Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / arch / tile / kernel / single_step.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * A code-rewriter that enables instruction single-stepping.
15  */
16
17 #include <linux/smp.h>
18 #include <linux/ptrace.h>
19 #include <linux/slab.h>
20 #include <linux/thread_info.h>
21 #include <linux/uaccess.h>
22 #include <linux/mman.h>
23 #include <linux/types.h>
24 #include <linux/err.h>
25 #include <linux/prctl.h>
26 #include <asm/cacheflush.h>
27 #include <asm/traps.h>
28 #include <asm/uaccess.h>
29 #include <asm/unaligned.h>
30 #include <arch/abi.h>
31 #include <arch/spr_def.h>
32 #include <arch/opcode.h>
33
34
35 #ifndef __tilegx__   /* Hardware support for single step unavailable. */
36
37 #define signExtend17(val) sign_extend((val), 17)
38 #define TILE_X1_MASK (0xffffffffULL << 31)
39
40 enum mem_op {
41         MEMOP_NONE,
42         MEMOP_LOAD,
43         MEMOP_STORE,
44         MEMOP_LOAD_POSTINCR,
45         MEMOP_STORE_POSTINCR
46 };
47
48 static inline tilepro_bundle_bits set_BrOff_X1(tilepro_bundle_bits n,
49         s32 offset)
50 {
51         tilepro_bundle_bits result;
52
53         /* mask out the old offset */
54         tilepro_bundle_bits mask = create_BrOff_X1(-1);
55         result = n & (~mask);
56
57         /* or in the new offset */
58         result |= create_BrOff_X1(offset);
59
60         return result;
61 }
62
63 static inline tilepro_bundle_bits move_X1(tilepro_bundle_bits n, int dest,
64         int src)
65 {
66         tilepro_bundle_bits result;
67         tilepro_bundle_bits op;
68
69         result = n & (~TILE_X1_MASK);
70
71         op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
72                 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
73                 create_Dest_X1(dest) |
74                 create_SrcB_X1(TREG_ZERO) |
75                 create_SrcA_X1(src) ;
76
77         result |= op;
78         return result;
79 }
80
81 static inline tilepro_bundle_bits nop_X1(tilepro_bundle_bits n)
82 {
83         return move_X1(n, TREG_ZERO, TREG_ZERO);
84 }
85
86 static inline tilepro_bundle_bits addi_X1(
87         tilepro_bundle_bits n, int dest, int src, int imm)
88 {
89         n &= ~TILE_X1_MASK;
90
91         n |=  (create_SrcA_X1(src) |
92                create_Dest_X1(dest) |
93                create_Imm8_X1(imm) |
94                create_S_X1(0) |
95                create_Opcode_X1(IMM_0_OPCODE_X1) |
96                create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
97
98         return n;
99 }
100
101 static tilepro_bundle_bits rewrite_load_store_unaligned(
102         struct single_step_state *state,
103         tilepro_bundle_bits bundle,
104         struct pt_regs *regs,
105         enum mem_op mem_op,
106         int size, int sign_ext)
107 {
108         unsigned char __user *addr;
109         int val_reg, addr_reg, err, val;
110         int align_ctl;
111
112         align_ctl = unaligned_fixup;
113         switch (task_thread_info(current)->align_ctl) {
114         case PR_UNALIGN_NOPRINT:
115                 align_ctl = 1;
116                 break;
117         case PR_UNALIGN_SIGBUS:
118                 align_ctl = 0;
119                 break;
120         }
121
122         /* Get address and value registers */
123         if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
124                 addr_reg = get_SrcA_Y2(bundle);
125                 val_reg = get_SrcBDest_Y2(bundle);
126         } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
127                 addr_reg = get_SrcA_X1(bundle);
128                 val_reg  = get_Dest_X1(bundle);
129         } else {
130                 addr_reg = get_SrcA_X1(bundle);
131                 val_reg  = get_SrcB_X1(bundle);
132         }
133
134         /*
135          * If registers are not GPRs, don't try to handle it.
136          *
137          * FIXME: we could handle non-GPR loads by getting the real value
138          * from memory, writing it to the single step buffer, using a
139          * temp_reg to hold a pointer to that memory, then executing that
140          * instruction and resetting temp_reg.  For non-GPR stores, it's a
141          * little trickier; we could use the single step buffer for that
142          * too, but we'd have to add some more state bits so that we could
143          * call back in here to copy that value to the real target.  For
144          * now, we just handle the simple case.
145          */
146         if ((val_reg >= PTREGS_NR_GPRS &&
147              (val_reg != TREG_ZERO ||
148               mem_op == MEMOP_LOAD ||
149               mem_op == MEMOP_LOAD_POSTINCR)) ||
150             addr_reg >= PTREGS_NR_GPRS)
151                 return bundle;
152
153         /* If it's aligned, don't handle it specially */
154         addr = (void __user *)regs->regs[addr_reg];
155         if (((unsigned long)addr % size) == 0)
156                 return bundle;
157
158         /*
159          * Return SIGBUS with the unaligned address, if requested.
160          * Note that we return SIGBUS even for completely invalid addresses
161          * as long as they are in fact unaligned; this matches what the
162          * tilepro hardware would be doing, if it could provide us with the
163          * actual bad address in an SPR, which it doesn't.
164          */
165         if (align_ctl == 0) {
166                 siginfo_t info = {
167                         .si_signo = SIGBUS,
168                         .si_code = BUS_ADRALN,
169                         .si_addr = addr
170                 };
171                 trace_unhandled_signal("unaligned trap", regs,
172                                        (unsigned long)addr, SIGBUS);
173                 force_sig_info(info.si_signo, &info, current);
174                 return (tilepro_bundle_bits) 0;
175         }
176
177         /* Handle unaligned load/store */
178         if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
179                 unsigned short val_16;
180                 switch (size) {
181                 case 2:
182                         err = copy_from_user(&val_16, addr, sizeof(val_16));
183                         val = sign_ext ? ((short)val_16) : val_16;
184                         break;
185                 case 4:
186                         err = copy_from_user(&val, addr, sizeof(val));
187                         break;
188                 default:
189                         BUG();
190                 }
191                 if (err == 0) {
192                         state->update_reg = val_reg;
193                         state->update_value = val;
194                         state->update = 1;
195                 }
196         } else {
197                 unsigned short val_16;
198                 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
199                 switch (size) {
200                 case 2:
201                         val_16 = val;
202                         err = copy_to_user(addr, &val_16, sizeof(val_16));
203                         break;
204                 case 4:
205                         err = copy_to_user(addr, &val, sizeof(val));
206                         break;
207                 default:
208                         BUG();
209                 }
210         }
211
212         if (err) {
213                 siginfo_t info = {
214                         .si_signo = SIGBUS,
215                         .si_code = BUS_ADRALN,
216                         .si_addr = addr
217                 };
218                 trace_unhandled_signal("bad address for unaligned fixup", regs,
219                                        (unsigned long)addr, SIGBUS);
220                 force_sig_info(info.si_signo, &info, current);
221                 return (tilepro_bundle_bits) 0;
222         }
223
224         if (unaligned_printk || unaligned_fixup_count == 0) {
225                 pr_info("Process %d/%s: PC %#lx: Fixup of unaligned %s at %#lx\n",
226                         current->pid, current->comm, regs->pc,
227                         mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR ?
228                         "load" : "store",
229                         (unsigned long)addr);
230                 if (!unaligned_printk) {
231 #define P pr_info
232 P("\n");
233 P("Unaligned fixups in the kernel will slow your application considerably.\n");
234 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
235 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
236 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
237 P("access will become a SIGBUS you can debug. No further warnings will be\n");
238 P("shown so as to avoid additional slowdown, but you can track the number\n");
239 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
240 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
241 P("\n");
242 #undef P
243                 }
244         }
245         ++unaligned_fixup_count;
246
247         if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
248                 /* Convert the Y2 instruction to a prefetch. */
249                 bundle &= ~(create_SrcBDest_Y2(-1) |
250                             create_Opcode_Y2(-1));
251                 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
252                            create_Opcode_Y2(LW_OPCODE_Y2));
253         /* Replace the load postincr with an addi */
254         } else if (mem_op == MEMOP_LOAD_POSTINCR) {
255                 bundle = addi_X1(bundle, addr_reg, addr_reg,
256                                  get_Imm8_X1(bundle));
257         /* Replace the store postincr with an addi */
258         } else if (mem_op == MEMOP_STORE_POSTINCR) {
259                 bundle = addi_X1(bundle, addr_reg, addr_reg,
260                                  get_Dest_Imm8_X1(bundle));
261         } else {
262                 /* Convert the X1 instruction to a nop. */
263                 bundle &= ~(create_Opcode_X1(-1) |
264                             create_UnShOpcodeExtension_X1(-1) |
265                             create_UnOpcodeExtension_X1(-1));
266                 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
267                            create_UnShOpcodeExtension_X1(
268                                    UN_0_SHUN_0_OPCODE_X1) |
269                            create_UnOpcodeExtension_X1(
270                                    NOP_UN_0_SHUN_0_OPCODE_X1));
271         }
272
273         return bundle;
274 }
275
276 /*
277  * Called after execve() has started the new image.  This allows us
278  * to reset the info state.  Note that the the mmap'ed memory, if there
279  * was any, has already been unmapped by the exec.
280  */
281 void single_step_execve(void)
282 {
283         struct thread_info *ti = current_thread_info();
284         kfree(ti->step_state);
285         ti->step_state = NULL;
286 }
287
288 /*
289  * single_step_once() - entry point when single stepping has been triggered.
290  * @regs: The machine register state
291  *
292  *  When we arrive at this routine via a trampoline, the single step
293  *  engine copies the executing bundle to the single step buffer.
294  *  If the instruction is a condition branch, then the target is
295  *  reset to one past the next instruction. If the instruction
296  *  sets the lr, then that is noted. If the instruction is a jump
297  *  or call, then the new target pc is preserved and the current
298  *  bundle instruction set to null.
299  *
300  *  The necessary post-single-step rewriting information is stored in
301  *  single_step_state->  We use data segment values because the
302  *  stack will be rewound when we run the rewritten single-stepped
303  *  instruction.
304  */
305 void single_step_once(struct pt_regs *regs)
306 {
307         extern tilepro_bundle_bits __single_step_ill_insn;
308         extern tilepro_bundle_bits __single_step_j_insn;
309         extern tilepro_bundle_bits __single_step_addli_insn;
310         extern tilepro_bundle_bits __single_step_auli_insn;
311         struct thread_info *info = (void *)current_thread_info();
312         struct single_step_state *state = info->step_state;
313         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
314         tilepro_bundle_bits __user *buffer, *pc;
315         tilepro_bundle_bits bundle;
316         int temp_reg;
317         int target_reg = TREG_LR;
318         int err;
319         enum mem_op mem_op = MEMOP_NONE;
320         int size = 0, sign_ext = 0;  /* happy compiler */
321         int align_ctl;
322
323         align_ctl = unaligned_fixup;
324         switch (task_thread_info(current)->align_ctl) {
325         case PR_UNALIGN_NOPRINT:
326                 align_ctl = 1;
327                 break;
328         case PR_UNALIGN_SIGBUS:
329                 align_ctl = 0;
330                 break;
331         }
332
333         asm(
334 "    .pushsection .rodata.single_step\n"
335 "    .align 8\n"
336 "    .globl    __single_step_ill_insn\n"
337 "__single_step_ill_insn:\n"
338 "    ill\n"
339 "    .globl    __single_step_addli_insn\n"
340 "__single_step_addli_insn:\n"
341 "    { nop; addli r0, zero, 0 }\n"
342 "    .globl    __single_step_auli_insn\n"
343 "__single_step_auli_insn:\n"
344 "    { nop; auli r0, r0, 0 }\n"
345 "    .globl    __single_step_j_insn\n"
346 "__single_step_j_insn:\n"
347 "    j .\n"
348 "    .popsection\n"
349         );
350
351         /*
352          * Enable interrupts here to allow touching userspace and the like.
353          * The callers expect this: do_trap() already has interrupts
354          * enabled, and do_work_pending() handles functions that enable
355          * interrupts internally.
356          */
357         local_irq_enable();
358
359         if (state == NULL) {
360                 /* allocate a page of writable, executable memory */
361                 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
362                 if (state == NULL) {
363                         pr_err("Out of kernel memory trying to single-step\n");
364                         return;
365                 }
366
367                 /* allocate a cache line of writable, executable memory */
368                 buffer = (void __user *) vm_mmap(NULL, 0, 64,
369                                           PROT_EXEC | PROT_READ | PROT_WRITE,
370                                           MAP_PRIVATE | MAP_ANONYMOUS,
371                                           0);
372
373                 if (IS_ERR((void __force *)buffer)) {
374                         kfree(state);
375                         pr_err("Out of kernel pages trying to single-step\n");
376                         return;
377                 }
378
379                 state->buffer = buffer;
380                 state->is_enabled = 0;
381
382                 info->step_state = state;
383
384                 /* Validate our stored instruction patterns */
385                 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
386                        ADDLI_OPCODE_X1);
387                 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
388                        AULI_OPCODE_X1);
389                 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
390                 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
391                 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
392         }
393
394         /*
395          * If we are returning from a syscall, we still haven't hit the
396          * "ill" for the swint1 instruction.  So back the PC up to be
397          * pointing at the swint1, but we'll actually return directly
398          * back to the "ill" so we come back in via SIGILL as if we
399          * had "executed" the swint1 without ever being in kernel space.
400          */
401         if (regs->faultnum == INT_SWINT_1)
402                 regs->pc -= 8;
403
404         pc = (tilepro_bundle_bits __user *)(regs->pc);
405         if (get_user(bundle, pc) != 0) {
406                 pr_err("Couldn't read instruction at %p trying to step\n", pc);
407                 return;
408         }
409
410         /* We'll follow the instruction with 2 ill op bundles */
411         state->orig_pc = (unsigned long)pc;
412         state->next_pc = (unsigned long)(pc + 1);
413         state->branch_next_pc = 0;
414         state->update = 0;
415
416         if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
417                 /* two wide, check for control flow */
418                 int opcode = get_Opcode_X1(bundle);
419
420                 switch (opcode) {
421                 /* branches */
422                 case BRANCH_OPCODE_X1:
423                 {
424                         s32 offset = signExtend17(get_BrOff_X1(bundle));
425
426                         /*
427                          * For branches, we use a rewriting trick to let the
428                          * hardware evaluate whether the branch is taken or
429                          * untaken.  We record the target offset and then
430                          * rewrite the branch instruction to target 1 insn
431                          * ahead if the branch is taken.  We then follow the
432                          * rewritten branch with two bundles, each containing
433                          * an "ill" instruction. The supervisor examines the
434                          * pc after the single step code is executed, and if
435                          * the pc is the first ill instruction, then the
436                          * branch (if any) was not taken.  If the pc is the
437                          * second ill instruction, then the branch was
438                          * taken. The new pc is computed for these cases, and
439                          * inserted into the registers for the thread.  If
440                          * the pc is the start of the single step code, then
441                          * an exception or interrupt was taken before the
442                          * code started processing, and the same "original"
443                          * pc is restored.  This change, different from the
444                          * original implementation, has the advantage of
445                          * executing a single user instruction.
446                          */
447                         state->branch_next_pc = (unsigned long)(pc + offset);
448
449                         /* rewrite branch offset to go forward one bundle */
450                         bundle = set_BrOff_X1(bundle, 2);
451                 }
452                 break;
453
454                 /* jumps */
455                 case JALB_OPCODE_X1:
456                 case JALF_OPCODE_X1:
457                         state->update = 1;
458                         state->next_pc =
459                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
460                         break;
461
462                 case JB_OPCODE_X1:
463                 case JF_OPCODE_X1:
464                         state->next_pc =
465                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
466                         bundle = nop_X1(bundle);
467                         break;
468
469                 case SPECIAL_0_OPCODE_X1:
470                         switch (get_RRROpcodeExtension_X1(bundle)) {
471                         /* jump-register */
472                         case JALRP_SPECIAL_0_OPCODE_X1:
473                         case JALR_SPECIAL_0_OPCODE_X1:
474                                 state->update = 1;
475                                 state->next_pc =
476                                         regs->regs[get_SrcA_X1(bundle)];
477                                 break;
478
479                         case JRP_SPECIAL_0_OPCODE_X1:
480                         case JR_SPECIAL_0_OPCODE_X1:
481                                 state->next_pc =
482                                         regs->regs[get_SrcA_X1(bundle)];
483                                 bundle = nop_X1(bundle);
484                                 break;
485
486                         case LNK_SPECIAL_0_OPCODE_X1:
487                                 state->update = 1;
488                                 target_reg = get_Dest_X1(bundle);
489                                 break;
490
491                         /* stores */
492                         case SH_SPECIAL_0_OPCODE_X1:
493                                 mem_op = MEMOP_STORE;
494                                 size = 2;
495                                 break;
496
497                         case SW_SPECIAL_0_OPCODE_X1:
498                                 mem_op = MEMOP_STORE;
499                                 size = 4;
500                                 break;
501                         }
502                         break;
503
504                 /* loads and iret */
505                 case SHUN_0_OPCODE_X1:
506                         if (get_UnShOpcodeExtension_X1(bundle) ==
507                             UN_0_SHUN_0_OPCODE_X1) {
508                                 switch (get_UnOpcodeExtension_X1(bundle)) {
509                                 case LH_UN_0_SHUN_0_OPCODE_X1:
510                                         mem_op = MEMOP_LOAD;
511                                         size = 2;
512                                         sign_ext = 1;
513                                         break;
514
515                                 case LH_U_UN_0_SHUN_0_OPCODE_X1:
516                                         mem_op = MEMOP_LOAD;
517                                         size = 2;
518                                         sign_ext = 0;
519                                         break;
520
521                                 case LW_UN_0_SHUN_0_OPCODE_X1:
522                                         mem_op = MEMOP_LOAD;
523                                         size = 4;
524                                         break;
525
526                                 case IRET_UN_0_SHUN_0_OPCODE_X1:
527                                 {
528                                         unsigned long ex0_0 = __insn_mfspr(
529                                                 SPR_EX_CONTEXT_0_0);
530                                         unsigned long ex0_1 = __insn_mfspr(
531                                                 SPR_EX_CONTEXT_0_1);
532                                         /*
533                                          * Special-case it if we're iret'ing
534                                          * to PL0 again.  Otherwise just let
535                                          * it run and it will generate SIGILL.
536                                          */
537                                         if (EX1_PL(ex0_1) == USER_PL) {
538                                                 state->next_pc = ex0_0;
539                                                 regs->ex1 = ex0_1;
540                                                 bundle = nop_X1(bundle);
541                                         }
542                                 }
543                                 }
544                         }
545                         break;
546
547                 /* postincrement operations */
548                 case IMM_0_OPCODE_X1:
549                         switch (get_ImmOpcodeExtension_X1(bundle)) {
550                         case LWADD_IMM_0_OPCODE_X1:
551                                 mem_op = MEMOP_LOAD_POSTINCR;
552                                 size = 4;
553                                 break;
554
555                         case LHADD_IMM_0_OPCODE_X1:
556                                 mem_op = MEMOP_LOAD_POSTINCR;
557                                 size = 2;
558                                 sign_ext = 1;
559                                 break;
560
561                         case LHADD_U_IMM_0_OPCODE_X1:
562                                 mem_op = MEMOP_LOAD_POSTINCR;
563                                 size = 2;
564                                 sign_ext = 0;
565                                 break;
566
567                         case SWADD_IMM_0_OPCODE_X1:
568                                 mem_op = MEMOP_STORE_POSTINCR;
569                                 size = 4;
570                                 break;
571
572                         case SHADD_IMM_0_OPCODE_X1:
573                                 mem_op = MEMOP_STORE_POSTINCR;
574                                 size = 2;
575                                 break;
576
577                         default:
578                                 break;
579                         }
580                         break;
581                 }
582
583                 if (state->update) {
584                         /*
585                          * Get an available register.  We start with a
586                          * bitmask with 1's for available registers.
587                          * We truncate to the low 32 registers since
588                          * we are guaranteed to have set bits in the
589                          * low 32 bits, then use ctz to pick the first.
590                          */
591                         u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
592                                            (1ULL << get_SrcA_X0(bundle)) |
593                                            (1ULL << get_SrcB_X0(bundle)) |
594                                            (1ULL << target_reg));
595                         temp_reg = __builtin_ctz(mask);
596                         state->update_reg = temp_reg;
597                         state->update_value = regs->regs[temp_reg];
598                         regs->regs[temp_reg] = (unsigned long) (pc+1);
599                         regs->flags |= PT_FLAGS_RESTORE_REGS;
600                         bundle = move_X1(bundle, target_reg, temp_reg);
601                 }
602         } else {
603                 int opcode = get_Opcode_Y2(bundle);
604
605                 switch (opcode) {
606                 /* loads */
607                 case LH_OPCODE_Y2:
608                         mem_op = MEMOP_LOAD;
609                         size = 2;
610                         sign_ext = 1;
611                         break;
612
613                 case LH_U_OPCODE_Y2:
614                         mem_op = MEMOP_LOAD;
615                         size = 2;
616                         sign_ext = 0;
617                         break;
618
619                 case LW_OPCODE_Y2:
620                         mem_op = MEMOP_LOAD;
621                         size = 4;
622                         break;
623
624                 /* stores */
625                 case SH_OPCODE_Y2:
626                         mem_op = MEMOP_STORE;
627                         size = 2;
628                         break;
629
630                 case SW_OPCODE_Y2:
631                         mem_op = MEMOP_STORE;
632                         size = 4;
633                         break;
634                 }
635         }
636
637         /*
638          * Check if we need to rewrite an unaligned load/store.
639          * Returning zero is a special value meaning we generated a signal.
640          */
641         if (mem_op != MEMOP_NONE && align_ctl >= 0) {
642                 bundle = rewrite_load_store_unaligned(state, bundle, regs,
643                                                       mem_op, size, sign_ext);
644                 if (bundle == 0)
645                         return;
646         }
647
648         /* write the bundle to our execution area */
649         buffer = state->buffer;
650         err = __put_user(bundle, buffer++);
651
652         /*
653          * If we're really single-stepping, we take an INT_ILL after.
654          * If we're just handling an unaligned access, we can just
655          * jump directly back to where we were in user code.
656          */
657         if (is_single_step) {
658                 err |= __put_user(__single_step_ill_insn, buffer++);
659                 err |= __put_user(__single_step_ill_insn, buffer++);
660         } else {
661                 long delta;
662
663                 if (state->update) {
664                         /* We have some state to update; do it inline */
665                         int ha16;
666                         bundle = __single_step_addli_insn;
667                         bundle |= create_Dest_X1(state->update_reg);
668                         bundle |= create_Imm16_X1(state->update_value);
669                         err |= __put_user(bundle, buffer++);
670                         bundle = __single_step_auli_insn;
671                         bundle |= create_Dest_X1(state->update_reg);
672                         bundle |= create_SrcA_X1(state->update_reg);
673                         ha16 = (state->update_value + 0x8000) >> 16;
674                         bundle |= create_Imm16_X1(ha16);
675                         err |= __put_user(bundle, buffer++);
676                         state->update = 0;
677                 }
678
679                 /* End with a jump back to the next instruction */
680                 delta = ((regs->pc + TILEPRO_BUNDLE_SIZE_IN_BYTES) -
681                         (unsigned long)buffer) >>
682                         TILEPRO_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
683                 bundle = __single_step_j_insn;
684                 bundle |= create_JOffLong_X1(delta);
685                 err |= __put_user(bundle, buffer++);
686         }
687
688         if (err) {
689                 pr_err("Fault when writing to single-step buffer\n");
690                 return;
691         }
692
693         /*
694          * Flush the buffer.
695          * We do a local flush only, since this is a thread-specific buffer.
696          */
697         __flush_icache_range((unsigned long)state->buffer,
698                              (unsigned long)buffer);
699
700         /* Indicate enabled */
701         state->is_enabled = is_single_step;
702         regs->pc = (unsigned long)state->buffer;
703
704         /* Fault immediately if we are coming back from a syscall. */
705         if (regs->faultnum == INT_SWINT_1)
706                 regs->pc += 8;
707 }
708
709 #else
710
711 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
712
713
714 /*
715  * Called directly on the occasion of an interrupt.
716  *
717  * If the process doesn't have single step set, then we use this as an
718  * opportunity to turn single step off.
719  *
720  * It has been mentioned that we could conditionally turn off single stepping
721  * on each entry into the kernel and rely on single_step_once to turn it
722  * on for the processes that matter (as we already do), but this
723  * implementation is somewhat more efficient in that we muck with registers
724  * once on a bum interrupt rather than on every entry into the kernel.
725  *
726  * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
727  * so we have to run through this process again before we can say that an
728  * instruction has executed.
729  *
730  * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
731  * it changes the PC.  If it hasn't changed, then we know that the interrupt
732  * wasn't generated by swint and we'll need to run this process again before
733  * we can say an instruction has executed.
734  *
735  * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
736  * on with our lives.
737  */
738
739 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
740 {
741         unsigned long *ss_pc = this_cpu_ptr(&ss_saved_pc);
742         struct thread_info *info = (void *)current_thread_info();
743         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
744         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
745
746         if (is_single_step == 0) {
747                 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
748
749         } else if ((*ss_pc != regs->pc) ||
750                    (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
751
752                 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
753                 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
754                 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
755                 send_sigtrap(current, regs);
756         }
757 }
758
759
760 /*
761  * Called from need_singlestep.  Set up the control registers and the enable
762  * register, then return back.
763  */
764
765 void single_step_once(struct pt_regs *regs)
766 {
767         unsigned long *ss_pc = this_cpu_ptr(&ss_saved_pc);
768         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
769
770         *ss_pc = regs->pc;
771         control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
772         control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
773         __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
774         __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
775 }
776
777 void single_step_execve(void)
778 {
779         /* Nothing */
780 }
781
782 #endif /* !__tilegx__ */