
1035                         start = this_end;
1036                 }
1037         }
1038 }
1039
1040 static int __init grab_mlgroups(struct mdesc_handle *md)
1041 {
1042         unsigned long paddr;
1043         int count = 0;
1044         u64 node;
1045
1046         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1047                 count++;
1048         if (!count)
1049                 return -ENOENT;
1050
1051         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1052                           SMP_CACHE_BYTES);
1053         if (!paddr)
1054                 return -ENOMEM;
1055
1056         mlgroups = __va(paddr);
1057         num_mlgroups = count;
1058
1059         count = 0;
1060         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1061                 struct mdesc_mlgroup *m = &mlgroups[count++];
1062                 const u64 *val;
1063
1064                 m->node = node;
1065
1066                 val = mdesc_get_property(md, node, "latency", NULL);
1067                 m->latency = *val;
1068                 val = mdesc_get_property(md, node, "address-match", NULL);
1069                 m->match = *val;
1070                 val = mdesc_get_property(md, node, "address-mask", NULL);
1071                 m->mask = *val;
1072
1073                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1074                         "match[%llx] mask[%llx]\n",
1075                         count - 1, m->node, m->latency, m->match, m->mask);
1076         }
1077
1078         return 0;
1079 }
1080
1081 static int __init grab_mblocks(struct mdesc_handle *md)
1082 {
1083         unsigned long paddr;
1084         int count = 0;
1085         u64 node;
1086
1087         mdesc_for_each_node_by_name(md, node, "mblock")
1088                 count++;
1089         if (!count)
1090                 return -ENOENT;
1091
1092         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1093                           SMP_CACHE_BYTES);
1094         if (!paddr)
1095                 return -ENOMEM;
1096
1097         mblocks = __va(paddr);
1098         num_mblocks = count;
1099
1100         count = 0;
1101         mdesc_for_each_node_by_name(md, node, "mblock") {
1102                 struct mdesc_mblock *m = &mblocks[count++];
1103                 const u64 *val;
1104
1105                 val = mdesc_get_property(md, node, "base", NULL);
1106                 m->base = *val;
1107                 val = mdesc_get_property(md, node, "size", NULL);
1108                 m->size = *val;
1109                 val = mdesc_get_property(md, node,
1110                                          "address-congruence-offset", NULL);
1111
1112                 /* The address-congruence-offset property is optional.
1113                  * Explicity zero it be identifty this.
1114                  */
1115                 if (val)
1116                         m->offset = *val;
1117                 else
1118                         m->offset = 0UL;
1119
1120                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1121                         count - 1, m->base, m->size, m->offset);
1122         }
1123
1124         return 0;
1125 }
1126
1127 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1128                                                u64 grp, cpumask_t *mask)
1129 {
1130         u64 arc;
1131
1132         cpumask_clear(mask);
1133
1134         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1135                 u64 target = mdesc_arc_target(md, arc);
1136                 const char *name = mdesc_node_name(md, target);
1137                 const u64 *id;
1138
1139                 if (strcmp(name, "cpu"))
1140                         continue;
1141                 id = mdesc_get_property(md, target, "id", NULL);
1142                 if (*id < nr_cpu_ids)
1143                         cpumask_set_cpu(*id, mask);
1144         }
1145 }
1146
1147 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1148 {
1149         int i;
1150
1151         for (i = 0; i < num_mlgroups; i++) {
1152                 struct mdesc_mlgroup *m = &mlgroups[i];
1153                 if (m->node == node)
1154                         return m;
1155         }
1156         return NULL;
1157 }
1158
1159 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1160                                       int index)
1161 {
1162         struct mdesc_mlgroup *candidate = NULL;
1163         u64 arc, best_latency = ~(u64)0;
1164         struct node_mem_mask *n;
1165
1166         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1167                 u64 target = mdesc_arc_target(md, arc);
1168                 struct mdesc_mlgroup *m = find_mlgroup(target);
1169                 if (!m)
1170                         continue;
1171                 if (m->latency < best_latency) {
1172                         candidate = m;
1173                         best_latency = m->latency;
1174                 }
1175         }
1176         if (!candidate)
1177                 return -ENOENT;
1178
1179         if (num_node_masks != index) {
1180                 printk(KERN_ERR "Inconsistent NUMA state, "
1181                        "index[%d] != num_node_masks[%d]\n",
1182                        index, num_node_masks);
1183                 return -EINVAL;
1184         }
1185
1186         n = &node_masks[num_node_masks++];
1187
1188         n->mask = candidate->mask;
1189         n->val = candidate->match;
1190
1191         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1192                 index, n->mask, n->val, candidate->latency);
1193
1194         return 0;
1195 }
1196
1197 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1198                                          int index)
1199 {
1200         cpumask_t mask;
1201         int cpu;
1202
1203         numa_parse_mdesc_group_cpus(md, grp, &mask);
1204
1205         for_each_cpu(cpu, &mask)
1206                 numa_cpu_lookup_table[cpu] = index;
1207         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1208
1209         if (numa_debug) {
1210                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1211                 for_each_cpu(cpu, &mask)
1212                         printk("%d ", cpu);
1213                 printk("]\n");
1214         }
1215
1216         return numa_attach_mlgroup(md, grp, index);
1217 }
1218
1219 static int __init numa_parse_mdesc(void)
1220 {
1221         struct mdesc_handle *md = mdesc_grab();
1222         int i, err, count;
1223         u64 node;
1224
1225         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1226         if (node == MDESC_NODE_NULL) {
1227                 mdesc_release(md);
1228                 return -ENOENT;
1229         }
1230
1231         err = grab_mblocks(md);
1232         if (err < 0)
1233                 goto out;
1234
1235         err = grab_mlgroups(md);
1236         if (err < 0)
1237                 goto out;
1238
1239         count = 0;
1240         mdesc_for_each_node_by_name(md, node, "group") {
1241                 err = numa_parse_mdesc_group(md, node, count);
1242                 if (err < 0)
1243                         break;
1244                 count++;
1245         }
1246
1247         add_node_ranges();
1248
1249         for (i = 0; i < num_node_masks; i++) {
1250                 allocate_node_data(i);
1251                 node_set_online(i);
1252         }
1253
1254         err = 0;
1255 out:
1256         mdesc_release(md);
1257         return err;
1258 }
1259
1260 static int __init numa_parse_jbus(void)
1261 {
1262         unsigned long cpu, index;
1263
1264         /* NUMA node id is encoded in bits 36 and higher, and there is
1265          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1266          */
1267         index = 0;
1268         for_each_present_cpu(cpu) {
1269                 numa_cpu_lookup_table[cpu] = index;
1270                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1271                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1272                 node_masks[index].val = cpu << 36UL;
1273
1274                 index++;
1275         }
1276         num_node_masks = index;
1277
1278         add_node_ranges();
1279
1280         for (index = 0; index < num_node_masks; index++) {
1281                 allocate_node_data(index);
1282                 node_set_online(index);
1283         }
1284
1285         return 0;
1286 }
1287
1288 static int __init numa_parse_sun4u(void)
1289 {
1290         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1291                 unsigned long ver;
1292
1293                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1294                 if ((ver >> 32UL) == __JALAPENO_ID ||
1295                     (ver >> 32UL) == __SERRANO_ID)
1296                         return numa_parse_jbus();
1297         }
1298         return -1;
1299 }
1300
1301 static int __init bootmem_init_numa(void)
1302 {
1303         int err = -1;
1304
1305         numadbg("bootmem_init_numa()\n");
1306
1307         if (numa_enabled) {
1308                 if (tlb_type == hypervisor)
1309                         err = numa_parse_mdesc();
1310                 else
1311                         err = numa_parse_sun4u();
1312         }
1313         return err;
1314 }
1315
1316 #else
1317
1318 static int bootmem_init_numa(void)
1319 {
1320         return -1;
1321 }
1322
1323 #endif
1324
1325 static void __init bootmem_init_nonnuma(void)
1326 {
1327         unsigned long top_of_ram = memblock_end_of_DRAM();
1328         unsigned long total_ram = memblock_phys_mem_size();
1329
1330         numadbg("bootmem_init_nonnuma()\n");
1331
1332         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1333                top_of_ram, total_ram);
1334         printk(KERN_INFO "Memory hole size: %ldMB\n",
1335                (top_of_ram - total_ram) >> 20);
1336
1337         init_node_masks_nonnuma();
1338         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1339         allocate_node_data(0);
1340         node_set_online(0);
1341 }
1342
1343 static unsigned long __init bootmem_init(unsigned long phys_base)
1344 {
1345         unsigned long end_pfn;
1346
1347         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1348         max_pfn = max_low_pfn = end_pfn;
1349         min_low_pfn = (phys_base >> PAGE_SHIFT);
1350
1351         if (bootmem_init_numa() < 0)
1352                 bootmem_init_nonnuma();
1353
1354         /* Dump memblock with node info. */
1355         memblock_dump_all();
1356
1357         /* XXX cpu notifier XXX */
1358
1359         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1360         sparse_init();
1361
1362         return end_pfn;
1363 }
1364
1365 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1366 static int pall_ents __initdata;
1367
1368 static unsigned long max_phys_bits = 40;
1369
1370 bool kern_addr_valid(unsigned long addr)
1371 {
1372         pgd_t *pgd;
1373         pud_t *pud;
1374         pmd_t *pmd;
1375         pte_t *pte;
1376
1377         if ((long)addr < 0L) {
1378                 unsigned long pa = __pa(addr);
1379
1380                 if ((addr >> max_phys_bits) != 0UL)
1381                         return false;
1382
1383                 return pfn_valid(pa >> PAGE_SHIFT);
1384         }
1385
1386         if (addr >= (unsigned long) KERNBASE &&
1387             addr < (unsigned long)&_end)
1388                 return true;
1389
1390         pgd = pgd_offset_k(addr);
1391         if (pgd_none(*pgd))
1392                 return 0;
1393
1394         pud = pud_offset(pgd, addr);
1395         if (pud_none(*pud))
1396                 return 0;
1397
1398         if (pud_large(*pud))
1399                 return pfn_valid(pud_pfn(*pud));
1400
1401         pmd = pmd_offset(pud, addr);
1402         if (pmd_none(*pmd))
1403                 return 0;
1404
1405         if (pmd_large(*pmd))
1406                 return pfn_valid(pmd_pfn(*pmd));
1407
1408         pte = pte_offset_kernel(pmd, addr);
1409         if (pte_none(*pte))
1410                 return 0;
1411
1412         return pfn_valid(pte_pfn(*pte));
1413 }
1414 EXPORT_SYMBOL(kern_addr_valid);
1415
1416 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1417                                               unsigned long vend,
1418                                               pud_t *pud)
1419 {
1420         const unsigned long mask16gb = (1UL << 34) - 1UL;
1421         u64 pte_val = vstart;
1422
1423         /* Each PUD is 8GB */
1424         if ((vstart & mask16gb) ||
1425             (vend - vstart <= mask16gb)) {
1426                 pte_val ^= kern_linear_pte_xor[2];
1427                 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1428
1429                 return vstart + PUD_SIZE;
1430         }
1431
1432         pte_val ^= kern_linear_pte_xor[3];
1433         pte_val |= _PAGE_PUD_HUGE;
1434
1435         vend = vstart + mask16gb + 1UL;
1436         while (vstart < vend) {
1437                 pud_val(*pud) = pte_val;
1438
1439                 pte_val += PUD_SIZE;
1440                 vstart += PUD_SIZE;
1441                 pud++;
1442         }
1443         return vstart;
1444 }
1445
1446 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1447                                    bool guard)
1448 {
1449         if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1450                 return true;
1451
1452         return false;
1453 }
1454
1455 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1456                                               unsigned long vend,
1457                                               pmd_t *pmd)
1458 {
1459         const unsigned long mask256mb = (1UL << 28) - 1UL;
1460         const unsigned long mask2gb = (1UL << 31) - 1UL;
1461         u64 pte_val = vstart;
1462
1463         /* Each PMD is 8MB */
1464         if ((vstart & mask256mb) ||
1465             (vend - vstart <= mask256mb)) {
1466                 pte_val ^= kern_linear_pte_xor[0];
1467                 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1468
1469                 return vstart + PMD_SIZE;
1470         }
1471
1472         if ((vstart & mask2gb) ||
1473             (vend - vstart <= mask2gb)) {
1474                 pte_val ^= kern_linear_pte_xor[1];
1475                 pte_val |= _PAGE_PMD_HUGE;
1476                 vend = vstart + mask256mb + 1UL;
1477         } else {
1478                 pte_val ^= kern_linear_pte_xor[2];
1479                 pte_val |= _PAGE_PMD_HUGE;
1480                 vend = vstart + mask2gb + 1UL;
1481         }
1482
1483         while (vstart < vend) {
1484                 pmd_val(*pmd) = pte_val;
1485
1486                 pte_val += PMD_SIZE;
1487                 vstart += PMD_SIZE;
1488                 pmd++;
1489         }
1490
1491         return vstart;
1492 }
1493
1494 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1495                                    bool guard)
1496 {
1497         if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1498                 return true;
1499
1500         return false;
1501 }
1502
1503 static unsigned long __ref kernel_map_range(unsigned long pstart,
1504                                             unsigned long pend, pgprot_t prot,
1505                                             bool use_huge)
1506 {
1507         unsigned long vstart = PAGE_OFFSET + pstart;
1508         unsigned long vend = PAGE_OFFSET + pend;
1509         unsigned long alloc_bytes = 0UL;
1510
1511         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1512                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1513                             vstart, vend);
1514                 prom_halt();
1515         }
1516
1517         while (vstart < vend) {
1518                 unsigned long this_end, paddr = __pa(vstart);
1519                 pgd_t *pgd = pgd_offset_k(vstart);
1520                 pud_t *pud;
1521                 pmd_t *pmd;
1522                 pte_t *pte;
1523
1524                 if (pgd_none(*pgd)) {
1525                         pud_t *new;
1526
1527                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1528                         alloc_bytes += PAGE_SIZE;
1529                         pgd_populate(&init_mm, pgd, new);
1530                 }
1531                 pud = pud_offset(pgd, vstart);
1532                 if (pud_none(*pud)) {
1533                         pmd_t *new;
1534
1535                         if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1536                                 vstart = kernel_map_hugepud(vstart, vend, pud);
1537                                 continue;
1538                         }
1539                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1540                         alloc_bytes += PAGE_SIZE;
1541                         pud_populate(&init_mm, pud, new);
1542                 }
1543
1544                 pmd = pmd_offset(pud, vstart);
1545                 if (pmd_none(*pmd)) {
1546                         pte_t *new;
1547
1548                         if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1549                                 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1550                                 continue;
1551                         }
1552                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1553                         alloc_bytes += PAGE_SIZE;
1554                         pmd_populate_kernel(&init_mm, pmd, new);
1555                 }
1556
1557                 pte = pte_offset_kernel(pmd, vstart);
1558                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1559                 if (this_end > vend)
1560                         this_end = vend;
1561
1562                 while (vstart < this_end) {
1563                         pte_val(*pte) = (paddr | pgprot_val(prot));
1564
1565                         vstart += PAGE_SIZE;
1566                         paddr += PAGE_SIZE;
1567                         pte++;
1568                 }
1569         }
1570
1571         return alloc_bytes;
1572 }
1573
1574 static void __init flush_all_kernel_tsbs(void)
1575 {
1576         int i;
1577
1578         for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1579                 struct tsb *ent = &swapper_tsb[i];
1580
1581                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1582         }
1583 #ifndef CONFIG_DEBUG_PAGEALLOC
1584         for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1585                 struct tsb *ent = &swapper_4m_tsb[i];
1586
1587                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1588         }
1589 #endif
1590 }
1591
1592 extern unsigned int kvmap_linear_patch[1];
1593
1594 static void __init kernel_physical_mapping_init(void)
1595 {
1596         unsigned long i, mem_alloced = 0UL;
1597         bool use_huge = true;
1598
1599 #ifdef CONFIG_DEBUG_PAGEALLOC
1600         use_huge = false;
1601 #endif
1602         for (i = 0; i < pall_ents; i++) {
1603                 unsigned long phys_start, phys_end;
1604
1605                 phys_start = pall[i].phys_addr;
1606                 phys_end = phys_start + pall[i].reg_size;
1607
1608                 mem_alloced += kernel_map_range(phys_start, phys_end,
1609                                                 PAGE_KERNEL, use_huge);
1610         }
1611
1612         printk("Allocated %ld bytes for kernel page tables.\n",
1613                mem_alloced);
1614
1615         kvmap_linear_patch[0] = 0x01000000; /* nop */
1616         flushi(&kvmap_linear_patch[0]);
1617
1618         flush_all_kernel_tsbs();
1619
1620         __flush_tlb_all();
1621 }
1622
1623 #ifdef CONFIG_DEBUG_PAGEALLOC
1624 void __kernel_map_pages(struct page *page, int numpages, int enable)
1625 {
1626         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1627         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1628
1629         kernel_map_range(phys_start, phys_end,
1630                          (enable ? PAGE_KERNEL : __pgprot(0)), false);
1631
1632         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1633                                PAGE_OFFSET + phys_end);
1634
1635         /* we should perform an IPI and flush all tlbs,
1636          * but that can deadlock->flush only current cpu.
1637          */
1638         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1639                                  PAGE_OFFSET + phys_end);
1640 }
1641 #endif
1642
1643 unsigned long __init find_ecache_flush_span(unsigned long size)
1644 {
1645         int i;
1646
1647         for (i = 0; i < pavail_ents; i++) {
1648                 if (pavail[i].reg_size >= size)
1649                         return pavail[i].phys_addr;
1650         }
1651
1652         return ~0UL;
1653 }
1654
1655 unsigned long PAGE_OFFSET;
1656 EXPORT_SYMBOL(PAGE_OFFSET);
1657
1658 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1659 EXPORT_SYMBOL(VMALLOC_END);
1660
1661 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1662 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1663
1664 static void __init setup_page_offset(void)
1665 {
1666         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1667                 /* Cheetah/Panther support a full 64-bit virtual
1668                  * address, so we can use all that our page tables
1669                  * support.
1670                  */
1671                 sparc64_va_hole_top =    0xfff0000000000000UL;
1672                 sparc64_va_hole_bottom = 0x0010000000000000UL;
1673
1674                 max_phys_bits = 42;
1675         } else if (tlb_type == hypervisor) {
1676                 switch (sun4v_chip_type) {
1677                 case SUN4V_CHIP_NIAGARA1:
1678                 case SUN4V_CHIP_NIAGARA2:
1679                         /* T1 and T2 support 48-bit virtual addresses.  */
1680                         sparc64_va_hole_top =    0xffff800000000000UL;
1681                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1682
1683                         max_phys_bits = 39;
1684                         break;
1685                 case SUN4V_CHIP_NIAGARA3:
1686                         /* T3 supports 48-bit virtual addresses.  */
1687                         sparc64_va_hole_top =    0xffff800000000000UL;
1688                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1689
1690                         max_phys_bits = 43;
1691                         break;
1692                 case SUN4V_CHIP_NIAGARA4:
1693                 case SUN4V_CHIP_NIAGARA5:
1694                 case SUN4V_CHIP_SPARC64X:
1695                 case SUN4V_CHIP_SPARC_M6:
1696                         /* T4 and later support 52-bit virtual addresses.  */
1697                         sparc64_va_hole_top =    0xfff8000000000000UL;
1698                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1699                         max_phys_bits = 47;
1700                         break;
1701                 case SUN4V_CHIP_SPARC_M7:
1702                 default:
1703                         /* M7 and later support 52-bit virtual addresses.  */
1704                         sparc64_va_hole_top =    0xfff8000000000000UL;
1705                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1706                         max_phys_bits = 49;
1707                         break;
1708                 }
1709         }
1710
1711         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1712                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1713                             max_phys_bits);
1714                 prom_halt();
1715         }
1716
1717         PAGE_OFFSET = sparc64_va_hole_top;
1718         VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1719                        (sparc64_va_hole_bottom >> 2));
1720
1721         pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1722                 PAGE_OFFSET, max_phys_bits);
1723         pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1724                 VMALLOC_START, VMALLOC_END);
1725         pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1726                 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1727 }
1728
1729 static void __init tsb_phys_patch(void)
1730 {
1731         struct tsb_ldquad_phys_patch_entry *pquad;
1732         struct tsb_phys_patch_entry *p;
1733
1734         pquad = &__tsb_ldquad_phys_patch;
1735         while (pquad < &__tsb_ldquad_phys_patch_end) {
1736                 unsigned long addr = pquad->addr;
1737
1738                 if (tlb_type == hypervisor)
1739                         *(unsigned int *) addr = pquad->sun4v_insn;
1740                 else
1741                         *(unsigned int *) addr = pquad->sun4u_insn;
1742                 wmb();
1743                 __asm__ __volatile__("flush     %0"
1744                                      : /* no outputs */
1745                                      : "r" (addr));
1746
1747                 pquad++;
1748         }
1749
1750         p = &__tsb_phys_patch;
1751         while (p < &__tsb_phys_patch_end) {
1752                 unsigned long addr = p->addr;
1753
1754                 *(unsigned int *) addr = p->insn;
1755                 wmb();
1756                 __asm__ __volatile__("flush     %0"
1757                                      : /* no outputs */
1758                                      : "r" (addr));
1759
1760                 p++;
1761         }
1762 }
1763
1764 /* Don't mark as init, we give this to the Hypervisor.  */
1765 #ifndef CONFIG_DEBUG_PAGEALLOC
1766 #define NUM_KTSB_DESCR  2
1767 #else
1768 #define NUM_KTSB_DESCR  1
1769 #endif
1770 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1771
1772 /* The swapper TSBs are loaded with a base sequence of:
1773  *
1774  *      sethi   %uhi(SYMBOL), REG1
1775  *      sethi   %hi(SYMBOL), REG2
1776  *      or      REG1, %ulo(SYMBOL), REG1
1777  *      or      REG2, %lo(SYMBOL), REG2
1778  *      sllx    REG1, 32, REG1
1779  *      or      REG1, REG2, REG1
1780  *
1781  * When we use physical addressing for the TSB accesses, we patch the
1782  * first four instructions in the above sequence.
1783  */
1784
1785 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1786 {
1787         unsigned long high_bits, low_bits;
1788
1789         high_bits = (pa >> 32) & 0xffffffff;
1790         low_bits = (pa >> 0) & 0xffffffff;
1791
1792         while (start < end) {
1793                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1794
1795                 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1796                 __asm__ __volatile__("flush     %0" : : "r" (ia));
1797
1798                 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1799                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1800
1801                 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1802                 __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
1803
1804                 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1805                 __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
1806
1807                 start++;
1808         }
1809 }
1810
1811 static void ktsb_phys_patch(void)
1812 {
1813         extern unsigned int __swapper_tsb_phys_patch;
1814         extern unsigned int __swapper_tsb_phys_patch_end;
1815         unsigned long ktsb_pa;
1816
1817         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1818         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1819                             &__swapper_tsb_phys_patch_end, ktsb_pa);
1820 #ifndef CONFIG_DEBUG_PAGEALLOC
1821         {
1822         extern unsigned int __swapper_4m_tsb_phys_patch;
1823         extern unsigned int __swapper_4m_tsb_phys_patch_end;
1824         ktsb_pa = (kern_base +
1825                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1826         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1827                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1828         }
1829 #endif
1830 }
1831
1832 static void __init sun4v_ktsb_init(void)
1833 {
1834         unsigned long ktsb_pa;
1835
1836         /* First KTSB for PAGE_SIZE mappings.  */
1837         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1838
1839         switch (PAGE_SIZE) {
1840         case 8 * 1024:
1841         default:
1842                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1843                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1844                 break;
1845
1846         case 64 * 1024:
1847                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1848                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1849                 break;
1850
1851         case 512 * 1024:
1852                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1853                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1854                 break;
1855
1856         case 4 * 1024 * 1024:
1857                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1858                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1859                 break;
1860         }
1861
1862         ktsb_descr[0].assoc = 1;
1863         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1864         ktsb_descr[0].ctx_idx = 0;
1865         ktsb_descr[0].tsb_base = ktsb_pa;
1866         ktsb_descr[0].resv = 0;
1867
1868 #ifndef CONFIG_DEBUG_PAGEALLOC
1869         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1870         ktsb_pa = (kern_base +
1871                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1872
1873         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1874         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1875                                     HV_PGSZ_MASK_256MB |
1876                                     HV_PGSZ_MASK_2GB |
1877                                     HV_PGSZ_MASK_16GB) &
1878                                    cpu_pgsz_mask);
1879         ktsb_descr[1].assoc = 1;
1880         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1881         ktsb_descr[1].ctx_idx = 0;
1882         ktsb_descr[1].tsb_base = ktsb_pa;
1883         ktsb_descr[1].resv = 0;
1884 #endif
1885 }
1886
1887 void sun4v_ktsb_register(void)
1888 {
1889         unsigned long pa, ret;
1890
1891         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1892
1893         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1894         if (ret != 0) {
1895                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1896                             "errors with %lx\n", pa, ret);
1897                 prom_halt();
1898         }
1899 }
1900
1901 static void __init sun4u_linear_pte_xor_finalize(void)
1902 {
1903 #ifndef CONFIG_DEBUG_PAGEALLOC
1904         /* This is where we would add Panther support for
1905          * 32MB and 256MB pages.
1906          */
1907 #endif
1908 }
1909
1910 static void __init sun4v_linear_pte_xor_finalize(void)
1911 {
1912 #ifndef CONFIG_DEBUG_PAGEALLOC
1913         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1914                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1915                         PAGE_OFFSET;
1916                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1917                                            _PAGE_P_4V | _PAGE_W_4V);
1918         } else {
1919                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1920         }
1921
1922         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1923                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1924                         PAGE_OFFSET;
1925                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1926                                            _PAGE_P_4V | _PAGE_W_4V);
1927         } else {
1928                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1929         }
1930
1931         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1932                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1933                         PAGE_OFFSET;
1934                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1935                                            _PAGE_P_4V | _PAGE_W_4V);
1936         } else {
1937                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1938         }
1939 #endif
1940 }
1941
1942 /* paging_init() sets up the page tables */
1943
1944 static unsigned long last_valid_pfn;
1945
1946 static void sun4u_pgprot_init(void);
1947 static void sun4v_pgprot_init(void);
1948
1949 static phys_addr_t __init available_memory(void)
1950 {
1951         phys_addr_t available = 0ULL;
1952         phys_addr_t pa_start, pa_end;
1953         u64 i;
1954
1955         for_each_free_mem_range(i, NUMA_NO_NODE, &pa_start, &pa_end, NULL)
1956                 available = available + (pa_end  - pa_start);
1957
1958         return available;
1959 }
1960
1961 /* We need to exclude reserved regions. This exclusion will include
1962  * vmlinux and initrd. To be more precise the initrd size could be used to
1963  * compute a new lower limit because it is freed later during initialization.
1964  */
1965 static void __init reduce_memory(phys_addr_t limit_ram)
1966 {
1967         phys_addr_t avail_ram = available_memory();
1968         phys_addr_t pa_start, pa_end;
1969         u64 i;
1970
1971         if (limit_ram >= avail_ram)
1972                 return;
1973
1974         for_each_free_mem_range(i, NUMA_NO_NODE, &pa_start, &pa_end, NULL) {
1975                 phys_addr_t region_size = pa_end - pa_start;
1976                 phys_addr_t clip_start = pa_start;
1977
1978                 avail_ram = avail_ram - region_size;
1979                 /* Are we consuming too much? */
1980                 if (avail_ram < limit_ram) {
1981                         phys_addr_t give_back = limit_ram - avail_ram;
1982
1983                         region_size = region_size - give_back;
1984                         clip_start = clip_start + give_back;
1985                 }
1986
1987                 memblock_remove(clip_start, region_size);
1988
1989                 if (avail_ram <= limit_ram)
1990                         break;
1991                 i = 0UL;
1992         }
1993 }
1994
1995 void __init paging_init(void)
1996 {
1997         unsigned long end_pfn, shift, phys_base;
1998         unsigned long real_end, i;
1999         int node;
2000
2001         setup_page_offset();
2002
2003         /* These build time checkes make sure that the dcache_dirty_cpu()
2004          * page->flags usage will work.
2005          *
2006          * When a page gets marked as dcache-dirty, we store the
2007          * cpu number starting at bit 32 in the page->flags.  Also,
2008          * functions like clear_dcache_dirty_cpu use the cpu mask
2009          * in 13-bit signed-immediate instruction fields.
2010          */
2011
2012         /*
2013          * Page flags must not reach into upper 32 bits that are used
2014          * for the cpu number
2015          */
2016         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2017
2018         /*
2019          * The bit fields placed in the high range must not reach below
2020          * the 32 bit boundary. Otherwise we cannot place the cpu field
2021          * at the 32 bit boundary.
2022          */
2023         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2024                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2025
2026         BUILD_BUG_ON(NR_CPUS > 4096);
2027
2028         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2029         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2030
2031         /* Invalidate both kernel TSBs.  */
2032         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2033 #ifndef CONFIG_DEBUG_PAGEALLOC
2034         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2035 #endif
2036
2037         if (tlb_type == hypervisor)
2038                 sun4v_pgprot_init();
2039         else
2040                 sun4u_pgprot_init();
2041
2042         if (tlb_type == cheetah_plus ||
2043             tlb_type == hypervisor) {
2044                 tsb_phys_patch();
2045                 ktsb_phys_patch();
2046         }
2047
2048         if (tlb_type == hypervisor)
2049                 sun4v_patch_tlb_handlers();
2050
2051         /* Find available physical memory...
2052          *
2053          * Read it twice in order to work around a bug in openfirmware.
2054          * The call to grab this table itself can cause openfirmware to
2055          * allocate memory, which in turn can take away some space from
2056          * the list of available memory.  Reading it twice makes sure
2057          * we really do get the final value.
2058          */
2059         read_obp_translations();
2060         read_obp_memory("reg", &pall[0], &pall_ents);
2061         read_obp_memory("available", &pavail[0], &pavail_ents);
2062         read_obp_memory("available", &pavail[0], &pavail_ents);
2063
2064         phys_base = 0xffffffffffffffffUL;
2065         for (i = 0; i < pavail_ents; i++) {
2066                 phys_base = min(phys_base, pavail[i].phys_addr);
2067                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2068         }
2069
2070         memblock_reserve(kern_base, kern_size);
2071
2072         find_ramdisk(phys_base);
2073
2074         if (cmdline_memory_size)
2075                 reduce_memory(cmdline_memory_size);
2076
2077         memblock_allow_resize();
2078         memblock_dump_all();
2079
2080         set_bit(0, mmu_context_bmap);
2081
2082         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2083
2084         real_end = (unsigned long)_end;
2085         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2086         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2087                num_kernel_image_mappings);
2088
2089         /* Set kernel pgd to upper alias so physical page computations
2090          * work.
2091          */
2092         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2093         
2094         memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2095
2096         inherit_prom_mappings();
2097         
2098         /* Ok, we can use our TLB miss and window trap handlers safely.  */
2099         setup_tba();
2100
2101         __flush_tlb_all();
2102
2103         prom_build_devicetree();
2104         of_populate_present_mask();
2105 #ifndef CONFIG_SMP
2106         of_fill_in_cpu_data();
2107 #endif
2108
2109         if (tlb_type == hypervisor) {
2110                 sun4v_mdesc_init();
2111                 mdesc_populate_present_mask(cpu_all_mask);
2112 #ifndef CONFIG_SMP
2113                 mdesc_fill_in_cpu_data(cpu_all_mask);
2114 #endif
2115                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2116
2117                 sun4v_linear_pte_xor_finalize();
2118
2119                 sun4v_ktsb_init();
2120                 sun4v_ktsb_register();
2121         } else {
2122                 unsigned long impl, ver;
2123
2124                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2125                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2126
2127                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2128                 impl = ((ver >> 32) & 0xffff);
2129                 if (impl == PANTHER_IMPL)
2130                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2131                                           HV_PGSZ_MASK_256MB);
2132
2133                 sun4u_linear_pte_xor_finalize();
2134         }
2135
2136         /* Flush the TLBs and the 4M TSB so that the updated linear
2137          * pte XOR settings are realized for all mappings.
2138          */
2139         __flush_tlb_all();
2140 #ifndef CONFIG_DEBUG_PAGEALLOC
2141         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2142 #endif
2143         __flush_tlb_all();
2144
2145         /* Setup bootmem... */
2146         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2147
2148         /* Once the OF device tree and MDESC have been setup, we know
2149          * the list of possible cpus.  Therefore we can allocate the
2150          * IRQ stacks.
2151          */
2152         for_each_possible_cpu(i) {
2153                 node = cpu_to_node(i);
2154
2155                 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2156                                                         THREAD_SIZE,
2157                                                         THREAD_SIZE, 0);
2158                 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2159                                                         THREAD_SIZE,
2160                                                         THREAD_SIZE, 0);
2161         }
2162
2163         kernel_physical_mapping_init();
2164
2165         {
2166                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2167
2168                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2169
2170                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2171
2172                 free_area_init_nodes(max_zone_pfns);
2173         }
2174
2175         printk("Booting Linux...\n");
2176 }
2177
2178 int page_in_phys_avail(unsigned long paddr)
2179 {
2180         int i;
2181
2182         paddr &= PAGE_MASK;
2183
2184         for (i = 0; i < pavail_ents; i++) {
2185                 unsigned long start, end;
2186
2187                 start = pavail[i].phys_addr;
2188                 end = start + pavail[i].reg_size;
2189
2190                 if (paddr >= start && paddr < end)
2191                         return 1;
2192         }
2193         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2194                 return 1;
2195 #ifdef CONFIG_BLK_DEV_INITRD
2196         if (paddr >= __pa(initrd_start) &&
2197             paddr < __pa(PAGE_ALIGN(initrd_end)))
2198                 return 1;
2199 #endif
2200
2201         return 0;
2202 }
2203
2204 static void __init register_page_bootmem_info(void)
2205 {
2206 #ifdef CONFIG_NEED_MULTIPLE_NODES
2207         int i;
2208
2209         for_each_online_node(i)
2210                 if (NODE_DATA(i)->node_spanned_pages)
2211                         register_page_bootmem_info_node(NODE_DATA(i));
2212 #endif
2213 }
2214 void __init mem_init(void)
2215 {
2216         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2217
2218         register_page_bootmem_info();
2219         free_all_bootmem();
2220
2221         /*
2222          * Set up the zero page, mark it reserved, so that page count
2223          * is not manipulated when freeing the page from user ptes.
2224          */
2225         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2226         if (mem_map_zero == NULL) {
2227                 prom_printf("paging_init: Cannot alloc zero page.\n");
2228                 prom_halt();
2229         }
2230         mark_page_reserved(mem_map_zero);
2231
2232         mem_init_print_info(NULL);
2233
2234         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2235                 cheetah_ecache_flush_init();
2236 }
2237
2238 void free_initmem(void)
2239 {
2240         unsigned long addr, initend;
2241         int do_free = 1;
2242
2243         /* If the physical memory maps were trimmed by kernel command
2244          * line options, don't even try freeing this initmem stuff up.
2245          * The kernel image could have been in the trimmed out region
2246          * and if so the freeing below will free invalid page structs.
2247          */
2248         if (cmdline_memory_size)
2249                 do_free = 0;
2250
2251         /*
2252          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2253          */
2254         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2255         initend = (unsigned long)(__init_end) & PAGE_MASK;
2256         for (; addr < initend; addr += PAGE_SIZE) {
2257                 unsigned long page;
2258
2259                 page = (addr +
2260                         ((unsigned long) __va(kern_base)) -
2261                         ((unsigned long) KERNBASE));
2262                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2263
2264                 if (do_free)
2265                         free_reserved_page(virt_to_page(page));
2266         }
2267 }
2268
2269 #ifdef CONFIG_BLK_DEV_INITRD
2270 void free_initrd_mem(unsigned long start, unsigned long end)
2271 {
2272         free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2273                            "initrd");
2274 }
2275 #endif
2276
2277 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2278 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2279 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2280 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2281 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2282 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2283
2284 pgprot_t PAGE_KERNEL __read_mostly;
2285 EXPORT_SYMBOL(PAGE_KERNEL);
2286
2287 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2288 pgprot_t PAGE_COPY __read_mostly;
2289
2290 pgprot_t PAGE_SHARED __read_mostly;
2291 EXPORT_SYMBOL(PAGE_SHARED);
2292
2293 unsigned long pg_iobits __read_mostly;
2294
2295 unsigned long _PAGE_IE __read_mostly;
2296 EXPORT_SYMBOL(_PAGE_IE);
2297
2298 unsigned long _PAGE_E __read_mostly;
2299 EXPORT_SYMBOL(_PAGE_E);
2300
2301 unsigned long _PAGE_CACHE __read_mostly;
2302 EXPORT_SYMBOL(_PAGE_CACHE);
2303
2304 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2305 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2306                                int node)
2307 {
2308         unsigned long pte_base;
2309
2310         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2311                     _PAGE_CP_4U | _PAGE_CV_4U |
2312                     _PAGE_P_4U | _PAGE_W_4U);
2313         if (tlb_type == hypervisor)
2314                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2315                             _PAGE_CP_4V | _PAGE_CV_4V |
2316                             _PAGE_P_4V | _PAGE_W_4V);
2317
2318         pte_base |= _PAGE_PMD_HUGE;
2319
2320         vstart = vstart & PMD_MASK;
2321         vend = ALIGN(vend, PMD_SIZE);
2322         for (; vstart < vend; vstart += PMD_SIZE) {
2323                 pgd_t *pgd = pgd_offset_k(vstart);
2324                 unsigned long pte;
2325                 pud_t *pud;
2326                 pmd_t *pmd;
2327
2328                 if (pgd_none(*pgd)) {
2329                         pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2330
2331                         if (!new)
2332                                 return -ENOMEM;
2333                         pgd_populate(&init_mm, pgd, new);
2334                 }
2335
2336                 pud = pud_offset(pgd, vstart);
2337                 if (pud_none(*pud)) {
2338                         pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2339
2340                         if (!new)
2341                                 return -ENOMEM;
2342                         pud_populate(&init_mm, pud, new);
2343                 }
2344
2345                 pmd = pmd_offset(pud, vstart);
2346
2347                 pte = pmd_val(*pmd);
2348                 if (!(pte & _PAGE_VALID)) {
2349                         void *block = vmemmap_alloc_block(PMD_SIZE, node);
2350
2351                         if (!block)
2352                                 return -ENOMEM;
2353
2354                         pmd_val(*pmd) = pte_base | __pa(block);
2355                 }
2356         }
2357
2358         return 0;
2359 }
2360
2361 void vmemmap_free(unsigned long start, unsigned long end)
2362 {
2363 }
2364 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2365
2366 static void prot_init_common(unsigned long page_none,
2367                              unsigned long page_shared,
2368                              unsigned long page_copy,
2369                              unsigned long page_readonly,
2370                              unsigned long page_exec_bit)
2371 {
2372         PAGE_COPY = __pgprot(page_copy);
2373         PAGE_SHARED = __pgprot(page_shared);
2374
2375         protection_map[0x0] = __pgprot(page_none);
2376         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2377         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2378         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2379         protection_map[0x4] = __pgprot(page_readonly);
2380         protection_map[0x5] = __pgprot(page_readonly);
2381         protection_map[0x6] = __pgprot(page_copy);
2382         protection_map[0x7] = __pgprot(page_copy);
2383         protection_map[0x8] = __pgprot(page_none);
2384         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2385         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2386         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2387         protection_map[0xc] = __pgprot(page_readonly);
2388         protection_map[0xd] = __pgprot(page_readonly);
2389         protection_map[0xe] = __pgprot(page_shared);
2390         protection_map[0xf] = __pgprot(page_shared);
2391 }
2392
2393 static void __init sun4u_pgprot_init(void)
2394 {
2395         unsigned long page_none, page_shared, page_copy, page_readonly;
2396         unsigned long page_exec_bit;
2397         int i;
2398
2399         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2400                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2401                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2402                                 _PAGE_EXEC_4U);
2403         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2404                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2405                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2406                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2407
2408         _PAGE_IE = _PAGE_IE_4U;
2409         _PAGE_E = _PAGE_E_4U;
2410         _PAGE_CACHE = _PAGE_CACHE_4U;
2411
2412         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2413                      __ACCESS_BITS_4U | _PAGE_E_4U);
2414
2415 #ifdef CONFIG_DEBUG_PAGEALLOC
2416         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2417 #else
2418         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2419                 PAGE_OFFSET;
2420 #endif
2421         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2422                                    _PAGE_P_4U | _PAGE_W_4U);
2423
2424         for (i = 1; i < 4; i++)
2425                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2426
2427         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2428                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2429                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2430
2431
2432         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2433         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2434                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2435         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2436                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2437         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2438                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2439
2440         page_exec_bit = _PAGE_EXEC_4U;
2441
2442         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2443                          page_exec_bit);
2444 }
2445
2446 static void __init sun4v_pgprot_init(void)
2447 {
2448         unsigned long page_none, page_shared, page_copy, page_readonly;
2449         unsigned long page_exec_bit;
2450         int i;
2451
2452         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2453                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2454                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2455                                 _PAGE_EXEC_4V);
2456         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2457
2458         _PAGE_IE = _PAGE_IE_4V;
2459         _PAGE_E = _PAGE_E_4V;
2460         _PAGE_CACHE = _PAGE_CACHE_4V;
2461
2462 #ifdef CONFIG_DEBUG_PAGEALLOC
2463         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2464 #else
2465         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2466                 PAGE_OFFSET;
2467 #endif
2468         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2469                                    _PAGE_P_4V | _PAGE_W_4V);
2470
2471         for (i = 1; i < 4; i++)
2472                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2473
2474         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2475                      __ACCESS_BITS_4V | _PAGE_E_4V);
2476
2477         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2478                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2479                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2480                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2481
2482         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2483         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2484                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2485         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2486                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2487         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2488                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2489
2490         page_exec_bit = _PAGE_EXEC_4V;
2491
2492         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2493                          page_exec_bit);
2494 }
2495
2496 unsigned long pte_sz_bits(unsigned long sz)
2497 {
2498         if (tlb_type == hypervisor) {
2499                 switch (sz) {
2500                 case 8 * 1024:
2501                 default:
2502                         return _PAGE_SZ8K_4V;
2503                 case 64 * 1024:
2504                         return _PAGE_SZ64K_4V;
2505                 case 512 * 1024:
2506                         return _PAGE_SZ512K_4V;
2507                 case 4 * 1024 * 1024:
2508                         return _PAGE_SZ4MB_4V;
2509                 }
2510         } else {
2511                 switch (sz) {
2512                 case 8 * 1024:
2513                 default:
2514                         return _PAGE_SZ8K_4U;
2515                 case 64 * 1024:
2516                         return _PAGE_SZ64K_4U;
2517                 case 512 * 1024:
2518                         return _PAGE_SZ512K_4U;
2519                 case 4 * 1024 * 1024:
2520                         return _PAGE_SZ4MB_4U;
2521                 }
2522         }
2523 }
2524
2525 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2526 {
2527         pte_t pte;
2528
2529         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2530         pte_val(pte) |= (((unsigned long)space) << 32);
2531         pte_val(pte) |= pte_sz_bits(page_size);
2532
2533         return pte;
2534 }
2535
2536 static unsigned long kern_large_tte(unsigned long paddr)
2537 {
2538         unsigned long val;
2539
2540         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2541                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2542                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2543         if (tlb_type == hypervisor)
2544                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2545                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2546                        _PAGE_EXEC_4V | _PAGE_W_4V);
2547
2548         return val | paddr;
2549 }
2550
2551 /* If not locked, zap it. */
2552 void __flush_tlb_all(void)
2553 {
2554         unsigned long pstate;
2555         int i;
2556
2557         __asm__ __volatile__("flushw\n\t"
2558                              "rdpr      %%pstate, %0\n\t"
2559                              "wrpr      %0, %1, %%pstate"
2560                              : "=r" (pstate)
2561                              : "i" (PSTATE_IE));
2562         if (tlb_type == hypervisor) {
2563                 sun4v_mmu_demap_all();
2564         } else if (tlb_type == spitfire) {
2565                 for (i = 0; i < 64; i++) {
2566                         /* Spitfire Errata #32 workaround */
2567                         /* NOTE: Always runs on spitfire, so no
2568                          *       cheetah+ page size encodings.
2569                          */
2570                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2571                                              "flush     %%g6"
2572                                              : /* No outputs */
2573                                              : "r" (0),
2574                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2575
2576                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2577                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2578                                                      "membar #Sync"
2579                                                      : /* no outputs */
2580                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2581                                 spitfire_put_dtlb_data(i, 0x0UL);
2582                         }
2583
2584                         /* Spitfire Errata #32 workaround */
2585                         /* NOTE: Always runs on spitfire, so no
2586                          *       cheetah+ page size encodings.
2587                          */
2588                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2589                                              "flush     %%g6"
2590                                              : /* No outputs */
2591                                              : "r" (0),
2592                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2593
2594                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2595                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2596                                                      "membar #Sync"
2597                                                      : /* no outputs */
2598                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2599                                 spitfire_put_itlb_data(i, 0x0UL);
2600                         }
2601                 }
2602         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2603                 cheetah_flush_dtlb_all();
2604                 cheetah_flush_itlb_all();
2605         }
2606         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2607                              : : "r" (pstate));
2608 }
2609
2610 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2611                             unsigned long address)
2612 {
2613         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2614                                        __GFP_REPEAT | __GFP_ZERO);
2615         pte_t *pte = NULL;
2616
2617         if (page)
2618                 pte = (pte_t *) page_address(page);
2619
2620         return pte;
2621 }
2622
2623 pgtable_t pte_alloc_one(struct mm_struct *mm,
2624                         unsigned long address)
2625 {
2626         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2627                                        __GFP_REPEAT | __GFP_ZERO);
2628         if (!page)
2629                 return NULL;
2630         if (!pgtable_page_ctor(page)) {
2631                 free_hot_cold_page(page, 0);
2632                 return NULL;
2633         }
2634         return (pte_t *) page_address(page);
2635 }
2636
2637 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2638 {
2639         free_page((unsigned long)pte);
2640 }
2641
2642 static void __pte_free(pgtable_t pte)
2643 {
2644         struct page *page = virt_to_page(pte);
2645
2646         pgtable_page_dtor(page);
2647         __free_page(page);
2648 }
2649
2650 void pte_free(struct mm_struct *mm, pgtable_t pte)
2651 {
2652         __pte_free(pte);
2653 }
2654
2655 void pgtable_free(void *table, bool is_page)
2656 {
2657         if (is_page)
2658                 __pte_free(table);
2659         else
2660                 kmem_cache_free(pgtable_cache, table);
2661 }
2662
2663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2664 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2665                           pmd_t *pmd)
2666 {
2667         unsigned long pte, flags;
2668         struct mm_struct *mm;
2669         pmd_t entry = *pmd;
2670
2671         if (!pmd_large(entry) || !pmd_young(entry))
2672                 return;
2673
2674         pte = pmd_val(entry);
2675
2676         /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2677         if (!(pte & _PAGE_VALID))
2678                 return;
2679
2680         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2681         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2682
2683         mm = vma->vm_mm;
2684
2685         spin_lock_irqsave(&mm->context.lock, flags);
2686
2687         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2688                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2689                                         addr, pte);
2690
2691         spin_unlock_irqrestore(&mm->context.lock, flags);
2692 }
2693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2694
2695 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2696 static void context_reload(void *__data)
2697 {
2698         struct mm_struct *mm = __data;
2699
2700         if (mm == current->mm)
2701                 load_secondary_context(mm);
2702 }
2703
2704 void hugetlb_setup(struct pt_regs *regs)
2705 {
2706         struct mm_struct *mm = current->mm;
2707         struct tsb_config *tp;
2708
2709         if (in_atomic() || !mm) {
2710                 const struct exception_table_entry *entry;
2711
2712                 entry = search_exception_tables(regs->tpc);
2713                 if (entry) {
2714                         regs->tpc = entry->fixup;
2715                         regs->tnpc = regs->tpc + 4;
2716                         return;
2717                 }
2718                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2719                 die_if_kernel("HugeTSB in atomic", regs);
2720         }
2721
2722         tp = &mm->context.tsb_block[MM_TSB_HUGE];
2723         if (likely(tp->tsb == NULL))
2724                 tsb_grow(mm, MM_TSB_HUGE, 0);
2725
2726         tsb_context_switch(mm);
2727         smp_tsb_sync(mm);
2728
2729         /* On UltraSPARC-III+ and later, configure the second half of
2730          * the Data-TLB for huge pages.
2731          */
2732         if (tlb_type == cheetah_plus) {
2733                 unsigned long ctx;
2734
2735                 spin_lock(&ctx_alloc_lock);
2736                 ctx = mm->context.sparc64_ctx_val;
2737                 ctx &= ~CTX_PGSZ_MASK;
2738                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2739                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2740
2741                 if (ctx != mm->context.sparc64_ctx_val) {
2742                         /* When changing the page size fields, we
2743                          * must perform a context flush so that no
2744                          * stale entries match.  This flush must
2745                          * occur with the original context register
2746                          * settings.
2747                          */
2748                         do_flush_tlb_mm(mm);
2749
2750                         /* Reload the context register of all processors
2751                          * also executing in this address space.
2752                          */
2753                         mm->context.sparc64_ctx_val = ctx;
2754                         on_each_cpu(context_reload, mm, 0);
2755                 }
2756                 spin_unlock(&ctx_alloc_lock);
2757         }
2758 }
2759 #endif
2760
2761 static struct resource code_resource = {
2762         .name   = "Kernel code",
2763         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
2764 };
2765
2766 static struct resource data_resource = {
2767         .name   = "Kernel data",
2768         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
2769 };
2770
2771 static struct resource bss_resource = {
2772         .name   = "Kernel bss",
2773         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
2774 };
2775
2776 static inline resource_size_t compute_kern_paddr(void *addr)
2777 {
2778         return (resource_size_t) (addr - KERNBASE + kern_base);
2779 }
2780
2781 static void __init kernel_lds_init(void)
2782 {
2783         code_resource.start = compute_kern_paddr(_text);
2784         code_resource.end   = compute_kern_paddr(_etext - 1);
2785         data_resource.start = compute_kern_paddr(_etext);
2786         data_resource.end   = compute_kern_paddr(_edata - 1);
2787         bss_resource.start  = compute_kern_paddr(__bss_start);
2788         bss_resource.end    = compute_kern_paddr(_end - 1);
2789 }
2790
2791 static int __init report_memory(void)
2792 {
2793         int i;
2794         struct resource *res;
2795
2796         kernel_lds_init();
2797
2798         for (i = 0; i < pavail_ents; i++) {
2799                 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2800
2801                 if (!res) {
2802                         pr_warn("Failed to allocate source.\n");
2803                         break;
2804                 }
2805
2806                 res->name = "System RAM";
2807                 res->start = pavail[i].phys_addr;
2808                 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2809                 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
2810
2811                 if (insert_resource(&iomem_resource, res) < 0) {
2812                         pr_warn("Resource insertion failed.\n");
2813                         break;
2814                 }
2815
2816                 insert_resource(res, &code_resource);
2817                 insert_resource(res, &data_resource);
2818                 insert_resource(res, &bss_resource);
2819         }
2820
2821         return 0;
2822 }
2823 device_initcall(report_memory);
2824
2825 #ifdef CONFIG_SMP
2826 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
2827 #else
2828 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
2829 #endif
2830
2831 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2832 {
2833         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2834                 if (start < LOW_OBP_ADDRESS) {
2835                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2836                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2837                 }
2838                 if (end > HI_OBP_ADDRESS) {
2839                         flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2840                         do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2841                 }
2842         } else {
2843                 flush_tsb_kernel_range(start, end);
2844                 do_flush_tlb_kernel_range(start, end);
2845         }
2846 }