x86/cpufeature: Add AVX512_4VNNIW and AVX512_4FMAPS features
[cascardo/linux.git] / arch / x86 / kernel / fpu / xstate.c
1 /*
2  * xsave/xrstor support.
3  *
4  * Author: Suresh Siddha <suresh.b.siddha@intel.com>
5  */
6 #include <linux/compat.h>
7 #include <linux/cpu.h>
8 #include <linux/mman.h>
9 #include <linux/pkeys.h>
10
11 #include <asm/fpu/api.h>
12 #include <asm/fpu/internal.h>
13 #include <asm/fpu/signal.h>
14 #include <asm/fpu/regset.h>
15 #include <asm/fpu/xstate.h>
16
17 #include <asm/tlbflush.h>
18
19 /*
20  * Although we spell it out in here, the Processor Trace
21  * xfeature is completely unused.  We use other mechanisms
22  * to save/restore PT state in Linux.
23  */
24 static const char *xfeature_names[] =
25 {
26         "x87 floating point registers"  ,
27         "SSE registers"                 ,
28         "AVX registers"                 ,
29         "MPX bounds registers"          ,
30         "MPX CSR"                       ,
31         "AVX-512 opmask"                ,
32         "AVX-512 Hi256"                 ,
33         "AVX-512 ZMM_Hi256"             ,
34         "Processor Trace (unused)"      ,
35         "Protection Keys User registers",
36         "unknown xstate feature"        ,
37 };
38
39 /*
40  * Mask of xstate features supported by the CPU and the kernel:
41  */
42 u64 xfeatures_mask __read_mostly;
43
44 static unsigned int xstate_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
45 static unsigned int xstate_sizes[XFEATURE_MAX]   = { [ 0 ... XFEATURE_MAX - 1] = -1};
46 static unsigned int xstate_comp_offsets[sizeof(xfeatures_mask)*8];
47
48 /*
49  * The XSAVE area of kernel can be in standard or compacted format;
50  * it is always in standard format for user mode. This is the user
51  * mode standard format size used for signal and ptrace frames.
52  */
53 unsigned int fpu_user_xstate_size;
54
55 /*
56  * Clear all of the X86_FEATURE_* bits that are unavailable
57  * when the CPU has no XSAVE support.
58  */
59 void fpu__xstate_clear_all_cpu_caps(void)
60 {
61         setup_clear_cpu_cap(X86_FEATURE_XSAVE);
62         setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
63         setup_clear_cpu_cap(X86_FEATURE_XSAVEC);
64         setup_clear_cpu_cap(X86_FEATURE_XSAVES);
65         setup_clear_cpu_cap(X86_FEATURE_AVX);
66         setup_clear_cpu_cap(X86_FEATURE_AVX2);
67         setup_clear_cpu_cap(X86_FEATURE_AVX512F);
68         setup_clear_cpu_cap(X86_FEATURE_AVX512PF);
69         setup_clear_cpu_cap(X86_FEATURE_AVX512ER);
70         setup_clear_cpu_cap(X86_FEATURE_AVX512CD);
71         setup_clear_cpu_cap(X86_FEATURE_AVX512DQ);
72         setup_clear_cpu_cap(X86_FEATURE_AVX512BW);
73         setup_clear_cpu_cap(X86_FEATURE_AVX512VL);
74         setup_clear_cpu_cap(X86_FEATURE_MPX);
75         setup_clear_cpu_cap(X86_FEATURE_XGETBV1);
76         setup_clear_cpu_cap(X86_FEATURE_PKU);
77         setup_clear_cpu_cap(X86_FEATURE_AVX512_4VNNIW);
78         setup_clear_cpu_cap(X86_FEATURE_AVX512_4FMAPS);
79 }
80
81 /*
82  * Return whether the system supports a given xfeature.
83  *
84  * Also return the name of the (most advanced) feature that the caller requested:
85  */
86 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
87 {
88         u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask;
89
90         if (unlikely(feature_name)) {
91                 long xfeature_idx, max_idx;
92                 u64 xfeatures_print;
93                 /*
94                  * So we use FLS here to be able to print the most advanced
95                  * feature that was requested but is missing. So if a driver
96                  * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
97                  * missing AVX feature - this is the most informative message
98                  * to users:
99                  */
100                 if (xfeatures_missing)
101                         xfeatures_print = xfeatures_missing;
102                 else
103                         xfeatures_print = xfeatures_needed;
104
105                 xfeature_idx = fls64(xfeatures_print)-1;
106                 max_idx = ARRAY_SIZE(xfeature_names)-1;
107                 xfeature_idx = min(xfeature_idx, max_idx);
108
109                 *feature_name = xfeature_names[xfeature_idx];
110         }
111
112         if (xfeatures_missing)
113                 return 0;
114
115         return 1;
116 }
117 EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
118
119 static int xfeature_is_supervisor(int xfeature_nr)
120 {
121         /*
122          * We currently do not support supervisor states, but if
123          * we did, we could find out like this.
124          *
125          * SDM says: If state component 'i' is a user state component,
126          * ECX[0] return 0; if state component i is a supervisor
127          * state component, ECX[0] returns 1.
128          */
129         u32 eax, ebx, ecx, edx;
130
131         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
132         return !!(ecx & 1);
133 }
134
135 static int xfeature_is_user(int xfeature_nr)
136 {
137         return !xfeature_is_supervisor(xfeature_nr);
138 }
139
140 /*
141  * When executing XSAVEOPT (or other optimized XSAVE instructions), if
142  * a processor implementation detects that an FPU state component is still
143  * (or is again) in its initialized state, it may clear the corresponding
144  * bit in the header.xfeatures field, and can skip the writeout of registers
145  * to the corresponding memory layout.
146  *
147  * This means that when the bit is zero, the state component might still contain
148  * some previous - non-initialized register state.
149  *
150  * Before writing xstate information to user-space we sanitize those components,
151  * to always ensure that the memory layout of a feature will be in the init state
152  * if the corresponding header bit is zero. This is to ensure that user-space doesn't
153  * see some stale state in the memory layout during signal handling, debugging etc.
154  */
155 void fpstate_sanitize_xstate(struct fpu *fpu)
156 {
157         struct fxregs_state *fx = &fpu->state.fxsave;
158         int feature_bit;
159         u64 xfeatures;
160
161         if (!use_xsaveopt())
162                 return;
163
164         xfeatures = fpu->state.xsave.header.xfeatures;
165
166         /*
167          * None of the feature bits are in init state. So nothing else
168          * to do for us, as the memory layout is up to date.
169          */
170         if ((xfeatures & xfeatures_mask) == xfeatures_mask)
171                 return;
172
173         /*
174          * FP is in init state
175          */
176         if (!(xfeatures & XFEATURE_MASK_FP)) {
177                 fx->cwd = 0x37f;
178                 fx->swd = 0;
179                 fx->twd = 0;
180                 fx->fop = 0;
181                 fx->rip = 0;
182                 fx->rdp = 0;
183                 memset(&fx->st_space[0], 0, 128);
184         }
185
186         /*
187          * SSE is in init state
188          */
189         if (!(xfeatures & XFEATURE_MASK_SSE))
190                 memset(&fx->xmm_space[0], 0, 256);
191
192         /*
193          * First two features are FPU and SSE, which above we handled
194          * in a special way already:
195          */
196         feature_bit = 0x2;
197         xfeatures = (xfeatures_mask & ~xfeatures) >> 2;
198
199         /*
200          * Update all the remaining memory layouts according to their
201          * standard xstate layout, if their header bit is in the init
202          * state:
203          */
204         while (xfeatures) {
205                 if (xfeatures & 0x1) {
206                         int offset = xstate_comp_offsets[feature_bit];
207                         int size = xstate_sizes[feature_bit];
208
209                         memcpy((void *)fx + offset,
210                                (void *)&init_fpstate.xsave + offset,
211                                size);
212                 }
213
214                 xfeatures >>= 1;
215                 feature_bit++;
216         }
217 }
218
219 /*
220  * Enable the extended processor state save/restore feature.
221  * Called once per CPU onlining.
222  */
223 void fpu__init_cpu_xstate(void)
224 {
225         if (!boot_cpu_has(X86_FEATURE_XSAVE) || !xfeatures_mask)
226                 return;
227         /*
228          * Make it clear that XSAVES supervisor states are not yet
229          * implemented should anyone expect it to work by changing
230          * bits in XFEATURE_MASK_* macros and XCR0.
231          */
232         WARN_ONCE((xfeatures_mask & XFEATURE_MASK_SUPERVISOR),
233                 "x86/fpu: XSAVES supervisor states are not yet implemented.\n");
234
235         xfeatures_mask &= ~XFEATURE_MASK_SUPERVISOR;
236
237         cr4_set_bits(X86_CR4_OSXSAVE);
238         xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
239 }
240
241 /*
242  * Note that in the future we will likely need a pair of
243  * functions here: one for user xstates and the other for
244  * system xstates.  For now, they are the same.
245  */
246 static int xfeature_enabled(enum xfeature xfeature)
247 {
248         return !!(xfeatures_mask & (1UL << xfeature));
249 }
250
251 /*
252  * Record the offsets and sizes of various xstates contained
253  * in the XSAVE state memory layout.
254  */
255 static void __init setup_xstate_features(void)
256 {
257         u32 eax, ebx, ecx, edx, i;
258         /* start at the beginnning of the "extended state" */
259         unsigned int last_good_offset = offsetof(struct xregs_state,
260                                                  extended_state_area);
261         /*
262          * The FP xstates and SSE xstates are legacy states. They are always
263          * in the fixed offsets in the xsave area in either compacted form
264          * or standard form.
265          */
266         xstate_offsets[0] = 0;
267         xstate_sizes[0] = offsetof(struct fxregs_state, xmm_space);
268         xstate_offsets[1] = xstate_sizes[0];
269         xstate_sizes[1] = FIELD_SIZEOF(struct fxregs_state, xmm_space);
270
271         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
272                 if (!xfeature_enabled(i))
273                         continue;
274
275                 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
276
277                 /*
278                  * If an xfeature is supervisor state, the offset
279                  * in EBX is invalid. We leave it to -1.
280                  */
281                 if (xfeature_is_user(i))
282                         xstate_offsets[i] = ebx;
283
284                 xstate_sizes[i] = eax;
285                 /*
286                  * In our xstate size checks, we assume that the
287                  * highest-numbered xstate feature has the
288                  * highest offset in the buffer.  Ensure it does.
289                  */
290                 WARN_ONCE(last_good_offset > xstate_offsets[i],
291                         "x86/fpu: misordered xstate at %d\n", last_good_offset);
292                 last_good_offset = xstate_offsets[i];
293         }
294 }
295
296 static void __init print_xstate_feature(u64 xstate_mask)
297 {
298         const char *feature_name;
299
300         if (cpu_has_xfeatures(xstate_mask, &feature_name))
301                 pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
302 }
303
304 /*
305  * Print out all the supported xstate features:
306  */
307 static void __init print_xstate_features(void)
308 {
309         print_xstate_feature(XFEATURE_MASK_FP);
310         print_xstate_feature(XFEATURE_MASK_SSE);
311         print_xstate_feature(XFEATURE_MASK_YMM);
312         print_xstate_feature(XFEATURE_MASK_BNDREGS);
313         print_xstate_feature(XFEATURE_MASK_BNDCSR);
314         print_xstate_feature(XFEATURE_MASK_OPMASK);
315         print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
316         print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
317         print_xstate_feature(XFEATURE_MASK_PKRU);
318 }
319
320 /*
321  * This check is important because it is easy to get XSTATE_*
322  * confused with XSTATE_BIT_*.
323  */
324 #define CHECK_XFEATURE(nr) do {         \
325         WARN_ON(nr < FIRST_EXTENDED_XFEATURE);  \
326         WARN_ON(nr >= XFEATURE_MAX);    \
327 } while (0)
328
329 /*
330  * We could cache this like xstate_size[], but we only use
331  * it here, so it would be a waste of space.
332  */
333 static int xfeature_is_aligned(int xfeature_nr)
334 {
335         u32 eax, ebx, ecx, edx;
336
337         CHECK_XFEATURE(xfeature_nr);
338         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
339         /*
340          * The value returned by ECX[1] indicates the alignment
341          * of state component 'i' when the compacted format
342          * of the extended region of an XSAVE area is used:
343          */
344         return !!(ecx & 2);
345 }
346
347 /*
348  * This function sets up offsets and sizes of all extended states in
349  * xsave area. This supports both standard format and compacted format
350  * of the xsave aread.
351  */
352 static void __init setup_xstate_comp(void)
353 {
354         unsigned int xstate_comp_sizes[sizeof(xfeatures_mask)*8];
355         int i;
356
357         /*
358          * The FP xstates and SSE xstates are legacy states. They are always
359          * in the fixed offsets in the xsave area in either compacted form
360          * or standard form.
361          */
362         xstate_comp_offsets[0] = 0;
363         xstate_comp_offsets[1] = offsetof(struct fxregs_state, xmm_space);
364
365         if (!boot_cpu_has(X86_FEATURE_XSAVES)) {
366                 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
367                         if (xfeature_enabled(i)) {
368                                 xstate_comp_offsets[i] = xstate_offsets[i];
369                                 xstate_comp_sizes[i] = xstate_sizes[i];
370                         }
371                 }
372                 return;
373         }
374
375         xstate_comp_offsets[FIRST_EXTENDED_XFEATURE] =
376                 FXSAVE_SIZE + XSAVE_HDR_SIZE;
377
378         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
379                 if (xfeature_enabled(i))
380                         xstate_comp_sizes[i] = xstate_sizes[i];
381                 else
382                         xstate_comp_sizes[i] = 0;
383
384                 if (i > FIRST_EXTENDED_XFEATURE) {
385                         xstate_comp_offsets[i] = xstate_comp_offsets[i-1]
386                                         + xstate_comp_sizes[i-1];
387
388                         if (xfeature_is_aligned(i))
389                                 xstate_comp_offsets[i] =
390                                         ALIGN(xstate_comp_offsets[i], 64);
391                 }
392         }
393 }
394
395 /*
396  * Print out xstate component offsets and sizes
397  */
398 static void __init print_xstate_offset_size(void)
399 {
400         int i;
401
402         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
403                 if (!xfeature_enabled(i))
404                         continue;
405                 pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n",
406                          i, xstate_comp_offsets[i], i, xstate_sizes[i]);
407         }
408 }
409
410 /*
411  * setup the xstate image representing the init state
412  */
413 static void __init setup_init_fpu_buf(void)
414 {
415         static int on_boot_cpu __initdata = 1;
416
417         WARN_ON_FPU(!on_boot_cpu);
418         on_boot_cpu = 0;
419
420         if (!boot_cpu_has(X86_FEATURE_XSAVE))
421                 return;
422
423         setup_xstate_features();
424         print_xstate_features();
425
426         if (boot_cpu_has(X86_FEATURE_XSAVES))
427                 init_fpstate.xsave.header.xcomp_bv = (u64)1 << 63 | xfeatures_mask;
428
429         /*
430          * Init all the features state with header.xfeatures being 0x0
431          */
432         copy_kernel_to_xregs_booting(&init_fpstate.xsave);
433
434         /*
435          * Dump the init state again. This is to identify the init state
436          * of any feature which is not represented by all zero's.
437          */
438         copy_xregs_to_kernel_booting(&init_fpstate.xsave);
439 }
440
441 static int xfeature_uncompacted_offset(int xfeature_nr)
442 {
443         u32 eax, ebx, ecx, edx;
444
445         /*
446          * Only XSAVES supports supervisor states and it uses compacted
447          * format. Checking a supervisor state's uncompacted offset is
448          * an error.
449          */
450         if (XFEATURE_MASK_SUPERVISOR & (1 << xfeature_nr)) {
451                 WARN_ONCE(1, "No fixed offset for xstate %d\n", xfeature_nr);
452                 return -1;
453         }
454
455         CHECK_XFEATURE(xfeature_nr);
456         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
457         return ebx;
458 }
459
460 static int xfeature_size(int xfeature_nr)
461 {
462         u32 eax, ebx, ecx, edx;
463
464         CHECK_XFEATURE(xfeature_nr);
465         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
466         return eax;
467 }
468
469 /*
470  * 'XSAVES' implies two different things:
471  * 1. saving of supervisor/system state
472  * 2. using the compacted format
473  *
474  * Use this function when dealing with the compacted format so
475  * that it is obvious which aspect of 'XSAVES' is being handled
476  * by the calling code.
477  */
478 int using_compacted_format(void)
479 {
480         return boot_cpu_has(X86_FEATURE_XSAVES);
481 }
482
483 static void __xstate_dump_leaves(void)
484 {
485         int i;
486         u32 eax, ebx, ecx, edx;
487         static int should_dump = 1;
488
489         if (!should_dump)
490                 return;
491         should_dump = 0;
492         /*
493          * Dump out a few leaves past the ones that we support
494          * just in case there are some goodies up there
495          */
496         for (i = 0; i < XFEATURE_MAX + 10; i++) {
497                 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
498                 pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
499                         XSTATE_CPUID, i, eax, ebx, ecx, edx);
500         }
501 }
502
503 #define XSTATE_WARN_ON(x) do {                                                  \
504         if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) {        \
505                 __xstate_dump_leaves();                                         \
506         }                                                                       \
507 } while (0)
508
509 #define XCHECK_SZ(sz, nr, nr_macro, __struct) do {                      \
510         if ((nr == nr_macro) &&                                         \
511             WARN_ONCE(sz != sizeof(__struct),                           \
512                 "%s: struct is %zu bytes, cpu state %d bytes\n",        \
513                 __stringify(nr_macro), sizeof(__struct), sz)) {         \
514                 __xstate_dump_leaves();                                 \
515         }                                                               \
516 } while (0)
517
518 /*
519  * We have a C struct for each 'xstate'.  We need to ensure
520  * that our software representation matches what the CPU
521  * tells us about the state's size.
522  */
523 static void check_xstate_against_struct(int nr)
524 {
525         /*
526          * Ask the CPU for the size of the state.
527          */
528         int sz = xfeature_size(nr);
529         /*
530          * Match each CPU state with the corresponding software
531          * structure.
532          */
533         XCHECK_SZ(sz, nr, XFEATURE_YMM,       struct ymmh_struct);
534         XCHECK_SZ(sz, nr, XFEATURE_BNDREGS,   struct mpx_bndreg_state);
535         XCHECK_SZ(sz, nr, XFEATURE_BNDCSR,    struct mpx_bndcsr_state);
536         XCHECK_SZ(sz, nr, XFEATURE_OPMASK,    struct avx_512_opmask_state);
537         XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state);
538         XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM,  struct avx_512_hi16_state);
539         XCHECK_SZ(sz, nr, XFEATURE_PKRU,      struct pkru_state);
540
541         /*
542          * Make *SURE* to add any feature numbers in below if
543          * there are "holes" in the xsave state component
544          * numbers.
545          */
546         if ((nr < XFEATURE_YMM) ||
547             (nr >= XFEATURE_MAX) ||
548             (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR)) {
549                 WARN_ONCE(1, "no structure for xstate: %d\n", nr);
550                 XSTATE_WARN_ON(1);
551         }
552 }
553
554 /*
555  * This essentially double-checks what the cpu told us about
556  * how large the XSAVE buffer needs to be.  We are recalculating
557  * it to be safe.
558  */
559 static void do_extra_xstate_size_checks(void)
560 {
561         int paranoid_xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
562         int i;
563
564         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
565                 if (!xfeature_enabled(i))
566                         continue;
567
568                 check_xstate_against_struct(i);
569                 /*
570                  * Supervisor state components can be managed only by
571                  * XSAVES, which is compacted-format only.
572                  */
573                 if (!using_compacted_format())
574                         XSTATE_WARN_ON(xfeature_is_supervisor(i));
575
576                 /* Align from the end of the previous feature */
577                 if (xfeature_is_aligned(i))
578                         paranoid_xstate_size = ALIGN(paranoid_xstate_size, 64);
579                 /*
580                  * The offset of a given state in the non-compacted
581                  * format is given to us in a CPUID leaf.  We check
582                  * them for being ordered (increasing offsets) in
583                  * setup_xstate_features().
584                  */
585                 if (!using_compacted_format())
586                         paranoid_xstate_size = xfeature_uncompacted_offset(i);
587                 /*
588                  * The compacted-format offset always depends on where
589                  * the previous state ended.
590                  */
591                 paranoid_xstate_size += xfeature_size(i);
592         }
593         XSTATE_WARN_ON(paranoid_xstate_size != fpu_kernel_xstate_size);
594 }
595
596
597 /*
598  * Get total size of enabled xstates in XCR0/xfeatures_mask.
599  *
600  * Note the SDM's wording here.  "sub-function 0" only enumerates
601  * the size of the *user* states.  If we use it to size a buffer
602  * that we use 'XSAVES' on, we could potentially overflow the
603  * buffer because 'XSAVES' saves system states too.
604  *
605  * Note that we do not currently set any bits on IA32_XSS so
606  * 'XCR0 | IA32_XSS == XCR0' for now.
607  */
608 static unsigned int __init get_xsaves_size(void)
609 {
610         unsigned int eax, ebx, ecx, edx;
611         /*
612          * - CPUID function 0DH, sub-function 1:
613          *    EBX enumerates the size (in bytes) required by
614          *    the XSAVES instruction for an XSAVE area
615          *    containing all the state components
616          *    corresponding to bits currently set in
617          *    XCR0 | IA32_XSS.
618          */
619         cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
620         return ebx;
621 }
622
623 static unsigned int __init get_xsave_size(void)
624 {
625         unsigned int eax, ebx, ecx, edx;
626         /*
627          * - CPUID function 0DH, sub-function 0:
628          *    EBX enumerates the size (in bytes) required by
629          *    the XSAVE instruction for an XSAVE area
630          *    containing all the *user* state components
631          *    corresponding to bits currently set in XCR0.
632          */
633         cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
634         return ebx;
635 }
636
637 /*
638  * Will the runtime-enumerated 'xstate_size' fit in the init
639  * task's statically-allocated buffer?
640  */
641 static bool is_supported_xstate_size(unsigned int test_xstate_size)
642 {
643         if (test_xstate_size <= sizeof(union fpregs_state))
644                 return true;
645
646         pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n",
647                         sizeof(union fpregs_state), test_xstate_size);
648         return false;
649 }
650
651 static int init_xstate_size(void)
652 {
653         /* Recompute the context size for enabled features: */
654         unsigned int possible_xstate_size;
655         unsigned int xsave_size;
656
657         xsave_size = get_xsave_size();
658
659         if (boot_cpu_has(X86_FEATURE_XSAVES))
660                 possible_xstate_size = get_xsaves_size();
661         else
662                 possible_xstate_size = xsave_size;
663
664         /* Ensure we have the space to store all enabled: */
665         if (!is_supported_xstate_size(possible_xstate_size))
666                 return -EINVAL;
667
668         /*
669          * The size is OK, we are definitely going to use xsave,
670          * make it known to the world that we need more space.
671          */
672         fpu_kernel_xstate_size = possible_xstate_size;
673         do_extra_xstate_size_checks();
674
675         /*
676          * User space is always in standard format.
677          */
678         fpu_user_xstate_size = xsave_size;
679         return 0;
680 }
681
682 /*
683  * We enabled the XSAVE hardware, but something went wrong and
684  * we can not use it.  Disable it.
685  */
686 static void fpu__init_disable_system_xstate(void)
687 {
688         xfeatures_mask = 0;
689         cr4_clear_bits(X86_CR4_OSXSAVE);
690         fpu__xstate_clear_all_cpu_caps();
691 }
692
693 /*
694  * Enable and initialize the xsave feature.
695  * Called once per system bootup.
696  */
697 void __init fpu__init_system_xstate(void)
698 {
699         unsigned int eax, ebx, ecx, edx;
700         static int on_boot_cpu __initdata = 1;
701         int err;
702
703         WARN_ON_FPU(!on_boot_cpu);
704         on_boot_cpu = 0;
705
706         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
707                 pr_info("x86/fpu: Legacy x87 FPU detected.\n");
708                 return;
709         }
710
711         if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
712                 WARN_ON_FPU(1);
713                 return;
714         }
715
716         cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
717         xfeatures_mask = eax + ((u64)edx << 32);
718
719         if ((xfeatures_mask & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
720                 /*
721                  * This indicates that something really unexpected happened
722                  * with the enumeration.  Disable XSAVE and try to continue
723                  * booting without it.  This is too early to BUG().
724                  */
725                 pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", xfeatures_mask);
726                 goto out_disable;
727         }
728
729         xfeatures_mask &= fpu__get_supported_xfeatures_mask();
730
731         /* Enable xstate instructions to be able to continue with initialization: */
732         fpu__init_cpu_xstate();
733         err = init_xstate_size();
734         if (err)
735                 goto out_disable;
736
737         /*
738          * Update info used for ptrace frames; use standard-format size and no
739          * supervisor xstates:
740          */
741         update_regset_xstate_info(fpu_user_xstate_size, xfeatures_mask & ~XFEATURE_MASK_SUPERVISOR);
742
743         fpu__init_prepare_fx_sw_frame();
744         setup_init_fpu_buf();
745         setup_xstate_comp();
746         print_xstate_offset_size();
747
748         pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
749                 xfeatures_mask,
750                 fpu_kernel_xstate_size,
751                 boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard");
752         return;
753
754 out_disable:
755         /* something went wrong, try to boot without any XSAVE support */
756         fpu__init_disable_system_xstate();
757 }
758
759 /*
760  * Restore minimal FPU state after suspend:
761  */
762 void fpu__resume_cpu(void)
763 {
764         /*
765          * Restore XCR0 on xsave capable CPUs:
766          */
767         if (boot_cpu_has(X86_FEATURE_XSAVE))
768                 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
769 }
770
771 /*
772  * Given an xstate feature mask, calculate where in the xsave
773  * buffer the state is.  Callers should ensure that the buffer
774  * is valid.
775  *
776  * Note: does not work for compacted buffers.
777  */
778 void *__raw_xsave_addr(struct xregs_state *xsave, int xstate_feature_mask)
779 {
780         int feature_nr = fls64(xstate_feature_mask) - 1;
781
782         if (!xfeature_enabled(feature_nr)) {
783                 WARN_ON_FPU(1);
784                 return NULL;
785         }
786
787         return (void *)xsave + xstate_comp_offsets[feature_nr];
788 }
789 /*
790  * Given the xsave area and a state inside, this function returns the
791  * address of the state.
792  *
793  * This is the API that is called to get xstate address in either
794  * standard format or compacted format of xsave area.
795  *
796  * Note that if there is no data for the field in the xsave buffer
797  * this will return NULL.
798  *
799  * Inputs:
800  *      xstate: the thread's storage area for all FPU data
801  *      xstate_feature: state which is defined in xsave.h (e.g.
802  *      XFEATURE_MASK_FP, XFEATURE_MASK_SSE, etc...)
803  * Output:
804  *      address of the state in the xsave area, or NULL if the
805  *      field is not present in the xsave buffer.
806  */
807 void *get_xsave_addr(struct xregs_state *xsave, int xstate_feature)
808 {
809         /*
810          * Do we even *have* xsave state?
811          */
812         if (!boot_cpu_has(X86_FEATURE_XSAVE))
813                 return NULL;
814
815         /*
816          * We should not ever be requesting features that we
817          * have not enabled.  Remember that pcntxt_mask is
818          * what we write to the XCR0 register.
819          */
820         WARN_ONCE(!(xfeatures_mask & xstate_feature),
821                   "get of unsupported state");
822         /*
823          * This assumes the last 'xsave*' instruction to
824          * have requested that 'xstate_feature' be saved.
825          * If it did not, we might be seeing and old value
826          * of the field in the buffer.
827          *
828          * This can happen because the last 'xsave' did not
829          * request that this feature be saved (unlikely)
830          * or because the "init optimization" caused it
831          * to not be saved.
832          */
833         if (!(xsave->header.xfeatures & xstate_feature))
834                 return NULL;
835
836         return __raw_xsave_addr(xsave, xstate_feature);
837 }
838 EXPORT_SYMBOL_GPL(get_xsave_addr);
839
840 /*
841  * This wraps up the common operations that need to occur when retrieving
842  * data from xsave state.  It first ensures that the current task was
843  * using the FPU and retrieves the data in to a buffer.  It then calculates
844  * the offset of the requested field in the buffer.
845  *
846  * This function is safe to call whether the FPU is in use or not.
847  *
848  * Note that this only works on the current task.
849  *
850  * Inputs:
851  *      @xsave_state: state which is defined in xsave.h (e.g. XFEATURE_MASK_FP,
852  *      XFEATURE_MASK_SSE, etc...)
853  * Output:
854  *      address of the state in the xsave area or NULL if the state
855  *      is not present or is in its 'init state'.
856  */
857 const void *get_xsave_field_ptr(int xsave_state)
858 {
859         struct fpu *fpu = &current->thread.fpu;
860
861         if (!fpu->fpstate_active)
862                 return NULL;
863         /*
864          * fpu__save() takes the CPU's xstate registers
865          * and saves them off to the 'fpu memory buffer.
866          */
867         fpu__save(fpu);
868
869         return get_xsave_addr(&fpu->state.xsave, xsave_state);
870 }
871
872 #ifdef CONFIG_ARCH_HAS_PKEYS
873
874 #define NR_VALID_PKRU_BITS (CONFIG_NR_PROTECTION_KEYS * 2)
875 #define PKRU_VALID_MASK (NR_VALID_PKRU_BITS - 1)
876 /*
877  * This will go out and modify PKRU register to set the access
878  * rights for @pkey to @init_val.
879  */
880 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
881                 unsigned long init_val)
882 {
883         u32 old_pkru;
884         int pkey_shift = (pkey * PKRU_BITS_PER_PKEY);
885         u32 new_pkru_bits = 0;
886
887         /*
888          * This check implies XSAVE support.  OSPKE only gets
889          * set if we enable XSAVE and we enable PKU in XCR0.
890          */
891         if (!boot_cpu_has(X86_FEATURE_OSPKE))
892                 return -EINVAL;
893         /*
894          * For most XSAVE components, this would be an arduous task:
895          * brining fpstate up to date with fpregs, updating fpstate,
896          * then re-populating fpregs.  But, for components that are
897          * never lazily managed, we can just access the fpregs
898          * directly.  PKRU is never managed lazily, so we can just
899          * manipulate it directly.  Make sure it stays that way.
900          */
901         WARN_ON_ONCE(!use_eager_fpu());
902
903         /* Set the bits we need in PKRU:  */
904         if (init_val & PKEY_DISABLE_ACCESS)
905                 new_pkru_bits |= PKRU_AD_BIT;
906         if (init_val & PKEY_DISABLE_WRITE)
907                 new_pkru_bits |= PKRU_WD_BIT;
908
909         /* Shift the bits in to the correct place in PKRU for pkey: */
910         new_pkru_bits <<= pkey_shift;
911
912         /* Get old PKRU and mask off any old bits in place: */
913         old_pkru = read_pkru();
914         old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
915
916         /* Write old part along with new part: */
917         write_pkru(old_pkru | new_pkru_bits);
918
919         return 0;
920 }
921 #endif /* ! CONFIG_ARCH_HAS_PKEYS */
922
923 /*
924  * This is similar to user_regset_copyout(), but will not add offset to
925  * the source data pointer or increment pos, count, kbuf, and ubuf.
926  */
927 static inline int xstate_copyout(unsigned int pos, unsigned int count,
928                                  void *kbuf, void __user *ubuf,
929                                  const void *data, const int start_pos,
930                                  const int end_pos)
931 {
932         if ((count == 0) || (pos < start_pos))
933                 return 0;
934
935         if (end_pos < 0 || pos < end_pos) {
936                 unsigned int copy = (end_pos < 0 ? count : min(count, end_pos - pos));
937
938                 if (kbuf) {
939                         memcpy(kbuf + pos, data, copy);
940                 } else {
941                         if (__copy_to_user(ubuf + pos, data, copy))
942                                 return -EFAULT;
943                 }
944         }
945         return 0;
946 }
947
948 /*
949  * Convert from kernel XSAVES compacted format to standard format and copy
950  * to a ptrace buffer. It supports partial copy but pos always starts from
951  * zero. This is called from xstateregs_get() and there we check the CPU
952  * has XSAVES.
953  */
954 int copyout_from_xsaves(unsigned int pos, unsigned int count, void *kbuf,
955                         void __user *ubuf, struct xregs_state *xsave)
956 {
957         unsigned int offset, size;
958         int ret, i;
959         struct xstate_header header;
960
961         /*
962          * Currently copy_regset_to_user() starts from pos 0:
963          */
964         if (unlikely(pos != 0))
965                 return -EFAULT;
966
967         /*
968          * The destination is a ptrace buffer; we put in only user xstates:
969          */
970         memset(&header, 0, sizeof(header));
971         header.xfeatures = xsave->header.xfeatures;
972         header.xfeatures &= ~XFEATURE_MASK_SUPERVISOR;
973
974         /*
975          * Copy xregs_state->header:
976          */
977         offset = offsetof(struct xregs_state, header);
978         size = sizeof(header);
979
980         ret = xstate_copyout(offset, size, kbuf, ubuf, &header, 0, count);
981
982         if (ret)
983                 return ret;
984
985         for (i = 0; i < XFEATURE_MAX; i++) {
986                 /*
987                  * Copy only in-use xstates:
988                  */
989                 if ((header.xfeatures >> i) & 1) {
990                         void *src = __raw_xsave_addr(xsave, 1 << i);
991
992                         offset = xstate_offsets[i];
993                         size = xstate_sizes[i];
994
995                         ret = xstate_copyout(offset, size, kbuf, ubuf, src, 0, count);
996
997                         if (ret)
998                                 return ret;
999
1000                         if (offset + size >= count)
1001                                 break;
1002                 }
1003
1004         }
1005
1006         /*
1007          * Fill xsave->i387.sw_reserved value for ptrace frame:
1008          */
1009         offset = offsetof(struct fxregs_state, sw_reserved);
1010         size = sizeof(xstate_fx_sw_bytes);
1011
1012         ret = xstate_copyout(offset, size, kbuf, ubuf, xstate_fx_sw_bytes, 0, count);
1013
1014         if (ret)
1015                 return ret;
1016
1017         return 0;
1018 }
1019
1020 /*
1021  * Convert from a ptrace standard-format buffer to kernel XSAVES format
1022  * and copy to the target thread. This is called from xstateregs_set() and
1023  * there we check the CPU has XSAVES and a whole standard-sized buffer
1024  * exists.
1025  */
1026 int copyin_to_xsaves(const void *kbuf, const void __user *ubuf,
1027                      struct xregs_state *xsave)
1028 {
1029         unsigned int offset, size;
1030         int i;
1031         u64 xfeatures;
1032         u64 allowed_features;
1033
1034         offset = offsetof(struct xregs_state, header);
1035         size = sizeof(xfeatures);
1036
1037         if (kbuf) {
1038                 memcpy(&xfeatures, kbuf + offset, size);
1039         } else {
1040                 if (__copy_from_user(&xfeatures, ubuf + offset, size))
1041                         return -EFAULT;
1042         }
1043
1044         /*
1045          * Reject if the user sets any disabled or supervisor features:
1046          */
1047         allowed_features = xfeatures_mask & ~XFEATURE_MASK_SUPERVISOR;
1048
1049         if (xfeatures & ~allowed_features)
1050                 return -EINVAL;
1051
1052         for (i = 0; i < XFEATURE_MAX; i++) {
1053                 u64 mask = ((u64)1 << i);
1054
1055                 if (xfeatures & mask) {
1056                         void *dst = __raw_xsave_addr(xsave, 1 << i);
1057
1058                         offset = xstate_offsets[i];
1059                         size = xstate_sizes[i];
1060
1061                         if (kbuf) {
1062                                 memcpy(dst, kbuf + offset, size);
1063                         } else {
1064                                 if (__copy_from_user(dst, ubuf + offset, size))
1065                                         return -EFAULT;
1066                         }
1067                 }
1068         }
1069
1070         /*
1071          * The state that came in from userspace was user-state only.
1072          * Mask all the user states out of 'xfeatures':
1073          */
1074         xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR;
1075
1076         /*
1077          * Add back in the features that came in from userspace:
1078          */
1079         xsave->header.xfeatures |= xfeatures;
1080
1081         return 0;
1082 }