Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / tile / include / asm / pgtable.h
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * This file contains the functions and defines necessary to modify and use
15  * the TILE page table tree.
16  */
17
18 #ifndef _ASM_TILE_PGTABLE_H
19 #define _ASM_TILE_PGTABLE_H
20
21 #include <hv/hypervisor.h>
22
23 #ifndef __ASSEMBLY__
24
25 #include <linux/bitops.h>
26 #include <linux/threads.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/spinlock.h>
30 #include <linux/pfn.h>
31 #include <asm/processor.h>
32 #include <asm/fixmap.h>
33 #include <asm/page.h>
34
35 struct mm_struct;
36 struct vm_area_struct;
37
38 /*
39  * ZERO_PAGE is a global shared page that is always zero: used
40  * for zero-mapped memory areas etc..
41  */
42 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
43 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
44
45 extern pgd_t swapper_pg_dir[];
46 extern pgprot_t swapper_pgprot;
47 extern struct kmem_cache *pgd_cache;
48 extern spinlock_t pgd_lock;
49 extern struct list_head pgd_list;
50
51 /*
52  * The very last slots in the pgd_t are for addresses unusable by Linux
53  * (pgd_addr_invalid() returns true).  So we use them for the list structure.
54  * The x86 code we are modelled on uses the page->private/index fields
55  * (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since
56  * our pgds are so much smaller than a page, it seems a waste to
57  * spend a whole page on each pgd.
58  */
59 #define PGD_LIST_OFFSET \
60   ((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head))
61 #define pgd_to_list(pgd) \
62   ((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET))
63 #define list_to_pgd(list) \
64   ((pgd_t *)((char *)(list) - PGD_LIST_OFFSET))
65
66 extern void pgtable_cache_init(void);
67 extern void paging_init(void);
68 extern void set_page_homes(void);
69
70 #define FIRST_USER_ADDRESS      0
71
72 #define _PAGE_PRESENT           HV_PTE_PRESENT
73 #define _PAGE_HUGE_PAGE         HV_PTE_PAGE
74 #define _PAGE_SUPER_PAGE        HV_PTE_SUPER
75 #define _PAGE_READABLE          HV_PTE_READABLE
76 #define _PAGE_WRITABLE          HV_PTE_WRITABLE
77 #define _PAGE_EXECUTABLE        HV_PTE_EXECUTABLE
78 #define _PAGE_ACCESSED          HV_PTE_ACCESSED
79 #define _PAGE_DIRTY             HV_PTE_DIRTY
80 #define _PAGE_GLOBAL            HV_PTE_GLOBAL
81 #define _PAGE_USER              HV_PTE_USER
82
83 /*
84  * All the "standard" bits.  Cache-control bits are managed elsewhere.
85  * This is used to test for valid level-2 page table pointers by checking
86  * all the bits, and to mask away the cache control bits for mprotect.
87  */
88 #define _PAGE_ALL (\
89   _PAGE_PRESENT | \
90   _PAGE_HUGE_PAGE | \
91   _PAGE_SUPER_PAGE | \
92   _PAGE_READABLE | \
93   _PAGE_WRITABLE | \
94   _PAGE_EXECUTABLE | \
95   _PAGE_ACCESSED | \
96   _PAGE_DIRTY | \
97   _PAGE_GLOBAL | \
98   _PAGE_USER \
99 )
100
101 #define PAGE_NONE \
102         __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
103 #define PAGE_SHARED \
104         __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
105                  _PAGE_USER | _PAGE_ACCESSED)
106
107 #define PAGE_SHARED_EXEC \
108         __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
109                  _PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED)
110 #define PAGE_COPY_NOEXEC \
111         __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
112 #define PAGE_COPY_EXEC \
113         __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
114                  _PAGE_READABLE | _PAGE_EXECUTABLE)
115 #define PAGE_COPY \
116         PAGE_COPY_NOEXEC
117 #define PAGE_READONLY \
118         __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
119 #define PAGE_READONLY_EXEC \
120         __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
121                  _PAGE_READABLE | _PAGE_EXECUTABLE)
122
123 #define _PAGE_KERNEL_RO \
124  (_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED)
125 #define _PAGE_KERNEL \
126  (_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY)
127 #define _PAGE_KERNEL_EXEC       (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE)
128
129 #define PAGE_KERNEL             __pgprot(_PAGE_KERNEL)
130 #define PAGE_KERNEL_RO          __pgprot(_PAGE_KERNEL_RO)
131 #define PAGE_KERNEL_EXEC        __pgprot(_PAGE_KERNEL_EXEC)
132
133 #define page_to_kpgprot(p) PAGE_KERNEL
134
135 /*
136  * We could tighten these up, but for now writable or executable
137  * implies readable.
138  */
139 #define __P000  PAGE_NONE
140 #define __P001  PAGE_READONLY
141 #define __P010  PAGE_COPY      /* this is write-only, which we won't support */
142 #define __P011  PAGE_COPY
143 #define __P100  PAGE_READONLY_EXEC
144 #define __P101  PAGE_READONLY_EXEC
145 #define __P110  PAGE_COPY_EXEC
146 #define __P111  PAGE_COPY_EXEC
147
148 #define __S000  PAGE_NONE
149 #define __S001  PAGE_READONLY
150 #define __S010  PAGE_SHARED
151 #define __S011  PAGE_SHARED
152 #define __S100  PAGE_READONLY_EXEC
153 #define __S101  PAGE_READONLY_EXEC
154 #define __S110  PAGE_SHARED_EXEC
155 #define __S111  PAGE_SHARED_EXEC
156
157 /*
158  * All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT
159  * and PAGE_HUGE_PAGE, which must be one and zero, respectively.
160  * We set the ignored bits to zero.
161  */
162 #define _PAGE_TABLE     _PAGE_PRESENT
163
164 /* Inherit the caching flags from the old protection bits. */
165 #define pgprot_modify(oldprot, newprot) \
166   (pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val }
167
168 /* Just setting the PFN to zero suffices. */
169 #define pte_pgprot(x) hv_pte_set_pa((x), 0)
170
171 /*
172  * For PTEs and PDEs, we must clear the Present bit first when
173  * clearing a page table entry, so clear the bottom half first and
174  * enforce ordering with a barrier.
175  */
176 static inline void __pte_clear(pte_t *ptep)
177 {
178 #ifdef __tilegx__
179         ptep->val = 0;
180 #else
181         u32 *tmp = (u32 *)ptep;
182         tmp[0] = 0;
183         barrier();
184         tmp[1] = 0;
185 #endif
186 }
187 #define pte_clear(mm, addr, ptep) __pte_clear(ptep)
188
189 /*
190  * The following only work if pte_present() is true.
191  * Undefined behaviour if not..
192  */
193 #define pte_present hv_pte_get_present
194 #define pte_mknotpresent hv_pte_clear_present
195 #define pte_user hv_pte_get_user
196 #define pte_read hv_pte_get_readable
197 #define pte_dirty hv_pte_get_dirty
198 #define pte_young hv_pte_get_accessed
199 #define pte_write hv_pte_get_writable
200 #define pte_exec hv_pte_get_executable
201 #define pte_huge hv_pte_get_page
202 #define pte_super hv_pte_get_super
203 #define pte_rdprotect hv_pte_clear_readable
204 #define pte_exprotect hv_pte_clear_executable
205 #define pte_mkclean hv_pte_clear_dirty
206 #define pte_mkold hv_pte_clear_accessed
207 #define pte_wrprotect hv_pte_clear_writable
208 #define pte_mksmall hv_pte_clear_page
209 #define pte_mkread hv_pte_set_readable
210 #define pte_mkexec hv_pte_set_executable
211 #define pte_mkdirty hv_pte_set_dirty
212 #define pte_mkyoung hv_pte_set_accessed
213 #define pte_mkwrite hv_pte_set_writable
214 #define pte_mkhuge hv_pte_set_page
215 #define pte_mksuper hv_pte_set_super
216
217 #define pte_special(pte) 0
218 #define pte_mkspecial(pte) (pte)
219
220 /*
221  * Use some spare bits in the PTE for user-caching tags.
222  */
223 #define pte_set_forcecache hv_pte_set_client0
224 #define pte_get_forcecache hv_pte_get_client0
225 #define pte_clear_forcecache hv_pte_clear_client0
226 #define pte_set_anyhome hv_pte_set_client1
227 #define pte_get_anyhome hv_pte_get_client1
228 #define pte_clear_anyhome hv_pte_clear_client1
229
230 /*
231  * A migrating PTE has PAGE_PRESENT clear but all the other bits preserved.
232  */
233 #define pte_migrating hv_pte_get_migrating
234 #define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x))
235 #define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x))
236
237 #define pte_ERROR(e) \
238         pr_err("%s:%d: bad pte 0x%016llx\n", __FILE__, __LINE__, pte_val(e))
239 #define pgd_ERROR(e) \
240         pr_err("%s:%d: bad pgd 0x%016llx\n", __FILE__, __LINE__, pgd_val(e))
241
242 /* Return PA and protection info for a given kernel VA. */
243 int va_to_cpa_and_pte(void *va, phys_addr_t *cpa, pte_t *pte);
244
245 /*
246  * __set_pte() ensures we write the 64-bit PTE with 32-bit words in
247  * the right order on 32-bit platforms and also allows us to write
248  * hooks to check valid PTEs, etc., if we want.
249  */
250 void __set_pte(pte_t *ptep, pte_t pte);
251
252 /*
253  * set_pte() sets the given PTE and also sanity-checks the
254  * requested PTE against the page homecaching.  Unspecified parts
255  * of the PTE are filled in when it is written to memory, i.e. all
256  * caching attributes if "!forcecache", or the home cpu if "anyhome".
257  */
258 extern void set_pte(pte_t *ptep, pte_t pte);
259 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
260 #define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval)
261
262 #define pte_page(x)             pfn_to_page(pte_pfn(x))
263
264 static inline int pte_none(pte_t pte)
265 {
266         return !pte.val;
267 }
268
269 static inline unsigned long pte_pfn(pte_t pte)
270 {
271         return PFN_DOWN(hv_pte_get_pa(pte));
272 }
273
274 /* Set or get the remote cache cpu in a pgprot with remote caching. */
275 extern pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu);
276 extern int get_remote_cache_cpu(pgprot_t prot);
277
278 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
279 {
280         return hv_pte_set_pa(prot, PFN_PHYS(pfn));
281 }
282
283 /* Support for priority mappings. */
284 extern void start_mm_caching(struct mm_struct *mm);
285 extern void check_mm_caching(struct mm_struct *prev, struct mm_struct *next);
286
287 /*
288  * Support non-linear file mappings (see sys_remap_file_pages).
289  * This is defined by CLIENT1 set but CLIENT0 and _PAGE_PRESENT clear, and the
290  * file offset in the 32 high bits.
291  */
292 #define _PAGE_FILE        HV_PTE_CLIENT1
293 #define PTE_FILE_MAX_BITS 32
294 #define pte_file(pte)     (hv_pte_get_client1(pte) && !hv_pte_get_client0(pte))
295 #define pte_to_pgoff(pte) ((pte).val >> 32)
296 #define pgoff_to_pte(off) ((pte_t) { (((long long)(off)) << 32) | _PAGE_FILE })
297
298 /*
299  * Encode and de-code a swap entry (see <linux/swapops.h>).
300  * We put the swap file type+offset in the 32 high bits;
301  * I believe we can just leave the low bits clear.
302  */
303 #define __swp_type(swp)         ((swp).val & 0x1f)
304 #define __swp_offset(swp)       ((swp).val >> 5)
305 #define __swp_entry(type, off)  ((swp_entry_t) { (type) | ((off) << 5) })
306 #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).val >> 32 })
307 #define __swp_entry_to_pte(swp) ((pte_t) { (((long long) ((swp).val)) << 32) })
308
309 /*
310  * Conversion functions: convert a page and protection to a page entry,
311  * and a page entry and page directory to the page they refer to.
312  */
313
314 #define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
315
316 /*
317  * If we are doing an mprotect(), just accept the new vma->vm_page_prot
318  * value and combine it with the PFN from the old PTE to get a new PTE.
319  */
320 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
321 {
322         return pfn_pte(pte_pfn(pte), newprot);
323 }
324
325 /*
326  * The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
327  *
328  * This macro returns the index of the entry in the pgd page which would
329  * control the given virtual address.
330  */
331 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
332
333 /*
334  * pgd_offset() returns a (pgd_t *)
335  * pgd_index() is used get the offset into the pgd page's array of pgd_t's.
336  */
337 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
338
339 /*
340  * A shortcut which implies the use of the kernel's pgd, instead
341  * of a process's.
342  */
343 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
344
345 #define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
346 #define pte_unmap(pte) do { } while (0)
347
348 /* Clear a non-executable kernel PTE and flush it from the TLB. */
349 #define kpte_clear_flush(ptep, vaddr)           \
350 do {                                            \
351         pte_clear(&init_mm, (vaddr), (ptep));   \
352         local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \
353 } while (0)
354
355 /*
356  * The kernel page tables contain what we need, and we flush when we
357  * change specific page table entries.
358  */
359 #define update_mmu_cache(vma, address, pte) do { } while (0)
360
361 #ifdef CONFIG_FLATMEM
362 #define kern_addr_valid(addr)   (1)
363 #endif /* CONFIG_FLATMEM */
364
365 extern void vmalloc_sync_all(void);
366
367 #endif /* !__ASSEMBLY__ */
368
369 #ifdef __tilegx__
370 #include <asm/pgtable_64.h>
371 #else
372 #include <asm/pgtable_32.h>
373 #endif
374
375 #ifndef __ASSEMBLY__
376
377 static inline int pmd_none(pmd_t pmd)
378 {
379         /*
380          * Only check low word on 32-bit platforms, since it might be
381          * out of sync with upper half.
382          */
383         return (unsigned long)pmd_val(pmd) == 0;
384 }
385
386 static inline int pmd_present(pmd_t pmd)
387 {
388         return pmd_val(pmd) & _PAGE_PRESENT;
389 }
390
391 static inline int pmd_bad(pmd_t pmd)
392 {
393         return ((pmd_val(pmd) & _PAGE_ALL) != _PAGE_TABLE);
394 }
395
396 static inline unsigned long pages_to_mb(unsigned long npg)
397 {
398         return npg >> (20 - PAGE_SHIFT);
399 }
400
401 /*
402  * The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD]
403  *
404  * This function returns the index of the entry in the pmd which would
405  * control the given virtual address.
406  */
407 static inline unsigned long pmd_index(unsigned long address)
408 {
409         return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
410 }
411
412 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
413 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
414                                             unsigned long address,
415                                             pmd_t *pmdp)
416 {
417         return ptep_test_and_clear_young(vma, address, pmdp_ptep(pmdp));
418 }
419
420 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
421 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
422                                       unsigned long address, pmd_t *pmdp)
423 {
424         ptep_set_wrprotect(mm, address, pmdp_ptep(pmdp));
425 }
426
427
428 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
429 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
430                                        unsigned long address,
431                                        pmd_t *pmdp)
432 {
433         return pte_pmd(ptep_get_and_clear(mm, address, pmdp_ptep(pmdp)));
434 }
435
436 static inline void __set_pmd(pmd_t *pmdp, pmd_t pmdval)
437 {
438         set_pte(pmdp_ptep(pmdp), pmd_pte(pmdval));
439 }
440
441 #define set_pmd_at(mm, addr, pmdp, pmdval) __set_pmd(pmdp, pmdval)
442
443 /* Create a pmd from a PTFN. */
444 static inline pmd_t ptfn_pmd(unsigned long ptfn, pgprot_t prot)
445 {
446         return pte_pmd(hv_pte_set_ptfn(prot, ptfn));
447 }
448
449 /* Return the page-table frame number (ptfn) that a pmd_t points at. */
450 #define pmd_ptfn(pmd) hv_pte_get_ptfn(pmd_pte(pmd))
451
452 /*
453  * A given kernel pmd_t maps to a specific virtual address (either a
454  * kernel huge page or a kernel pte_t table).  Since kernel pte_t
455  * tables can be aligned at sub-page granularity, this function can
456  * return non-page-aligned pointers, despite its name.
457  */
458 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
459 {
460         phys_addr_t pa =
461                 (phys_addr_t)pmd_ptfn(pmd) << HV_LOG2_PAGE_TABLE_ALIGN;
462         return (unsigned long)__va(pa);
463 }
464
465 /*
466  * A pmd_t points to the base of a huge page or to a pte_t array.
467  * If a pte_t array, since we can have multiple per page, we don't
468  * have a one-to-one mapping of pmd_t's to pages.  However, this is
469  * OK for pte_lockptr(), since we just end up with potentially one
470  * lock being used for several pte_t arrays.
471  */
472 #define pmd_page(pmd) pfn_to_page(PFN_DOWN(HV_PTFN_TO_CPA(pmd_ptfn(pmd))))
473
474 static inline void pmd_clear(pmd_t *pmdp)
475 {
476         __pte_clear(pmdp_ptep(pmdp));
477 }
478
479 #define pmd_mknotpresent(pmd)   pte_pmd(pte_mknotpresent(pmd_pte(pmd)))
480 #define pmd_young(pmd)          pte_young(pmd_pte(pmd))
481 #define pmd_mkyoung(pmd)        pte_pmd(pte_mkyoung(pmd_pte(pmd)))
482 #define pmd_mkold(pmd)          pte_pmd(pte_mkold(pmd_pte(pmd)))
483 #define pmd_mkwrite(pmd)        pte_pmd(pte_mkwrite(pmd_pte(pmd)))
484 #define pmd_write(pmd)          pte_write(pmd_pte(pmd))
485 #define pmd_wrprotect(pmd)      pte_pmd(pte_wrprotect(pmd_pte(pmd)))
486 #define pmd_mkdirty(pmd)        pte_pmd(pte_mkdirty(pmd_pte(pmd)))
487 #define pmd_huge_page(pmd)      pte_huge(pmd_pte(pmd))
488 #define pmd_mkhuge(pmd)         pte_pmd(pte_mkhuge(pmd_pte(pmd)))
489 #define __HAVE_ARCH_PMD_WRITE
490
491 #define pfn_pmd(pfn, pgprot)    pte_pmd(pfn_pte((pfn), (pgprot)))
492 #define pmd_pfn(pmd)            pte_pfn(pmd_pte(pmd))
493 #define mk_pmd(page, pgprot)    pfn_pmd(page_to_pfn(page), (pgprot))
494
495 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
496 {
497         return pfn_pmd(pmd_pfn(pmd), newprot);
498 }
499
500 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
501 #define has_transparent_hugepage() 1
502 #define pmd_trans_huge pmd_huge_page
503
504 static inline pmd_t pmd_mksplitting(pmd_t pmd)
505 {
506         return pte_pmd(hv_pte_set_client2(pmd_pte(pmd)));
507 }
508
509 static inline int pmd_trans_splitting(pmd_t pmd)
510 {
511         return hv_pte_get_client2(pmd_pte(pmd));
512 }
513 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
514
515 /*
516  * The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
517  *
518  * This macro returns the index of the entry in the pte page which would
519  * control the given virtual address.
520  */
521 static inline unsigned long pte_index(unsigned long address)
522 {
523         return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
524 }
525
526 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
527 {
528        return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
529 }
530
531 #include <asm-generic/pgtable.h>
532
533 /* Support /proc/NN/pgtable API. */
534 struct seq_file;
535 int arch_proc_pgtable_show(struct seq_file *m, struct mm_struct *mm,
536                            unsigned long vaddr, unsigned long pagesize,
537                            pte_t *ptep, void **datap);
538
539 #endif /* !__ASSEMBLY__ */
540
541 #endif /* _ASM_TILE_PGTABLE_H */